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Abstract

Federated Learning (FL) has emerged as a promising distributed learning paradigm
that enables multiple clients to learn a global model collaboratively without sharing
their private data. However, the effectiveness of FL is highly dependent on the
quality of the data that is being used for training. In particular, data heterogeneity
issues, such as label distribution skew and feature skew, can significantly impact the
performance of FL. Previous studies in FL have primarily focused on addressing
label distribution skew data heterogeneity, while only a few recent works have made
initial progress in tackling feature skew issues. Notably, these two forms of data
heterogeneity have been studied separately and have not been well explored within
a unified FL framework. To address this gap, we propose Fed-CO2, a universal
FL framework that handles both label distribution skew and feature skew within
a Cooperation mechanism between the Online and Offline models. Specifically,
the online model learns general knowledge that is shared among all clients, while
the offline model is trained locally to learn the specialized knowledge of each
individual client. To further enhance model cooperation in the presence of feature
shifts, we design an intra-client knowledge transfer mechanism that reinforces
mutual learning between the online and offline models, and an inter-client knowl-
edge transfer mechanism to increase the models’ domain generalization ability.
Extensive experiments show that our Fed-CO2 outperforms a wide range of existing
personalized federated learning algorithms in terms of handling label distribution
skew and feature skew, both individually and collectively. The empirical results are
supported by our convergence analyses in a simplified setting.

1 Introduction

Federated Learning (FL) [1, 2] is a distributed learning framework that involves collaboratively
training a global model with multiple clients while ensuring privacy protection. The pioneering work
FedAvg [2] learns the global model by aggregating the local client models and obtains satisfactory
performance when the client data are independently and identically distributed (IID). However, when
the data are heterogeneous and non-IID among clients, performance with the global model can
degrade substantially [3, 4]. Common data heterogeneity issues include label distribution skew and
feature skew. Clients experiencing label distribution skew exhibit varying class distributions within
the same domain, while clients encountering feature skew maintain consistent class distributions
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but belong to different domains. As a promising solution to data heterogeneity issues, Personalized
Federated Learning (PFL) has emerged, where personalized models are trained for individual clients.
Most previous studies have focused on addressing label distribution skew [5, 6, 7], while only a few
recent works [8, 9] have made initial progress in tackling feature shift issues. So far, these two forms
of data heterogeneity have been studied separately and have not been addressed within a unified FL
framework. Therefore, in this paper, we propose a universal FL framework that effectively handles
data heterogeneity issues arising from label distribution skew, feature skew, or their combination.

Several algorithms personalized some parts of the model in FL with label distribution imbalance or
feature shifts to retain and leverage some of the local offline information [10, 11, 12, 13, 8]. However,
in realistic FL scenarios, where extreme label distribution skew, severe feature skew, or even both
are present, these algorithms fail to effectively harness local specialized knowledge for satisfactory
adaptation. In fact, in some cases of extreme heterogeneity, models trained by those personalized
algorithms may even perform worse than the locally-trained model, as the locally-trained model
excels in capturing offline specialized knowledge. On the other hand, in FL scenarios with milder
heterogeneity, partially personalized models trained by PFL algorithms perform better due to their
ability to access online general information from other clients.

So, given that the model with partially personalized parameters and the locally trained model each
perform better in different cases, the question is: Is there a more effective approach to fuse the
online general knowledge and the offline specialized knowledge for better performance? From our
investigations, the answer is yes. Accordingly, we propose a novel universal cooperation framework
with these two models to address this challenge for both label distribution skew and feature skew data
heterogeneity, referring to the model with partially personalized parameters as the online model, and
the locally trained model as the offline model. Specifically, we personalize Batch Normalization layers
in the online model and fuse the online and offline models’ predictions as the final prediction. The
prediction fusion between the online and offline models rectifies errors in their respective individual
predictions and exhibits better performance.

In FL scenarios with feature skew, the general knowledge learned by the online model is domain-
invariant, whereas the specialized knowledge learned by the offline model is domain-specific. Co-
operation that occurs solely by fusing predictions is not sufficient as this process does not let the
online and offline models communicate during the training phase. In turn, this impedes the transfer of
domain-invariant and domain-specific knowledge between the models. Hence, to further encourage
cooperation between the models, we propose two novel knowledge transfer mechanisms - one intra-
client and one inter-client - which work at the model and client level, respectively. The intra-client
knowledge transfer mechanism facilitates mutual learning between the online and offline models
via knowledge distillation, which enables the online and offline models to benefit from both online
domain-invariant and offline domain-specific knowledge. Conversely, the inter-client knowledge
transfer mechanism enhances the model’s domain generalization ability by introducing classifiers
from the offline models of other clients to each local client.

Contribution. We propose Fed-CO2, a universal cooperative FL framework for severe data hetero-
geneity including both label distribution skew and feature skew. By simply fusing the online and
offline models, Fed-CO2 can handle severe label distribution skew effectively. To enhance model per-
formance in the presence of severe feature skew, Fed-CO2 involves an intra-client knowledge transfer
mechanism that improves model cooperation and an inter-client knowledge transfer mechanism that
increases client cooperation. We theoretically show that Fed-CO2 has a faster convergence rate
than FedBN [10] in a simplified setting. Besides, extensive experiments on five benchmark datasets
demonstrate that our Fed-CO2 framework has a prominent edge over a range of state-of-the-art
algorithms where the data contain label distribution skew, feature skew, or both1.

2 Related Work

Federated Learning for Label Distribution Skew Data Heterogeneity. In real-world FL scenarios,
label distribution imbalance among clients is a common phenomenon that poses challenges to learning
a single model that can effectively cater to all clients. A straightforward approach to personalizing
the global model is fine-tuning it on local datasets [14, 15, 16, 17]. Other approaches attempt to
overcome distribution heterogeneity by exerting a proximal regularization term on the global model,

1Our codes are publicly available at https://github.com/zhyczy/Fed-CO2
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as seen in examples like FedProx [4], pFedMe [18], MOON [7], and Ditto [19]. Instead of adapting
the single global model, learning personalized models is another main track. Here, the more explicit
methods [11, 20, 21, 22] personalize some of the model parameters while leaving other parameters
for aggregation. Similarly, FedMask [23] learns distinct binary masks for the last several layers
of the local models. Further, inspired by Hypernetworks [24], some methods [6, 13, 25] apply a
hypernetwork to produce client-specific parameters for participants. Beyond directly personalizing
parts of the model parameters, some of the newer methods involve a two-branch architecture where
the aim is to calibrate the model’s predictions [12, 26, 27]. For example, FedRoD [12] uses a personal
head to strengthen local learning, while PerFCL [26] splits the features in the local clients into shared
parts and personalized parts. FedProc [27] uses prototypes as global knowledge to correct local
training. However, unlike these methods, Fed-CO2 maintains two separate personalized models for
each client – one that learns online general knowledge and the other that learns offline specialized
knowledge – with a focus on facilitating cooperation between the two models.

Additionally, knowledge distillation, which transfers dark knowledge between models, has played
an important role in addressing label distribution skew [28, 29, 30, 31, 32, 22]. Most of previous
works in this arena rely heavily on a public dataset to transfer knowledge between the server and the
local clients [29, 30, 31]. Only a limited number of studies have delved into the synergistic interplay
between learning global knowledge and learning local knowledge, as well as strategies to optimize
the mutual benefits of these two processes. In FML [28], the global model and the local model engage
in mutual learning, but only the local model is used for personalized predictions. A very recent
study, CD2-pFed [22], employs cyclical distillation as a regularization term in conjunction with the
local training cross-entropy loss to mitigate the gaps between the learned representations from local
weights and those from global weights. By contrast, our method utilizes knowledge distillation to
facilitate the exchange of beneficial knowledge between the online and offline models before local
training, as well as to ensure effective and adequate intra-client knowledge transfer.

Federated Learning for Feature Skew Data Heterogeneity. While various methods have shown
promising results on label distribution data heterogeneity, they often suffer from significant perfor-
mance degradation when confronted with the more challenging feature shift data heterogeneity. To
adapt to the feature shifts among different domains, FedBN [10] personalizes Batch Normalization
(BN) layers for each participant. Beyond personalizing BN layers, PartialFed [8] explores the strategy
of selecting personalized parameters based on the feature characteristics of different clients. To
handle the feature skew, FedAP [9] learns the similarities between participants by analyzing their
private parameters in the BN layers. In a recent work called TrFedDis [33], the concept of feature
disentangling is used to capture both domain-invariant and domain-specific knowledge. Our Fed-CO2

deviates from such disentangling approaches and instead focuses on facilitating mutual learning
between the online and offline models.

3 METHOD

In this section, we begin by formulating the research problem and subsequently introduce Fed-CO2,
our novel universal FL framework. Finally, we will present the intra-client and inter-client knowledge
transfer mechanisms designed to further enhance model cooperation in FL with feature skew.

3.1 Problem Formulation

We aim to train a set of N models for each client to fit local data distribution. Each client i has its own
data distribution Pi with its private dataset Di = {(xk

i , y
k
i ) : k ∈ {1, . . . ,mi}}, i ∈ {1, . . . , N}

and mi is the sample number in the private dataset. Due to label distribution skew or feature skew,
the data distribution Pi(x , y) differs on a client-by-client basis. Our goal is to learn a good model
Fi(·) with parameters θi for each client according to information in all clients:

min
{θi}N

i=1

1

N

∑N

i=1

∑mi

j=1
l(Fi(θi ; x

j
i ) , y

j
i ), (1)

where l(· , ·) is a sample-wise loss function, Fi is constructed by a feature extractor fi(·) with
parameters ηi and a classifier Ci(·) with parameters ϕi. Accordingly, θi = {ηi, ϕi}.
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Figure 1: The Fed-CO2 framework. Fig. 1(a) shows an overview of the cooperation between the
online and offline models in Fed-CO2. Figures 1(b) and 1(c) respectively illustrate the intra-client
and inter-client knowledge transfer mechanisms on FL with feature skew.

3.2 Cooperation of Online and Offline Models

As shown in Fig. 1(a), we propose Fed-CO2: a novel universal collaboration framework between the
online and offline models to adapt to local data distribution in the presence of label distribution skew,
feature skew, or both. Specifically, for each client i, we train a partially personalized model, referred
to as the online model F on

i , and a locally-trained model, referred to as the offline model F off
i . With

two models in each client Fi = {F on
i , F off

i }, cooperation is achieved through prediction fusion of
the online and offline models. In this manner, our framework aims to exploit both online general and
offline specialized knowledge, enabling consistent high performance in FL across various cases of
local data heterogeneity.

For the online model, we personalize only a few critical parameters to enable the online model to
learn knowledge from other clients through model aggregation on the server, while still retaining
essential local knowledge. Prior work FedBN [10] has shown that Batch Normalization (BN) layers
can capture feature distribution in local clients. Inspired by such discovery, we personalize the BN
layers in the online model and split its parameters θoni into {θonp,i, θong }, where θonp,i denotes all BN
layer parameters and θong denotes other parameters. Model aggregation is done on the server to obtain
the shared θ̃ong among all clients with the formula:

θ̃ong =
∑N

i=1

1

N
θong,i. (2)

For the offline model, all its parameters are personalized and do not engage in server aggregation. As
a result, the offline model is able to learn local specialized knowledge without forgetting or being
contaminated by other irrelevant information. With online and offline models, we employ a simple
fusion technique and obtain the final prediction for model Fi:

Fi(θi ; x) = F on
i (θonp,i , θ

on
g ; x) + F off

i (θoffi ; x). (3)
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It’s worth noting that the online-offline model cooperation does not require extra communication
costs compared to standard federated aggregation operations since offline models are not uploaded to
the server.

When feature skew data heterogeneity is present, relying solely on prediction fusion for cooperation
is insufficient. This approach fails the communication between the online and offline models during
the training phase, impeding the transfer of online domain-invariant and offline domain-specific
knowledge. Therefore, to enhance collaboration among the models in FL with feature skew, we
propose novel intra-client and inter-client knowledge transfer mechanisms. In the next two parts, we
will introduce these mechanisms and discuss their role.

3.3 Intra-Client Knowledge Transfer

In our framework, each client i is equipped with two models: an online model for capturing gen-
eral domain-invariant knowledge and an offline model for capturing specialized domain-specific
knowledge. Unlike previous algorithms that utilized a two-branch framework, aiming to make the
knowledge learned by each branch as disjoint as possible through methods such as Contrastive
Learning [26] or Feature Disentangling [33], we introduce a novel intra-client knowledge transfer
mechanism to enhance the collaboration of the two models. This mechanism employs knowledge
distillation to facilitate mutual learning between the two models during the training phase. However,
transferring online general knowledge to the offline model could potentially conflict with the local
training objective. The former emphasizes learning global information among {Dj}j ̸=i and avoiding
over-fitting on local data, whereas the latter focuses on fitting local information in Di. As a result,
neither of the two goals can be fully accomplished. Furthermore, during local training, there is a risk
of the online model losing general domain-invariant knowledge, which leads to a reduction in the
amount of valuable information accessible to the offline model.

To address these challenges, we divide the local training process into two distinct phases: a mutual
learning phase and a local adaptation phase to achieve their respective goals. Concretely, in the
mutual learning phase, we create a duplicate of the initial online model, which consists of its
personalized BNs from the last round and other parameters updated with the global aggregation
model. Additionally, we retain a copy of the initial offline model from the last round. As illustrated
in Fig. 1(b), these duplicated models are frozen and utilized as teacher networks, with the copied
online model serving as a teacher for the offline model, and the copied offline model guiding the
online model. We denote the duplicated initial online model and copied initial offline model as F̄ on

i

and F̄ off
i , respectively, with frozen parameters θ̄oni and θ̄offi . In training step s, given input sample xk,

online and offline models conduct intra-client knowledge transfer and update their parameters in the
mutual learning form:

θoni,s = θoni,s−1 − α · ∇θon
i,s−1

KL(F̄ off
i (θ̄offi ; xk) , F

on
i (θoni,s−1 ; xk)), (4)

θoffi,s = θoffi,s−1 − α · ∇θoff
i,s−1

KL(F̄ on
i (θ̄oni ; xk) , F

off
i (θoffi,s−1 ; xk)), (5)

where KL(· , ·) denotes the Kullback-Leibler (KL) divergence and α is the learning rate. Through
mutual learning, the online model and the offline model engage in model-level collaboration and
share the knowledge acquired in the previous round.

3.4 Inter-Client Knowledge Transfer

After the intra-client knowledge transfer in the first phase, both the online and offline models have
gained beneficial knowledge from each other, and now it is opportune to let them adapt to the local
data distributions. The pertinent question is whether we can leverage additional knowledge from
other clients to bridge the domain gaps in the local training. Currently, the approach of acquiring
knowledge from other clients is limited to aggregating shared parameters on the server. In comparison
to various advanced approaches used in Domain Generalization (DG) research, parameter aggregation
alone may struggle to learn effective domain-invariant features. The primary challenge stems from
the isolation of private data, as FL prohibits cross-client access to data from other domains. Without
data from multiple domains, it is tough to directly apply techniques in DG.

Considering that the offline model in each client is trained to capture local specialized domain-specific
knowledge, we propose to leverage these lightweight classifiers of the offline model to transfer domain
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knowledge among clients, as illustrated in Fig. 1(c). The classifiers of the offline model from other
clients are introduced to each local client, enabling the feature extractors of its online and offline
models to generate robust and well-generalized features that can be effectively recognized by these
introduced classifiers. We share similar design intuitions with COPA [34], but here our inter-client
knowledge transfer mechanism stresses more on making use of knowledge from other clients to
benefit the personalized model for each client rather than serving unseen novel clients.

To be specific, in Fed-CO2, each client uploads its classifier Coff
i from its offline model to the server,

along with its shared parameters (BNs are not included) from its online model. These uploaded
heads construct a classifier set for inter-client knowledge transfer: {Coff

j }Nj=1 with parameter set

{ϕoff

j }Nj=1 and are transmitted to each client in the next round. In communication round t, each
client has its own personalized model Fi = {F on

i , F off
i } and the downloaded knowledge-transfer

classifier set {Coff

j }Nj=1. Similar to teacher models in the mutual learning phase, we freeze these
knowledge-transfer classifiers to keep their knowledge unchanged. With input data xk and its label
yk our inter-client knowledge transfer loss function Lgen for models on client i is formulated as:

Lgen (xk , yk) =
∑

j ̸=i
LCE

(
C

off

j

(
ϕ
off

j ; fi (ηi,t; xk)
)
, yk

)
, (6)

Combined with its classification loss to adapt to local private data, the total loss in local adaptation
phase for each model is:

L = LCE(xk , yk) + µ · Lgen(xk , yk), (7)

where µ is a penalized factor set as 1 by default. After local training, we upload parameters to the
server and aggregate them with Eq. 2. Algorithm 1 in Appendix demonstrates the procedures of our
Fed-CO2 algorithm.

4 Theoretical Analysis

Here, we provide convergence analyses, which compare our Fed-CO2 and FedBN [10] with the neural
tangent kernel (NTK) [35] theory, to illustrate the effectiveness of our algorithm. For simplification,
only the cooperation of online and offline models is considered while the intra-client and inter-client
knowledge transfer mechanisms are ignored.

4.1 Formulation

Before our analyses, we clarify the simplified setup and basic assumptions. Suppose we have N
clients, each with M training examples, and we aim to jointly train them for T communication
rounds. In each round, each model is locally trained for one epoch. For simplification, we assume
that all clients share an identical two-layer neural network for a regression task, with the only
source of heterogeneity being the feature skew. Namely, each client i has its private dataset Di =
{(xi

j , y
i
j)}}Mj=1 with xi

j ∈ Rd and yij ∈ R. For convenience, we adopt the same data distribution
assumption as in [10]:

Assumption 4.1 For each client i ∈ {1, . . . , N}, the inputs xi
j are centered, meaning that E[xi] = 0,

and they have a covariance matrix Si = E[xi(xi)⊤]. Si is independent of the label y and varies for
each client i. Not all Si matrices are identity matrices. For any index pair p and q (p ̸= q), we have
xp ̸= w · xq for any non-zero w.

Let vk ∈ Rd represent the parameters of the first layer, where k ∈ [m] and m is the width of the
hidden layer. We define ∥v∥S :=

√
v⊤Sv as the induced vector norm for a positive definite matrix

S and a l2 vector norm ∥v∥2. The projections of x onto v and v⊥ are defined as xv := vv⊤x
∥v∥2

2
,

xv⊥
:=
(
I− vv⊤

∥v∥2
2

)
x.

Based on Assumption 4.1, for client i, the output of the first layer is normalized as v⊤
k xi

∥vk∥Si
. The shift

parameter of BN is omitted. Further, we denote the scaling parameter of BN γ ∈ Rm×N and the
second layer parameter c ∈ Rm.

6



With these parameters, we proceed to train the online model:

Fon(x ; V, γ, c) =
1√
m

∑m

k=1
conk
∑N

i=1
σ

(
γon
k,i ·

von⊤

k x

∥von
k ∥Si

)
· 1{x ∈ Di}, (8)

where σ(·) is the ReLU activation function and γon
k,i is personalized BN parameters. For the offline

model with all parameters personalized, we train:

Foff(x ; V, γ, c) =
1√
m

∑m

k=1

∑N

i=1
coffk,i · σ

(
γoff
k,i ·

voff⊤

k,i x

∥voff
k,i∥Si

)
· 1{x ∈ Di}. (9)

With online and offline models, we form our Fed-CO2 as model F:

F(x ; V, γ, c) =
1

2

(
Fon(x ; Von, γon, con) + Foff(x ; Voff , γoff , coff)

)
. (10)

In our analysis, we adopt one random strategy [36] to initialize parameters:

voff
k,i(0) = von

k (0) ∼ N (0, α2I); coffk,i = conk ∼ Unif{−1, 1}; γon
k,i = γoff

k,i =
∥von

k (0)∥2
α

, (11)

where α2 controls the magnitude of von
k and voff

k,i at initialization. The initialization of the BN
parameters γon

k,i and γoff
k,i are independent of α. We use the MSE loss to train our model F:

L(F) =
1

NM

∑N

i=1

∑M

j=1

(
F(xj

i )− yij

)2
=

1

NM

∑N

i=1

∑M

j=1

(
Fon(xj

i ) + Foff(xj
i )

2
− yji

)2

.

(12)

4.2 Convergence Analysis

We employ NTK [35] to analyze the trajectory of networks F learned by Fed-CO2 and networks Fon

learned by FedBN (the online model in Fed-CO2). Existing studies [37, 38] have validated that the
convergence rate of finite-width over-parameterized networks is controlled by the least eigenvalue of
the induced kernel in the training process. Following the discovery in [38], we can decompose the
NTK into a direction component V(t)/α2 and a magnitude component G(t):

dF

dt
= −Λ(t)(F(t)− y),Λ(t) :=

V(t)

α2
+G(t). (13)

The specific forms of V(t) and G(t) are provided in the Appendix. Here, let λmin(H) denote the
minimum eigenvalue of matrix H . It is worth noting that both matrices V(t) and G(t) are positive
semi-definite as they can be interpreted as covariance matrices. Based on this, we can deduce that
λmin(Λ(t)) ≥ max{λmin(V(t)/α2), λmin(G(t))}. From the NTK theory, the value of λmin(Λ(t))
controls the convergence rate. Then, considering that α is the pre-defined parameter, for α ∈ (0, 1),
convergence is dominated by V(t). Let Λ(t), Λon(t) and Λoff(t) denote the evolution dynamics
of Fed-CO2, the online model and the offline model, respectively. Based on the work in [10], the
auxiliary version of the Gram matrices V∞, V∞

on, and V∞
off for three models are strictly positive

definite. Let the least eigenvalues λmin(V
∞
on) := µon, λmin(V

∞
off) := µoff , and λmin(V

∞) := µ,
where µon, µoff , and µ are all positive values. To be specific, we define Gram matrices V∞

on and V∞
off

in Definition 4.2.

Definition 4.2 Given sample points {xp}NM
p=1 , we define the auxiliary Gram matrices V∞

on ∈
RNM×NM and V∞

off ∈ RNM×NM as

V∞
onpq

:= Ev∼N (0,α2I) (αc)
2
xv⊥

p xv⊥

q , (Online Model) (14)

V∞
offpq

:= Ev∼N (0,α2I) (αc)
2
xv⊥

p xv⊥

q 1{ip = iq}, (Offline Model). (15)

With the prerequisite provided in Appendix, the convergence performance of the online model,
the offline model, and our Fed-CO2 can be analyzed by comparing λmin(V

∞
on), λmin(V

∞
off), and

λmin(V
∞). Our main theoretical result is given in Theorem 4.3.
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Theorem 4.3 For the V-dominated convergence, the convergence rate of Fed-CO2 is faster than that
of FedBN (the online model in Fed-CO2).

Proof sketch The core is to show λmin(V
∞
on) ≤ λmin(V

∞). To prove the theorem, we first
show that λmin(V

∞
on) ≤ λmin(V

∞
off). Comparing Eq. 14 and 15, V∞

off takes the M × M block
matrices on the diagonal of V∞

on. Let V∞
i be the i-th M × M block matrices on the diagonal

of V∞
on. According to linear algebra, we have λmin(V

∞
i ) ≥ λmin(V

∞
on), for i ∈ [N ]. With

V∞
off = diag(V∞

1 , · · · ,V∞
N ), it can be obtained that λmin(V

∞
off) ≥ λmin(V

∞
on). Then, based on

Eq. 10, 12, and 13, we can obtain λmin(V
∞) = λmin(

1
2 (V

∞
on + V∞

off)). Therefore, we have
λmin(V

∞) ≥ ( 12λmin(V
∞
on) +

1
2λmin(V

∞
off)). Since we have proven that λmin(V

∞
off) ≥ λmin(V

∞
on),

the result λmin(V
∞) ≥ λmin(V

∞
on) can be achieved.

5 EXPERIMENTS

5.1 Experiment Settings

Dataset and Data Heterogeneity. We followed the footstep of prior research [39, 7, 5, 13] to
study the label distribution skew heterogeneity with image datasets: CIFAR10 and CIFAR100 [40].
Specifically, we considered two different label distributions among participants: 1) Pathological
Distribution, each client is randomly assigned 2 classes per client in CIFAR10 (10 classes per client
in CIFAR100); 2) Dirichlet Distribution, each client gets its private data through partitioning of the
datasets using a symmetric Dirichlet distribution with a default parameter α = 0.3.

For feature skew heterogeneity, we conducted extensive experiments on three datasets: Digits, Office-
Caltech10 [41], and DomainNet [42]. In this non-IID data setting, each domain serves as a client,
with each client having access to all the data from its respective domain. Digits is composed of 5
different digit datasets with feature shift: SVHN [43], USPS [44], SynthDigits [45], MNIST-M [45]
and MNIST [46]. Office-Caltech10 [41] owns data from four different domains including Amazon,
DSLR, WebCam, and Caltech-256. DomainNet [42] is a challenging dataset that comprises six
distinct domains, namely Clipart, Infograph, Painting, Quickdraw, Real, and Sketch. To explore the
more realistic FL scenarios with both label distribution skew and feature skew, we exert a Dirichlet
Distribution to datasets with feature shift. More details are supplemented in Appendix.

Compared Benchmarks. We compared our universal framework Fed-CO2 with fundamental algo-
rithms including SingleSet, FedAvg [2] and FedProx [4], together with some refined FL algorithms:
FedPer [11], MOON [7], FedBN [10], and FedRoD [12]. Here, SingleSet means each client trains
their own model on their private data. We applied the linear version for FedRoD. For FL with feature
skew issues, we further compared COPA [34], which was originally proposed to solve FDG and FDA
problems. We now train the model on all domains in the dataset and evaluate its performance on each
individual training client using the learned universal model.

5.2 Performance Evaluation

Model Evaluation on Feature Skew. Experiments are conducted on datasets Digits, Office-
Caltech10, and DomainNet. Here, we present the results of experiments on Office-Caltech10,
and DomainNet in Table 1 and Table 2. Full experiments are shown in Appendix. The performance
of our Fed-CO2 exhibits a dominant edge over state-of-the-art algorithms in all experiments, where
the average accuracy on each domain increases by nearly 4%. The results confirm that our novel
collaboration framework between online and offline models effectively addresses FL challenges
associated with severe feature skew data heterogeneity.

Remarkably, when compared to algorithms FedBN [10] and COPA [34], which are explicitly designed
to handle feature shift issues, our method consistently outperforms them across all sub-datasets. This
phenomenon provides compelling evidence that our cooperation mechanism adapts to local feature
shifts more effectively by leveraging both general domain-invariant and specialized domain-specific
knowledge.

Model Evaluation on Label Distribution Skew. As shown in Table 3, our Fed-CO2 outperforms a
variety of state-of-the-art PFL algorithms in terms of average test accuracy across almost all cases
in experiments with label distribution skew. Our state-of-the-art results across almost all cases
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Table 1: Experiment results for FL with Feature Skew on Office-Caltech10.

Methods Office-Caltech10
Amazon Caltech DSLR WebCam Avg

SingleSet 54.9±1.5 40.2±1.6 78.7±1.3 86.4±2.4 65.1±1.7
FedAvg [2] 54.1±1.1 44.8±1.0 66.9±1.5 85.1±2.9 62.7±1.6
FedProx [4] 54.2±2.5 44.5±0.5 65.0±3.6 84.4±1.7 62.0±2.1
FedPer [11] 49.0±1.2 37.1±2.4 57.7±3.7 79.7±2.1 56.0±1.1
MOON [7] 57.3±0.7 44.4±0.5 76.2±2.5 83.1±1.1 65.2±0.5

FedRoD [12] 60.4±2.3 45.3±0.9 73.7±2.5 83.7±2.3 65.8±1.4
COPA [34] 51.9±2.5 46.7±0.8 65.6±2.0 85.0±1.3 62.3±0.9
FedBN [10] 63.0±1.6 45.3±1.5 83.1±2.5 90.5±2.3 70.5±2.0

Fed-CO2 63.0±1.6 49.1±0.7 89.4±2.5 96.6±1.5 74.5±0.3

Table 2: Experiment results for FL with Feature Skew on DomainNet.
Methods DomainNet

Clipart Infograph Painting Quickdraw Real Sketch Avg
SingleSet 41.0±0.9 23.8±1.2 36.2±2.7 73.1±0.9 48.5±1.9 34.0±1.1 42.8±1.5

FedAvg [2] 48.8±1.9 24.9±0.7 36.5±1.1 56.1±1.6 46.3±1.4 36.6±2.5 41.5±1.5
FedProx [4] 48.9±0.8 24.9±1.0 36.6±1.8 54.4±3.1 47.8±0.8 36.9±2.1 41.6±1.6
FedPer [11] 40.4±0.8 25.7±0.6 37.3±0.6 62.5±1.2 47.4±0.5 32.8±0.8 41.0±0.3
MOON [7] 52.5±1.1 25.7±0.6 39.4±1.7 50.8±4.7 48.8±0.8 40.1±4.1 42.9±1.5

FedRoD [12] 50.8±1.6 26.3±0.2 40.1±1.8 66.8±1.8 51.5±1.1 39.1±2.0 45.7±0.7
COPA [34] 51.1±1.0 24.7±1.2 36.8±0.8 54.8±1.6 47.1±1.8 41.0±1.4 42.6±0.4
FedBN [10] 51.2±1.4 26.8±0.5 41.5±1.4 71.3±0.7 54.8±0.8 42.1±1.3 48.0±1.0

Fed-CO2 55.0±1.1 28.6±1.1 44.3±0.6 75.1±0.6 62.4±0.8 45.7±1.9 51.8±0.2

prove that our method can more effectively excavate and utilize local information to overcome data
heterogeneity caused by label distribution imbalance than previous methods. It is worth highlighting
that our Fed-CO2 outperforms both SingleSet and FedBN, regardless of which one performs better
individually. This observation confirms that Fed-CO2 effectively integrates the general knowledge
obtained by the online model and the specialized knowledge acquired by the offline model, resulting
in enhanced performance.

Table 3: Experiment results for FL with Label Distribution Skew on CIFAR10 and CIFAR100.
Experiments are conducted with two kinds of label distribution data heterogeneity: Pathological
setting and Dirichlet setting.

Methods CIFAR10 CIFAR100
Pathological Dirichlet Pathological Dirichlet

SingleSet 85.85±0.05 68.38±0.06 49.54±0.05 21.39±0.05
FedAvg [2] 44.12±3.10 57.52±1.01 14.59±0.40 20.34±1.34
FedProx [4] 57.38±1.08 56.46±0.66 21.32±0.71 19.40±1.76
FedPer [11] 80.99±0.71 74.21±0.07 42.08±0.18 20.06±0.26
MOON [7] 48.43±3.18 54.49±1.87 17.89±0.76 19.73±0.71

FedRoD [12] 89.05±0.04 73.99±0.09 54.96±1.30 28.29±1.53
FedBN [10] 86.71±0.56 75.41±0.37 48.37±0.56 28.70±0.46

Fed-CO2 88.79±0.25 77.45±0.30 58.50±0.43 32.43±0.37

Model Evaluation on Label Distribution Skew and Feature Skew. Here, we evaluate our Fed-CO2

and benchmark algorithms in FL scenarios with label distribution skew and feature skew. We exhibit
the experiment results on Digits in Table 4, where we exerted a Dirichlet Distribution on each
client with α = 0.3. From the results, it is evident that, even in the presence of two types of data
heterogeneity, our Fed-CO2 outperforms various state-of-the-art algorithms with a significant margin
in every sub-dataset. Therefore, we can conclude that under our universal cooperation framework,
local clients not only make the most use of their local offline information but also benefit from the
general knowledge shared by other clients for a better adaptation to local data, resulting in state-of-
the-art performance in FL with both label distribution skew and feature skew. More experiments are
provided in Appendix.
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Table 4: Experiment results for FL with both Label Skew and Feature Skew on Digits.

Methods Digits
MNIST SVHN USPS SynthDigits MNIST-M Avg

SingleSet 83.75±7.58 74.63±0.31 97.14±0.06 87.95±0.46 80.55±0.26 84.80±1.44
FedAvg [2] 89.27±6.39 57.23±5.43 94.60±1.05 81.30±2.51 71.71±7.59 78.82±4.03
FedProx [4] 87.09±7.83 53.40±7.38 90.55±7.47 78.40±7.05 69.98±6.55 75.88±6.90
FedPer [11] 96.92±0.02 72.86±0.11 97.09±0.12 87.82±0.02 83.69±0.07 87.68±0.02
MOON [7] 96.58±0.07 74.10±0.22 96.19±0.10 88.15±0.04 85.05±0.14 88.01±0.07

FedRoD [12] 96.65±0.06 77.05±0.16 96.88±0.13 89.59±0.06 86.18±0.11 89.27±0.05
COPA [34] 96.82±0.08 78.32±0.12 96.54±0.15 89.36±0.04 87.46±0.11 89.70±0.06
FedBN [10] 92.68±3.45 70.26±4.38 91.40±8.72 83.17±4.95 77.98±3.84 83.10±4.96

Fed-CO2 97.17±0.67 83.16±0.23 98.12±0.13 93.04±0.11 91.45±0.14 92.59±0.15

5.3 Component Analysis

In the presence of feature skew, we add intra-client and inter-client knowledge transfer mechanisms
to foster the collaboration between the online and offline models for better local adaptation. Here, we
evaluate the efficacy of these two knowledge transfer mechanisms on the challenging DomainNet
dataset through three additional experiments, as presented in Table 5. In these experiments, we
selectively removed specific mechanisms from Fed-CO2 to investigate their individual contributions
and functionalities.

According to the experimental results, we can observe that: 1) In the absence of intra-client and
inter-client knowledge transfer mechanisms, Fed-CO2 exhibits a significant decline in performance,
resulting in a performance level comparable to that of benchmark methods. Therefore, cooperation
relying solely on prediction fusion proves to be inadequate for FL with feature skew. 2) The removal
of either the intra-client or the inter-client knowledge transfer mechanisms will also result in an
average decline in performance. This phenomenon validates the effectiveness of our intra-client
and inter-client knowledge transfer mechanisms, both of which contribute to enhancing the models’
capability to adapt to local data distributions. 3) Compared with all three ablation experiments, our
Fed-CO2 consistently achieves the highest performance on average and across the majority of sub-
datasets. These results firmly demonstrate that our cooperation framework effectively leverages both
model-level and client-level collaboration through the intra-client knowledge transfer and inter-client
knowledge transfer mechanisms, respectively, to adapt to feature shifts resulting from domain gaps.
Further analysis of these two cooperation mechanisms is supplemented in the Appendix.

Table 5: Ablation study of Intra-client and Inter-client knowledge transfer mechanisms for FL with
Feature Skew Data Heterogeneity on DomainNet.

Methods Clipart Infograph Painting Quickdraw Real Sketch Avg
Fed-CO2 w/o Intra and Inter Transfer 48.75±0.94 26.49±2.05 42.10±1.05 72.86±0.80 57.12±1.08 39.96±0.79 47.88±0.70

Fed-CO2 w/o Intra Transfer 53.88±0.63 26.18±0.71 42.94±0.92 75.10±0.28 61.94±0.70 46.68±0.75 51.12±0.19
Fed-CO2 w/o Inter Transfer 50.42±0.72 26.97±1.07 43.94±0.69 74.14±0.64 58.14±0.85 42.02±0.80 49.27±0.46

Fed-CO2 55.02±1.13 28.58±1.10 44.27±0.62 75.08±0.62 62.37±0.76 45.67±1.95 51.83±0.25

6 CONCLUSIONS

In this work, we proposed a new universal FL framework called Fed-CO2 that is capable of handling
label distribution skew and feature skew even when both are present in the same data. The core of
our approach is to foster cooperation between the online and offline models, leveraging the benefits
of online general knowledge and offline specialized knowledge to effectively adapt to local data
distribution. To improve model collaboration in FL with feature shifts, we designed two novel
knowledge transfer mechanisms: one intra-client and the other inter-client. These mechanisms
facilitate mutual learning between the online and offline models, concurrently enhancing the model’s
capacity to generalize across different domains. Comparisons with a wide range of state-of-the-art
methods on five benchmark datasets consistently show that Fed-CO2 yields superior performance
in addressing both label distribution skew and feature skew challenges, both individually and in
combination. Extending Fed-CO2 to scenarios with noisy training data is under consideration in our
future work.
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A Dataset Setup Details

The details of non-IID settings of mentioned datasets are presented in the section. Our two settings
of label distribution skew, namely the Pathological setting and the Dirichlet setting are similar to
preceding works [5, 13]. In the Pathological setting, where each client i is randomly assigned two
(ten) classes from CIFAR10 (CIFAR100), we first sampled qic ∼ U(0.4, 0.6) for the selected class
c and then calculated the sample rate for this class c on client i with sric =

qic∑
j qjc

. In the Dirichlet

setting, we partitioned the datasets randomly utilizing a symmetric Dirichlet distribution with default
parameter α = 0.3. Specifically, for CIFAR100, we leveraged its coarse labels following previous
works [5, 39]. In detail, a two-stage Pachinko allocation method was adopted to partition samples in
CIFAR100. For each client, this method first generates a Dirichlet distribution with default parameter
α = 0.3 over the coarse labels and then generates another Dirichlet distribution with parameter
β = 10 over the corresponding fine labels. The local training batch size was set to 64. In both
non-IID partitions, the classes and their distribution in each client’s training and test sets remain
consistent.

We adopted the setting used in FedBN [10] for feature skew heterogeneity, which involved adjusting
the local training batch size to 32 to maintain consistency. Additionally, we followed the implementa-
tion of selecting only the top 10 classes based on data amount from DomainNet to create the dataset
for our experiments. For experiments with label distribution skew and feature skew, we partitioned
each sub-dataset into several parts with a Dirichlet Distribution and selected one part as the new
training set. Then we adjusted the label distribution in the test set to the same distribution in the new
training set. Specifically, based on the number of training images in each dataset, we divided each
sub-dataset in Digits into three parts, each sub-dataset in Office-Caltech10 into two parts, and each
sub-dataset in DomainNet into five parts. Table 6 summarizes the datasets and the number of clients.

Table 6: Datasets Statistics.
Dataset Label Distribution Skew Feature Skew Client Number

CIFAR10 ✓ 100
CIFAR100 ✓ 100

Digits ✓ 5
Office-Caltech10 ✓ 4

DomainNet ✓ 6

B Implementation Details

Network Modules. Similar to prior works [47, 48], we adopted a ConvNet [46] with two convo-
lutional layers and three fully-connected layers for methods in experiments conducted under label
distribution skew setting. With regards to feature skew setting, experiments were performed with a
backbone similar to FedBN [10]. In other words, for the Digits dataset, we applied a ConvNet [46]
with four convolutional layers and three fc layers. For Office-Caltech10 and DomainNet dataset, we
applied one Alexnet [49] as the default model backbone.

In our experimental evaluations of model performance under label distribution skew heterogeneity,
we added an additional BN layer after each convolutional layer and fully connected (fc) layer, except
for the last layer to algorithms: FedBN [10] and Fed-CO2. Meanwhile, in experiments pertaining to
feature skew heterogeneity, as our default network incorporated a BN layer after each convolutional
and fc layer (except for the last layer), we omitted the BNs in our classifiers for methods other than
FedBN [10] and Fed-CO2. All other Convnet network architectures used for the Digits dataset, as
well as the Alexnet architecture employed for Office-Caltech10 and DomainNet, are identical to those
used in FedBN [10].

Concrete Implementation. For experiments evaluating model performance on label distribution skew,
we set up 100 local clients and randomly sampled 5% of them to participate in each communication
round. We trained every algorithm with 1500 communication rounds. Meanwhile, in experiments
about feature skew non-iid heterogeneity, all clients participated in each communication round and
every algorithm was trained with 300 communication rounds. All training tasks were optimized
with an SGD optimizer with the default learning rate 0.01. We used PyTorch [50] to implement our
algorithms with an RTX 2080 Ti GPU.
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For experiments on CIFAR10 and CIFAR100, we tested the model performance every 5 rounds
during its last 200 communication rounds. The average and variance of test accuracy were reported.
For all experiments with feature skew, we run 5 times and reported its mean and variance.

Evaluation Metrics. We evaluated the learned personal models on the private test data of each client.
We examined the model’s performance on each domain using the same method as FedBN [10] in
FL with feature skew. Furthermore, for experiments on label distribution skew, we calculated the
accuracy using the same protocol as FedTP [13].

C Convergence

In this section, we first provide the preliminary and complete theorem proof. Then, we empirically
demonstrate that our Fed-CO2 shows faster and more robust convergence performance than FedBN
and other benchmark methods on FL issues with Feature Skew.

C.1 Preliminary

Following the V-dominated convergence rate for FedAvg (Theorem C.1) in [38], we can derive the
convergence rate for the online model, the offline model, and Fed-CO2 Corollary C.2.

Theorem C.1 (V -dominated convergence for FedAvg [38]) Suppose the network is initialized as
in Eq. 11 with α ≤ 1, trained using gradient descent and Assumption 4.1 holds. Assuming the
loss function used for training the neural network is the square loss, and the target values y satisfy
∥y∥∞ = O(1). If m = Ω(N4M4log(NM/δ)/µ4

0), then with probability 1− δ,

1. for iterations t = 0, 1, · · · , the evolution matrix Λ(t) satisfies λmin(Λ(t)) ≥ µ0

2α2 ;

2. training with gradient descent of step-size η = O
(

α2

∥V∞∥2

)
converges linearly as

∥f(t)− y∥22 ≤
(
1− ηµ0

2α2

)t
∥f(0)− y∥22.

Corollary C.2 Under the same assumption in Theorem C.1, with probability 1− δ, for iterations
t = 0, 1, · · · , we have

1. The evolution matrix Λon(t) satisfies λmin(Λ
on(t)) ≥ µon

2α2 and training with gradi-

ent descent of step-size η = O
(

α2

∥V∞
on∥2

)
converges linearly as ∥Fon(t) − y∥22 ≤(

1− ηµon

2α2

)t
∥Fon(0)− y∥22.

2. The evolution matrix Λoff(t) satisfies λmin(Λ
off(t)) ≥ µoff

2α2 and training with gradi-

ent descent of step-size η = O
(

α2

∥V∞
off∥2

)
converges linearly as ∥Foff(t) − y∥22 ≤(

1− ηµoff

2α2

)t
∥Foff(0)− y∥22.

3. The evolution matrix Λ(t) satisfies λmin(Λ(t)) ≥ µ
2α2 and training with gradient descent of

step-size η = O
(

α2

∥V∞∥2

)
converges linearly as ∥F(t)− y∥22 ≤

(
1− ηµ

2α2

)t ∥F(0)− y∥22.

Therefore, the exponential factor of convergence for the online model, the offline model, and Fed-CO2

are controlled by the smallest eigenvalue of Von(t), Voff(t), and V(t), respectively. The convergence
performance of the online model, the offline model, and our Fed-CO2 can be analyzed by comparing
λmin(V

∞
on), λmin(V

∞
off), and λmin(V

∞).

C.2 Theorem Proof

To prove Theorem 4.3, we will first prove SingleSet (the offline model in Fed-CO2) converges faster
than FedBN (the online model in Fed-CO2). Gram matrix Von(t) and Gon(t) of FedBN can be
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obtained from work [10] as:

Von
pq (t) =

1

m

m∑
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(αconk )
2
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k (t)∥−1
Siq
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x
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q

〉
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(16)
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1
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Siq

σ
(
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k (t)⊤xp

)
σ
(
von
k (t)⊤xq

)
1{ip = iq}, (17)

where 1pk(t) := 1{vk(t)⊤xp≥0}.

Similarly, the Gram matrix Voff(t) for method SingleSet with Foff can be computed as:

Voff
pq (t) =

1

m

m∑
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(18)

To compare the convergence rates of SingleSet and FedBN, we compare the exponential factor in
the convergence rates, which are (1 − ηµoff

2α2 ) and (1 − ηµon

2α2 ), respectively. Then, considering that
α is the pre-defined parameter, it reduces to comparing µon = λmin(V

∞
on) and µoff = λmin(V

∞
off).

Comparing Eq. 16 and 18, V∞
off takes the M ×M block matrices on the diagonal of V∞

on:

V∞
on =


V∞

1 V∞
1,2 · · · V∞

1,N

V∞
1,2 V∞

2 · · · V∞
2,N

...
...

. . .
...

V∞
1,N V∞

2,N · · · V∞
N

 , V∞
off =


V∞

1 0 · · · 0
0 V∞

2 · · · 0
...

...
. . .

...
0 0 · · · V∞

N

 ,

where V∞
i is the i-th M ×M block matrices on the diagonal of V∞

on. Therefore, we have:

λmin(V
∞
i ) ≥ λmin(V

∞
on), ∀i ∈ [N ].

Since the eigenvalues of V∞
off are exactly the union of eigenvalues of V∞

i , we get:

λmin(V
∞
off) = min

i∈[N ]
{λmin(V

∞
i )},

≥ λmin(V
∞
on).

Hence, (1− ηµon

2α2 ) ≥ (1− ηµoff

2α2 ) and we get the first-stage conclusion that the convergence rate of
method SingleSet is faster than that in FedBN.

Then we go to prove Fed-CO2 is faster than FedBN, as well. With Eq. 10, 12, and 13, we get:

dF
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=

1

2

(
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+

dFoff
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)
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)
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(19)

Based on Eq. 19, we get the following relationships among three models:
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(20)
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To compare convergence rates of Fed-CO2 and FedBN, we need to compare their exponential factor
(1 − ηµ

2α2 ) and (1 − ηµon

2α2 ), as well. Similar to the former proof, the problem reduces to compare
µ = λmin

(
1
2 (V

∞
on +V∞

off)
)

with µon = λmin(V
∞
on). With previous proof result λmin(V

∞
off) ≥

λmin(V
∞
on), we get
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2
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2
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∞
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1

2
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∞
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≥ 1

2
λmin(V

∞
on) +

1

2
λmin(V

∞
on)

= λmin(V
∞
on).

Therefore, we have (1 − ηµon

2α2 ) ≥ (1 − ηµ
2α2 ). This theoretical conclusion guarantees a faster

convergence in our Fed-CO2 than FedBN.

C.3 Experimental Performance

Here, we empirically analyze the convergence of test accuracy for various algorithms, as well as the
convergence behavior of both the online and offline models. The results for sub-dataset WebCam and
SVHN are illustrated in Fig. 2 as examples. As Fig. 2 exhibits, among various FL algorithms, our Fed-
CO2 achieves the highest accuracy with significantly faster convergence speed and demonstrates much
more robust behavior. Compared with its online and offline models, Fed-CO2 consistently surpasses
both models, exhibiting a smoother curve, which proves the success in fusing domain-invariant and
domain-specific knowledge.

Figure 2: Convergence of test accuracy on sub-datasets. Fig. 2(a) and Fig. 2(b) illustrate convergence
behavior on WebCam from Office-Caltech10 and SVHN from Digits, respectively. In each sub-graph,
we exhibit convergence performance comparison among different algorithms (Top) and comparison
with online and offline models (Bottom). Fed-CO2 exhibits faster and more robust convergence.

D Fed-CO2 Algorithm

Here, we provide a detailed description of the algorithm for our universal FL framework, Fed-CO2.
The learning process for FL with and without Feature Skew is presented in Algorithm 1 and Algorithm
2, respectively.
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Algorithm 1: Fed-CO2 for FL with Feature Skew
Input: T− number of communication rounds, N− number of clients.

1 Set parameters θong,0, θonp,i,0, θoffi,0 ;
2 for each communication rounds t ∈ {1, ..., T} do
3 Communicate {ϕoff

j }Nj=1, θ̃
on
g,t−1 to all clients;

4 for each client i ∈ [1, N ] do
5 Initialize θoni,t = {θ̃ong,t−1, θ

on
p,i,t−1}, θoffi,t = θoffi,t−1, θ̄oni = θoni,t , θ̄offi = θoffi,t ;

6 (θoni,t , θ
off
i,t )← Intra-client Knowledge Transfer(θ̄offi , θoni,t , θ̄

on
i , θoffi,t ) [Eq. 4 and Eq. 5];

7 (θoni,t , θ
off
i,t )← Inter-client Knowledge Transfer(θoni,t , θoffi,t , {ϕ

off

j }Nj=1) [Eq. 7];
8 Communicate θong,i,t, ϕ

off
i,t to the server

9 end
10 Aggregate θ̃ong,t =

1
N

∑N
i=1 θ

on
g,i,t [Eq. 2];

11 Construct {ϕoff

j }Nj=1 = {ϕoff
i,t }Ni=1;

12 end
13 return θ̃ong,t, θ

on
p,i,t and θoffi,t

Algorithm 2: Fed-CO2 for FL without Feature Skew
Input: T− number of communication rounds, N− number of clients.

1 Set parameters θong,0, θonp,i,0, θoffi,0 ;
2 for each communication rounds t ∈ {1, ..., T} do
3 Communicate θ̃ong,t−1 to all clients;
4 for each client i ∈ [1, N ] do
5 Initialize θoni,t = {θ̃ong,t−1, θ

on
p,i,t−1}, θoffi,t = θoffi,t−1;

6 (θoni,t , θ
off
i,t )← Local Training(θoni,t , θoffi,t );

7 Communicate θong,i,t to the server
8 end
9 Aggregate θ̃ong,t =

1
N

∑N
i=1 θ

on
g,i,t [Eq. 2];

10 end
11 return θ̃ong,t, θ

on
p,i,t and θoffi,t

Table 7: Experiment results for FL with Feature Skew on Digits.

Methods Digits
MNIST SVHN USPS SynthDigits MNIST-M Avg

SingleSet 94.38±0.07 65.25±1.07 95.16±0.12 80.31±0.38 77.77±0.47 82.00±0.40
FedAvg [2] 95.87±0.20 62.86±1.49 95.56±0.27 82.27±0.44 76.85±0.54 82.70±0.60
FedProx [4] 95.75±0.21 63.08±1.62 95.58±0.31 82.34±0.37 76.64±0.55 82.70±0.60
FedPer [11] 96.21±0.02 67.61±0.04 96.53±0.02 83.88±0.02 81.89±0.03 85.22±0.01
MOON [7] 96.25±0.04 65.48±0.49 95.05±0.12 82.89±0.15 80.57±0.23 84.05±0.16

FedRoD [12] 96.09±0.08 71.50±0.25 96.42±0.08 85.51±0.04 81.79±0.09 86.26±0.07
COPA [34] 96.27±0.05 72.90±0.17 95.99±0.06 85.52±0.04 83.08±0.22 86.75±0.02
FedBN [10] 96.57±0.13 71.04±0.31 96.97±0.32 83.19±0.42 78.33±0.66 85.20±0.40

Fed-CO2 97.66±0.07 77.56±0.60 97.78±0.13 88.68±0.08 87.84±0.12 89.91±0.11
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E More Experimental Results On Benchmark Datasets

Here, we supplement more experimental results on benchmark datasets. Firstly, we present the
experimental results on Digits dataset for FL with feature skew in Table 7. As the table shows, our
Fed-CO2 surpasses other various state-of-the-art algorithms with a substantial margin, which further
proves the effectiveness of our framework in adapting local feature shifts.

Then, we show experimental results in FL with both label distribution skew and feature skew on
DomainNet and Office-Caltech10 in Table 8 and Table 9. We applied a Dirichlet Distribution with
α = 2.0 to DomainNet and another Dirichlet Distribution with α = 1.0 to Office-Caltech10. It
can be observed that when facing two severe forms of data heterogeneity, algorithms demonstrated
significantly lower performance on Office-Caltech10 and DomainNet compared to FL scenarios
with feature skew alone. Even in such a challenging task, our Fed-CO2 still achieves the highest
average accuracy and outperforms locally-trained models. This result proves that Fed-CO2 succeeds
in making use of both general domain-invariant and specialized domain-specific knowledge to adapt
to extreme local data heterogeneity.

Table 8: Experiment results for FL with both Label Skew and Feature Skew on DomainNet.

Methods DomainNet
Clipart Infograph Painting Quickdraw Real Sketch Avg

SingleSet 16.3±2.5 17.4±1.5 18.8±3.7 12.6±1.1 12.3±1.6 12.4±4.3 15.0±0.6
FedAvg [2] 9.4±1.7 9.2±1.4 15.2±1.3 10.0±1.7 9.1±0.7 10.2±1.4 10.5±0.3
FedProx [4] 9.6±1.4 10.8±1.6 12.2±1.2 10.1±0.7 10.3±1.5 11.0±2.7 10.7±1.1
FedPer [11] 16.6±1.2 15.3±1.3 18.6±2.4 14.4±1.0 11.9±1.7 15.3±2.9 15.4±0.5

FedRoD [12] 13.6±1.1 15.4±2.1 15.9±1.8 10.6±2.3 11.8±1.0 11.4±1.4 13.1±0.6
COPA [34] 8.4±0.9 10.2±2.5 13.2±2.5 10.2±1.9 11.1±1.3 10.9±1.3 10.7±0.9
FedBN [10] 11.0±1.1 12.9±1.3 13.0±2.0 11.8±0.6 10.4±1.4 11.0±2.2 11.7±0.4

Fed-CO2 18.8±2.4 17.9±1.8 19.5±2.5 14.1±1.1 12.2±2.2 14.6±4.4 16.2±0.5

Table 9: Experiment results for FL with both Label Skew and Feature Skew on Office-Caltech10.

Methods Office-Caltech10
Amazon Caltech DSLR WebCam Avg

SingleSet 14.6±2.3 15.2±0.3 10.0±1.2 3.4±0.0 10.8±0.6
FedAvg [2] 15.9±1.7 15.0±2.4 11.2±1.5 3.0±2.7 11.3±0.7
FedProx [4] 14.0±1.3 13.0±1.0 9.4±2.0 5.1±2.4 10.4±0.8
FedPer [11] 16.5±0.6 16.1±0.3 11.9±1.2 1.7±0.0 11.5±0.4

FedRoD [12] 14.7±0.9 12.1±1.0 6.25±0.0 6.4±0.7 9.9±0.5
COPA [34] 17.5±1.7 11.5±0.7 8.1±2.5 4.7±2.7 10.4±1.0
FedBN [10] 19.5±2.5 12.6±1.9 11.9±2.3 2.4±0.8 11.6±0.4

Fed-CO2 17.5±0.9 16.6±1.2 12.5±0.0 3.7±1.3 12.6±0.5

Additionally, to explore broader real-life data heterogeneity issues with both feature skew and label
distribution skew, we conducted further experiments by exerting different levels of label distribution
skew on the Digits dataset. Specifically, we partitioned each sub-dataset of Digits using the Dirichlet
Distribution, with different values of α ∈ {0.3, 0.7, 1.0, 1.5, 2.0}. A smaller α value indicates a
more severe label distribution imbalance. The experimental results are demonstrated in Fig. 3. It
is evident that in every instance of label distribution imbalance, our Fed-CO2 exhibits a significant
advantage over other benchmark methods in its sub-dataset as well as the overall average performance.
Therefore, we can firmly conclude that our universal FL framework, Fed-CO2, effectively addresses
a wide range of real-life data heterogeneity issues.

F Additional Experiments and Analyses

F.1 Effectiveness of Cooperation Framework

The experimental results of testing accuracy on five benchmark datasets have validated that our
Fed-CO2 effectively combines online general knowledge and offline specialized knowledge, resulting
in improved adaptation to local data distribution in FL scenarios with label imbalance and feature
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Figure 3: The test accuracy of our Fed-CO2 and benchmark algorithms in Federated Learning with
Feature Skew and varying levels of Label Distribution Skew. Fig. 3(a) depicts the model performance
on the SynthDigits sub-dataset, while Fig. 3(b) demonstrates the average model performance across
all sub-datasets in Digits.

shifts. To further confirm the effectiveness of the cooperation between the online and offline models,
we conducted additional experiments for FL with label imbalance and feature shifts in the following
parts.

Online and Offline Models in FL with Label Distribution Skew. For FL with label imbalance, we
split the CIFAR10 dataset for 20 clients with various types and degrees of label distribution skew.
In the Pathological case, each client i was randomly assigned two classes following the strategies
mentioned in Appendix A. In the Dirichlet case, we partitioned the dataset randomly utilizing the
Dirichlet distribution with different parameters α ∈ {0.3, 0.7, 1.0} to evaluate model performances
under various extents of label distribution imbalance. In these experiments, we compared the model
trained by our Fed-CO2 with its online and offline models.

The experimental results have been exhibited in Fig. 4. It is evident that the online model outperforms
the offline model when the label distribution imbalance is moderate, while the offline model excels
when the imbalance is severe. Across all extensive experiments, Fed-CO2 consistently surpasses
both the standalone online model and the standalone offline model in terms of test accuracy statistics,
exhibiting higher average and median values. At the client level, Fed-CO2 improves prediction
accuracy for the majority of local clients. Although Fed-CO2 may not surpass the superior model
between the online and offline models on a limited number of clients, it consistently outperforms the
weaker model and achieves performance levels approaching that of the superior model. Therefore, we
can conclude that our collaborative FL framework, Fed-CO2, which combines the strengths of online
and offline models, is exceptionally effective. It successfully integrates online general knowledge and
offline specialized knowledge, resulting in an improved adaptation to local data distribution under
various cases.

Online and Offline Models in FL with Feature Skew. For FL with feature skew, we conducted
experiments that evaluate the performance of the online and offline models on DomainNet. Based
on the experimental results shown in Table 10, we have the following observations: First, the
online model outperforms the offline model on most clients, except for the Quickdraw client. This
phenomenon validates our hypothesis that when the feature shift is severe, the model aggregation
will lead to the loss of important local offline information, resulting in the model’s failure to adapt to
such significant data heterogeneity. Second, prediction fusion is even inferior to the online and offline
models for some clients. This result reflects that prediction fusion is not sufficient to fuse online
general knowledge and offline specialized knowledge in FL with severe data heterogeneity issues.
Therefore, for FL with feature skew, intra-client and inter-client knowledge transfer mechanisms are
required to boost model and client cooperation under our novel framework.
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Figure 4: Comparison results among the online model, the offline model, and our Fed-CO2 with
different kinds of label distribution skew. In each subgraph, we illustrate label distribution among 20
clients (Left), the classification test accuracy statistics (Middle), where the full line represents the
median accuracy and the dotted line represents the average accuracy among the 20 clients, and test
accuracy in each client (Right).

Table 10: Performance of Online and Offline Models in FL with Feature Skew on DomainNet
Methods Clipart Infograph Painting Quickdraw Real Sketch Avg

Online Model 51.2±1.4 26.8±0.5 41.5±1.4 71.3±0.7 54.8±0.8 42.1±1.3 48.0±1.0
Offline Model 41.0±0.9 23.8±1.2 36.2±2.7 73.1±0.9 48.5±1.9 34.0±1.1 42.8±1.5

Fed-CO2 (no intra and inter knowledge transfer) 48.7±0.9 26.5±2.0 42.1±1.0 72.9±0.8 57.1±1.1 40.0±0.8 47.9±0.7
Fed-CO2 55.0±1.1 28.6±1.1 44.3±0.6 75.1±0.6 62.4±0.8 45.7±1.9 51.8±0.2
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F.2 Knowledge Transfer Mechanisms in Feature Skew

As mentioned in the main paper, intra-client and inter-client knowledge transfer mechanisms foster
model-level and client-level collaboration to better make use of general domain-invariant and special-
ized domain-specific knowledge for a better adaptation to local data distribution. In this section, we
did further ablation studies on the challenging DomainNet dataset to investigate two mechanisms
from a fine-grained angle.

Ablation Study in Intra-client Knowledge Transfer Mechanism. In this section, we investigated
the impact of the intra-client knowledge transfer mechanism on the online and offline models by
excluding the inter-client knowledge transfer mechanism from Fed-CO2. Specifically, we performed
separate intra-client knowledge transfers: from the offline model to the online model and from the
online model to the offline model. The results are demonstrated in Table 11 and we can discover
that knowledge transfer is beneficial to both online and offline models. By transferring specialized
domain-specific knowledge to the online model, we can observe an improvement in the performance
of the Quickdraw client, which has a more extreme non-IID data distribution and relies more on
local offline information. Conversely, when transferring general domain-invariant knowledge to the
offline model, we could notice enhanced performance in the remaining clients that present milder
data heterogeneity and require more global information. Hence, by incorporating the full intra-client
knowledge transfer mechanism, our Fed-CO2 effectively utilizes both online domain-invariant and
offline domain-specific knowledge, resulting in improved average test accuracy.

Table 11: Ablation Study of Intra-client Knowledge Transfer mechanism on DomainNet
Method Clipart Infograph Painting Quickdraw Real Sketch Avg

No intra transfer 48.7±0.9 26.5±2.0 42.1±1.0 72.9±0.8 57.1±1.1 40.0±0.8 47.9±0.7
Intra transfer to online 48.1±1.2 26.2±1.3 42.1±1.2 74.0±0.5 57.0±1.0 40.4±1.0 48.0±0.3
Intra transfer to offline 50.9±0.7 26.6±0.7 42.1±1.1 72.8±0.5 59.1±0.3 41.3±1.8 48.8±0.2

Full intra transfer 50.4±0.7 27.0±1.1 43.9±0.7 74.1±0.6 58.1±0.8 42.0±0.8 49.3±0.5

Ablation Study in Inter-client Knowledge Transfer Mechanism. In this part, we removed the
intra-client knowledge transfer mechanism from Fed-CO2 and did experiments to investigate the
impact of inter-client knowledge transfer mechanism on online and offline models. The experiments
included exerting inter-client knowledge transfer mechanism on the online model, the offline model,
and both models. Table 12 presents the experimental results. The results demonstrate that knowledge
from other domains benefits both the online and offline models, with the online model showing more
remarkable improvement. This observation aligns consistently with the purpose of the online model,
which focuses on acquiring general domain-invariant knowledge that can be applied across various
domains. Furthermore, the application of the inter-client knowledge transfer mechanism to both
the online and offline models yields optimal performance, which means simultaneously enhancing
domain generalization ability for online and offline models can exploit domain-invariant knowledge
more effectively. In summary, our inter-client knowledge transfer mechanism enables each local
client to acquire and exploit more domain-invariant knowledge resulting in a better adaptation to
local data distribution.

Table 12: Ablation Study of Inter-client Knowledge Transfer Mechanism on DomainNet
Methods Clipart Infograph Painting Quickdraw Real Sketch Avg

No inter transfer 48.7±0.9 26.5±2.0 42.1±1.0 72.9±0.8 57.1±1.1 40.0±0.8 47.9±0.7
Online model with inter transfer 51.3±0.7 27.1±1.0 44.2±1.3 74.1±0.7 61.4±0.7 43.5±1.5 50.3±0.5
Offline model with inter transfer 51.8±1.3 26.3±1.8 43.3±1.3 74.2±1.0 59.0±2.2 43.1±1.6 49.6±0.6

Full inter transfer 53.9±0.6 26.2±0.7 42.9±0.9 75.1±0.3 61.9±0.7 46.7±0.7 51.1±0.2

F.3 Data Heterogeneity of Noise

Noise is another common factor causing data heterogeneity issues in real FL scenarios, where each
client has the same label distribution but is subject to various degrees of noise. Therefore, we
implemented additional experiments on this new scenario to make the initial attempt. In detail, we
divided the dataset CIFAR10 into 10 clients in a way to make them independently and identically
distributed. Then we applied the increasing level of random Gaussian noise with mean µi = 0 and
standard deviation σi =

σM

N−1 ∗ i, where i ∈ {0, 1, · · · , N − 1}. In this series of initial experiments,
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we let the client number and the sample rate be 0.5 with σM ∈ {0, 5, 10, 15, 20}. The backbone of
each method is the same as that in other experiments.

As presented in Fig. 5, the experimental results reveal that our Fed-CO2 consistently exhibits better
and more robust performance across nearly all experiments, particularly in scenarios with severe
noise. These experiments will also serve as a source of inspiration for our future work.

Figure 5: Test accuracy on dataset CIFAR10 for Fed-CO2 and some benchmark methods with
different degrees of data heterogeneity caused by noise.

F.4 Effects of Data Number and Client Number

The sample size of the training set and the client number are significant factors. Therefore, in this
section, we conducted a series of experiments to explore their influence.

To investigate the effect of the training sample number, we utilized dataset Digits and set 10% of
its training data as the original training dataset. Then, we selected a certain ratio γ of the original
training dataset as a new training dataset for each client, where γ ∈ {0.2, 0.4, 0.6, 1.0, 2.0}. The
results shown in Fig. 6 demonstrate that our Fed-CO2 have an edge over various benchmark methods
in almost every case, especially when the number of training data is very limited.

Figure 6: The effect of the training number ratio on Fed-CO2 and benchmark algorithms for Federated
Learning with Feature Skew. Fig. 6(a) depicts the model performance on the MNIST-M sub-dataset,
while Fig. 6(b) demonstrates the average model performance across all sub-datasets in Digits.

As for the effect of client number, we employed dataset CIFAR10 with Dirichlet setting (α =
0.3) to conduct a series of experiments on benchmark methods with client number N ∈
{50, 100, 150, 300, 500}. The experimental results shown in Table 13 demonstrate that our Fed-
CO2 consistently outperforms a bunch of SOTA methods in every case even if the client number is
substantial. The results in Table 13 and Fig. 6 prove that our Fed-CO2 owns higher scalability than
benchmark methods.
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Table 13: The influence of client numbers on CIFAR10
#client 50 100 150 300 500

SingleSet 71.28±0.08 68.69±0.07 70.05±0.06 64.62±0.04 60.31±0.07
FedAvg [2] 41.20±3.13 52.85±2.30 33.34±11.15 42.63±3.85 34.31±5.68
FedProx [4] 45.35±6.94 36.00±4.42 34.53±6.59 37.44±6.23 34.58±5.18
MOON [7] 40.25±3.31 52.38±2.16 34.93±9.74 49.58±3.93 37.35±5.80

FedRoD [12] 65.18±1.14 66.08±0.92 67.00±1.43 65.46±1.50 64.68±4.30
FedBN [10] 74.40±0.61 75.43±0.39 78.38±0.44 76.06±0.46 69.24±1.21

Fed-CO2 77.14±0.37 77.21±0.29 80.06±0.25 78.53±0.31 75.59±0.50

F.5 Personalized Parts in the Online model

In order to enhance the adaptation to local data distribution, it is necessary to personalize certain
critical parameters in the online model to preserve the essential offline specialized knowledge. In this
section, we investigated and analyzed which specific parts of our online model should be personalized
for optimal performance in FL with feature skew. The most common strategy is to personalize Batch
Normalization layers or the Classifier Head. Therefore in our Fed-CO2 approach, we conducted three
experiments with different personalized components in the online model to compare and determine
the optimal strategy. The results for three datasets, namely DomainNet, Office-Caltech10, and Digits,
are illustrated in Fig. 7. It is evident from the observations that personalizing the Classification Head
has a negative impact on almost every sub-dataset, resulting in lower classification accuracy. Based
on the results, we can conclude that personalizing Batch Normalization layers in our online model is
the best strategy to adapt to feature shifts.

Figure 7: The test accuracy for our Fed-CO2 with different personalized parts in the online model on
DomainNet, Office-Caltech10, and Digits.
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