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Figure Al: Visualization of data distributions. For each dataset, we randomly sample 2,000 motion
sequences. Each sequence is temporally averaged to obtain a compact feature representation, which
is then reduced in dimensionality using t-SNE.

A APPENDIX

A.1 Mo0440H MOTION DATASET

Some existing approaches estimate human motion directly from web videos. However, such video
data often suffer from motion degradation caused by low image quality, occlusions, and frequent
viewpoint changes, which result in unstable monocular pose estimation and ultimately compromise
the quality of motion generation at the data level. In addition, these datasets typically exhibit limited
motion diversity. For instance, many MotionX (Lin et al.,2023) samples come from repetitive video
series (e.g., yoga tutorials), while MotionMillion (Fan et al., 2025)) is dominated by sports-related
activities such as martial arts, fitness, and dance.

To ensure both data quality and coverage across diverse motion scenarios, we construct Mo440H, a
unified benchmark built from 21 high-quality open-source motion datasets. We standardize proper-
ties such as frame rate, motion orientation, and maximum sequence length, while integrating motions
spanning single-person activities, human—object interactions, and multi-person interactions. The in-
cluded datasets are as follows. Furthermore, we visualize the dataset distribution in Figure [AT] For
each dataset, we randomly sample 2,000 motion sequences, temporally average each sequence into
a compact feature representation, and then apply t-SNE for dimensionality reduction.

BABEL (Punnakkal et al.| 2021) A large-scale motion-language dataset ( 43 h) from AMASS, pro-
viding 28k labeled sequences and 63k frame-level annotations across 250 categories for action
recognition, segmentation, and motion-language understanding.

BEAT (v2) (Liu et al.| |20244) A 76 h multi-modal co-speech gesture dataset with 30 speakers in
4 languages, offering synchronized body motion, facial expression, audio, text, and emotion for
gesture generation research.

Fit3D (AlFit) (Fieraru et al.| |2021) A fitness motion dataset with 13 subjects performing 37 exer-
cises, containing 3 M RGB frames aligned with 3D poses, supporting pose estimation and automated
training feedback.

HuMMan (Cai et al.| 2022) A massive multi-modal 4D dataset of 1000 subjects and 500 actions ( 60
M frames), providing synchronized RGB, depth, IMU, skeletons, SMPL, and textured meshes for
comprehensive human modeling.

HumanML3D (Guo et al., | 2022) A motion-language dataset with 14,616 motion clips paired with
44,970 captions, enabling text-conditioned motion generation and motion-to-language tasks.
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IDEA-400 (Lin et al| 2023) A dataset of 13k sequences across 400 action categories with text
descriptions, offering a benchmark for generalizable motion generation and recognition.

MoYo (Tripathi et al| |2023) A yoga-focused dataset with 200 poses (1.75 M frames) captured
by multi-camera and pressure-sensing mat, providing SMPL-X fits and contact data for studying
balance and extreme poses.

MPI-INF-3DHP (Mehta et al.| 2017) A 3D pose dataset of diverse single-person activities in in-
door/outdoor settings, captured markerlessly with multi-cameras for in-the-wild pose estimation
benchmarks.

MVHumanNet (Xiong et al.| 2024) A large-scale multi-view dataset with 4,500 identities and 60k
sequences (645 M images), annotated with segmentation and calibration for digital human recon-
struction under clothing variations.

Motion-X (Lin et al.} 2023)) A 3D whole-body dataset of 96k sequences (13.7 M frames) in SMPL-X
format, capturing expressive motions with hand and face details, with text labels for ;80k sequences.
Although this dataset is derived from web data, we still include it in Mo440H to enhance diversity.

EgoBody (Zhang et al.| |2022) An egocentric multi-person dataset with 125 sequences, combining
HoloLens2 RGB-D, gaze, and ground-truth 3D meshes for first-person interaction understanding.

InterHuman (InterGen) (Liang et al.| 2024b) A large-scale two-person interaction dataset ( 107 M
frames) with 16,756 textual descriptions, covering diverse social and cooperative motions.

HOI-M? (Zhang et al., 2024a)) A multi-person multi-object dataset ( 181 M frames) of 46 subjects
and 90 objects, recorded by 42 cameras and IMUs for studying complex group interactions.

CORE4D (Liu et al.| |2024b) A dataset of 1,000 real-world and 10k+ augmented collaborative rear-
rangement sequences, focusing on multi-human multi-object cooperation in household scenes.

CIRCLE (Araiijo et al.| |2023)) A contextual dataset of 10 h reaching/interaction motions across 9
scenes with synchronized egocentric RGB-D, enabling study of human—scene relations.

CHAIRS (Jiang et al.||2023b) A dataset of 17.3 h interactions between 46 people and 81 articulated
chairs, with aligned human—object meshes for studying posture and manipulation.

GRAB (Taheri et al.l 2020) A whole-body grasp dataset with 10 subjects interacting with 51 objects,
providing detailed body, hand, face, and object contact data for realistic manipulation modeling.

HIMO (Lv et al.||2025)) A benchmark with 3,300 sequences (4.08 M frames) of long, multi-object
interactions paired with fine-grained text annotations for complex activity understanding.

HUMANISE (Wang et al.| |2022)) A synthetic dataset aligning mocap motions with 3D indoor scenes,
annotated with language descriptions to enable motion generation conditioned on scene context.

IMHD? (Zhao et al., 2024) A high-dynamic interaction dataset (295 sequences, 892k frames) cap-
tured with high-speed cameras and IMUs, featuring fast-motion tasks with ground-truth body and
object trajectories.

OMOMO (Li et al.} 2023) A conditional dataset of 10 h sequences coupling object trajectories with
human reactions, providing human—object pairs for learning motion conditioned on object dynamics.

For datasets that contain visual modality but lack textual annotations, we first segment motion se-
quences with a maximum length of 10 seconds and then use Qwen2.5-VL-Max to automatically
generate descriptions for each sequence. The annotation prompt is as follows:

Briefly describe the human motion, focusing on the interaction with objects and body movements.
Do not describe text that appears in the video. Describe objectively. The output must be in one
paragraph and no more than 100 words. Do not describe the time explicitly.

Some datasets do not provide RGB video modality; instead, they render virtual motion videos from
SMPL body representations. For these datasets, we also employ Qwen to perform annotations. We
observe that Qwen demonstrates strong robustness in handling such virtual humans and produces
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VLM output: A human figure stands with arms outstretched, then lowers them to the sides. The figure begins

jogging in place, arms pumping rhythmically. Legs alternate lifting off the ground, simulating a running motion.
The body remains upright throughout the sequence.

$
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VLM output: A figure starts in a crouched position, hands and feet on the ground. It then pushes off with its
hands, extending its legs and rising to a standing position. The figure stands upright with arms relaxed at its
sides, completing the motion smoothly and fluidly.
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VLM output: A blue human figure stands still, then begins walking forward. The figure moves its arms naturally

with each step, transitioning from a frontal view to a rear view as it walks away. The motion is smooth and
continuous, showcasing a typical walking gait.

Figure A2: Some examples of motion descriptions generated by Qwen2.5-VL-Max
2025). Although the input is a human mesh sequence rendered based on SMPL parameters, the
Qwen model still outputs a relatively accurate description.

reasonably accurate motion descriptions. Figure[AZ]illustrates several annotation examples on ren-
dered virtual humans.

A.2 EVALUATION METRICS

For motion generation, we use several common quantitative metrics to evaluate different aspects
of model performance. FID (Fréchet Inception Distance) measures how close the distribution of
generated motions is to real motions, reflecting overall realism. R-Precision and Matching Score
evaluate whether the generated motions match the given text descriptions, focusing on text—-motion
alignment. To check the diversity of outputs, we report Multimodality Diversity, which measures
how much variation the model can produce under the same condition. We also include CLIP-Score
(following [Meng et al. (2025))), which leverages pretrained vision—language models to further test
semantic consistency between motion and text.

For text generation, we evaluate the captions generated for motions using both n-gram and semantic
metrics. BLEU@4 and BLEU @1 measure overlap at different n-gram levels, while ROUGE empha-
sizes recall of important phrases. To capture similarity beyond exact wording, we report BERTScore,
which uses contextual embeddings to measure semantic closeness to reference captions.

A.3 VISUALIZATION RESULTS

Figure [A3] presents a comparison of language-to-motion training and testing results on the Hu-
manML3D dataset. We visualize MoGIC alongside MARDM and MotionAgent. As shown, mo-
tions generated by MoGIC exhibit more coherent behavioral logic and higher realism. Figure [A4]
further provides zero-shot inference examples after training on Mo440H, where MoGIC performs
particularly well on tasks with causal dependencies, such as picking up and placing objects.

A.4 INFERENCE SPEED

All inference experiments are conducted on a workstation equipped with an AMD 9950X CPU
and an NVIDIA RTX 5090 GPU. We measure inference efficiency as the wall-clock latency for
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Figure A3: Visualization results of language-to-motion generation.
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{ Text: A person transitions from a crouched

| position to standing upright. They extend their
legs and straighten their back, raising their
arms outward. The individual maintains balance
with feet apart, arms outstretched, and head
tilted back, showcasing flexibility and control
i in their movements.

Text: A person pushes the object in front away,

Text: A person picks up the box from the ground,
) then sits down.

walks forward, and then puts the box down.

| Text: A person squats down, places both hands on
their knees, then stands up and walks forward.

§’Text: A person bends down to pick up a box, holds
i it against the chest, walks a few steps forward, |
i and then carefully places the box onto a table.

! Text: A person who is running. iText: A person p'i.f:ks up the object. from the grounzﬂ
b and hand_ it to the person in front. ;

Figure A4: Visualization results of language-to-motion generation.

Number of Iterations. Our model consists of a conditional masked transformer and a diffusion
head and the transformer is followed the training pipeline of masked modeling (Meng et al., 2025,
[Pinyoanuntapong et al,[2024b). Inference starts from a fully masked latent variable, and the model
reconstructs the masked regions iteratively. We set the default number of iterations to 17, and further
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Table Al: Ablation study of iteration number in masked modeling and sampling steps in diffusion.

. R Precisiont . Inference
Method  Sampling Steps Iter. Number TopT Top2 Top3 FID| Matching] Time(s)
20 17 0.540 0.740 0.832 0.079 3.02 1.883
10 17 0.545 0.741 0.835 0.070  3.00 0.840
8 17 0.530 0.735 0.829 0.071  3.02 0.683
MoGIC 5 17 0.525 0.733 0.826 0.068 3.04 0.418
2 17 0.509 0.705 0.813 0.378 3.15 0.193
10 5 0.545 0.742 0.840 0.138 2.98 0.255
10 10 0.534 0.742 0.835 0.079 3.01 0.493
10 25 0.537 0.734 0.837 0.073 3.01 1.095
MARDM - 17 0.500 0.695 0.795 0.114 3.270 9.813
MMM - 10 0.487 0.683 0.782 0.132 3.359 0.358

vary this value to examine its effect on inference speed and performance. Results are reported in

Table[AT]

Number of Diffusion Sampling Steps. The diffusion module adopts Euler sampling with 10 de-
fault steps. Unlike MARDM (Meng et al., |2025), which relies on adaptive solvers (dopri5), our
approach generates realistic motions with only a small number of steps. We also compare different
numbers of sampling steps and report the corresponding runtime and performance in Table

These experiments demonstrate that, compared with other diffusion-based methods, our model
achieves a clear advantage in real-time inference, maintaining competitive performance even with
very few sampling steps.

LLM USAGE STATEMENT

We made limited use of large language models (LLMs) during the preparation of this work, and we
accept full responsibility for all content presented in the paper.

Writing support. LLMs (Qwen2.5 and Qwen3) were used to suggest alternative phrasings and to
refine grammar in early drafts of the abstract, introduction, and related work sections. All technical
descriptions, theoretical claims, and citations were written and verified solely by the authors.

Research support. LLMs were occasionally employed for ideation, such as exploring possible
ablation settings and generating generic utility code (e.g., configuration scripts and logging utili-
ties). All experimental code, implementations of the proposed method, and reported results were
developed, validated, and confirmed by the authors.

Data and annotation. For automated text annotations, we employed the LLM Qwen2.5-VL. The
details of this process are described in the paper, and the exact prompts and cached responses are
included in the anonymous supplementary materials. Outputs were manually reviewed and corrected
where necessary before use.

No LLM has been credited as an author. All outputs were checked for factual accuracy, correctness,
and relevance, and the authors remain fully accountable for the entirety of this work.
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