
Appendix for Anonymized Histograms in Intermediate Privacy Models

A Missing Proofs from Section 4

A.1 Proof of Lemma 14

Lemma 14. [Proof in Appendix A.1] For B > 4n and all anonymized histograms n,n0
with

knk1, kn0k1  n,

k�B(n)� �B(n0)k1 � kn� n0k1/4 .

We start with the following observation that �B(n)` := E['nred

�` ] only depends on 'n
�1, . . . ,'

n
�` .

This is simply because changing an entry of value at least ` to some other value at least ` does not
change whether, after hashing, the corresponding hash bucket exceeds `.
Observation 19. �B(n)` does not depend on 'n

�r for any r > `.

Before can prove Lemma 14, we will also need to show the following lemma, which is even stronger
than Lipschitzness.
Lemma 20. Let n̄, ñ be anonymized histograms such that kñ�n̄k1 = 1, kn̄k1 = n, kñk1 = n+1,

and r 2 [n] be such that 'ñ
�r = 'n̄

�r + 1. Then, we have

I �B(ñ)` = �B(n̄)` for all ` < r.

I �B(ñ)r � �B(n̄)r + 1� n/B.

I
P

`>r |�B(ñ)` � �B(n̄)`| < n/B.

Specifically, these also imply that k�B(ñ)� �B(n̄)k1  1.

Proof. Let n̄red and ñred be the random variables as defined at the beginning of Section 4, but
with starting anonymized histograms n̄, ñ respectively. Furthermore, let j be the entry such that
ñ(j) = n̄(j) + 1.

Recall that H is our random hash function. Consider n̄red(H) and ñred(H) resulting from the same
hash function H . By definition, we have �B(ñ)� �B(n̄) = EH ['ñred(H)

� �'n̄red(H)
� ].

Furthermore, we have 'ñred(H)
� �'n̄red(H)

� = 1ñred
H(j)

, where ñred
H(j) is the value of the bucket H(j)

to which j gets hashed. Note that with probability at least 1� n/B, there is no collision with j and
therefore ñred

H(j) = r. Otherwise, with probability at most n/B, there is a collision and ñred
H(j) > r.

This implies the desired bounds.

We are now ready to prove Lemma 14.

Proof of Lemma 14. Let nmin be such that 'nmin

�r = min{'n
�r,'

n0

�r} for all r 2 N. Note that
knmin �nk1 + knmin �n0k1 = kn�n0k1. Assume w.l.o.g. that knmin �nk1 � knmin �n0k1.
The previous inequality implies that knmin � nk1 � kn� n0k1/2.

Now, let S := {r | 'n
�r > 'nmin

�r }. Consider the following hybrids for j = 0, . . . , n: let nj be such
that 'nj

� = ('n
�1, . . . ,'

n
�j ,'

nmin

�j+1, . . . ,'
nmin

�n ). By Lemma 20 and the definition of S, we have

X

r2S

�
�B(nj+1)r � �B(nj)r

�
� 3

4

⇣
'nj+1

�j+1 � 'nj

�j+1

⌘
,

since knmink1  knk1  n. By summing the above over all j = 0, . . . , n� 1, we have
X

r2S

�
�B(n)r � �B(nmin)r

�
� 3

4
knmin � nk1. (6)
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Similarly, we can consider the following hybrids for j = 0, . . . , n: let n0j be such that 'n0j

� =

('n0

�1, . . . ,'
n0

�j ,'
nmin

�j+1, . . . ,'
nmin

�n ). By Lemma 20 and the definition of S (which implies that
'n0

�r = 'nmin

�r for all r 2 S), we have

X

r2S

�
�B(n0j+1)r � �B(n0j)r

�
 1

4

⇣
'n0j+1

�j+1 � 'n0j

�j+1

⌘
.

Again, by summing the above over all j = 0, . . . , n� 1, we have
X

r2S

�
�B(n0)r � �B(nmin)r

�
 1

4
knmin � n0k1. (7)

Subtracting (7) from (6), we complete the proof as follows:

k�B(n)� �B(n0)k1 �
X

r2S

�B(n)r � �B(n0)r � 3

4
knmin � nk1 �

1

4
knmin � n0k1

� 1

2
knmin � nk1 � 1

4
kn� n0k1.

A.2 Proof of Lemma 16

Lemma 16. [Proof in Appendix A.2] For all r 2 [n], Var['nred

�r ]  16n
B ·

⇣
n
r2 +

P
t2[r�1]

t·'n
t

r(r�t)

⌘
.

Proof of Lemma 16. Note that 'nred

�r is the number of hash buckets whose total value is at least r.
Let X denote the number of hash buckets whose maximum value hashed to it is at least r, i.e.,
X := |{i 2 [B] | maxj2H�1(i) n

(j) � r}|. Furthermore, for t 2 [r � 1], let Yt denote the number
of buckets whose total value is at least r and the maximum value hashed to it is equal to t, i.e.,
Yt := |{i 2 [B] | maxj2H�1(i) n

(j) = t,
P

j2H�1(i) n
(j) � r}|.

It is easy to see that X,Y1, . . . , Yr�1 are negatively correlated. Therefore,

Var['nred

�r ] = Var[X + Y1 + · · ·+ Yr�1]  Var[X] +
X

t2[r�1]

Var[Yt].

We will next bound each term in the RHS above.

Bounding Var[X]. To bound Var[X], further note that X = 'n
�r �

P
i2[B] Zi where Zi :=

max{0, |{j 2 H�1(i) | n(j) � r}| � 1}. It is again easy to see that Zi’s are negatively correlated.
Therefore,

Var[X] = Var

2

4
X

i2[B]

ZB

3

5 
X

i2[B]

Var[Zi] 
X

i2[B]

E[Z2
i ].

It is also easy to verify that, for any k 2 N, Pr[Zi = k] =
�'n

�r

k+1

�
(1/B)k+1(1 � 1/B)'

n
�r

�k�1 
('n

�r/B)k+1/(k + 1)!. Therefore, we have

E[Z2
i ] 

X

k2N
k2 · ('n

�r/B)k+1/(k + 1)!  2 ·
X

k2N
('n

�r/B)k+1

 4

✓
'n
�r

B

◆2

 4
⇣ n

Br

⌘2
=

4

r2
·
⇣ n
B

⌘2
.

Plugging this back into the previous inequality, we have

Var[X]  4

r2
· n

2

B
.

2



Bounding Var[Yt]. We may write Yt as
P

i2[B] Wi where Wi := 1[maxj2H�1(i) n
(j) =

t,
P

j2H�1(i) n
(j) � r]. Again, the Wi’s are negatively correlated. Therefore, we have

Var[Yt] = Var

2

4
X

i2[B]

Wi

3

5 
X

i2[B]

Var[Wi] 
X

i2[B]

Pr[Wi = 1], (8)

where the last inequality uses the fact that Wi is a Bernoulli r.v.

For each t, let St ✓ N denote the set of indices j for which n(j) = t. Furthermore, let St :=
S1 [ · · · [ St. Notice that

Pr[Wi = 1] = Pr

2

4 max
j2H�1(i)

n(j) = t and
X

j2H�1(i)

n(j) � r

3

5

= Pr

2

4 max
j2H�1(i)

n(j) = t and
X

j2H�1(i)\St

n(j) � r

3

5

= Pr

2

49j⇤ 2 St s.t H(j⇤) = i and
X

j2H�1(i)\St

n(j) � r

3

5

(Union bound) 
X

j⇤2St

Pr

2

4H(j⇤) = i and
X

j2H�1(i)\St

n(j) � r

3

5

=
X

j⇤2St

Pr

2

4H(j⇤) = i and
X

j2H�1(i)\(St\{j⇤})

n(j) � r � t

3

5

(Independence of hash values) =
X

j⇤2St

Pr[H(j⇤) = i] Pr

2

4
X

j2H�1(i)\(St\{j⇤})

n(j) � r � t

3

5

=
X

j⇤2St

1

B
· Pr

2

4
X

j2H�1(i)\(St\{j⇤})

n(j) � r � t

3

5


X

j⇤2St

1

B
· Pr

2

4
X

j2H�1(i)\St

n(j) � r � t

3

5

=
'n
t

B
· Pr

2

4
X

j2H�1(i)\St

n(j) � r � t

3

5

=
'n
t

B
· Pr

2

4
X

j2St

n(j) · Uj � r � t

3

5 , (9)

where Uj denote the indicator 1[H(j) = i].

We will next bound the last term based on two cases:

I Case I: t � r/2. Note that

E

2

4
X

j2St

n(j) · Uj

3

5 =

0

@
X

j2St

n(j)

1

A · 1

B
 n

B
.

Therefore, we may apply Markov’s inequality to get

Pr

2

4
X

j2St

n(j) · Uj � r � t

3

5  n

B(r � t)
 2n

B
· t

r(r � t)
,
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where the latter inequality follows from t � r/2.
I Case II: t < r/2. Since Uj’s are independent, we can also compute the variance of the sum as

Var

2

4
X

j2St

n(j) · Uj

3

5 =
X

j2St

Var[n(j) · Uj ] 
X

j2St

(n(j))2

B

=
1

B

X

`2[t]

`2 · 'n
`  t

B

X

`2[t]

` · 'n
`  tn

B
.

Note also that we have r � t � n/B > (r � t)/2 � r/4, where we used t < r/2. We may now
apply Chebyshev’s inequality to get

Pr

2

4
X

j2St

n(j) · Uj � r � t

3

5  tn/B

(r/4)2
 16n

B
· t

r(r � t)
.

Therefore, in both cases, we have Pr
hP

j2St
n(j) · Uj � r � t

i
 16n

B · t
n�t . Combining this

with (8) and (9), we get

Var[Yt]  B · '
n
t

B
· 16n

B
· t

r(r � t)
=

16n

B
· t · 'n

t

r(r � t)
.

By summing up our bounds on X and Yt’s, we arrive at the desired bound

Var['nred

�r ]  16n

B
·

0

@ n

r2
+

X

t2[r�1]

t · 'n
t

r(r � t)

1

A .

B Extension to `22-error

A different error measure used in [34] is the `22-error, defined as kn� n̂k22 =
P

j2[D](n
(j)� n̂(j))2.

In this section, we show the flexibility of our method by showing that we can get an error of eO"(
p
n),

nearly matching that of [34].

B.1 Small Domain Case

We start with the setting D  eO(n) which does not require hashing.

The idea is to constrain our estimate anonymized histogram such that the `1-distance from the
discrete Laplace-noised histogram is not too large. A full description is presented in Algorithm 3.

Algorithm 3 Anonymized Histogram Estimator w.r.t. `22 loss.

Input: Discrete Laplace-noised histogram h0, i.e., h0
j ⇠ hj +DLap(p)

Parameter: � = 10 log(2nD)/ log(1/p)

for r 2 [n] do
'̂�r  

P
j2[D] f(h

0
j � r), where f is defined in (1)

return n̂ that minimizes k'n̂
� � '̂�k1 subject to knh0 � n̂k1  � and kn̂k1 = n. (If no such

n̂ exists, output the all-zeros histogram.)

Theorem 21. Let n̂ be the output of Algorithm 3. We have

E[kn̂� nk22]  O

✓
log(nD)

log(1/p)
·
q

Cp(n+D) log n

◆
+O(1).

Plugging in p = e�"/2 (sufficient for "-DP), we have the bound of O(
p
(n+D) log n ·

log(nD)/"3.5) for "  1.

4



Proof. First, the standard concentration of the noise implies that

Pr[kn� nh0k1 > �]  0.1/n2.

We thus have

E[kn̂� nk22]  Pr[kn� nh0k1  �] · E[kn̂� nk22 | kn� nh0k1  �] + Pr[kn� nh0k1 > �] · n2

 Pr[kn� nh0k1  �] · E[kn̂� nk22 | kn� nh0k1  �] +O(1).

Now, recall that kn� n̂k22  kn� n̂k1 · kn� n̂k1. Plugging this into the above, we get

E[kn̂� nk22]  Pr[kn� nh0k1  �] · E[kn̂� nk1 · kn̂� nk1 | kn� nh0k1  �] +O(1)

 Pr[kn� nh0k1  �] · E[kn̂� nk1 · 2� | kn� nh0k1  �] +O(1)

 2� · Pr[kn� nh0k1  �] · E[2k'n
� � '̂�k1 | kn� nh0k1  �] +O(1)

 4� · E[k'n
� � '̂�k1] +O(1)

 4� ·O
✓q

Cp(n+D) log n

◆
+O(1),

= O

✓
log(nD)

log(1/p)
·
q
Cp(n+D) log n

◆
+O(1),

where the second inequality follows from the constraint on n̂ and the last inequality follows from
our analysis in the `1-error case (Theorem 9).

B.2 Large Domain Case

We next move on to the case D � n, which will require random hashing.

B.2.1 Barrier to Extending to the `22-error

It turns out that, unlike the `1-error case, using a single noisy hashed histogram with B = eO(n) is
not sufficient for us to get eO(

p
n) `22-error. Before we provide the fix for this, let us briefly sketch

why this is the case.

Let c = d10
p
Be and q = bn/cc. Consider the following two datasets (before hashing):

I There are c items, each with value q.
I There are c� 2 items each with value q and one additional item with value 2q.

It is not hard to see (from birthday paradox) that, after randomly hashing into B buckets, it is
impossible to distinguish the two cases with advantage more than 0.1 (even without any discrete
Laplace noise). This implies that the expected `22-error must be at least ⌦(q2) = ⌦(n2/B). For
B = eO(n), this is at least e⌦(n).

B.2.2 Two-Hash Approach

We now sketch an approach for large D. Here we would use two hashes. The first is with B1 = eO(n)
buckets similar to before and but the second with a much larger, say, B2 = O(n4) buckets. We then
use the `1 approach on the first hash with the additional `1-constraint on the second hash. The
main point here is that w.h.p. there would be no collision at all in the second hash; therefore, the
`1-constraint will be valid. A similar analysis to the small domain case shows that this only adds
O"(log n) multiplicative overhead on the expected `22-error (compared to the `1-error).

More precisely, our approach is presented in Algorithm 4.
Theorem 22. Let n̂ be the output of Algorithm 4. We have

E[kn̂� nk22]  O

✓
log(nB2)

log(1/p)
·
✓q

Cp(n+B1) log n+
n log np

B1

◆◆
+O

✓
n4

B2
+ 1

◆
.

Plugging in p = e�"/4 (sufficient for "-DP), B1 = n
p
log n and B2 = n4, we have the bound of

O(
p
n(log n)7/4/"3.5) for "  1.
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Algorithm 4 Anonymized Histogram Estimator w.r.t. `22 loss, for large domains.

Input: Two discrete Laplace-noised histograms h̃1,red and h̃2,red given as
I h̃1,red

j ⇠ h1,red
j +DLap(p) where the random hash has B1 buckets, and

I h̃2,red
j ⇠ h2,red

j +DLap(p) where the random hash has B2 buckets.
Parameter: � = 10 log(2nB2)/ log(1/p)

Compute an estimate n̂1 by running Algorithm 2 on h̃1.
return n̂ that minimizes kn̂� n̂1k1 subject to knh̃2,red � n̂k1  � and kn̂k1 = n. (If no such
n̂ exists, just output the all-zero histogram.)

Proof. The probability that there is any collision in the second hash is at most n2/B2. Furthermore,
standard concentration inequality of the noise implies that the noise added to any of h2,red

j is greater
than � is at most 0.1/n2. Therefore, by a union bound, we have

Pr[kn� nh̃2,redk1 > �]  n2/B2 + 0.1/n2.

The remaining analysis is now similar to that of Theorem 21. Specifically, we have

E[kn̂� nk22]
 Pr[kn� nh̃2,redk1  �] · E[kn̂� nk1 · kn̂� nk1 | kn� nh̃2,redk1  �]

+ Pr[kn� nh̃2,redk1 > �] · n2

 Pr[kn� nh̃2,redk1  �] · E[2kn̂1 � nk1 · (2�) | kn� nh̃2,redk1  �] + n4/B2 + 0.1

 (4�) · E[kn̂1 � nk1] + n4/B2 + 0.1

 O

✓
� ·
✓q

Cp(n+B1) log n+
p
n2/B1 log n

◆
+ n4/B2 + 1

◆
,

where the last inequality follows from Theorem 12.

C Missing Proof from Section 5

In this section, we prove sample complexity bounds for estimating symmetric distribution properties.
In addition to entropy (Corollary 18), we also show sample complexity bounds for support coverage
(Corollary 23) and support size (Corollary 24).

C.1 Entropy

Proof of Theorem 17. Acharya et al. [3] consider two estimators for entropy estimation.

I The first estimator Ĥ they study is the entropy of the empirical distribution. This has a non-
private sample complexity of CĤ(H,↵) = O

⇣
k
↵ + log2 k

↵2

⌘
. The sensitivity of this estimator is

O(log n/n). Thus, we have DĤ(↵, ") is the smallest n that satisfies

log n

n
·
p
n(log n)3/4

"2.5
. ↵.

And so, DĤ(↵, ")  O( log
3.5(1/(↵"))
↵2"5 ). Thus, plugging this into Theorem 17 yields a sample

complexity of O
⇣

k
↵ + log2 k

↵2 + log3.5(1/(↵"))
↵2"5

⌘
.

I The second estimator Ĥ they study is based on the prior work of [2], which for any � 2 (0, 1)

has a non-private sample complexity of CĤ(H,↵) = O
⇣

k
�2↵ log k + log2 k

↵2

⌘
. The sensitivity of

this estimator is 1/n1��. Thus, we have DĤ(↵, ") is the smallest n that satisfies

1

n1��
·
p
n(log n)3/4

"2.5
. ↵.
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And so, DĤ(↵, ")  O

✓⇣
log1.5(1/(↵")

↵2"5

⌘1/(1�2�)
◆

. Thus, plugging this into Theorem 17 yields

a sample complexity of O
✓

k
�2↵ log k + log2 k

↵2 +
⇣

log1.5(1/(↵")
↵2"5

⌘1/(1�2�)
◆

.

C.2 Support Coverage

The support coverage of a distribution D and an integer m is defined as Sm(D) :=
P

x2supp(D)(1�
(1�D(x))m), i.e., the expected number of distinct elements seen if we draw m i.i.d. samples from
D. Here we would like to estimate Sm(D) to within an additive error of ±↵m.

Our bounds are stated below. Note that, in the case of large m, our sample complexity is asymptoti-
cally the same as that of [3] but our dependency on ↵, " is worse in the case of smaller m.
Corollary 23 (Support Coverage). For all 0 < "  O(1), � 2 (0, 1], there exists an (", �)-DP

mechanism, in the pan-private and shuffle DP models, that can estimate Sm(D) up to an additive

error of ±↵m with a sample complexity of

8
<

:
O
⇣

m log(1/↵)
log(↵m")

⌘
if m � ⌦

⇣
log1.5(1/(↵"))

↵2"5

⌘
,

O
⇣

log1.5(1/(↵"))
↵2"5

⌘
if m  O

⇣
log1.5(1/(↵"))

↵2"5

⌘
.

Proof. Throughout the proof, it will be simpler to think of estimating Sm(D)
m to within an additive

error of ±↵. Acharya et al. [3] consider two estimators for support coverage estimation.

I Sparse Case. Assuming that m � ⌦
⇣

log2(1/(↵"))
↵2"5

⌘
. When m � 2n, Acharya et al. [3] (based on

an earlier work [39]) gave an estimator Ŝm, parameterized by r = log(3/↵) and t = m/n � 1,
that has a non-private sample complexity of CŜn

(Sm,↵) = O
⇣

m log(1/↵)
logm

⌘
. The sensitivity of

this estimator is 1+er(t�1)

m = 1+elog(3/↵)(m/n�2)

m . Thus, we have DŜm
(↵, ") is the smallest n that

satisfies
1 + elog(3/↵)(m/n�2)

m
·
p
n(log n)3/4

"2.5
 ↵

And so, DŜm
(↵, ")  O

⇣
m log(1/↵)
log(↵m")

⌘
. Thus, plugging this into Theorem 17 gives rise to a

sample complexity of O
⇣

m log(1/↵)
log(↵m")

⌘
.

I Dense Case. The second estimator Ŝm they study works when n is a multiple of m. We remark
that, although the estimator as described in [3] does not seem to fit our setting, it can be viewed
in our framework as follows. The examples are divided in to n/m batches each of size m. We
then build a histogram h on supp(D) ⇥ [n/m] where each example in batch i appends i to its
original item. The final estimate is then 'h

�1/n. It was shown in [3] that the non-private sample
complexity is CŜm

(Sm,↵) = O
�
1/↵2

�
.

The sensitivity of this estimator is 1/n. Thus, we have DŜm
(↵, ") is the smallest n that satisfies

1

n
·
p
n(log n)3/4

"2.5
 ↵

And so, DŜm
(↵, ")  O

⇣
log1.5(1/(↵"))

↵2"5

⌘
. Thus, plugging this into Theorem 17 gives rise to a

sample complexity of O
⇣
max

n
m, log1.5(1/(↵"))

↵2"5

o⌘
, where the m part comes from our constraint

that n � m.

C.3 Support Size

Finally, we consider the problem of estimating the support size of D. In general, this is impossible
with finite sample since some atom of D might have an arbritrarily small probability mass. To avoid
this, we follow prior work and consider only probability distributions in ��1/K := {D | 8x 2
supp(D),D(x) � 1/K}, i.e., those with non-zero mass of at least 1/K at every atom, for some K.
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Orlitsky et al. [39] proved that the support coverage with m � ⌦(K · log(3/↵)) is a good estimate
to the support size of any D 2 ��1/K to within an error of ±↵K. In particular, they showed that
if m � K log(3/↵), then for any D 2 �1/K , it holds that |Sm(D) � S(D)|  ↵K/3. Combining
this with Corollary 24, we immediately get the following bounds for the latter.
Corollary 24 (Support Size). For all 0 < "  O(1), � 2 (0, 1], there exists an (", �)-DP mechanism,

in the pan-private and shuffle DP settings, that can estimate the support size of D 2 ��1/K up to

an additive error of ±↵K with a sample complexity of
8
<

:
O
⇣

K log2(1/↵)
log(↵K")

⌘
if K � ⌦

⇣
log1.5(1/(↵"))
↵2"5 log(1/↵)

⌘
,

O
⇣

log1.5(1/(↵"))
↵2"5

⌘
if K  O

⇣
log1.5(1/(↵"))
↵2"5 log(1/↵)

⌘
.

D Fast Post-Processing Algorithms

So far we have not focused on the running time of our post-processing algorithms. Nonetheless, it
is not hard to see that our algorithms run in polynomial time. Below, we show that our algorithms
can even be made to run in eO"(D + n)-time for the `1-error case.

D.1 Small Domain Case

We start with how to implement Algorithm 1 in O(D + n log n) time. The first observation is
that the expression for each '̂�r can be easily computed in constant time if we precompute the
number of buckets above a certain threshold beforehand. The second observation is that the last
step is exactly the same as the so-called `1-isotonic regression problem (by viewing the cumulative
prevalence '�1, . . . ,'�n as the variables), for which an O(n log n)-algorithm is known [42]. A full
description is given in Algorithm 5.

Algorithm 5 Efficient Anonymized Histogram Estimator w.r.t. `1 loss.

Input: Discrete Laplace-noised histogram h0, i.e., h0
j ⇠ hj +DLap(p)

c0, . . . , cn  0 {Counts for hash values}
for j 2 [D] do
v  max{min{h0

j , n}, 0} {Clip so that the value is between 0, n}
cv  cv + 1

c�0, . . . , c�n+1  0 {Counts for hash values above a certain threshold.}
for r = n, . . . , 0 do
c�r  c�r+1 + cr

for r 2 [n] do
'̂�r  c�r+1 +

⇣
1 + p

(1�p)2

⌘
cr +

⇣
� p

(1�p)2

⌘
cr�1

Find n̂ that minimizes k'n̂
� � '̂�k1 using `1-isotonic regression algorithm

return n̂

D.2 Large Domain Case

The large domain case is more complicated, as solving the optimization problem k�B(n̂)�'n̂red

� k1
does not seem to be as simple as isotonic regression. Nonetheless, we give a modified algorithm be-
low that takes eO"(D+n log n) time and has a similar error bound (within a polylogarithmic factor).
The idea is to use two noisy histograms in a similar manner as we did for `22-error (Algorithm 4):
One noisy histogram (without hashing) is used to determine the high-value counts, whereas the other
noisy histogram, with hashing, is used to determine the low-value counts.

D.2.1 Computing �B

Recall from Observation 19 that �B(n)` does not depend on 'n
�r for any r > `. Therefore, we may

view �B(n)` as a function of 'n
�1, . . . ,'

n
�`. We overload the notion and write �B('n

�1, . . . ,'
n
�`)`

to denote �B(n)` of a corresponding histogram n. We start by giving an algorithm for computing
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such a value. Recall that �B(n)` is defined as the expected number of hash buckets whose total
value is at least `. Let ⌅�i(n) denote the probability that a fixed hash bucket has total value at least
i. By linearity of expectation, we have �B(n)` = B · ⌅�`(n). Below, we keep updating ⌅�i as we
include one more histogram value, using the fact that the hash function puts this histogram value in
a random hash bucket.

Algorithm 6 Computation of �B('�1, . . . ,'�`)`.

Input: '�1, . . . ,'�`, cumulative prevalence of a histogram

'�`+1  0. {For notational convenience.}
⌅�0  1 and ⌅�1, . . . ,⌅�`  0 {Initialize ⌅ values}
for r = 1, . . . , ` do

for j = 1, . . . ,'�r � '�r+1 do {Add a new histogram entry of value r}
for k = `, . . . , 0 do
⌅�k  B�1

B · ⌅�k + 1
B · ⌅�max{k�r,0}

return B · ⌅�`

Since 'n
�1  n, there are at most n pairs (r, j) considered by the algorithm. Therefore, the total

runtime of Algorithm 6 is O(n`).

D.2.2 Fast Post-processing Algorithm

Our fast post-processing algorithm for large domains is stated below (Algorithm 7). For conve-
nience, we use the convention that 'n

�0 = n.

Algorithm 7 Efficient Anonymized Histogram Estimator w.r.t. `1 loss, for large domains.

Input: Two discrete Laplace-noised histograms h̃1 and h̃2,red given as
I h̃1

j ⇠ hj +DLap(p) (without any hashing), and
I h̃2,red

j ⇠ h2,red
j +DLap(p) where the random hash has B buckets.

Parameter: m = d10 logD/ log(1/p)e
Compute an estimate n̂1 of n using Algorithm 1
Compute an estimate n̂2,red of n2,red using Algorithm 1
'̂�0  n
for r 2 [m] do
lb = 0, ub = '̂�r�1 {Binary search to find '̂�r}
while ub > lb+ 1 do
mid b(ub+ lb)/2c
v  �B('̂�1, . . . , '̂�r�1,mid)r {See Algorithm 6}
if v � 'n̂2,red

�r then
ub mid

else
lb mid

vub  �B('̂�1, . . . , '̂�r�1, ub)r
vlb  �B('̂�1, . . . , '̂�r�1, lb)r
if |vlb � 'n̂2,red

�r |  |vub � 'n̂2,red

�r | then
'̂�r  lb

else
'̂�r  ub

Find n̂ that minimizes
Pm

r=1 |'̂�r � 'n̂
�r|+

Pn
r=m+1 |'n̂1

�r � 'n̂
�r| using `1-isotonic regression

algorithm
return n̂

Run Time Analysis. Recall that Algorithm 1 runs in O(D + n log n) time. In binary search, we
call Algorithm 6 for a total of at most O(m log n) = O(logD log n/") times; since each call runs in
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O(nr) = O(n logD/") time, the total running time of this step is O(n log n(logD/")2). Finally,
note that the last step is again an `1-isotonic regression problem and therefore can be solved in
O(n log n) time. Thus, in total the running time is eO"(D+n) as desired. Note that we may assume
without loss of generality that D  nO(1) as otherwise we may first hash to, e.g., B0 = O(n2)
buckets, which results in an increase in the expected `1-error of at most O(1).

Error Analysis. We now prove the error guarantee of the algorithm, which is stated precisely
below.
Theorem 25. Suppose that B > 3nm. Then, we have

E[kn̂� nk1]  O(
p
n2/B · log n) +O(

p
CpB log n) +O(

p
Cpn log n).

Note that, since taking p = e�"/4 makes the algorithm "-DP, we get the following:
Corollary 26. For all " > 0, Algorithm 7 for p = e�"/4

and B = 10nm is "-DP, and achieves an

expected `1-error of O(
p
n(log(nD))/"3).

The quantitative bound above matches Corollary 13 to within a factor of (log n)1/4/"0.5 (recall that
we can assume without loss of generality that D  nO(1)).

To prove Theorem 25, we will need the following auxiliary lemma, whose proof is given later in this
section.
Lemma 27. Suppose that B > 3nm. Then,

mX

r=1

|'̂�r � '̂n
�r|  O

⇣
k�B(n)� 'n̂2,red

� k1
⌘
. (10)

We are now ready to prove Theorem 25.

Proof of Theorem 25. First, the expected `1-error can be written as

E[kn̂� nk1] = E
"

nX

r=1

|'n̂
�r � 'n

�r|
#
 O

 
E
"

mX

r=1

|'̂�r � 'n
�r|+

nX

r=m+1

|'n̂1

�r � 'n
�r|
#!

,

where the last step follows from the triangle inequality and our choice of n̂.

We now plug in Lemma 27, which yields:

E[kn̂� nk1]  O

 
E
h
k�B(n)� 'n̂2,red

� k1
i
+ E

"
nX

r=m+1

|'n̂1

�r � 'n
�r|
#!

Lemma 15, Theorem 9
 O(

p
n2/B · log n+

p
CpB log n) + E

"
nX

r=m+1

|'n̂1

�r � 'n
�r|
#

To bound the last term, we use Observation 11, which gives:

E
"

nX

r=m+1

|'n̂1

�r � 'n
�r|
#


nX

r=m+1

q
Var['n̂1

�r] 
nX

r=m+1

p
 ·

vuut
nX

`=0

p|`�r| · 'n
`


p
 ·

vuut
nX

r=m+1

1

r
·

vuut
nX

r=m+1

r ·
 

nX

`=0

p|`�r| · 'n
`

!
(Cauchy–Schwarz)


p
 ·O(

p
log n) ·

vuut
nX

`=0

'n
` ·
 

nX

r=m+1

r · p|`�r|

!


p
 ·O(

p
log n) ·

vuut
 
'n
0 ·

nX

r=m+1

r · pr
!

+

 
nX

`=1

'n
` ·
 

nX

r=1

r · p|`�r|

!!
.

10



The second term
Pn

`=1 '
n
` ·
�Pn

r=1 r · p|`�r|� can be bounded in the exact same way as in Theo-
rem 9, which gives an upper bound of O(

p
n/(1� p)2). The first term

�
'n
0 ·
Pn

r=m+1 r · pr
�

can
be bounded as follows:

'n
0 ·

nX

r=m+1

r · pr = D

 
pm+1 ·

nX

i=0

(i+m+ 1)pi
!
 D

✓
p

D10
·
✓
m+ 1

1� p
+

1

(1� p)2

◆◆

 O

✓
1

(1� p)2

◆
.

Putting the four inequalities above together, we arrive at

E[kn̂� nk1]  O(
p
n2/B · log n+

p
CpB log n) +O(

p
/(1� p)2) ·O(

p
n log n).

Proof of Lemma 27. Let � := B/n. We will prove by induction that

X̀

r=1

|'̂�r � '̂n
�r|  3

✓
1 +

3

�

◆`
 
X̀

r=1

|�B(n)r � 'n̂2,red

�r |
!
, (11)

for all ` = 0, . . . ,m. The base case ` = 0 is trivial.

We will next prove the inductive step. Suppose that the bound (11) holds for `�1. We will now show
that it also holds for `. Recall from Lemma 20 that �B('̂�1, . . . , '̂�`)` is increasing in '̂�` when
'̂�1, . . . , '̂�`�1 are held fixed. This means that our binary search algorithm finds the optimum,
which implies

|�B('̂�1, . . . , '̂�`�1, '̂�`)` � 'n̂2,red

�` |  |�B('̂�1, . . . , '̂�`�1,'
n
�`)` � 'n̂2,red

�` |. (12)
Applying the third inequality in Lemma 20 repeatedly, we have

|�B('n
�1, . . . ,'

n
�`�1, '̂�`)` � 'n̂2,red

�` |

(Lemma 20)  |�B('̂�1, . . . , '̂�`�1, '̂�`)` � 'n̂2,red

�` |+
P`�1

r=1 |'n
�r � '̂�r|
�

(From (12))  |�B('̂�1, . . . , '̂�`�1,'
n
�`)` � 'n̂2,red

�` |+
P`�1

r=1 |'n
�r � '̂�r|
�

(Lemma 20)  |�B('n
�1, . . . ,'

n
�`�1,'

n
�`)` � 'n̂2,red

�` |+
2 ·
P`�1

r=1 |'n
�r � '̂�r|

�

= |�B(n)` � 'n̂2,red

�` |+
2 ·
P`�1

r=1 |'n
�r � '̂�r|

�
. (13)

Again applying the second inequality in Lemma 20, we get
|'̂�` � 'n

�`|

 1

1� 1/�
· |�B('n

�1, . . . ,'
n
�`�1, '̂�`)` � �B('n

�1, . . . ,'
n
�`�1,'

n
�`)`|

 1

1� 1/�
·
⇣
|�B('n

�1, . . . ,'
n
�`�1, '̂�`)` � 'n̂2,red

�` |+ |�B('n
�1, . . . ,'

n
�`�1,'

n
�`)` � 'n̂2,red

�` |
⌘

(13)
 1

1� 1/�

 
|�B(n)` � 'n̂2,red

�` |+
2 ·
P`�1

r=1 |'n
�r � '̂�r|

�
+ |�B(n)` � 'n̂2,red

�` |
!

 3|�B(n)` � 'n̂2,red

�` |+
3 ·
P`�1

r=1 |'n
�r � '̂�r|

�

✓
using

1

1� 1/�
 3

2

◆
.

Therefore, we have
X̀

r=1

|'n
�r � '̂�r|  3|�B(n)` � 'n̂2,red

�` |+
✓
1 +

3

�

◆
·
 

`�1X

r=1

|'n
�r � '̂�r|

!
.

Plugging in the inductive hypothesis, we can conclude that (12) also holds for `.

Finally, plugging in ` = m and using the fact that � � 3`, we arrive at the claimed bound.

11



E On Pan-Privacy

In the main body of our work, we only consider the notion of pan-privacy where, for every t 2 [n],
the internal state of the algorithm after the tth step must be "-DP. This can be achieved for discrete
Laplace-noised histogram as follows: start with hj drawn from DLap(p) for p = e�"/2 for all
j 2 [D]. Then, at each step, increment the corresponding entry hj .

While this algorithm suffices for our more relaxed notion, it does not satisfy the original notion of
pan-privacy as defined in [25], which requires that, for every t 2 [n], both the internal state of the
algorithm after the tth step and the final output must be "-DP. A possible adaptation of the above
algorithm to satisfy this notion of pan-privacy is to also add a noise drawn from DLap(p) to each
entry of the histogram after the last element in the stream (before computing the final output). It is
simple to see that this satisfies "-DP in the more restricted notion when we set p = e�"/4.

Unfortunately, this adaptation does not result in a discrete Laplace-noised histogram. Instead, the
final histogram is noised by two i.i.d. discrete Laplace random variables (one from the initialization,
and one from the final step). Due to this, we also have to adapt our estimation algorithm. Specifically,
in Algorithm 1, we replace f by9 f ⇤ g where g is defined by

g(m) =

8
><

>:

1+p2

(1�p)2 if m = 0,

� p
(1�p)2 if m = �1 or m = 1,

0 if m < �1 or m > 1.

It is not hard to check that this results in an unbiased estimator, and an analogue of Theo-
rem 9 can be proved but with Cp = O(1/(1 � p)9). This in turn results in a worse error of
O(
p
(n+D) log n/"4.5) instead of O(

p
(n+D) log n/"2.5) for the model considered in the main

body. Other algorithms can be adapted similarly, again with worse dependency of " in the error
bounds.

9Here f ⇤ g denotes the convolution of f and g, i.e., (f ⇤ g)(j) =
P

i2Z f(i) · g(j � i) for all j 2 Z.
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