

Figure A1: Visualization of data distributions. For each dataset, we randomly sample 2,000 motion sequences. Each sequence is temporally averaged to obtain a compact feature representation, which is then reduced in dimensionality using t-SNE.

A APPENDIX

A.1 Mo440H Motion Dataset

Some existing approaches estimate human motion directly from web videos. However, such video data often suffer from motion degradation caused by low image quality, occlusions, and frequent viewpoint changes, which result in unstable monocular pose estimation and ultimately compromise the quality of motion generation at the data level. In addition, these datasets typically exhibit limited motion diversity. For instance, many MotionX (Lin et al., 2023) samples come from repetitive video series (e.g., yoga tutorials), while MotionMillion (Fan et al., 2025) is dominated by sports-related activities such as martial arts, fitness, and dance.

To ensure both data quality and coverage across diverse motion scenarios, we construct Mo440H, a unified benchmark built from 21 high-quality open-source motion datasets. We standardize properties such as frame rate, motion orientation, and maximum sequence length, while integrating motions spanning single-person activities, human—object interactions, and multi-person interactions. The included datasets are as follows. Furthermore, we visualize the dataset distribution in Figure A1. For each dataset, we randomly sample 2,000 motion sequences, temporally average each sequence into a compact feature representation, and then apply t-SNE for dimensionality reduction.

BABEL (Punnakkal et al., 2021) A large-scale motion-language dataset (43 h) from AMASS, providing 28k labeled sequences and 63k frame-level annotations across 250 categories for action recognition, segmentation, and motion-language understanding.

BEAT (v2) (Liu et al., 2024a) A 76 h multi-modal co-speech gesture dataset with 30 speakers in 4 languages, offering synchronized body motion, facial expression, audio, text, and emotion for gesture generation research.

Fit3D (AIFit) (Fieraru et al., 2021) A fitness motion dataset with 13 subjects performing 37 exercises, containing 3 M RGB frames aligned with 3D poses, supporting pose estimation and automated training feedback.

HuMMan (Cai et al., 2022) A massive multi-modal 4D dataset of 1000 subjects and 500 actions (60 M frames), providing synchronized RGB, depth, IMU, skeletons, SMPL, and textured meshes for comprehensive human modeling.

HumanML3D (Guo et al., 2022) A motion-language dataset with 14,616 motion clips paired with 44,970 captions, enabling text-conditioned motion generation and motion-to-language tasks.

- *IDEA-400 (Lin et al., 2023)* A dataset of 13k sequences across 400 action categories with text descriptions, offering a benchmark for generalizable motion generation and recognition.
- MoYo (Tripathi et al., 2023) A yoga-focused dataset with 200 poses (1.75 M frames) captured by multi-camera and pressure-sensing mat, providing SMPL-X fits and contact data for studying balance and extreme poses.
- MPI-INF-3DHP (Mehta et al., 2017) A 3D pose dataset of diverse single-person activities in indoor/outdoor settings, captured markerlessly with multi-cameras for in-the-wild pose estimation benchmarks.
- MVHumanNet (Xiong et al., 2024) A large-scale multi-view dataset with 4,500 identities and 60k sequences (645 M images), annotated with segmentation and calibration for digital human reconstruction under clothing variations.
- Motion-X (Lin et al., 2023) A 3D whole-body dataset of 96k sequences (13.7 M frames) in SMPL-X format, capturing expressive motions with hand and face details, with text labels for ¿80k sequences. Although this dataset is derived from web data, we still include it in Mo440H to enhance diversity.
- EgoBody (Zhang et al., 2022) An egocentric multi-person dataset with 125 sequences, combining HoloLens2 RGB-D, gaze, and ground-truth 3D meshes for first-person interaction understanding.
 - *InterHuman (InterGen) (Liang et al., 2024b)* A large-scale two-person interaction dataset (107 M frames) with 16,756 textual descriptions, covering diverse social and cooperative motions.
 - HOI-M³ (Zhang et al., 2024a) A multi-person multi-object dataset (181 M frames) of 46 subjects and 90 objects, recorded by 42 cameras and IMUs for studying complex group interactions.
- CORE4D (Liu et al., 2024b) A dataset of 1,000 real-world and 10k+ augmented collaborative rearrangement sequences, focusing on multi-human multi-object cooperation in household scenes.
 - CIRCLE (Araújo et al., 2023) A contextual dataset of 10 h reaching/interaction motions across 9 scenes with synchronized egocentric RGB-D, enabling study of human–scene relations.
 - CHAIRS (Jiang et al., 2023b) A dataset of 17.3 h interactions between 46 people and 81 articulated chairs, with aligned human–object meshes for studying posture and manipulation.
 - *GRAB* (*Taheri et al.*, 2020) A whole-body grasp dataset with 10 subjects interacting with 51 objects, providing detailed body, hand, face, and object contact data for realistic manipulation modeling.
 - HIMO (Lv et al., 2025) A benchmark with 3,300 sequences (4.08 M frames) of long, multi-object interactions paired with fine-grained text annotations for complex activity understanding.
 - HUMANISE (Wang et al., 2022) A synthetic dataset aligning mocap motions with 3D indoor scenes, annotated with language descriptions to enable motion generation conditioned on scene context.
 - *IMHD*² (*Zhao et al.*, 2024) A high-dynamic interaction dataset (295 sequences, 892k frames) captured with high-speed cameras and IMUs, featuring fast-motion tasks with ground-truth body and object trajectories.
 - *OMOMO* (*Li et al.*, 2023) A conditional dataset of 10 h sequences coupling object trajectories with human reactions, providing human—object pairs for learning motion conditioned on object dynamics.
 - For datasets that contain visual modality but lack textual annotations, we first segment motion sequences with a maximum length of 10 seconds and then use Qwen2.5-VL-Max to automatically generate descriptions for each sequence. The annotation prompt is as follows:
 - Briefly describe the human motion, focusing on the interaction with objects and body movements. Do not describe text that appears in the video. Describe objectively. The output must be in one paragraph and no more than 100 words. Do not describe the time explicitly.
 - Some datasets do not provide RGB video modality; instead, they render virtual motion videos from SMPL body representations. For these datasets, we also employ Qwen to perform annotations. We observe that Qwen demonstrates strong robustness in handling such virtual humans and produces

VLM output: A human figure stands with arms outstretched, then lowers them to the sides. The figure begins jogging in place, arms pumping rhythmically. Legs alternate lifting off the ground, simulating a running motion. The body remains upright throughout the sequence.

VLM output: A figure starts in a crouched position, hands and feet on the ground. It then pushes off with its hands, extending its legs and rising to a standing position. The figure stands upright with arms relaxed at its sides, completing the motion smoothly and fluidly.

VLM output: A blue human figure stands still, then begins walking forward. The figure moves its arms naturally with each step, transitioning from a frontal view to a rear view as it walks away. The motion is smooth and continuous, showcasing a typical walking gait.

Figure A2: Some examples of motion descriptions generated by Qwen2.5-VL-Max (Bai et al., 2025). Although the input is a human mesh sequence rendered based on SMPL parameters, the Qwen model still outputs a relatively accurate description.

reasonably accurate motion descriptions. Figure A2 illustrates several annotation examples on rendered virtual humans.

A.2 EVALUATION METRICS

For motion generation, we use several common quantitative metrics to evaluate different aspects of model performance. FID (Fréchet Inception Distance) measures how close the distribution of generated motions is to real motions, reflecting overall realism. R-Precision and Matching Score evaluate whether the generated motions match the given text descriptions, focusing on text—motion alignment. To check the diversity of outputs, we report Multimodality Diversity, which measures how much variation the model can produce under the same condition. We also include CLIP-Score (following Meng et al. (2025)), which leverages pretrained vision—language models to further test semantic consistency between motion and text.

For text generation, we evaluate the captions generated for motions using both n-gram and semantic metrics. BLEU@4 and BLEU@1 measure overlap at different n-gram levels, while ROUGE emphasizes recall of important phrases. To capture similarity beyond exact wording, we report BERTScore, which uses contextual embeddings to measure semantic closeness to reference captions.

A.3 VISUALIZATION RESULTS

Figure A3 presents a comparison of language-to-motion training and testing results on the HumanML3D dataset. We visualize MoGIC alongside MARDM and MotionAgent. As shown, motions generated by MoGIC exhibit more coherent behavioral logic and higher realism. Figure A4 further provides zero-shot inference examples after training on Mo440H, where MoGIC performs particularly well on tasks with causal dependencies, such as picking up and placing objects.

A.4 INFERENCE SPEED

All inference experiments are conducted on a workstation equipped with an AMD 9950X CPU and an NVIDIA RTX 5090 GPU. We measure inference efficiency as the wall-clock latency for

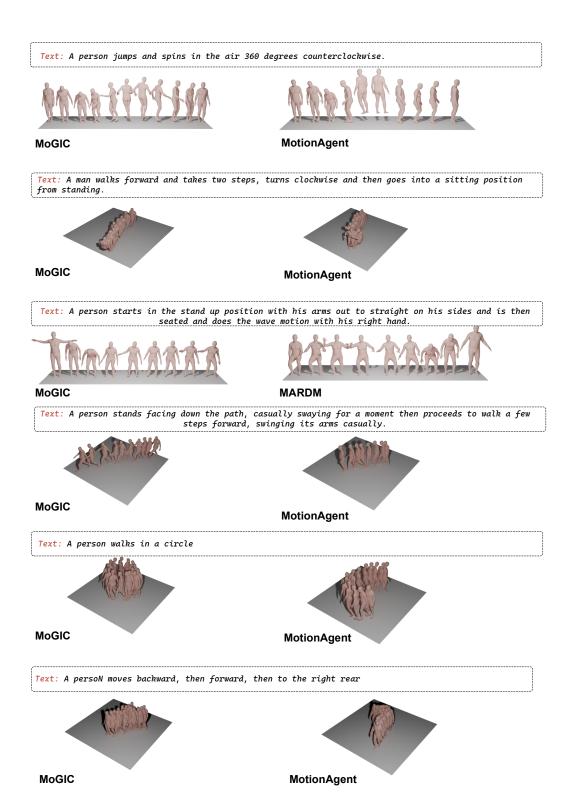


Figure A3: Visualization results of language-to-motion generation.

generating 32 samples in parallel. We analyze two major factors that affect inference speed and performance:

Text: A person transitions from a crouched position to standing upright. They extend their legs and straighten their back, raising their arms outward. The individual maintains balance with feet apart, arms outstretched, and head tilted back, showcasing flexibility and control in their movements. Text: A person picks up the box from the ground, Text: A person pushes the object in front away, walks forward, and then puts the box down then sits down Text: A person bends down to pick up a box, holds Text: A person squats down, places both hands on it against the chest, walks a few steps forward, their knees, then stands up and walks forward and then carefully places the box onto a table. Text: A person picks up the object from the ground Text: A person who is running and hand it to the person in front

Figure A4: Visualization results of language-to-motion generation.

Number of Iterations. Our model consists of a conditional masked transformer and a diffusion head and the transformer is followed the training pipeline of masked modeling (Meng et al., 2025; Pinyoanuntapong et al., 2024b). Inference starts from a fully masked latent variable, and the model reconstructs the masked regions iteratively. We set the default number of iterations to 17, and further

Table A1: Ablation study of iteration number in masked modeling and sampling steps in diffusion.

Method	Sampling Steps	Iter. Number	R Top 1	Precisio Top 2	<u> </u>	FID↓	Matching↓	Inference Time(s)
MoGIC	20	17	0.540	0.740	0.832	0.079	3.02	1.883
	10	17	0.545	0.741	0.835	0.070	3.00	0.840
	8	17	0.530	0.735	0.829	0.071	3.02	0.683
	5	17	0.525	0.733	0.826	0.068	3.04	0.418
	2	17	0.509	0.705	0.813	0.378	3.15	0.193
	10	5	0.545	0.742	0.840	0.138	2.98	0.255
	10	10	0.534	0.742	0.835	0.079	3.01	0.493
	10	25	0.537	0.734	0.837	0.073	3.01	1.095
MARDM	-	17	0.500	0.695	0.795	0.114	3.270	9.813
MMM	-	10	0.487	0.683	0.782	0.132	3.359	0.358

vary this value to examine its effect on inference speed and performance. Results are reported in Table A1.

Number of Diffusion Sampling Steps. The diffusion module adopts Euler sampling with 10 default steps. Unlike MARDM (Meng et al., 2025), which relies on adaptive solvers (dopri5), our approach generates realistic motions with only a small number of steps. We also compare different numbers of sampling steps and report the corresponding runtime and performance in Table A1.

These experiments demonstrate that, compared with other diffusion-based methods, our model achieves a clear advantage in real-time inference, maintaining competitive performance even with very few sampling steps.

LLM USAGE STATEMENT

We made limited use of large language models (LLMs) during the preparation of this work, and we accept full responsibility for all content presented in the paper.

Writing support. LLMs (Qwen2.5 and Qwen3) were used to suggest alternative phrasings and to refine grammar in early drafts of the abstract, introduction, and related work sections. All technical descriptions, theoretical claims, and citations were written and verified solely by the authors.

Research support. LLMs were occasionally employed for ideation, such as exploring possible ablation settings and generating generic utility code (e.g., configuration scripts and logging utilities). All experimental code, implementations of the proposed method, and reported results were developed, validated, and confirmed by the authors.

Data and annotation. For automated text annotations, we employed the LLM Qwen2.5-VL. The details of this process are described in the paper, and the exact prompts and cached responses are included in the anonymous supplementary materials. Outputs were manually reviewed and corrected where necessary before use.

No LLM has been credited as an author. All outputs were checked for factual accuracy, correctness, and relevance, and the authors remain fully accountable for the entirety of this work.