
Published as a workshop paper at Deep Reinforcement Learning Workshop NeurIPS 2022

SUPPLEMENTARY MATERIALS FOR CLUTR: CURRICULUM LEARNING VIA
UNSUPERVISED TASK REPRESENTATION LEARNING

A ADDITIONAL DETAILS OF CLUTR

A.1 CLUTR OBJECTIVE DERIVATION

Figure 8: Hierarchi-
cal Graphical Model
for CLUTR

We use a hierarchical graphical model to formulate the latent environment
design problem. Let’s assume that R is a random variable that denotes a
measure of success defined using the protagonist and antagonist agents and
z be a latent random variable. We use the graphical model in Figure-8 where
z generates an environment E and R is the success defined over E. Both E

and R are observed variables while z is an unobserved variable. R covers a
broad range of measures used in different UED methods including PAIRED
and DR (Domain Randomization). In PAIRED, R represents the REGRET
as the difference of returns between the antagonist and protagonist agents
and it depends on the environments that the agents are evaluated on.

We use a variational formulation of UED by using the above graphical
model. We first define the variational objective as the KL-divergence be-
tween an approximate posterior distribution and true posterior distribution
over latent variable z,

DKL(q(z)|p(z|R,E)) = Ez⇠q(z)[logq(z)]� Ez⇠q(z)[logp(z|R,E)]

= Ez⇠q(z)[logq(z)]� Ez⇠q(z)[logp(R,E, z)] + logp(R,E)

where both R and E are given.

Next, we write the ELBO,

ELBO = Ez⇠q(z)[logq(z)]� Ez⇠q(z)[logp(R,E, z)]

= Ez⇠q(z)[logq(z)]� Ez⇠q(z)[logp(R|E)p(E|z)p(z)]
= Ez⇠q(z)[logq(z)]� Ez⇠q(z)[logp(z)]� Ez⇠q(z)[logp(E|z)]� Ez⇠q(z)[logp(R|E)]

= Ez⇠q(z)[log
q(z)

p(z)
]� Ez⇠q(z)[logp(E|z)]� logp(R|E)

= DKL(q(z)|p(z))� Ez⇠q(z)[logp(E|z)]� logp(R|E)

= V AE(z, E)� logp(R|E)

We can also induce an objective that includes minimax REGRET. Let R be distributed according to
an exponential distribution, p(R|E) / exp(REGRET(⇡P ,⇡A|E)),

we derive,

ELBO ⇡ V AE(z, E)� REGRET(R,E)

where the normalizing factor is ignored.

A.2 ROBUSTNESS GUARANTEES

CLUTR essentially proposes including a pretrained latent space within the teacher/generator. From
the teacher’s perspective, the difference is while the PAIRED teacher starts from randomly initialized
weights, CLUTR starts from the pretrained weights. Thus, CLUTR does not impose new assump-
tions on possible teacher policies. Furthermore, CLUTR does not change any other specifics of the
underlying PAIRED algorithm. Hence, CLUTR holds the same theoretical robustness guarantees
provided by PAIRED.

13

Published as a workshop paper at Deep Reinforcement Learning Workshop NeurIPS 2022

In practice, both CLUTR and PAIRED deviate from these theoretical guarantees. For example,
both algorithms approximate the regret value, which is the case for other regret-based UEDs such
as Robust PLR and REPAIRED (Jiang et al. (2021a)). Also, the robustness guarantee depends on
reaching the Nash equilibrium of the multiagent adversarial game. However, gradient-based multi-
agent RL has no convergence guarantees and often fails to converge in practice(Mazumdar et al.
(2019)). We also note that, by introducing the latent space, CLUTR VAE might not have access to
the full task space due to practical limitations on training, e.g., the training dataset not having all
possible tasks. However, when the decoder is allowed to be finetuned, CLUTR will have access to
the full task space, similar to PAIRED. Our empirical results (discussed in Section 5.4) suggest that
keeping the pretrained decoder fixed performs better than finetuning it, so we kept it fixed for our
main experiments. We also want to mention that we used the flexible regret objective for CarRacing
in Section 5.1. When the flexible objective is used, CLUTR (and PAIRED) might not hold the
robustness guarantee as it changes the dynamics of the underlying game between the teacher and
the agents. However, we also experimented with the standard regret objective and obtained better
performance than PAIRED as discussed in Section C.2.

B TRAINING DETAILS

B.1 ENVIRONMENT DETAILS

Car Racing: The CarRacing environment was originally proposed by OpenAI Gym Brockman
et al. (2016), and later has been reparameterized by Jiang et al. (2021a) with Bézier Curves(Morten-
son (1999)) for UED algorithms. This environment requires the agents to drive a full lap around
a closed-loop track. The track is defined by a Bézier Curve modeled with a sequence of upto 12
arbitrary control points, each spaced within a fixed radius B/2 of the center of the B ⇥ B field.
This sequence of control points can uniquely identify a track, subject to a set of predefined curvature
constraints Jiang et al. (2021a). The control points are encoded in a 10⇥ 10 grid—a discrete down-
sampled version of the racing track field. Each control point hence is a integer denoting a cell of the
grid and the cell coordinates are upscaled to match the original scale of the field afterwards. This
ensures no two control points are too close together, preventing areas of excessive track overlapping.
The track consists of a sequence of L polygons and the agent receives a reward of 1000/L upon vis-
iting each unvisited polygon and a penalty of �0.1 at each time step to incentivize completing the
tracks faster. Episodes terminate if the agent drives too far off-track but is not given any additional
penalty. The agent controls a 3 dimensional continuous action space corresponding to the car’s steer:
torque 2 [�1.0, 1.0], gas: acceleration 2 [0, 0, 1.0], and brake: deceleration 2 [0.0, 1.0]. Each ac-
tion is repeated 8 times. The agent receive a 96 ⇥ 96 ⇥ 3 RGB pixel observation. The top 84 ⇥ 96
portion of the frame contains a clipped, egocentric, bird’s eye view of the horizontally centered car.
The bottom 12⇥ 96 segment simulates a dashboard visualizing the agent’s latest action and return.
Snapshots of the test track in the F1 benchmark are shown in Figure 9.

Minigrid: The environment is partially observable and based on Chevalier-Boisvert et al. (2018)
and adopted for UED by Dennis et al. (2020). Each navigation task is represented with a sequence
of integers denoting the locations of the obstacles, the goal, and the starting position of the agent:
on a 15 ⇥ 15 grid similar to Dennis et al. (2020). The grids are surrounded by walls on the sides,
making it essentially a 13⇥ 13 grid. Dennis et al. (2020) parameterizes the locations using integers.
Each task is a sequence of 52 integers, while the first 50 numbers denote the location of obstacles
followed by the goal and the agent’s initial location. The sequences may contain duplicates to allow
the generation of navigation tasks with fewer than 50 obstacles. Snapshots of the test grids used in
our paper are shown in Figure 10.

B.2 NETWORK ARCHITECTURES

All the student and teacher agents are trained with PPO Schulman et al. (2017).

Student Architecture

For CarRacing, we use the same student architecture as Jiang et al. (2021a). The architecture consists
an image embedding module composed of 2D Convolutions with square kernels of sizes 2,2,2,2,3,3,
stride lengths 2,2,2,2,1,1 and channel outputs of 8, 16, 64, 128, 256 stacked together. The image
embedding is of size 256 and is passed through a Fully Connected (FC) layer of 100 hidden units

14

Published as a workshop paper at Deep Reinforcement Learning Workshop NeurIPS 2022

Figure 9: Snapshots of the test tracks in F1 benchmark

Figure 10: Snapshots of the test grids for MiniGrid

15

Published as a workshop paper at Deep Reinforcement Learning Workshop NeurIPS 2022

and then passed through ReLU activations. This embedding is then passed through two FC with 100
hidden neurons, and then a softplus layer, and finally added to 1 for the beta distribution used for the
continuous action space. Further details can be found in Jiang et al. (2021a).

For navigation tasks, we use the same student architecture as Dennis et al. (2020). The observation
is a tuple with a 5⇥5⇥3 grid observation and a direction integer in [0�3]. The grid view is fed to a
convolutional layer with kernels of size 3 with 16 filters and the direction integer is passed through a
FC with 5 units. This is followed by an LSTM of size 256, and then to two FC layers with 32 units,
which connect to the policy outputs. The value network uses the same architecture.

Teacher Architecture

For CarRacing, CLUTR teacher takes a random noise and generates a continuous vector, i.e., the
latent task vector. We pass the random noise through a feed-forward network with one hidden layer
of 8 neurons as the teacher. The output of this layer is fed through two separate fully-connected
layers, each with a hidden size of 100 and an output dimension equal to the latent space dimension,
followed by soft plus activations. We then add 1 to each component of these two output vectors,
which serve as the ↵ and � parameters respectively for the Beta distributions used to sample each
latent dimension. In our experiments, we used a 64-dimensional latent task space. For Minigrid
experiments, we use a network architecture similar to Dennis et al. (2020) but take only the random
noise as input. The adversary network generates discrete actions, but we map them to real numbers
to feed into the VAE decoder.

VAE architecture

We use the architecture proposed in Bowman et al. (2015). We use a word-embedding layer of size
300 with random initialization. The encoder comprises a conditional ‘Highway’ network followed
by an LSTM. The Highway network is a two-staged network stacked on top of each other. Each
stage computes �(x)� f(G(x))+ (1� �(x))�Q(x), where x is the inputs to each of the highway
network stages, G and Q is affine transformation, �(x) is a sigmoid non-linearization, and � is
element-wise multiplication. G and Q are feed-forward networks with a single hidden layer with
equal input and output dimensions of 300, equal to the word-embedding output dimension. We use
ReLU activation as f . The highway network is followed by a bidirectional LSTM with a single layer
of 600 units. The LSTM outputs are passed through linear layer of dimension 64 to get the VAE
mean and log variance. The mean vectors are passed through a hyperbolic tangent activation and
for the navigation tasks linearly scaled in [�4, 4]. The decoder takes in latent vectors of dimension
64 and passes through a bidirectional LSTM with two hidden layers of size 800 and follows it by a
linear layer with size equaling the parameter vector dimension.

B.3 HYPERPARAMETERS

All our agents are trained with PPO (Schulman et al. (2017)). We did not perform any hyperparame-
ter search for our experiments. The CarRacing experiments used the same parameters used in Jiang
et al. (2021a), and the Minigrid experiments used the parameters from Dennis et al. (2020). VAE
was trained on the parameters from Bowman et al. (2015). The detailed parameters are listed in
Table 2 and Table 3.

Parameter Value
Batch Size 32
Number of Training Steps 1000000
Reconstruction Weight 79
Latent Variable Size 64
Word Embedding size 300
Maximum Sequence Length 52
Encoder Activation Hyperbolic Tangent
Learning Rate 0.00005
Dropout 0.3

Table 2: Hyperparameters for training the Task VAE

16

Published as a workshop paper at Deep Reinforcement Learning Workshop NeurIPS 2022

Parameter CarRacing MiniGrid
� 0.99 0.995
�GAE 0.9 0.95
PPO rollout length 125 256
PPO epochs 8 5
PPO minibatches per epoch 4 1
PPO clip range 0.2 0.2
PPO number of workers 16 32
Adam learning rate 3e-4 1e-4
Adam ✏ 1e-5 1e-5
PPO max gradient norm 0.5 0.5
PPO value clipping no yes
Return normalization yes no
Value loss coefficient 0.5 0.5
Student entropy coefficient 0 0
Action Repeat 8 -

Table 3: Hyperparameters for PAIRED and CLUTR PPO training.

B.4 VAE TRAINING DATA

For CarRacing, we follow the same parameterization as Jiang et al. (2021a): each track is defined
with a sequence of up to 12 integers denoting control points of a Bézier Curve. . Each control point
is represented with an integer. We generate 1M random sorted integer sequences of fixed length
12 with duplicates—which enables generating tracks defined with less than 12 control points. For
navigation tasks we use the parameterization of Dennis et al. (2020), generating upto 50 obstacles
for each task for a 15⇥ 15 grid, surrounded by walls, effectively an active area of 13⇥ 13. Hence,
each location is numbered in 1 to 169. Every number except the last two of the sequence represent
obstacle locations, and the last two for the goal and agent location, respectively. The parameter
vector is thus partially permutation invariant. We uniformly generate 1M sequences of variable
length between 2 and 52 (inclusive). The obstacle locations are sorted.

C DETAILED RESULTS ON CARRACING

C.1 DETAILED COMPARISON ON FULL F1 DATASET

We used the flexible regret approximation for the results presented in the main paper. The flexible
regret objective is a more robust variant of the standard regret estimation (both introduced in Dennis
et al. (2020)). It is defined by the difference between the average score of the agent and antagonist
returns and the score of the policy that achieved the highest average return. Thus, the flexible
objective blurs the distinction between the agent and the antagonist. Hence we designate the agent
achieving the higher average training return during the last 10 steps as the agent.

Figure 11 compares how different UEDs perform during training by periodically evaluating them on
Four Selected Tracks: Vanilla, Singapore, Germany, and Italy. These tracks were selected aligning
with Jiang et al. (2021a). Based on these selected tracks, CLUTR performance plateaus around
2.5M timesteps. Robust PLR starts slowly but surpasses all the other methods after 5M timesteps.

Table 4 shows the comparison between the final agents trained with CLUTR and other UED algo-
rithms. It is to be noted that, all the UED methods except CLUTR was trained for 5M timesteps
where CLUTR was run for 2M timesteps. CLUTR outperforms PAIRED by a big margin with 18x
bigger mean return on the entire F1 Dataset. CLUTR also outperforms Domain Randomization,
PLR, and REPAIRED and only falls short to Robust PLR. Nonetheless, CLUTR shows competitive
results compared to Robust PLR, showing comparable results in seven out of the 20 test tracks and
outperforming in the Netherlands track. CLUTR also outperforms the non-UED SOTA on the full F1
dataset. CLUTR outperforms the Attention Agent on 9 out of the 20 tracks and shows comparable
performance in one.

17

Published as a workshop paper at Deep Reinforcement Learning Workshop NeurIPS 2022

Figure 11: Comparison of mean agent returns on Four Selected Tracks: Vanilla, Singapore, Ger-
many, and Italy. Based on these selected tracks, CLUTR improves a bit after 2M timesteps later
the performance plateaus. Robust PLR starts slowly but surpasses all the other methods after 5M
timesteps.

C.2 CLUTR WITH STANDARD REGRET LOSS

We also train CLUTR with the standard regret loss for 5M timesteps. Figure 12 compares the impact
of standard/flexible regret loss on the regret and agent returns during training. With standard regret
loss, CLUTR shows a lower regret value, but shows similar pattern. The CLUTR agent achieves
better returns with flexible loss throughout the training.

Figure 13 compares the mean regret and agent training returns with PAIRED. CLUTR with standard
loss shows much lower regret than PAIRED (Figure 13a). Figure 13b shows that the CLUTR agents
compete closely, while PAIRED antagonist achieves much higher returns than the PAIRED agent
which leads to higher regret returns for the teacher agent but results in a weak student agent. To test
the Zero-shot generalization, we evaluate CLUTR with the standard loss on the full F1 benchmark.
Figure 14 shows CLUTR with standard regret loss outperforms PAIRED in all the 20 test tracks.
This implies that CLUTR outperforms PAIRED irrespective of the choice of the loss function (stan-
dard/flexible). Figure 15 compares the sample efficiency of CLUTR with the standard regret loss
with PAIRED by evaluating the agents on four selected tracks (Vanilla, Singapore, Germany, Italy)
during training. It can be seen that CLUTR, even without the regret loss, outperforms PAIRED
significantly. We note that these test environments were not used in any way, neither during training
CLUTR (and PAIRED) nor while designing it.

As mentioned in Jiang et al. (2021a) PAIRED overexploits the relative strengths of the antagonist
over the protagonist and generates a curriculum that gradually reduces the task complexity. How-
ever, CLUTR overcomes this and generates a curriculum where the agent and the antagonist closely
compete (Figure 13b) and shows a robust generalization on the unseen F1 benchmark.

C.3 EXTENDED ANALYSIS ON IMPACT OF SORTING TRAINING DATA FOR VAE TRAINING

The non-sorted dataset was generated by shuffling each track of the original VAE training dataset
10 different times, resulting in a 10X bigger dataset (10M tracks). It was trained for 5X longer
for 5M training steps. We planned on training for 10M gradient steps (10X than the original VAE)
but stopped at 5M as it converged much sooner. We ran both CLUTR and CLUTR-shuffled, i.e.,

18

Published as a workshop paper at Deep Reinforcement Learning Workshop NeurIPS 2022

Track DR PLR Robust PLR PAIRED REPAIRED CLUTR (2M) Attention Agent
Australia 484 ± 29 545 ± 23 692 ± 15 100 ± 22 414 ± 27 683 ± 20 826
Austria 409 ± 21 442 ± 18 615 ± 13 92 ± 24 345 ± 19 507 ± 19 511

Bahrain 298 ± 27 411 ± 22 590 ± 15 -35 ± 19 295 ± 23 414 ± 20 372

Belgium 328 ± 16 327 ± 15 474 ± 12 72 ± 20 293 ± 19 429 ± 15 668
Brazil 309 ± 23 387 ± 17 455 ± 13 76 ± 18 256 ± 19 363 ± 18 145

China 115 ± 24 84 ± 20 228 ± 24 -101 ± 9 7 ± 18 254 ± 28 344
France 279 ± 32 290 ± 35 478 ± 22 -81 ± 13 240 ± 29 498 ± 31 153

Germany 274 ± 23 388 ± 20 499 ± 18 -33 ± 16 272 ± 22 404 ± 20 214

Hungary 465 ± 32 533 ± 26 708 ± 17 98 ± 29 414 ± 29 630 ± 24 769
Italy 461 ± 27 588 ± 20 625 ± 12 132 ± 24 371 ± 25 639 ± 16 798
Malaysia 236 ± 25 283 ± 20 400 ± 18 -26 ± 17 200 ± 17 426 ± 22 300

Mexico 458 ± 33 561 ± 21 712 ± 12 67 ± 31 415 ± 30 627 ± 19 580

Monaco 268 ± 28 360 ± 32 486 ± 19 -28 ± 18 256 ± 26 460 ± 29 835
Netherlands 328 ± 26 418 ± 21 419 ± 25 70 ± 20 307 ± 21 488 ± 21 131

Portugal 324 ± 27 407 ± 15 483 ± 13 -49 ± 13 265 ± 21 462 ± 20 606
Russia 382 ± 30 479 ± 24 649 ± 14 51 ± 21 419 ± 25 497 ± 23 732
Singapore 336 ± 29 386 ± 22 566 ± 15 -35 ± 14 274 ± 21 382 ± 19 276

Spain 433 ± 24 482 ± 17 622 ± 14 134 ± 24 358 ± 24 496 ± 15 759
UK 393 ± 28 456 ± 16 538 ± 17 138 ± 25 380 ± 22 471 ± 19 729
USA 263 ± 31 243 ± 28 381 ± 33 -119 ± 11 120 ± 25 238 ± 31 -192

Mean 342 ± 27 404 ± 22 531 ± 17 26 ± 19 295 ± 23 468 ± 21 478

Table 4: Comparison between CLUTR and other UED algorithms. Boldface denotes SOTA
among UED algorithms, while italic in the Attention Agent colum means, CLUTR is compara-
ble/outperforms the attention agent on that track. CLUTR outperforms PAIRED by a big margin
with 18x bigger mean return on the entire F1 Dataset. CLUTR also outperforms Domain Random-
ization, PLR, and REPAIRED and only falls short to Robust PLR. Nonetheless, CLUTR shows
competitive results compared to Robust PLR, showing comparable results in seven out of the 20 test
tracks and outperforming in the Netherlands track. CLUTR also outperforms the non-UED SOTA
on the full F1 dataset. CLUTR outperforms the Attention Agent on 9 out of the 20 tracks and shows
comparableperformance in one. It must be noted, all the UED methods except CLUTR was trained
for 5M timesteps where CLUTR was run for 2M timesteps.

(a) Mean Regret - Car Racing - with vs without flexible
regret loss

(b) Returns on UED generated Car Racing tracks -
with vs without flexible regret loss

Figure 12: Mean Regret and agent returns during training CLUTR (with flexible regret) vs CLUTR
with standard PAIRED regret approximation.

CLUTR with a VAE trained on non-sorted data up to 5M timesteps. CLUTR-shuffled shows inferior
performance and also signs of unlearning compared to CLUTR. Figure 16 shows detailed experiment
results.

19

Published as a workshop paper at Deep Reinforcement Learning Workshop NeurIPS 2022

(a) Mean Regret - Car Racing (b) Returns on UED generated Car Racing tracks

Figure 13: Mean Regret and agent returns during training CLUTR with standard PAIRED regret
loss (i.e., without the flexible regret). CLUTR shows a smaller regret value(i.e., closely competing
agent and antagonist), indicating a better UED curriculum.

Figure 14: Zero-shot generalization of both PAIRED and CLUTR (with the standard regret loss)
agents after 5M timesteps on the full F1 benchmark. CLUTR with the standard regret loss outper-
forms PAIRED on every track. For each track, we test the agents on 10 different episodes and the
error bar denotes the standard error.

Figure 15: Test Returns on Selected Tracks (Vanilla, Singapore, Germany, and Italy) of CLUTR
with standard PAIRED regret loss alongside PAIRED performance.

20

Published as a workshop paper at Deep Reinforcement Learning Workshop NeurIPS 2022

(a) During training CLUTR agent achieves higher re-
turns while, CLUTR-shuffled agent shows lower re-
turns. CLUTR-Shuffled agent’s return is also less sta-
ble showing a decrease and increase.

(b) CLUTR achieves higher and more stable mean re-
turns on the selected tracks. CLUTR-Shuffle shows
signs of unlearning.

Figure 16: Analysis of sorting training data for VAE. Trained on shuffled data, CLUTR-Shuffled
performs inferior compared to CLUTR and shows signs of unlearning.

C.4 IMPACT OF TASK REPRESENTATION LEARNING

Figure 17: Impact of pretrained decoder weights
on performance. The red curve plots the devia-
tion of the decoder from its pretrained weights as
it is finetuned. The green curve shows the perfor-
mance drop from CLUTR with the standard loss.
These curves suggest that pretrained weights are
crucial for performance.

In this section, we discuss the impact of the
learned task representation on performance. In
Section 5.4, we showed that if we finetune the
VAE decoder during curriculum learning, the
overall performance drops significantly (Fig-
ure 6). To get a better understanding, in Fig-
ure 17, we plot how much the performance
deviates as the VAE decoder changes during
the training process. The curve in red shows
the deviation of the decoder from its pretrained
weights as it is fine-tuned during the training.
We estimate the deviation as the L2 distance be-
tween the finetuned and the pretrained decoder
weights. The green curve shows the perfor-
mance drop from CLUTR (with standard loss).
To estimate the performance drop, we period-
ically evaluate both CLUTR and CLUTR with
Finetuned VAE, on the selected test tracks dur-
ing training. From the figure, we observe that,
as the decoder weights are finetuned, they become increasingly different from the initial pretrained
weights. At the same time, the overall performance gap from CLUTR also increases. This suggests
that the pretrained VAE weights are crucial for better performance.

Furthermore, the quality of the learned representation depends on the quality of the data they are
trained on. In section 5.5, we showed that a VAE trained on a non-sorted dataset significantly de-
teriorates the performance (Figure 6). This further suggests that the learned representation has a
significant impact on performance. We also want to note that both of these variations (CLUTR with
Finetuned VAE and the CLUTR with Shuffled VAE) perform much better than PAIRED, which
suggests that, though CLUTR’s performance depends on the representation, with a reasonable rep-
resentation, it can still perform better than PAIRED.

21

Published as a workshop paper at Deep Reinforcement Learning Workshop NeurIPS 2022

D DETAILED RESULTS ON MINIGRID

D.1 CURRICULUM ANALYSIS

Figure 19 shows 3D Histograms showing the frequency of the generated grids against the total num-
ber of obstacles they contain. PAIRED starts with a high number of obstacles and then degenerates
into grids with very few numbers of obstacles, eventually converging into a band of around 20 to 40
obstacles on average. CLUTR converges to a longer-tail band of 20 to 30 obstacles, much earlier
in the training process. After the ‘convergence’, PAIRED rarely generates grids with fewer or more
obstacles than the band it converges to. On the contrary, CLUTR still generates grids with few or
many blocks, which might help to address unlearning or improve the agents on grids with more
obstacles, respectively.

(a) CLUTR (b) PAIRED

Figure 18: 3D Histograms showing the frequency of the generated grids against the total number
of blocks they contain. Both PAIRED and CLUTR converge to a similar band of grids. However,
CLUTR converges much faster

Figure 19a shows the average episode lengths of both CLUTR and PAIRED. The curves show both
methods start with long episodes—indicating at the beginning, the agents do not solve the training
grids consistently, and many of the episodes end due to timeout. As the agents learn, the episodes
become shorter for both methods until they converge to a small value. However, CLUTR converges
sooner than PAIRED.

We also compare the average solution length of the solved training grids. Both PAIRED and CLUTR
show a similar pattern. However, PAIRED converges to a larger value than CLUTR. This might in-
dicate that CLUTR is solving the environments more efficiently. This might also mean that CLUTR
is solving some easier tasks (e.g., fewer obstacles, as we noticed from Figure 19) even after conver-
gence lowering its average solved path length slightly.

D.2 CLUTR CURRICULUM VS. DOMAIN RANDOMIZED CURRICULUM ON THE LATENT
SPACE: DOES CLUTR TEACHER DEGENERATES INTO A RANDOMIZED POLICY?

To answer whether CLUTR teacher actually learns something or degenerates into a randomized
policy, we compare the curriculum generated by CLUTR with a random uniform (i.e., Domain
Randomization) curriculum. We generate the DR curriculum by repeatedly sampling the trained
VAE (the same VAE used by CLUTR) with a uniform random distribution. Figure 20 shows the
comparison characterizing the grids by the number of obstacles they contain similarly as the previous
section. As expected, we can see that the DR curriculum generates grids with obstacles ranging from
0 to 50. The histograms clearly visualize the significant differences in the curricula, implying the
CLUTR teacher indeed learns a useful curriculum as suggested by the empirical result.

D.3 ANALYSIS OF THE LATENT TASK MANIFOLD

22

Published as a workshop paper at Deep Reinforcement Learning Workshop NeurIPS 2022

(a) Average length of the training episodes. CLUTR
converges sooner than PAIRED to a shorter episode
length.

(b) Average solution length of the solved training
tasks.

Figure 19: Comparison of CLUTR and PAIRED curriculum based on properties of the generated
grids.

(a) CLUTR (b) Domain Randomization of the Latent Space

Figure 20: 3D Histograms showing the frequency of the CLUTR generated grids against the total
number of blocks they contain vs. randomly generated grids.

Figure 21: 15X15 Four-
Rooms

To grow a sense of the latent task manifold, we linearly interpolate in the
latent space between an empty grid and a 15x15 version of the FourRoom
grid (shown in Figure 21). Figure 22 visualizes the interpolation results.
We first get the latent vectors of the empty grid and the target FourRoom
task using the VAE encoder. We then linearly interpolate 23 equidistant
points between them. At last, we reconstruct the grids from these vectors
using our decoder. From Figure 22 we see that, as we interpolate in the
latent space, the reconstructed grid incrementally adds more obstacles
and the grids start to look more like the FourRoom target grid. We note
that the reconstruction is not perfect. We also note that the increase in
the number of obstacles is not uniform, e.g., the first 5 reconstructed
grids are all empty grids, and more obstacles are added near the target
point. Overall, this experiment provides an insight that the latent space
holds a useful structure, which CLUTR teacher utilizes to generate the
curriculum.

23

Published as a workshop paper at Deep Reinforcement Learning Workshop NeurIPS 2022

Figure 22: A linear interpolation between an empty grid and 15x15 version of the Four-Room grid
(Figure 21) in the latent space. The grids are organized from top-left to bottom-right in row-major
order.

24

