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A H-CONSISTENCY BOUND PROOF

A.1 CALIBRATION GAP FOR REJECTION LOSS

The following gives the expression of the calibration gap ∆Cℓ2 .
Lemma 2. The Bayes solution r∗ for the rejection loss can be expressed for all x ∈ X by r∗(x) =
η(x) − (1 − c). The calibration gap for the rejection loss is given for any r ∈ Rall and x ∈ X by

∆Cℓ2(r, x) = ∣η(x) − (1 − c)∣ Ir(x)r∗(x)≤0 .

Proof. For any r ∈ Rall and x ∈ X, we can write
Cℓ2(r, x) = η(x)ℓ2(r, x,+1)

+ [1 − η(x)]ℓ2(r, x,−1)

= η(x) [I+1=−1 Ir(x)>0 +c Ir(x)≤0]

+ [1 − η(x)] [I−1=−1 Ir(x)>0 +c Ir(x)≤0]

= c Ir(x)≤0 +[1 − η(x)] Ir(x)>0 .
For the optimal C∗ℓ2 , we would always pick the lower of c or 1 − η(x), which gives: C∗ℓ2(x) =
min{c,1 − η(x)}. The corresponding Bayes solution r∗ can be defined by r∗(x) = η(x) − (1 − c).
Thus, the calibration gap is given by

∆Cℓ2(r, x) = c Ir(x)≤0 +[1 − η(x)] Ir(x)>0
−min{c,1 − η(x)}.

If r(x) correctly chooses the lower of the two, we have r(x)r∗(x) > 0 and then ∆Cℓ2 = 0. Other-
wise,

∆Cℓ2(r, x) = {
c − (1 − η(x)) if r(x) ≤ 0
(1 − η(x)) − c otherwise

.

Thus, for all x ∈ X, we have ∆Cℓ2(r, x) = ∣η(x) − (1 − c)∣ Ir(x)r∗(x)≤0. This completes the proof.

A.2 CALIBRATION GAP FOR SURROGATE LOSS

Here, we analyze the calibration gap for the surrogate loss.
Lemma 3. Let Iη(x) be defined by Iη(x) = η(x)e−

α
2 + (1 − η(x))eα

2 and define γ by γ = α
α+2β

.
Then, the calibration gap for the surrogate loss is given for any r ∈ Rall and x ∈ X by

∆Cℓ1(r, x) = e
α
2 r(x)Iη(x) + ce−βr(x) −

1

1 − γ (
2βc

α
)
γ

Iη(x)1−γ .

Proof. By definition, the calibration function for ℓ1 can be expressed for all x ∈ X by
Cℓ1(r, x) = η(x)ℓ1(r, x,+1)

+ [1 − η(x)]ℓ1(r, x,−1)

= η(x) [eα
2 [r(x)−1] + ce−βr(x)]

+ [1 − η(x)] [eα
2 [r(x)+1] + ce−βr(x)]

= eα
2 r(x)Iη(x) + ce−βr(x).

Since the exponential function is convex, ∆Cℓ1(r, x) is a convex function of r(x). Thus, for r ∈ Rall,
we obtain the minimum r0(x) by differentiating with respect to r(x) and setting to 0:

α

2
e

α
2 r(x)Iη(x) − βce−βr(x) = 0

⇔ r0(x) = log
⎡⎢⎢⎢⎢⎣
( 2βc

αIη(x)
)

2
2β+α
⎤⎥⎥⎥⎥⎦
.
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Plugging in this expression in Cℓ1 gives the corresponding minimal calibration C∗ℓ1(x): C∗ℓ1(x) =
[( 2βc

α
)γ] Iη(x)1−γ ( 1

1−γ
). This completes the proof.

A.3 H-CONSISTENCY BOUND

In this section, we prove our main result. The following will provide a key tool to derive our result.
Proposition 4. Assume that there exists a convex function Ψ∶R+ → R with Ψ(0) = 0 such that the
following holds for all r ∈ Rall and x ∈ X: Ψ(∣η(x) − (1 − c)∣ Ir(x)r∗(x)≤0) ≤ ∆Cℓ1(0, x). Let Īc be
defined by Īc = ce

α
2 + (1 − c)e−α

2 and assume that 2βc
α
= Īc. Then, for any r ∈ Rall:

Ψ(Rℓ2(r) −R∗ℓ2) ≤ Rℓ1(r) −R∗ℓ1 . (3)

Proof. We will show that the following holds: infr(x)r∗(x)≤0∆Cℓ1(r, x) = ∆Cℓ1(0, x). The result
then follows by Theorem 1 and Lemma 2. Since we have 2βc

α
= Īc, the following equivalence holds:

r0(x) > 0⇔
2βc

αIη(x)
> 1

⇔ Iη(x) < Īc

⇔ η(x) > e
α
2 −Īc

e
α
2 −e−

α
2

⇔ η(x) > (1−c)e
α
2 −(1−c)e−

α
2

e
α
2 −e−

α
2

⇔ r∗(x) > 0.
This implies infr(x)r∗(x)≤0 Cℓ1(r, x) = infr(x)r0(x)≤0 Cℓ1(r, x). Now, since r0(x) is the unique
minimizer of the strictly convex function Cℓ1(r, x) of r(x), then, as a function of r(x), Cℓ1(r, x) is
decreasing from −∞ to r0(x) and increasing from there to +∞. Thus, if r0(x) > 0, the infimum of
Cℓ1(r, x) over r(x) ≤ 0 is reached for r(x) = 0. Similarly, if r0(x) < 0, the infimum of Cℓ1(r, x)
over r(x) ≥ 0 is reached for r(x) = 0. This shows that infr(x)r0(x)≤0 Cℓ1(r, x) = Cℓ1(0, x), and
completes the proof.

The proof of our main result makes use of the following identity, which is a refinement of Bernoulli’s
inequality. The result could be of independent interest in other contexts, we give a concise proof
below.
Lemma 6 (Bernoulli-type inequality). The following identity holds for all x, r ∈ (0,1),

(1 + x)r ≤ 1 + rx + r(r − 1)x
2

4
.

Proof. Let fr(x) = (1+x)r −(1 + rx + r(r−1)x2

4
). We will show that fr(x) ≤ 0 for all x, r ∈ (0,1).

We have f ′r(x) = r(1 + x)r−1 − (r +
r(r−1)x

2
), and f ′r(0) = 0. To see that f ′r(1) ≤ 0, observe

r2r−1 − (r + r(r−1)
2
) ≤ 0⇔ 2r−1 − (r−1)

2
≤ 1. The left-hand side of the last inequality is a convex

function of r, and equal to 1 when r = 0 or r = 1. Thus, the left-hand side is less than or equal 1 for
r ∈ (0,1), giving f ′r(1) ≤ 0. Since f ′r(x) is a convex function of x, with f ′r(0) ≤ 0 and f ′r(1) ≤ 0,
then f ′r(x) ≤ 0 for all x ∈ (0,1), which shows fr is decreasing. Then, since fr(0) = 0, fr(x) ≤ 0
for all x, r ∈ (0,1).

The following is our main result; it relates the surrogate excess error to that of the rejection loss.

Theorem 5. Let α,β > 0 be such that 2βc
α
= Īc, where Īc = ce

α
2 + (1 − c)e−α

2 . Then, the following
inequality holds for any r ∈ Rall:

Rℓ2(r) −R∗ℓ2 ≤
2

e
α
2 − e−α

2

√
(c + Īc)Īc

c
(Rℓ1(r) −R∗ℓ1).
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Proof. Using the expression of ∆Cℓ1 given by Lemma 3, we can write

∆Cℓ1(0, x) = Iη(x) + c −
1

1 − γ (
2βc

α
)
γ

Iη(x)1−γ

= Iη(x) + c − (Īc + c)(
Iη(x)
Īc
)
1−γ

.

We can express this formula in terms of u(x) = η(x) − (1 − c), using Iη(x) = Ju(x) + Īc, with
Ju(x) = [e−

α
2 − eα

2 ]u(x):

∆Cℓ1(0, x)

= Ju(x) + Īc + c − (Īc + c)[1 +
Ju(x)
Īc
]
1−γ

≥ Īc
c + Īc

c

c + Īc
c + Īc
4
[Ju(x)

Īc
]
2

= 1

4

cĪc
c + Īc

[Ju(x)
Īc
]
2

.

where we used Lemma 6. The function Ψ(u) defined by this expression verifies the condition of
Proposition 4 and therefore we have Ψ(Rℓ2(h) −R∗ℓ2) ≤ Rℓ1(h)−R∗ℓ1 . An explicit upper-bound on
Rℓ2(h) −R∗ℓ2 can be written in terms of Ψ−1: Rℓ2(h) −R∗ℓ2 ≤ Ψ

−1(Rℓ1(h) −R∗ℓ1). To derive the
expression of Ψ−1, we write z = Ψ(u), that is:

4
c + Īc
cĪc

z = [u(x)
Īc
]
2

[eα
2 − e−α

2 ]2

⇔ ∣u∣ = 2

e
α
2 − e−α

2

√
(c + Īc)Īc

c
z.

Thus, we have, for all r ∈ Rall, Rℓ2(r) −R∗ℓ2 ≤
2

e
α
2 −e−

α
2

√
(c+Īc)Īc

c
(Rℓ1(r) −R∗ℓ1) .
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B EXPERIMENTAL DETAILS

B.1 DECONTEXTUALIZATION

In this section, we report the detailed results for our experiments on the decontextualization task.
Table 2 presents the mean and standard deviation of the precision and coverage of various baselines
over 4 cross-validation splits and Table 1 in Section 7.3 provides detailed results of the surrogate
loss.

Table 2: Precision vs. Coverage for various baselines on decontextualization, with theoretical limit.

MAXPROB CROSS-ENTROPY THEORETICAL LIMIT
Target
precision precision coverage precision coverage precision coverage

0.90 0.899 ± 0.002 0.907 ± 0.017 0.903 ± 0.016 0.968 ± 0.045 0.90 0.989 ± 0.001
0.92 0.924 ± 0.001 0.672 ± 0.052 0.930 ± 0.021 0.771 ± 0.146 0.92 0.967 ± 0.001
0.93 0.934 ± 0.025 0.552 ± 0.069 0.939 ± 0.015 0.677 ± 0.102 0.93 0.957 ± 0.001
0.94 0.938 ± 0.022 0.467 ± 0.035 0.949 ± 0.012 0.644 ± 0.103 0.94 0.950 ± 0.001
0.95 0.942 ± 0.023 0.405 ± 0.030 0.965 ± 0.015 0.509 ± 0.143 0.95 0.936 ± 0.001
0.96 0.959 ± 0.022 0.321 ± 0.041 0.976 ± 0.006 0.364 ± 0.096 0.96 0.927 ± 0.001
0.97 0.972 ± 0.018 0.225 ± 0.012 0.980 ± 0.008 0.330 ± 0.086 0.97 0.917 ± 0.001
0.98 0.972 ± 0.018 0.198 ± 0.017 0.981 ± 0.013 0.298 ± 0.069 0.98 0.908 ± 0.001
0.99 0.983 ± 0.013 0.168 ± 0.015 0.986 ± 0.015 0.150 ± 0.059 0.99 0.898 ± 0.001

B.2 IMAGE CLASSIFICATION

In this section, we provide details of our experiments on Fashion-MNIST, a fashion image dataset,
and KMNIST, a cursive Japanese letter dataset. Both are perfectly balanced between their 10 classes.
In both cases, we use a 5-layer fully-connected neural network to train a predictor with half of
the training data. The remaining half is reserved for the rejector. Training the rejector is a bi-
nary classification task: for pairs (x, y) occuring in the usual dataset, we construct another dataset
((x, fp(x)), If(x)=y), where f is the predictor and fp(x) is the probability that f assigns to its pre-
diction on x. In our experiments, we observe that it is important to append fp(x) as a feature to
x. Note that constructing this binary classification dataset does not require manual annotation. For
Fashion-MNIST, our predictor is trained to 85.3% accuracy on its test set, and for KMNIST, our pre-
dictor is trained to 79.1% accuracy on its test set. While it is possible to improve the performance of
these predictors, this is not our focus. We are focused on a rejection task given some fixed predictor.

Next, we detail the methods for rejection.

Maxprob. Similar to the decontextualization experiment, we fit thresholds on the scores assigned
by the predictor. Since this method is deterministic (and the error bars here are over rejector training
runs), there are no error bars to report.

Cross-entropy loss. We train another 5-layer neural network on the constructed binary classification
dataset using the cross-entropy loss. Similar to the decontextualization experiment, thresholds are
fitted on the scores of this neural netowrk.

Rejection loss. We train a second 5-layer neural network on the constructed binary classifi-
cation dataset using our proposed surrogate rejection loss. For Fashion-MNIST, c is varied in
{0.05,0.1,0.2,0.3,0.5}. For KMNIST, c is varied in {0.025,0.05,0.1,0.15}. Each point on the
plot represents a model trained with a different value of c. We set α in the surrogate rejection loss
function to 3.5.

Cost-sensitive loss. We train a third 5-layer neural network on the constructed binary classification
dataset using the cross-entropy loss, but with the positive class reweighted by c/(1−c). For Fashion-
MNIST, c is varied in {0.05,0.1,0.2,0.3,0.5}. For KMNIST, c is varied in {0.03,0.05,0.1,0.2}.
Each point on the plot represents a model trained with a different value of c.

For all methods, we use the Adam optimizer (Kingma and Ba, 2014), and tune the learning rate in
[1e − 4,1e − 7] and number of epochs in [20,100].
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Figure 6: Precision vs. Coverage on Fashion-MNIST. Standard deviations for both precision and
coverage are from 4 different training runs.

The precision vs. coverage graph for KMNIST is reported in Figure 5 in Section 7.4 and the precision
vs. coverage graph for Fashion-MNIST is reported in Figure 6. We do not plot the theoretical limit
since no method is near it in this setting. In both cases, we generally observe that the rejection loss
lies above the baselines. It is likely that the predictor in this setting is much better calibrated than
a large language model, and thus Maxprob is a much stronger baseline with not as much room for
improvement as on decontextualization. We also note that it may also be possible to improve the
performance of our method by tuning α.

C COMPARISON WITH COST-SENSITIVE CLASSIFICATION

It is worth pointing out that minimizing the induced rejection loss is equivalent to minimizing a
cost-sensitive classification loss (Elkan, 2001; Steinwart, 2007; Scott, 2012; Charoenphakdee et al.,
2021), since by using the decomposition Ia=−1 Ir(x)>0 = (1 − c) Ia=−1 Ir(x)>0 +c Ia=−1 Ir(x)>0 and
c Ir(x)≤0 = c Ia=+1 Ir(x)≤0 +c Ia=−1 Ir(x)≤0, the loss (2) can be rewritten as

ℓ(r, x, a) = Ia=−1 Ir(x)>0 +c Ir(x)≤0
= (1 − c) Ia=−1 Ir(x)>0 +c Ia=−1 Ir(x)>0 +c Ia=+1 Ir(x)≤0 +c Ia=−1 Ir(x)≤0
= (1 − c) Ia=−1 Ir(x)>0 +c Ia=+1 Ir(x)≤0 +c Ia=−1,

where in the last step we use the fact that c Ia=−1 Ir(x)≤0 +c Ia=−1 Ir(x)>0 = c Ia=−1. In light of this
expression, since the last term c Ia=−1 does not depend on r, if x ↦ ϕ(−x) is a convex function
upper-bounding Ix≤0, then, ℓϕ defined as follows for any r ∈ R and (x, a) ∈ X × {−1,+1}, is a
natural surrogate loss for ℓ:

ℓϕ(r, x, a) = (1 − c) Ia=−1 ϕ(r(x)) + c Ia=+1 ϕ(−r(x)).
We will refer to ℓϕ as cost-sensitive surrogate losses for the induced rejection loss. However, this
cost-sensitive approach suffers from several issues: (i) There is a lack of any H-consistency bound
guarantees for cost-sensitive surrogate losses with respect to the induced rejection loss. Conversely,
our theoretical analysis can potentially extend to an H-consistent surrogate loss function for cost-
sensitive classification. This would provide a theoretically justified algorithm for that context. Our
novel contribution lies in introducing a loss function for the induced rejection loss backed by strong
H-consistency bounds; (ii) It has been shown in (Cao et al., 2022) that the cost-sensitive approach
(Charoenphakdee et al., 2021) can not produce the state-of-the-art performance in the learning with
rejection framework, which motivates us to propose a new theoretically guaranteed surrogate loss
in our rejection scenario; (iii) As shown in (Charoenphakdee et al., 2021), the cost-sensitive ap-
proach equivalently solves n one-versus-all binary classification problems, where n is the number
of classes. Therefore, when the size of the sub-sample containing some of the classes is relatively
small, the one-versus-all binary classification problem may face challenges due to insufficient data
or increased risk of overfitting. This issue stands out for the decontextualization task, where the
samples corresponding to a = −1 are much fewer than those corresponding to a = +1; (iv) Our
empirical results on the benchmark datasets show that the cost-sensitive approach is inferior to our
proposed surrogate loss function, which substantiate the effectiveness of our approach.
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D H-CONSISTENCY BOUNDS BEYOND Hall AND PROOF

Here, we will show that our surrogate losses benefit from R-consistency bounds with the hypothesis
set R extending beyond the family of all measurable functions Rall. Without loss of generality, we
consider X = {x ∈ Rd ∣ ∥x∥p ≤ 1}. Let p, q ∈ [1,+∞] be conjugate numbers such that 1

p
+ 1

q
= 1. We

will consider bounded hypothesis sets R, that is, there exists a function r∶X → R+ such that for all
r ∈ R and x ∈ X, ∣r(x)∣ ≤ r(x), and all values in [−r(x), r(x)] can be reached. As shown by Awasthi
et al. (2022), for the family of linear models Rlin = {x ↦ w ⋅ x + b ∣ ∥w∥q ≤ W, ∣b∣ ≤ B} and one-
hidden-layer ReLU networks RNN = {x ↦ ∑n

j=1 uj(wj ⋅ x + bj)+ ∣ ∥u∥1 ≤ Λ, ∥wj∥q ≤W, ∣bj ∣ ≤ B},
where (⋅)+ =max(⋅,0), we have r(x) =W ∥x∥p +B and r(x) = ΛW ∥x∥p +ΛB respectively.

D.1 MAIN RESULT

In this section, we present our main result on R-consistency bounds with bounded hypothesis sets R
(Theorem 7), including Rlin and RNN considered in (Awasthi et al., 2022) as special cases (Corol-
lary 8). The proofs are presented in Appendix D.4.

Theorem 7. Assume that R is bounded with function r∶X → R. Let α,β > 0 be such that 2βc
α
= Īc,

where Īc = ce
α
2 + (1 − c)e−α

2 . Then, the following inequality holds for any r ∈ R:

Rℓ2(r) −R∗ℓ2,R +Mℓ2,R ≤ Γ(Rℓ1(r) −R∗ℓ1,R +Mℓ1,R), (4)

where Γ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2

e
α
2 −e−

α
2

√
(c+Īc)Īc

c
z 0 ≤ z ≤ 1

4
cĪc
c+Īc
[1 − e−

α(Īc+c) infx∈X r(x)

2c ]
2

4(c+Īc)

c[1−e−
α(Īc+c) infx∈X r(x)

2c ][e
α
2 −e−

α
2 ]

z otherwise.

Corollary 8. Let R = Rlin or RNN. Let α,β > 0 be such that 2βc
α
= Īc, where Īc = ce

α
2 +(1−c)e−α

2 .
Then, the following inequality holds for any r ∈ R:

Rℓ2(r) −R∗ℓ2,R +Mℓ2,R ≤ Γ(Rℓ1(r) −R∗ℓ1,R +Mℓ1,R), (5)

where Γ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2

e
α
2 −e−

α
2

√
(c+Īc)Īc

c
z 0 ≤ z ≤ 1

4
cĪc
c+Īc
[1 − e−

α(Īc+c)B

2c ]
2

4(c+Īc)

c[1−e−
α(Īc+c)B

2c ][e
α
2 −e−

α
2 ]

z otherwise
and B is replaced by

ΛB for R = RNN.

D.2 CALIBRATION GAP FOR REJECTION LOSS

We first extend Lemma 2 to any hypothesis set R that is regular for rejection.

Definition 9. We say that a hypothesis set R is regular for rejection if for all x ∈ X, there exist
r+, r− ∈ R such that r+(x) > 0 and r+(x) ≤ 0.

It is clear that all bounded hypothesis sets including Rlin and RNN are regular for rejection. The
following gives the expression of the calibration gap ∆Cℓ2 for all hypothesis sets R that are regular
for rejection. The proof is nearly identical to Lemma 2.

Lemma 10. Assume that R is regular for rejection. The best-in-class solution r∗ for the rejection
loss can be expressed for all x ∈ X by r∗(x) = η(x) − (1 − c). The calibration gap for the rejection
loss is given for any r ∈ R and x ∈ X by

∆Cℓ2(r, x) = ∣η(x) − (1 − c)∣ Ir(x)r∗(x)≤0 .
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Proof. For any r ∈ R and x ∈ X, we can write

Cℓ2(r, x) = η(x)ℓ2(r, x,+1)
+ [1 − η(x)]ℓ2(r, x,−1)

= η(x) [I+1=−1 Ir(x)>0 +c Ir(x)≤0]

+ [1 − η(x)] [I−1=−1 Ir(x)>0 +c Ir(x)≤0]

= c Ir(x)≤0 +[1 − η(x)] Ir(x)>0 .

For the optimal C∗ℓ2,R, since R is regular, we would always pick the lower of c or 1 − η(x), which
gives: C∗ℓ2,R(x) = min{c,1 − η(x)}. The corresponding best-in-class solution r∗ can be defined by
r∗(x) = η(x) − (1 − c). Thus, the calibration gap is given by

∆Cℓ2(r, x) = c Ir(x)≤0 +[1 − η(x)] Ir(x)>0
−min{c,1 − η(x)}.

If r(x) correctly chooses the lower of the two, we have r(x)r∗(x) > 0 and then ∆Cℓ2 = 0. Other-
wise,

∆Cℓ2(r, x) = {
c − (1 − η(x)) if r(x) ≤ 0
(1 − η(x)) − c otherwise

.

Thus, for all x ∈ X, we have ∆Cℓ2(r, x) = ∣η(x) − (1 − c)∣ Ir(x)r∗(x)≤0. This completes the proof.

D.3 CALIBRATION GAP FOR SURROGATE LOSS

Next, we extend Lemma 3 to bounded hypothesis sets R. The following gives the expression of the
calibration gap for the surrogate loss. The proof directly extends that of Lemma 3.
Lemma 11. Assume that R is bounded with function r∶X→ R. Let Iη(x) = η(x)e−

α
2 +(1−η(x))eα

2 ,

r0(x) = log[( 2βc
αIη(x)

)
2

2β+α ] and γ = α
α+2β

. Then, the calibration gap for the surrogate loss is given

for any r ∈ R and x ∈ X by

∆Cℓ1(r, x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e
α
2 r(x)Iη(x) + ce−βr(x) − 1

1−γ
( 2βc

α
)γIη(x)1−γ −r(x) ≤ r0(x) ≤ r(x)

e
α
2 r(x)Iη(x) + ce−βr(x) − e

α
2 r(x)Iη(x) − ce−βr(x) r0(x) > r(x)

e
α
2 r(x)Iη(x) + ce−βr(x) − e−

α
2 r(x)Iη(x) − ceβr(x) r0(x) < −r(x).

Proof. By definition, the calibration function for ℓ1 can be expressed for all x ∈ X by

Cℓ1(r, x) = η(x)ℓ1(r, x,+1) + [1 − η(x)]ℓ1(r, x,−1)

= η(x) [eα
2 [r(x)−1] + ce−βr(x)] + [1 − η(x)] [eα

2 [r(x)+1] + ce−βr(x)]

= eα
2 r(x)Iη(x) + ce−βr(x).

Since the exponential function is convex, ∆Cℓ1(r, x) is a convex function of r(x). Thus, for r ∈ R,
we obtain the minimum r0(x) by differentiating with respect to r(x) and setting to 0:

α

2
e

α
2 r(x)Iη(x) − βce−βr(x) = 0

⇔ r0(x) = log
⎡⎢⎢⎢⎢⎣
( 2βc

αIη(x)
)

2
2β+α
⎤⎥⎥⎥⎥⎦
.

Note that for all x ∈ X, {r(x)∶ r ∈ R} = [−r(x), r(x)]. If r0(x) is within this range,
plugging in r0(x) in Cℓ1 gives the corresponding minimal calibration gap C∗ℓ1(x): C∗ℓ1(x) =
[( 2βc

α
)γ] Iη(x)1−γ ( 1

1−γ
). Otherwise, the corresponding minimal calibration gap is achieved at
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either r(x) = r(x) or r(x) = −r(x). Plugging in these expressions give the corresponding minimal
calibration gap C∗ℓ1(x):

C∗ℓ1(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[( 2βc
α
)γ] Iη(x)1−γ ( 1

1−γ
) −r(x) ≤ r0(x) ≤ r(x)

e
α
2 r(x)Iη(x) + ce−βr(x) r0(x) > r(x)
e−

α
2 r(x)Iη(x) + ceβr(x) r0(x) < −r(x).

This completes the proof.

D.4 H-CONSISTENCY BOUND

In this section, we prove our main result. The following result extends Proposition 4 to any hypoth-
esis set R that is regular for rejection and will provide a key tool to derive our result. The proof is
nearly identical to Proposition 4.

Proposition 12. Assume that R is regular for rejection. Assume that there exists a convex func-
tion Ψ∶R+ → R with Ψ(0) = 0 such that the following holds for all r ∈ R and x ∈ X:
Ψ(∣η(x) − (1 − c)∣ Ir(x)r∗(x)≤0) ≤ ∆Cℓ1(0, x). Let Īc be defined by Īc = ce

α
2 + (1 − c)e−α

2 and
assume that 2βc

α
= Īc. Then, for any r ∈ R:

Ψ(Rℓ2(r) −R∗ℓ2,R +Mℓ2,R) ≤ Rℓ1(r) −R∗ℓ1,R +Mℓ1,R. (6)

Proof. We will show that the following holds: infr(x)r∗(x)≤0∆Cℓ1(r, x) = ∆Cℓ1(0, x). The result
then follows by Theorem 1 and Lemma 10. Since we have 2βc

α
= Īc, the following equivalence

holds:

r0(x) > 0⇔
2βc

αIη(x)
> 1

⇔ Iη(x) < Īc

⇔ η(x) > e
α
2 −Īc

e
α
2 −e−

α
2

⇔ η(x) > (1−c)e
α
2 −(1−c)e−

α
2

e
α
2 −e−

α
2

⇔ r∗(x) > 0.

This implies infr(x)r∗(x)≤0 Cℓ1(r, x) = infr(x)r0(x)≤0 Cℓ1(r, x). Now, since r0(x) is the unique
minimizer of the strictly convex function Cℓ1(r, x) of r(x), then, as a function of r(x), Cℓ1(r, x) is
decreasing from −∞ to r0(x) and increasing from there to +∞. Thus, if r0(x) > 0, the infimum of
Cℓ1(r, x) over r(x) ≤ 0 is reached for r(x) = 0. Similarly, if r0(x) < 0, the infimum of Cℓ1(r, x)
over r(x) ≥ 0 is reached for r(x) = 0. This shows that infr(x)r0(x)≤0 Cℓ1(r, x) = Cℓ1(0, x), and
completes the proof.

The following is our main result; it relates the surrogate estimation error to that of the rejection loss.

Theorem 7. Assume that R is bounded with function r∶X → R. Let α,β > 0 be such that 2βc
α
= Īc,

where Īc = ce
α
2 + (1 − c)e−α

2 . Then, the following inequality holds for any r ∈ R:

Rℓ2(r) −R∗ℓ2,R +Mℓ2,R ≤ Γ(Rℓ1(r) −R∗ℓ1,R +Mℓ1,R), (4)

where Γ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2

e
α
2 −e−

α
2

√
(c+Īc)Īc

c
z 0 ≤ z ≤ 1

4
cĪc
c+Īc
[1 − e−

α(Īc+c) infx∈X r(x)

2c ]
2

4(c+Īc)

c[1−e−
α(Īc+c) infx∈X r(x)

2c ][e
α
2 −e−

α
2 ]

z otherwise.
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Proof. Using the expression of ∆Cℓ1 given by Lemma 11, we can write

∆Cℓ1(0, x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Iη(x) + c − 1
1−γ
( 2βc

α
)γIη(x)1−γ −r(x) ≤ r0(x) ≤ r(x)

Iη(x) + c − e
α
2 r(x)Iη(x) − ce−βr(x) r0(x) > r(x)

Iη(x) + c − e−
α
2 r(x)Iη(x) − ceβr(x) r0(x) < −r(x).

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Iη(x) + c − (Īc + c)( Iη(x)Īc
)
1−γ

−r(x) ≤ r0(x) ≤ r(x)
Iη(x) + c − e

α
2 r(x)Iη(x) − ce−

αĪcr(x)
2c r0(x) > r(x)

Iη(x) + c − e−
α
2 r(x)Iη(x) − ce

αĪcr(x)
2c r0(x) < −r(x).

Without loss of generality, we consider r∗(x) = η(x) − (1 − c) ≥ 0. Then r0(x) ≥ 0. As with
the proof of Theorem 5, we can express ∆Cℓ1(0, x) in terms of u(x) = η(x) − (1 − c), using
Iη(x) = Ju(x) + Īc, with Ju(x) = [e−

α
2 − eα

2 ]u(x). Note that the condition r0(x) ≤ r(x) can be
expressed as

log

⎡⎢⎢⎢⎢⎣
( 2βc

αIη(x)
)

2
2β+α
⎤⎥⎥⎥⎥⎦
≤ r(x) ⇐⇒ u(x) ≤

Īc[1 − e−
α(Īc+c)r(x)

2c ]

e
α
2 − e−α

2

.

When 0 ≤ r0(x) ≤ r(x), we have

∆Cℓ1(0, x) ≥
1

4

cĪc
c + Īc

[Ju(x)
Īc
]
2

= 1

4

cĪc
c + Īc

[u(x)
Īc
]
2

[eα
2 − e−α

2 ]2.

When r0(x) > r(x), we have

∆Cℓ1(0, x) ≥
1

4

cĪc
c + Īc

[1 − e−
α(Īc+c)r(x)

2c ]

Īc
[eα

2 − e−α
2 ]u(x).

Therefore, the function Ψ(u) defined by

Ψ(u) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
4

cĪc
c+Īc
[u(x)

Īc
]
2
[eα

2 − e−α
2 ]2 0 ≤ u(x) ≤

Īc[1−e
−

α(Īc+c) infx∈X r(x)
2c ]

e
α
2 −e−

α
2

1
4

cĪc
c+Īc

[1−e−
α(Īc+c) infx∈X r(x)

2c ]

Īc
[eα

2 − e−α
2 ]u(x) otherwise

verifies the condition of Proposition 12 and therefore we have Ψ(Rℓ2(h) −R∗ℓ2) ≤ Rℓ1(h) − R∗ℓ1 .
An explicit upper-bound on Rℓ2(h) − R∗ℓ2 can be written in terms of Ψ−1: Rℓ2(h) − R∗ℓ2 ≤
Ψ−1(Rℓ1(h) −R∗ℓ1). To derive the expression of Ψ−1, we write z = Ψ(u), that is: when

0 ≤ z ≤ 1
4

cĪc
c+Īc
[1 − e−

α(Īc+c) infx∈X r(x)

2c ]
2

,

4
c + Īc
cĪc

z = [u(x)
Īc
]
2

[eα
2 − e−α

2 ]2 ⇐⇒ ∣u∣ = 2

e
α
2 − e−α

2

√
(c + Īc)Īc

c
z.

Otherwise,

z = 1

4

cĪc
c + Īc

[1 − e−
α(Īc+c) infx∈X r(x)

2c ]

Īc
[eα

2 − e−α
2 ]u(x) ⇐⇒ u = 4(c + Īc)

c[1 − e−
α(Īc+c) infx∈X r(x)

2c ][eα
2 − e−α

2 ]
z

Thus, we have, for all r ∈ R, Rℓ2(r) −R∗ℓ2 ≤ Γ(Rℓ1(r) −R∗ℓ1), where

Γ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2

e
α
2 −e−

α
2

√
(c+Īc)Īc

c
z 0 ≤ z ≤ 1

4
cĪc
c+Īc
[1 − e−

α(Īc+c) infx∈X r(x)

2c ]
2

4(c+Īc)

c[1−e−
α(Īc+c) infx∈X r(x)

2c ][e
α
2 −e−

α
2 ]

z otherwise.
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Theorem 7 implies the following corollary for R = Rlin and RNN.

Corollary 8. Let R = Rlin or RNN. Let α,β > 0 be such that 2βc
α
= Īc, where Īc = ce

α
2 +(1−c)e−α

2 .
Then, the following inequality holds for any r ∈ R:

Rℓ2(r) −R∗ℓ2,R +Mℓ2,R ≤ Γ(Rℓ1(r) −R∗ℓ1,R +Mℓ1,R), (5)

where Γ(z) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2

e
α
2 −e−

α
2

√
(c+Īc)Īc

c
z 0 ≤ z ≤ 1

4
cĪc
c+Īc
[1 − e−

α(Īc+c)B

2c ]
2

4(c+Īc)

c[1−e−
α(Īc+c)B

2c ][e
α
2 −e−

α
2 ]

z otherwise
and B is replaced by

ΛB for R = RNN.

Proof. Using the fact that infx∈X r(x) = infx∈X(W ∥x∥p +B = B) for R = Rlin and infx∈X r(x) =
infx∈X(ΛW ∥x∥p +ΛB) = ΛB for R = RNN, by Theorem 7, we complete the proof.
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