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A Numerical investigation

In this section, we provide many plots corroborating the theoretical results presented in the main manuscript.
We also give information on the numerical procedures needed to reproduce the different figures, along with
the details behind the numerical experiments.
The code will be available on GitHub after de-anonymization.

Description of the training algorithm: First, we describe the training protocol reported in Alg. 1: we
separately update the first layer with T−GD steps of learning rate η, followed by training with standard
ridge regression for the second layer with fixed regularization strength λ. We vary adaptively the learning
rate to satisfy the hypothesis of Thm. 2, i.e. η = O(p

√
n
d ), the regularization parameter is fixed to λ = 1,

and we take noiseless labels. We average over different seeds to get the mean performance, and we use
standard deviation for giving confidence intervals.

A.1 Learning with a single giant step
A sizable part of our results concerns the feature learning efficiency of two layer neural networks after one
giant step of GD. We provide a toy illustration of the phenomenology in Fig. 1, and rigorously characterize
this in Theorems 1 and 2. Moreover, in section 2.3 we provide a plethora of results analyzing the consequences
of the theorems above in the actual learning performance of the network. Here, we perform a detailed
numerical investigation of the different claims in these results.

Investigating the generalization performance: We start by analyzing the generalization performance
of different networks after one giant GD step in Fig. 3. We compare the generalization performances of linear
and quadratic kernel methods - horizontal lines marked by different colors computed at n = nmax ∼ d2.25
- with three networks: a) random features (red points) random network with fixed weight matrixW0 at
initialization; b) 1 GD step (green points) two-layer network trained using one step in the protocol of Alg. 1;
c) 1 GD step with preprocessing (blue points) two-layer network trained using a preprocessing step in Alg. 1.
The introduction of a preprocessed algorithm is linked with the theoretical results of Theorem 2 and we
provide a detailed analysis in the next paragraph.

The importance of preprocessing: As Theorem. 2 provably states, it is not possible to get fully special-
ized hidden units with one giant step of GD in the n = O(dk) regime (with k > 1), unless the directions
associated to teacher Hermite coefficients lower than k are suppressed, or equivalently, if the leap index ℓ
(Def. 1) of the target is equal to k - see Fig. 1 for an illustration. We can circumvent this issue by using a
preprocessing step. Given a batch of size n = O(dk), we preprocess the labels in Alg. 1 using a method
introduced in Damian et al. (2022) for the case k = 1:

ĉj1,...,jd ←
1

n

n∑
ν=1

yν Hej1(⟨e1, zν)⟩ · · ·Hejd(⟨ed, zν)⟩ (17)

yν ← yν −
∑

j1,...,jd:j1+···+jd<k

ĉj1,...,jd
j1! · · · jd!

Hej1(⟨e1, zν)⟩ · · ·Hejd(⟨ed, zν)⟩ (18)

where we denoted with ĉj1,··· ,jd the plug-in estimates from data of the teacher Hermite coefficients, and
with {ei}i∈[d] the canonical basis in Rd. By standard concentration arguments Gotze et al. (2019) the
plug-in estimation of the coefficients is accurate only in the n = ω(dpolylog(d)) regime. Indeed, in Fig. 3
the inefficient estimation of eq. (17) in the n = o(d) sample regime generates a noisy learning curve for
the preprocessed algorithm (blue points). The ridge estimator â is consequently found by training on the
processed labels defined in eq. (18) and the suppressed part is injected back in the predictor only at test
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Figure 3: Learningwith training of the second layer.
Simulation illustrating the different regimes in Fig. 1,
using d=512, p=1024, a symmetric two-index target
function f⋆(z) = σ⋆(⟨w⋆

1,z⟩)+σ⋆(⟨w⋆
2,z⟩)with ac-

tivation σ⋆(z) = He1(x) + He2(x)/2! + He4(x)/4!,
and a relu student. (a) The first algorithm (green) ap-
plies a giant step and then learns the second layer.
When n≫d, its performance goes beyond the linear
predictor that would be obtained with a kernel method
and reach the “linear subspace learning” regime in Fig. 1.
(b) To go beyond this regime, the second algorithm
(blue) preprocesses the data to remove a plug-in esti-
mate of the first Hermite coefficient. It reaches a lower
plateau as n≈ d2, now beating the quadratic kernel.
We contrast this behavior with the one of the random
feature model (red).

Figure 4: Learning as a function of the number of hidden neurons. Simulations illustrating the influence of the
number of hidden neurons in Fig. 3. We change the value of p ∈ (128, 256, 512, 1024) from left to right.

time:

f̂(zν) =
1
√
p
â⊤σ(Wzν) +

∑
j1,··· ,jd:j1+···+jd<k

ĉj1,...,jd
j1! · · · jd!

Hej1(⟨e1, zν)⟩ · · ·Hejd(⟨ed, zν)⟩ (19)

Comparison of different methods: The results presented in Fig. 3 clearly illustrate the theoretical
predictions of Thm. 2: in the n = O(d) regime vanilla Alg. 1 attains the “linear subspace learning” regime
(see Fig. 1) and beats the linear kernel, while the preprocessed version cannot. However, implementing
preprocessing turns out definitely beneficial in the n = O(d2) region. Indeed, while the vanilla Alg. 1
remains stuck on the linear subspace learning plateau, the preprocessed Alg. 1 reaches a lower test error
than the quadratic kernel. This is achieved by effectively raising the leap index of the target function. More
precisely, given a target with leap index ℓ = 1 as in Fig. 3, the manipulation in eq. (18) aims exactly at the
removal of the first Hermite coefficient of the target by estimating it from the data, allowing feature learning
in the n = O(d2) regime in accordance with Thm. 2. We complement the above picture by analyzing the
influence of the number of hidden neurons p on the generalization performance in Fig. 4: by increasing the
expressive power of the network, we attain the single-index regime by using a single giant step of Alg. 1 (in
accordance with Conj. 1). Moreover, we note that it is necessary to use p = 2d in order to be able to beat
the performance of the quadratic kernel in this learning task (rightmost section).

Investigating representation learning efficiency: We move to an additional numerical investigation
of feature learning efficiency, as characterized by Theorems 1 and 2. In Fig. 5 we again consider a single
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n
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(d3 )
n

= 𝒪
(d2 )

σ(z) = He1(z) σ(z) = He2(z) σ(z) = He3(z) σ(z) = He4(z)

Figure 5: Feature learning after a single step. Specialization of hidden units in the n = O(dk) regime (k = 2, 3).
The plots show the cosine similarity of the gradient with respect to the target vectors (w⋆

1 ,w
⋆
2) for p = 40 different

neurons, identified by different markers. The bisectrix of the first quadrant is shown as a continuous black line, the
circle of unitary radius in black, and the circle of radius 2/

√
d in blue. In the upper panel, (n, d) = (218, 29), and

(n, d) = (221, 27) in the lower one.
We use a 2-index target f⋆(z) = σ⋆(⟨w⋆

1,z⟩) + σ⋆(⟨w⋆
2,z⟩), with matching student: σ(z) = σ⋆(z). Left: σ(z) =

He1(z). Center-Left: σ(z) = He2(z). Center-Right: σ(z) = He3(z). Right: σ(z) = He4(z). We observe that if
the leap index ℓ = 1, we only learn a single direction, no matter the data quantity, while for ℓ > 1 we learn every
direction as soon as we reach n = O(dℓ). The small spread observed for σ(z) = He4(z) and n = O(d3) is due to the
small value of d used for the experiments.

step of Alg. 1, focusing now on the analysis of the gradient. We compute the gradient matrix G ∈ Rp×d
and plot the cosine similarities of all the rows {Gi ∈ Rd}pi=1 with the teacher vectors (w⋆

1 ,w
⋆
2). The figure

clearly illustrates the claims of Thm. 2: in the n = O(dk) (with k > 1) regime is necessary to analyze
targets with leap index k in order to obtain specialized hidden units. Moreover, the leftmost section of Fig. 5
completes the picture offered by Figs. 3&4 about the lack of specialization in presence of teacher functions
with non-zero first Hermite coefficient (ℓ = 1): the gradient is stuck in the linear subspace learning regime
theoretically predicted by Thm. 2, regardless of the sample regime considered, preventing feature learning.

A.2 Learning with multiple steps

We move now the numerical investigation of the learning behavior after multiple gradient steps. The
general picture of the phenomenology is offered in Fig. 2, following the theoretical characterization of
Theorem 3.

Investigating the generalization performance: First, we investigate the generalization behavior in
the upper panel of Fig. 6. We modify slightly the training procedure in Alg. 1 to perform the numerical
experiments: at every gradient step on the first layer weights we train the second layer sequentially with
ridge regression. The analysis of the test error behavior in the upper panel of Fig. 6 sheds light on the
consequences of Thm. 3 on the generalization performance of two-layer networks. Indeed, we observe a
clear benefit in performing multiple gradient steps if the teacher function has a direction linearly connected
to the rank-one spike in the gradient identified by C1(f

⋆) (right panel), while if such linearly connected
direction does not exist (left panel) the generalization performance does not improve relevantly over time,
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Figure 6: Feature learning with multiple gradient steps. Top: Generalization error as a function of n (d = 512, p =
256) after iterating the training procedure for six steps. Bottom: Cosine similarity of the projected gradient matrix Gp

inside the target subspace for all the p neurons at a fixed ratio n/d = 4, plotted at different stages of the training. The
blue and purple lines are the theoretical predictions for the orientation of the gradient in the second step.
We fix a relu student and consider two different 2-index target functions f⋆(z) = σ⋆

1(⟨w⋆
1,z⟩) + σ⋆

2(⟨w⋆
2,z⟩). Left:

σ⋆
1(z) = σ⋆

2(z) = He1(z) + He2(z)/2 + He4(z)/4! Right: σ⋆
1(z) = z − z2 and σ⋆

2(z) = z + z2. In accordance with
Theorem 3, the difference between the two cases is clear already after the first GD step: while on the left the gradient is
stuck around the predicted rank-one spike after the first step (black line), on the right the gradient changes orientation
in the second step, allowing to learn multiple features.

and the network is stuck on the “linear subspace learning” (see the upper right plot of Fig. 2). These results
are in perfect agreement with Thm. 3.

Investigating representation learning efficiency: In this paragraph we further analyze the claims of
Thm. 3 in the context of feature learning. The experiments done in the lower panel of Fig. 6 are closely
related to the ones of Fig. 5. However, contrary to the previous setting, we study the cosine similarity of the
projected gradient Gp = GΠ⋆ in the teacher subspace. This quantity differs from the cosine similarity of
the full gradient, plotted in Fig. 5, as we lose completely the information about the share of the gradient
lying in the subspace orthogonal to the teacher one. This divergence in the choices is due to the different
illustrative goals of the figures: while in Fig. 6 we highlight the change in orientation of the gradient inside
the teacher subspace after a few steps, hence not caring about the relative magnitude, in Fig. 5 we contrast
the magnitude of the true gradient with the one of a random object (blue circles) in order to claim the
presence (or lack) of feature learning after a single step. The results in the lower panel of Fig. 6 are obtained
iterating 2 steps of the training procedure in Alg. 1: in accordance with Thm. 3 we observe delocalization of
the projected gradient only if there are linearly connected directions that can be exploited to escape the
spike given by the first Hermite coefficient C1(f

⋆) (right panel). Moreover, we are able to theoretically
predict the orientation of the gradient at the second step as well (see Appendix. C). On the contrary, when
such linearly connected directions do not exist, the gradient is stuck on the spike C1(f

⋆) (Left panel). We
elaborate on this last observation by checking that the lack of specialization persists iterating for more than
two GD steps. We present the results in Fig. 7: the gradient is stuck in the linear subspace learning regime
even as the training proceeds, again in agreement with Thm. 3. Moreover, we illustrate by changing the
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Figure 7: Lack of feature learning after few GD steps. The plots show the cosine similarity with respect to the
teacher vectors (w⋆

1 ,w
⋆
2) for the gradient at different stages of the training. The predicted orientation (Thm. 2) of

the gradient is shown as a continuous black line, the circle of unitary radius in black, and the circle of radius 2/
√
d

in blue. We fix n = d = 213, the learning rate η = p, and we use a relu student. We vary the teacher functions:
Left: σ⋆

1(z) = 4z2 + z, σ⋆
2(z) = z Center: σ⋆

1(z) = σ⋆
2(z) = 4z2 + z, Right: σ⋆

2(z) = 4z2 + z, σ⋆
1(z) = z. The

orientation of the gradient does not change after T = 6 steps preventing specialization, in agreement with Thm. 3.

teacher functions, that the theoretical prediction of Thm. 2 on the gradient orientation, are valid beyond
the symmetric teachers.
Multiple stairs: We complement the picture offered by Fig. 6 studying functions that have multiple
linearly connected directions to the previously learned one, or informally, “multiple-stairs function”. The
results are presented in Fig. 8 by considering the function f⋆(z) = z1/3 + 2z1z2/3 + z2z3; we consider
3 steps in the training of Alg. 1, the network is able to learn respectively e1, e2, e3 after the first three
steps of training in the proportional sample regime. This is clearly appreciable by studying the cosine
similarity of the projected gradient on the teacher subspace: after the first step it is localized around e1,
proceeding with training it has projections along e2 while e3 remains hidden, and only at the third step
we obtain delocalization of the gradient along e3. These results are in perfect agreement with Thm. 3.
Note that the hierarchical learning framework of Thm. 3 allows neurons to simultaneously specialize along
different directions, as exemplified in Fig. 2 (see the bottom right plot). We observe one instance of this
multidirectional staircase learning in Fig. 9 by considering the target f⋆(z) = z1/3 + 2He2(z1)z2 + z1z3:
while the results are unchanged in the first step with respect to Fig. 8 (with only the e1 direction being
learned), we observe that both directions e2 & e3 are learned at the second step.
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Figure 8: Climibing multiple stairs. Fix the teacher function f⋆(z) = z1/3 + 2z1z2/3 + z2z3 and a relu student. The
plots show the cosine similarity of the projected gradient matrix Gp inside the teacher subspace for all the p neurons at
a fixed ratio n/d = 4, plotted at different stages of the training following Alg. 1. The plot shows the similarity in the
3D teacher subspace on the right, and two sections of it on the left: Up: (e1, e2) plane. Bottom:(e2, e3) plane. In
accordance with Thm. 3, the gradient is first localized around e1, then sequentially learns e2, and only at the third step
has components along e3.

Figure 9: Learning multiple directions at a time. Fix the teacher function f⋆(z) = z1/3 + 2He2(z1)z2 + z1z3 and
a relu student. The plots show the cosine similarity of the projected gradient matrix Gp inside the teacher subspace for
all the p neurons at a fixed ratio n/d = 4, plotted at different stages of the training following Alg. 1. The plot shows the
similarity measure in different cases. Left: (e1, e2) cross section. Center: (e3, e2) cross section. Right: 3D teacher
subspace (e1, e2, e3). In accordance with Thm. 3, the gradient is first localized around the direction e1, and then learns
both directions (e3, e2) at the second gradient step.
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Algorithm 1 Training procedure
Choice of parameters Fix the data dimension and the width of the second layer (d, p) and sample
(W0,a0) obeying eq. (26). Fix a regularization parameter λ, and a number of GD steps Tmax.
for n in a given range do

Learning rate tuning Fix the learning rate η = O(p
√

n
d ).

for t < Tmax do
Data generation Sample the data matrix Z ∼ N(0, In×d) and get the labels Y = f⋆(Z) ∈ Rn

Update first layer Compute the gradient matrix Gt = {G(t)
i }i∈[p] ∈ Rp×d and updateW :

G
(t)
i ←

a0,i√
p
· 1
n

n∑
ν=1

xνσ′(⟨w(t)
i , zν⟩)

(
f̂(zν ,Wt,a0)− f⋆(zν)

)
(20)

Wt+1 ←Wt − ηGt (21)

if t == Tmax then
Train second layer Get the feature matrix Xt ← σ(WtZ), and compute estimator:

â←

{
X⊤
t

(
XtX

⊤
t + λIn

)−1
Y n<p(

X⊤
t Xt + λIp

)−1
X⊤
t Y n>p

end if
end for

end for
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B Preliminaries and Assumptions for the proofs

B.1 Preliminaries

Before going to the mathematical detail of the proof, we recall a few definition and useful facts.

Hermite expansion — Given the Gaussian measure γm on Rm, we can build a scalar product on
ℓ2(Rm, γm) as

⟨f, g⟩γ =

∫
Rm

fg dγm = Ez∼N(0,Im)[f(z)g(z)]. (22)

It turns out that there is a specific orthonormal basis of interest for this scalar product, that we present in
tensor form:
Definition 4 (Hermite decomposition). Let f : Rm → R be a function that is square integrable w.r.t the
Gaussian measure. There exists a family of tensors (Cj(f))k∈N such that Cj(f) is of order j and for all
x ∈ Rm,

f(x) =
∑
j∈N
⟨Cj(f),Hj(x)⟩ (23)

whereHj(x) is the j-th order Hermite tensor (Grad, 1949).

Higher-order singular value decomposition — The higher-order singular value decomposition
(HOSVD) of a tensor is defined as follows:

Definition 5 (Higher-order SVD). Let C ∈ Rmk

be a symmetric tensor of order k. A higher-order SVD of C
is an orthonormal set (u1, . . . ,ur) of r ≤ k vectors, as well as a tensor S ∈ Rrk such that

C =

r∑
j1,...,jk=1

Sj1,...,jkuj1 ⊗ · · · ⊗ ujk (24)

The singular values tensor S, as well as the rank r, are unique, but just as the regular SVD, the vectors
(u1, . . . ,ur) are only unique up to rotations.

B.2 Setting and assumptions

We discuss the setting and main assumptions required. The first concerns the class of target functions we
consider.
Assumption 2 (Data model). The training inputs zν ∈ Rd are independently drawn from the Gaussian
distribution N(0, Id). Further, we assume that the target function yν = f⋆(z) depends only on a few relevant
directions. In other words, there exists a low-dimensional subspace V ⋆ ⊂ Rd of fixed dimension r and a function
g⋆ : V ⋆ → R such that:

y = f⋆(z) := g⋆(Π⋆z), (25)
where Π⋆ is the orthogonal projection on V ⋆.

As we will show later, learning with GD can be seen as a hierarchical process, where depending on the
batch size different directions of the target are progressively learned.
Given a batch of training data (zν , yν)nν=1 ∈ Rd+1 drawn from the model (2) defined above, we now define
how the network weights (W,a) are initialized and updated.
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Assumption 3 (Training procedure). Consider the following random initialization for the weights:

√
p · a0i

i.i.d∼ Unif([−1, 1]) and w0
i
i.i.d∼ Unif(Sd−1). (26)

The distribution of the ai can be replaced by any other continuous distribution with positive variance. Note
that for p = O(1), we have f̂(z;W 0,a0) ̸= 0. To further simplify the analysis, we assume p to be even and
further impose the following symmetrization at initialization:

a0i = −a0p−i+1 and w0
i = w0

p−i+1 for all i ∈ [p/2], (27)

which ensures f̂(z;W 0,a0) = 0. Note that this simplification is common in the related literature, e.g. Chizat
et al. (2019); Damian et al. (2022), and is mainly necessary when p is small. Given the initial conditions, the
weights are trained with the following two-step full-batch gradient descent:

(i) First layer training: for every gradient step t ≤ T , a fresh batch of training data {(zν , yν)}nν=1 is drawn
from the model in Assumption 2, and the first layer weights are updated according to:

wt+1
i = wt

i −
η

2n

n∑
ν=1

∇wi

(
yν − f̂(zν ;W t,a0)

)2
, (28)

Hence, the total sample complexity for this step is Tn.
(ii) Second layer training: once the first layer is trained for T steps, the second layer weights a are trained to
optimality by performing ridge regression with the features learned in the first step:

â = argmin
a∈Rp

1

2n

n∑
ν=1

(
yν − f̂(zν ;WT ,a)

)2
+ λ∥a∥2. (29)

Such a separation of the training between the first and second layer is a common setup for the theoretical study
of training (Damian et al., 2022; Abbe et al., 2023; Berthier et al., 2023), and allows for a more tractable study of
convergence.
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C Gradient descent on the first layer

C.1 Technical assumptions

We shall show our results under the following assumptions. First, since we assume that the leap index of f⋆
is at least one, and we setup the network to zero output the following assumption is unrestrictive:
Assumption 4. The teacher function f⋆ and the student activation σ both have their zero-th Hermite coefficient
equal to 0.

We shall also need a smoothness assumption:
Assumption 5. Both the student activation σ and g∗ are continuous, and differentiable except possibly on
a finite set of points. Further, the first two derivatives of g⋆ and the first three derivatives of σ are uniformly
bounded in R.

C.2 Preliminaries

More on Hermite expansion We recall a few properties of the Hermite tensors of Definition 4. Up to
symmetry, the tensorsHk(x) are an orthonormal basis of ℓ2(Rm, γ), in the sense that for any i, j ∈ Rk ,

⟨Hk,i(x),Hk,j(x)⟩γ =
1

|o(i)|
1i is a permutation of j (30)

where |o(i)| is the number of distinct permutations of i. It can be checked from the definition in Grad (1949)
that the Hk , and hence the Ck(f), are basis-invariant, and hence represent an actual k-linear form on Rm.
Further, the property (30) yields an immediate expression for the scalar product in ℓ2(Rm, γm):

⟨f, g⟩γ =
∑
k∈N
⟨Ck(f), Ck(g)⟩. (31)

Further, the Hermite coefficients of low-rank functions are straightforward to compute:
Lemma 1. Let g : Rr → R, and a linear map A ∈ Rr×d. Then the Hermite coefficients of f(x) = g(Ax) are

Ck(f) = Ck(g) · (A, . . . , A), (32)

where · is the multilinear multiplication operator (Greub, 2012).

In particular, this implies that the singular vectors of C⋆k all belong to V ⋆.

Concentration in Orlicz spaces We recall the classical definition of Orlicz spaces:
Definition 6. For any α ∈ R, let ψα(x) = ex

α − 1. Let X be a real random variable; the Orlicz norm
∥X∥ψα is defined as

∥X∥ψα
= inf

{
t > 0 : E

[
ψα

(
|X|
t

)]
≤ 1

}
(33)

We refer to the monographs Ledoux and Talagrand (1991); van der Vaart and Wellner (1996) for more
information. We say that a random variable is sub-gaussian (resp. sub-exponential) if its ψ2 (resp. ψ1) norm
is finite. The main use of this definition is the following concentration inequality: for a variable X with
finite Orlicz norm,

P(|X − EX| > t∥X∥ψα
) ≤ 2e−t

α

. (34)
The Orlicz norms are sub-multiplicative, in the following sense:
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Lemma 2. Let X and Y be two random variables. Then, for any α > 0, there exists a constantKα such that
∥XY ∥ψα/2

≤ Kα∥X∥ψα
∥Y ∥ψα

(35)

Finally, we shall use the following theorem:
Theorem 5 (Theorem 6.2.3 in Ledoux and Talagrand (1991) and Lemma 2.2.2 in van der Vaart and Wellner
(1996)). Let X1, . . . , Xn be n independent random variables with zero mean and second moment EX2

i = σ2
i .

Then, ∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
ψα

≤ Kα log(n)
1/α

√√√√ n∑
i=1

σ2
i +max

i
∥Xi∥ψα

 (36)

Preliminary computations We begin with a few useful preliminary computations. First, sincew0
i ∼

Unif(Sd−1), the following lemma holds:
Lemma 3. With probability at least 1− cpe−c log(d)2 , we have for any i ∈ [p] and k ∈ [r]:

∥π0
i ∥ ≤

√
r log(d)√

d
(37)

Let gi be the negative gradient for the i-th neuron at initialization:

gi = −∇wjL
(
f̂(zν ;W 0,a), f⋆(zν)

)
. (38)

Since at initialization the output of the network is exactly zero, we have

gi =
ai√
p
· 1
n

n∑
ν=1

zνσ′(⟨w0
i , z

ν⟩)f⋆(zν) (39)

Finally, the update equation for ∥wi∥ reads
∥w1

i ∥2 = 1 + 2η⟨w0
i , gi⟩+ η2∥gi∥2 (40)

C.3 Computing expectations

We begin by a simple computation of the expectation of gi:
Lemma 4. For any i ∈ [p], we have

E[gi] =
ai√
p

( ∞∑
k=0

ck+2 ⟨(w0
i )

⊗k, C⋆k⟩wi +

∞∑
k=0

ck+1 C
⋆
k+1 ×1...k (w

0
i )

⊗k

)
(41)

where the last multiplication is a product over the first k axes of Ck+1 (and thus results in a vector).

Proof. By Stein’s lemma, for any w, we have
E [zσ′(⟨w, z⟩)f⋆(z)] = E [∇zσ

′(⟨w, z⟩)f⋆(z)] + E [σ′(⟨w, z⟩)∇zf
⋆(z)]

= wE [σ′′(⟨w, z⟩)f⋆(z)] + E [σ′(⟨w, z⟩)∇zf
⋆(z)]

From Lemma 1, the k-th Hermite coefficient of z 7→ σ′′(⟨w, z⟩) is ck+2 w
⊗k, where the (ck)k≥0 are the

Hermite coefficients of σ. By two applications of the scalar product formula (31), we find

E [zσ′(⟨w, z⟩)f⋆(z)] =
∞∑
k=0

ck+2 ⟨w⊗k, C⋆k⟩w +

∞∑
k=0

ck+1 C
⋆
k+1 ×1...k w

⊗k. (42)
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Truncating the expansions Now, we show that the expectations in Lemma 4 can be truncated at the
leap index term.
Lemma 5. With probability at least 1− cpe−c log(d)2 , for every k ≥ 0 and i ∈ [p], we have∣∣⟨C⋆k , (w0

i )
⊗k⟩
∣∣ ≤ c (√r log(d)√

d

)k
and

∥∥C⋆k+1 ×1...k (w
0
i )

⊗k∥∥ ≤ c(√r log(d)√
d

)k
(43)

As a result, if ℓ is the leap index of f⋆,∥∥∥E[gi]− C⋆ℓ ×1...(ℓ−1) (w
0
i )

⊗(ℓ−1)
∥∥∥ = O

(
rℓ/2 polylog(d)

dℓ/2

)
(44)

Proof. First, we have by Lemma 1,∣∣⟨C⋆k , (w0
i )

⊗k⟩
∣∣ = ∣∣⟨Ck(g⋆), (W ⋆w0

i )
⊗k⟩
∣∣ ≤ ∥Ck(g⋆)∥2 · ∥π0

i ∥k,
where ∥Ck(g⋆)∥2 is the operator norm of Ck(g⋆). Since

∥Ck(g⋆)∥2 ≤ ∥Ck(g⋆)∥F ≤ ∥g⋆∥γ ,
the first inequality ensues by Lemma 3. Now, let Ak+1 be the (k+ 1)-th mode unfolding of Ck+1(g

⋆); then∥∥C⋆k+1 ×1...k (w
0
i )

⊗k∥∥ =
∥∥Ak+1(W

⋆w0
i )

⊗k∥∥ ≤ ∥Ak+1∥2∥π0
i ∥k

The norm of Ak+1 is then bounded by the same argument as above. The final equality is obtained by using
the above bounds on every term above k = ℓ in the first sum, and above k = ℓ− 1 in the second.

Student norms We now move on to controlling (40), in expectation. We begin with the cross-term:
Lemma 6. With probability at least 1− cpe−c log(d)2 , we have for any i ∈ [p],

E
[
⟨w0

i , gi⟩
]
= O

(
rℓ/2 polylog(d)

pdℓ/2

)
(45)

Proof. From eq. (44), we have

E
[
⟨w0

i , gi⟩
]
=

ai√
p

(
⟨C⋆ℓ , (w0

i )
⊗ℓ⟩+ O

(
rℓ/2 polylog(d)

dℓ/2

))
The first part of Lemma 5 gives

⟨C⋆ℓ , (w0
i )

⊗ℓ⟩ = O

(
rℓ/2 polylog(d)

pdℓ/2

)
,

and the lemma follows since |ai| ≤ 1/
√
p.

The main object of study is therefore ∥gi∥2. We can write it as

∥gi∥2 =
a2i
n2p2

n∑
ν,ν′=1

⟨zν , zν
′
⟩σ′(⟨wi, z

ν⟩)f⋆(zν)σ′(⟨wi, z
ν′
⟩)f⋆(zν

′
)

=
a2i
n2p2

( ∑
ν ̸=ν′

⟨zν , zν
′
⟩σ′(⟨wi, z

ν⟩)f⋆(zν)σ′(⟨wi, z
ν′
⟩)f⋆(zν

′
)

+

n∑
ν=1

∥zν∥2σ′(⟨wi, z
ν⟩)2f⋆(zν)2

)
(46)
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Since zν , zν′ are independent for ν ̸= ν′, this leaves

E
[
∥gi∥2

]
=
n(n− 1)

n2
∥E[gi]∥2 +

a2i
np2

E
[
∥zν∥2σ′(⟨wi, z

ν⟩)2f⋆(zν)2
]

(47)

We shall only need orders of magnitude for those terms. These are taken care of in the following lemma:
Lemma 7. There exists a bounded random variable X independent from d such that, with probability at least
1− cpe− log(d)2 ,

∥E[gi]∥2 = a2iXi ·
∥∥π0

i

∥∥2(ℓ−1)

p2
+ O

(
rℓ/2 polylog(d)

dℓ/2

)
(48)

where (Xi)i∈[p] are i.i.d copies of X . Additionally, there exist two constants c, C such that

c · d ≤ E
[
∥z∥2σ′(⟨wi, z⟩)2f⋆(z)2

]
≤ C · d (49)

Proof. We begin with (48). Define the unit norm vectors

ri =
W ⋆w0

i

∥π0
i ∥

,

since the wi are isotropic, the ri are uniform on Sr−1. Then,∥∥∥C⋆ℓ ×1...(ℓ−1) (w
0
i )

⊗(ℓ−1)
∥∥∥2 =

∥∥∥Cℓ(g⋆)×1...(ℓ−1) r
⊗(ℓ−1)
i

∥∥∥2︸ ︷︷ ︸
=:Xi

·
∥∥π0

i

∥∥2(ℓ−1)
.

The random variables Xi thus defined are i.i.d, independent from d, and have positive expectation since
Cℓ(g

⋆) is nonzero. Equation (48) then results from the expansion in (44).

We now move on to the second part; first, by Hölder’s inequality,

E
[
∥z∥2σ′(⟨wi, z⟩)2f⋆(z)2

]
≤
√

E [∥z∥4] 4
√
E [σ′(⟨wi, z⟩)8]E [f⋆(z)8] ≤ C · d, (50)

since the last two expectations are independent from d. On the other hand, using the same inequality with
∥z∥2 − d, we can write

E
[
∥z∥2σ′(⟨wi, z⟩)2f⋆(z)2

]
= dE

[
σ′(⟨wi, z⟩)2f⋆(z)2

]
+ O(

√
d).

Since µℓ ̸= 0 and f⋆ has leap index ℓ, there exists ε > 0 two subsets A ⊆ R,B ⊆ V ⋆ of positive measure
such that σ′(x)2 ≥ ε if x ∈ A and f⋆(z⋆) > ε if z⋆ ∈ B. From the fact that πi ≤ 1/2 with high probability,
we conclude that the set

C := {z ∈ Rp : ⟨wi, z⟩ ∈ A, PV ⋆z ∈ B}

has positive (Gaussian) measure. It follows that

E
[
σ′(⟨wi, z⟩)2f⋆(z)2

]
≥ γ(C)ε2, (51)

which concludes the proof of Eq. (49).
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C.4 Concentration

We now move on to concentrating the quantities of interest of the previous section. Our aim will be to
show the following proposition:

Proposition 2. With probability at least 1− Cpe−c log(n)2 − Cpe−c log(d)2 , for any i ∈ [p], k ∈ [r],∥∥π1
i − E

[
π1
i

]∥∥ = O

(
η
√
r log(n)

p
√
n

)
(52)∣∣∣∥∥w1

i

∥∥2 − E
[∥∥w1

i

∥∥2]∣∣∣ = O

(
η log(n)

p
√
n

+
η2d log(n)6

p2n
√
n

+
η2 log(d)

p2n
√
d

+
η2r log(n)2

p2n
+
η2 log(n)ℓr(ℓ−1)/2

p2d(ℓ−1)/2
√
n

)
(53)

Importantly, we do not claim that the whole vector w1
i concentrates; only its norm and its projection on a

low-dimensional subspace do. Throughout this section, we define the random vectors

Xν = zνσ′(⟨wi, z
ν⟩)f⋆(zν). (54)

These vectors are i.i.d, with the same distribution as a random vector that we will call X .

Concentration of linear functionals We begin with a simple bound, that implies both Eq. (52) and the
first term of Eq. (53).
Lemma 8. Let w be a unit vector in Rd. There exists a universal constant c such that with probability
1− 2pe−c log(n)

2

, for any i ∈ [p] and k ∈ [r],

|⟨w, gi⟩ − E[⟨w, gi⟩]| ≤
log(n)

p
√
n

(55)

Proof. ByAssumption 5, the function f⋆ is Lipschitz, so f⋆(z) is a sub-gaussian random variable. The same is
obviously true for ⟨w, z⟩, and since σ′ is bounded the random variable ⟨w,X⟩ = ⟨w, z⟩σ′(⟨w0

i , z⟩)f⋆(z) is
sub-exponential with bounded sub-exponential norm. We can thus apply Bernstein’s inequality (Vershynin,
2018, Corollary 2.8.3) with t = log(n)/

√
n to get

P

(∣∣∣∣∣ 1n
n∑
ν=1

⟨w,Xν⟩ − E⟨w,X⟩

∣∣∣∣∣ ≥ log(n)√
n

)
≤ 2e−c log(n)

2

. (56)

The result ensues upon noticing that 1
n

∑
Xν differs from gi by a factor of at most 1/p.

Decomposing the gradient norm We now move on to the concentration of the qi. This allows us to
write

∥gi∥2 − E[∥gi∥2] =
1

n2p2


n∑
ν=1

∥Xν∥2 − nE[∥X∥2]︸ ︷︷ ︸
S1

+
∑
ν ̸=ν′

⟨Xν ,Xν′
⟩ − n(n− 1)∥EX∥2︸ ︷︷ ︸
S2

 (57)

We shall show the concentration of those two terms sequentially.
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Concentrating the norms We first focus on S1:
Lemma 9. Let i ∈ [p]. There exists a constant c > 0 such that with probability 1− e−c log(n)2 ,

P
(
|S1| ≥ log(n)6d

√
n
)
≤ e−c log(n)

2

. (58)

Proof. The random variable ∥z∥/
√
d is sub-gaussian, and so is f⋆(zν). By Lemma 2 and the Hölder

inequality, the random variable ∥Xν∥2 satisfies
∥∥Xν∥2∥ψ1/2

≤ C · d and Var
(
∥Xν∥2

)
≤ C · d2

As a result, we can apply Theorem 5 to the random variables ∥Xν∥2 − E[∥X∥2], which yields∥∥∥∥∥
n∑
ν=1

∥Xν∥2 − nE
[
∥X∥2

]∥∥∥∥∥
ψ1/2

≤ c log(n)2d
√
n. (59)

Equation (58) is then a consequence of the Orlicz concentration bound (34).

Decomposing the cross-term We now move on to S2. To handle this sum, we use the following
decoupling result from Pena and Montgomery-Smith (1995):
Theorem 6. Let (fij)i,j∈[n] be a set of measurable functions from S2 to a Banach space (B, ∥·∥), and
(X1, . . . , Xn), (Y1, . . . , Yn) two sets of independent random variables such that the laws of Xi and Yi are the
same. Then there exists a constant C > 0 such that

P

∥∥∥∥∥∥
∑
i̸=j

fij(Xi, Xj)

∥∥∥∥∥∥ ≥ t
 ≤ CP

∥∥∥∥∥∥
∑
i ̸=j

fij(Xi, Yj)

∥∥∥∥∥∥ ≥ t

C

 (60)

We apply this theorem to the functions fν,ν′(Xν ,Xν′
) = ⟨Xν ,Xν′⟩−∥EX∥2. Let Y ν be an independent

copy of the Xν for ν ∈ [n], we then have to estimate

P

∣∣∣∣∣∣
∑
ν ̸=ν′

⟨Xν ,Y ν′
⟩ − n(n− 1)∥EX∥2

∣∣∣∣∣∣ ≥ t
.

For convenience, let x̄ = ∥EX∥2. Since theXν are sub-exponential vectors, the scalar product ⟨Xν ,Y ν⟩
has finite ψ1/2-norm. The same bound as Lemma 9 then gives that

P

(∣∣∣∣∣
n∑
ν=1

⟨Xν ,Y ν⟩ − nx̄2
∣∣∣∣∣ ≥ √nd log(n)6

)
≤ e−c log(n)

2

(61)

Hence, to show Proposition 2, we only need to study the overall sum

S̃2 :=

n∑
ν,ν′=1

⟨Xν ,Y ν′
⟩ − n2x̄2 (62)

Recall that, as in the proof of Lemma 7, the vector EX belongs to the space Vi = V ⋆ + span(w0
i ). We thus

make the decomposition
Xν = Xν

i +Xν
⊥ and Y ν = Y ν

i + Y ν
⊥ (63)

where Xν
i ,Y

ν
i ∈ Vi. Hence,

n∑
ν,ν′=1

⟨Xν ,Y ν′
⟩ − n2x̄2 = ⟨

n∑
ν=1

Xν
i ,

n∑
ν=1

Y ν
i ⟩ − n2x̄2︸ ︷︷ ︸

S′
2

+ ⟨
n∑
ν=1

Xν
⊥,

n∑
ν=1

Y ν
⊥ ⟩︸ ︷︷ ︸

S′′
2

(64)
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Bounding the last two terms The main step in bounding S′
2 is the following lemma:

Lemma 10. With probability at least 1− Ce−c log(n)2 ,∥∥∥∥∥
n∑
ν=1

Xν
i − nEX

∥∥∥∥∥ ≤ C√r log(n)√n (65)

Proof. Let (u1, . . . ,ur+1) be an orthonormal basis of Vi. Since we have for any vector x ∈ Vi

∥x∥2 =

r+1∑
k=1

⟨x,uk⟩2,

it suffices to bound such a scalar product with high probability. Each term of the form ⟨Xν
i − EX,uk⟩ is a

sub-exponential random variable with zero mean and bounded variance, and hence by another application
of Bernstein’s inequality

P

(∣∣∣∣∣⟨
n∑
ν=1

Xν
i − nEX,uk⟩

∣∣∣∣∣ ≥ log(n)
√
n

)
≤ e−c log(n)

2

(66)

The result ensues from a union bound, and the equivalence of norms in finite-dimensional spaces.

As an easy corollary of this lemma, we get the following bound on S′
2:

Corollary 2. With probability at least 1− Ce−c log(n)2 ,

S′
2 = O

(
rn log(n)2 +

log(n)ℓr(ℓ−1)/2n
√
n

d(ℓ−1)/2

)
(67)

Proof. We use the following decomposition:

S′
2 = n⟨

n∑
ν=1

Xν
i − nEX,EX⟩+ n⟨EX,

n∑
ν=1

Y ν
i − nEX⟩+ ⟨

n∑
ν=1

Xν
i − nEX,

n∑
ν=1

Y ν
i − nEX⟩

≤ n∥EX∥

(∥∥∥∥∥
n∑
ν=1

Xν
i − nEX

∥∥∥∥∥+
∥∥∥∥∥
n∑
ν=1

Y ν
i − nEX

∥∥∥∥∥
)

+

∥∥∥∥∥
n∑
ν=1

Xν
i − nEX

∥∥∥∥∥ ·
∥∥∥∥∥
n∑
ν=1

Y ν
i − nEX

∥∥∥∥∥
by the Cauchy-Schwarz inequality. The result ensues from the high probability bounds of Lemma 10, as
well as the bound on ∥EX∥ from Lemma 7.

We finally bound the last term, which closes the proof of Proposition 2.

Lemma 11. Let i ∈ [p]. With probability at least 1− 2e−c log(n)
2 − e−c log(d)2 , we have

|S′′
2 | ≤ 2 log(d)n

√
d (68)

Proof. Define αν = σ′(⟨w0
i , z

ν⟩)f⋆(zν), and βν its equivalent for Y ν . Since αν only depends on zi, the
distribution of

∑
Xν

⊥ is the same as ∥α∥X⊥, where X⊥ is a normal random vector in V ⊥
i . Therefore, we

have
S′′
2
d
= ∥α∥ · ∥β∥ · ⟨X⊥,Y⊥⟩
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for two independent Gaussian vectorsX⊥,Y⊥. Now, both ∥α∥2 and ∥β∥2 are the sum of n sub-exponential
random variables with bounded variance, and ⟨X⊥,Y⊥⟩ is the sum of d such variables. Hence, by Bernstein’s
inequality, with probability 1− 2e−c log(n)

2 ,

∥α∥2 ≤ n+ log(n)
√
n ≤ 2n and ∥β∥2 ≤ 2n,

and with probability at least 1− e−c log(d)2

⟨X⊥,Y⊥⟩ ≤ log(d)
√
d,

which ends the proof.

C.5 Proof of Theorems 1 and 2

We begin with a proposition that summarizes everything from the two previous sections.
Proposition 3. Let ℓ be the leap index of f⋆, and assume that n = Ω(dℓ−δ) for some δ > 0. There is an event
with probability at least 1− cpe− log(d)2 such that for i ∈ [p]:∥∥∥∥π1

i −
(
π0
i +

ηai√
p
C⋆ℓ ×1...(ℓ−1) (w

0
i )

⊗(ℓ−1)

)∥∥∥∥ = O

(
rℓ/2 polylog(d)

dℓ/2
+

√
rη log(d)

p
√
n

)
(69)

∥∥w1
i

∥∥2 = Θ

(
1 +

η2Xi

∥∥π0
i

∥∥2
p2

+
η2d

np2

)
(70)

where the Xi are i.i.d random variables as in Lemma 7.

Proof. The proof amounts to checking that all the bounds proven so far are of the right order. The first
equality is simply a combination of Lemma 5 and Proposition 2. For the second part, notice that Lemma 7
implies that

E
[∥∥w1

i

∥∥2] = Θ

(
1 +

η2Xi

∥∥π0
i

∥∥2
p2

+
η2d

np2

)
,

and it is straightforward (albeit tedious) to check that all bounds in Proposition 2 are negligible with respect
to the above expectation.

Proof of Theorem 1 We first consider the case where n = Θ(dℓ−δ). A simple triangular inequality
yields

∥π1
i ∥ = O

(
∥π0

i ∥+
η∥π0

i ∥ℓ−1

p

)
where the second part is due to Lemma 7. On the other hand, the middle term in (70) becomes negligible
w.r.t the rightmost one, so we get ∥∥w1

i

∥∥ = Ω

(
1 +

η dδ/2

p

)
This implies

∥π1
i ∥

∥w1
i ∥

= O

(
max

(∥∥π0
i

∥∥, ∥∥π0
i

∥∥ℓ−1

dδ/2

))
= O

(
polylog(d)

d(1∧δ)/2

)
(71)

where the last inequality is due to Lemma 3.
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Proof of Theorem 2 Now, we take n = Ω(dℓ), and η = d(ℓ−1)/2. Then, the bounds of Proposition 3
become∥∥∥π1

i − aid(ℓ−1)/2C⋆ℓ ×1...(ℓ−1) (w
0
i )

⊗(ℓ−1)
∥∥∥ = O

(√
r polylog(d)√

d

)
and

∥∥w1
i

∥∥2 = O(1)

Hence, the first part of Theorem 2 is straightforward: from Lemma 7,
∥π1

i ∥
∥w1

i ∥
= Ω

(
a2iXi · (

√
d
∥∥π0

i

∥∥)ℓ−1
)
, (72)

which is a random variable with positive expectation. The latter part is not independent from d, but it
dominates e.g. a variable of the form ∥zr∥ where zr ∼ N(0, Ir/2) with probability 1− ce− log(d)2 .
For the second part, we write using the higher-order SVD of C⋆ℓ

C⋆ℓ ×1...(ℓ−1) (w
0
i )

⊗(ℓ−1) =

rℓ∑
j1,...,jℓ=1

Sj1,...,jℓ ⟨w0
i ,u

⋆
j1⟩ . . . ⟨w

0
i ,u

⋆
jℓ−1
⟩u⋆jℓ

which belongs to V ⋆ℓ . Finally, since S is full-rank, each vector C⋆ℓ ×1...(ℓ−1) (w
0
i )

⊗(ℓ−1) is an i.i.d random
variable which is absolutely continuous w.r.t the Lebesgue measure in V ⋆ℓ . This implies that the collection
of such vectors is full-rank with probability one, and ends the proof of Theorem 2.

C.6 Spike+Bulk decomposition

Having proven Theorems 1 and 2, we move to investigate the behavior after multiple gradient steps. First,
we relate the discussion above to a “spike+noise" decomposition of the gradient. We start from Equation
(39):

gi =
ai√
p
· 1
n

n∑
ν=1

zνσ′(⟨wi, z
ν⟩)f⋆(zν) (73)

Define σ′
>1(u) : R→ R as the following function:

σ′
>1(u) = σ′(u)− µ1, (74)

so that E [σ′
>1(u)] = 0. We have the following decomposition of the gradient:

gi =
aj√
p

1

n
µ1

n∑
i=1

yixi +
1

n

aj√
p
µ1

n∑
i=1

σ′
>1(x

⊤
i w

0)xiyi︸ ︷︷ ︸
∆j

, (75)

or in matrix form:
G = uv⊤ +∆, (76)

where u = µ1√
pa,v = 1

n

∑n
i=1 yixi. A similar decomposition was utilized in Ba et al. (2022) to provide an

asymptotic characterization of the training and generalization errors in the regime n = Θ(d) and step-size
η = O(

√
p). In particular, they show that the presence of this spike for η = O(

√
p) is not enough to go

beyond the linear kernel regime.
However, as we see below, it is possible to obtain a precise characterization in the feature learning regime
η = Θ(p) and generalizing to multiple steps, with stronger concentration over the structure of ∆. In
particular, we prove that ∆ effectively acts as uniform noise that can be incorporated into the initialization
W (0).
This is expressed through the following Lemma:
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Lemma 12. With high probability over the initializationW 0, as n, d → ∞ with n = Ω(max (p, d)), the
matrix∆ satisfies the following:

(i) For any v ∈ V ⋆, with ∥v∥ = 1, ⟨∆j ,v⟩ = O
(

polylog(d)

p
√
d

)
.

(ii) ∥∆∥ = O(polylog d/
√
d).

(iii) For any i ̸= j, i, j ∈ [p/2] , ∆⊤
j ∆i = O

(
polylog(d)

p2
√
d

)
,

where we only consider the first half neurons due to the choice of the symmetric initialization in Equation (26).

Proof. Without loss of generality, we assume that µ1 = 0 and hence that ∆i = gi. By Lemma 4, since
µ1 = 0; we have E

[
∆⊤
j v
]
= O

(
polylog(d)

p
√
d

)
. Furthermore, from Lemma 8, we obtain that, with high

probability:

|∆⊤
j v − E

[
∆⊤
j v
]
| = O

(
log(n)

p
√
d

)
. (77)

This proves Part (i). Part (ii) follows from Lemma 14 in Ba et al. (2022).
It remains to show Part (iii). The same proof as in Proposition 2 (Eq. (53)) implies that, with high probability,

⟨gi, gj⟩ = E[⟨gi, gj⟩] + O

(
polylog(d)

p2
√
d

)
, (78)

and hence we only need to bound the expectation E[⟨gi, gj⟩]. In turn, the decomposition of Equation (47)
still holds, and we get

E[⟨gi, gj⟩] ≤ ∥E[gi]∥∥E[gj ]∥+
1

np2
E
[
∥z∥2σ′(⟨w0

i , z⟩)σ′(⟨w0
j , z⟩)f⋆(z)2

]
(79)

Since µ1 = 0, the bound of Lemma 7 becomes

∥E[gi]∥ ≤
πi
p

= O

(
log(d)

p
√
d

)
,

and it remains to bound the cross term. The main argument is the following lemma, which is the general-
ization (with an identical proof) of Lemma D.4 in Arnaboldi et al. (2023):
Lemma 13. Let N ≥ 0 be fixed, and f1, . . . , fN be a sequence of functions with bounded first and second
derivatives. Consider the function on N ×N matrices

F (Σ) = Ex∼N(0,Σ)[f1(z1) . . . fN (zN )] (80)

Then, for Σ,Σ′ two semidefinite positive matrices with unit diagonal, we have

|F (Σ)− F (Σ′)| ≤ C∥Σ− Σ′∥∞. (81)

Now, we first have by the same arguments as in Lemma 7

E
[
∥z∥2σ′(⟨w0

i , z⟩)σ′(⟨w0
j , z⟩)f⋆(z)2

]
= dE

[
σ′(⟨w0

i , z⟩)σ′(⟨w0
j , z⟩)f⋆(z)2

]
+ O

(√
d
)
,

so we only to bound the first term of the RHS. Expanding the definition of f⋆, the latter is a sum of k2
terms of the form

E[σ′(⟨w0
i , z⟩)σ′(⟨w0

j , z⟩)σ⋆k(⟨w⋆
k, z⟩)σ⋆k′(⟨w⋆

k, z⟩)],
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which falls under the framework Lemma 13 forN = 4. In particular, since µ1 = 0, F (Σ) = 0 whenever we
have Σ1i = Σ2j = 0 for i ̸= 1, j ̸= 2. Hence, by an application of Lemma 13, we have

E[σ′(⟨w0
i , z⟩)σ′(⟨w0

j , z⟩)σ⋆k(⟨w⋆
k, z⟩)σ⋆k′(⟨w⋆

k, z⟩)] ≤ Cmax(⟨w0
i ,w

0
j ⟩, πi, πj) ≤ C

log(d)√
d

with high probability, which ends the proof.

We next prove that the norm ofw1
i after the first gradient step posseses a simplified dimension-independent

limit:
Lemma 14. Suppose n = Θ(d). Then, there exists a constant C , such that for any neuron i, with high-
probability as d→∞, with step-size η:

∥w1
i ∥2 = 1 + ηCa2i + O(

polylog d√
d

) (82)

Proof. Recall Equation 47:

E
[
∥gi∥2

]
=
n(n− 1)

n2
∥E[gi]∥2 +

a2i
np2

E
[
∥zν∥2σ′(⟨wi, z

ν⟩)2f⋆(zν)2
]

(83)

Lemma 7 implies that ∥E[gi]∥2 is approximately a2iXi ·
∥π0

i∥2(ℓ−1)

p2 for a random variable Xi. When ℓ = 1,
Xi simply reduces to a constan depending only on g∗. The second term can be decomposed as:

a2i
np2

E
[
∥zν∥2σ′(⟨wi, z

ν⟩)2f⋆(zν)2
]
=

a2i
np2

E
[
dσ′(⟨wi, z

ν⟩)2f⋆(zν)2
]
+E

[
(d− ∥zν∥2)σ′(⟨wi, z

ν⟩)2f⋆(zν)2
]
+

(84)
Let mi

0 ∈ Rr denote the vector of overlaps ⟨w0
i ,w

∗
1⟩, · · · , ⟨w0

i ,w
∗
k⟩ By Holder’s inequality, the second

term is of order O( 1√
d
) while through a change of variables, the first term can be expressed as a function of

the overlaps ⟨w0
i ,w

∗
j ⟩ for j ∈ [r]:

a2i
np2

E
[
dσ′(⟨wi, z

ν⟩)2f⋆(zν)2
]
=
a2i d

np2
E
[
σ′(⟨wi, z

ν⟩)2f⋆(zν)2
]
=
a2i d

np2
Fσ,g∗(M0)

=
a2i d

np2
Fσ,g∗(0) +

1√
d

C.7 Second step: Proof Sketch for Theorem 3

Before providing detailed proof of Theorem 3 for general polynomial activation functions, and a general
number of steps, we illustrate the essential idea by analyzing the second gradient step. Let Z0 denote the
batch of inputs used for the first gradient step. We condition on Z0 and assume that the high-probability
events in Lemma 12 hold. We independently sample another batch of n training inputs Z and perform the
gradient update:

g1
j = −∇wjL

(
f̂(zν ;W 1,a), f⋆(zν)

)
(85)
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However, unlike the first gradient step, the weights w1 are no-longer approximately orthonormal across
neurons and contain significant correlation along the teacher subspace.
We have:

w1
j = η

ajµ1√
p
v +w0

j +∆j , (86)

where v = 1
n

∑n
i=1 yizi. By theorem 2, we have that the projection of v along the target subspace V ∗

converges in probability to C1(f). Let v∗ = C1(f)We show that the alignment of v along v∗ affects the
components of the second gradient step along the teacher subspace, allowing the gradient to be sensitive to
directions linearly coupled with v∗ in the target function.
We proceed by analyzing the projection of the above update along a direction in the teacher subspace. Let
vj = PV ⋆(w1

j ) and consider the decomposition w1
j = vj + P⊥

V ⋆(w1
j ). We further have from Lemma 14

that ∥P⊥
V ⋆(w1

j )∥22 concentrates to a positive bounded value cj depending only on aj . For each sample, zi
let κi = ⟨vj , zi⟩ denote the projection along the “signal" vj .
We now introduce the following function for z ∈ R:

σκ,j(z) = σ(cjz + ηκ). (87)
Define µ1,κ,j = Ez∼N(0,1) [σκ,j(z)z]. Further, let:

σ′
>1,κ(u) = σ′

κ,j(u)− µ1,κ,j . (88)

From Lemma 5, we have that PV ⋆(v)
P−→ v⋆. Now, let u ∈ V ⋆ be a direction in the teacher subspace

orthogonal to v⋆. Using, equation (42), we have:

E
[
⟨u, g1

j ⟩
]
= E

[
(f⋆(z)− f̂(z,W 1,a))σ′(⟨z,w1

j ⟩)j(⟨z,u⟩)
]

= E
[
(f⋆(z)µ1,⟨z,vj⟩(⟨zi,u⟩)

]
− E

[
f̂(z,W 1,a)σ′(⟨zi,w1⟩)j(⟨zi,u⟩)

] (89)

Where in the first term we took the expectation over P⊥
V ⋆(w1) since it is orthogonal to the teacher-subspace.

The second term can be expressed as:

⟨(E
[
f̂(z,W 1,a)σ′(⟨z,w1)jzi

]
),u⟩ (90)

We have that f̂(z,W 1,a) depends only on the directionsw1
1, · · · ,w1

p. By Lemma 12, each of the directions,
satisfies ⟨wi,u⟩ = O(polylog(d)

p
√
d

). Furthermore, one can show that (E
[
f̂(z,W 1,a)σ′(⟨z,w1⟩)jzi

]
lies in

the span of w1
1, · · · ,w1

p. Therefore, E
[
f̂(z,W 1,a)σ′(⟨zi,w1⟩)jzi

]
)⊤u

d→∞−→ 0.

Now, consider the first term i.e E
[
f⋆(z)µ1,⟨z,vj⟩(⟨z,u⟩)

]
. Let v⋆,u,u′

1 · · · ,u′
d−2 be an orthonormal

basis of Rd. Without loss of generality, assume that v⋆,u, · · · ,u′
r−2. span the teacher subspace V ⋆. We

express y using the product Hermite decomposition under the above basis:

y = f⋆(z) =

∞∑
j1,··· ,jr=1

c⋆j1,··· ,jr
j1!j2! · · · jr!

Hej1(⟨v⋆, z⟩)Hej2(⟨u, z⟩) · · ·Hejr (⟨ur−2, z⟩). (91)

Since vj
P−→ v⋆ andu ⊥ u′

1, · · · ,u′
r−2, only the terms of the formHej1(⟨(v⋆), z⟩)Hej2(⟨u, z⟩) contribute

to the expectation E
[
yµ1,⟨z,vj⟩(⟨z,u⟩)

]
in the limit d→∞. Consider the contribution of one such term:

E
[
Hej1(⟨v⋆, z⟩)Hej2(⟨u, z⟩)µ1,⟨z,vj⟩,j⟨z,u⟩

]
→ E

[
Hej1(⟨v⋆, z⟩)Hej2(⟨u, z⟩)µ1,⟨z,v⋆⟩,j⟨z,u⟩

]
(92)
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Suppose j2 ̸= 1, then E [Hej2(⟨u, z⟩)⟨zi,u⟩] = 0. Therefore, the non-zero contributions arise from terms
of the form Hej1(⟨v⋆, z⟩)⟨u, z⟩. It can be checked that directions u having non-zero terms of this form
span U⋆2 as defined in Theorem 3. However, in general, the RHS of equation 92 might be 0 for some choices
of σ and aj . Moreover, such non-zero contributions might cancel each other for a chosen direction in U⋆2 .
Furthermore, to obtain high-probability result on the alignment along U⋆t for a general number of t steps,
one needs to quantitatively propagate the expectations and concentration bounds on the projections and
norms of W, and show that the magnitude of the projections can be bounded independent of the dimension.
We tackle these issues in the next section and provide a full proof of Theorem 3.

C.8 Proof of Theorem 3

The proof proceeds by induction on the number of time-steps t. To avoid certain degeneracy conditions in
the proof, we restrict ourselves to polynomial activations. Let U⋆t be the learned subspace at time-step t
according to the definition 2.
Let Qt ∈ Rp×p denote the overlap matrix for weights of the first-layer neurons at time t, i.e. Qti,j =

⟨wt
i ,w

t
j⟩ ∀i, j ∈ [p]. LetMt ∈ Rr×p denote the target-network overlap matrix i.e .M t

i,j = ⟨w⋆
i ,w

t
j⟩ ∀i ∈

[p], j ∈ [r]. LetW ∗ ∈ Rr×d denote the matrix with rows w⋆
1, · · · ,w⋆

r .
We denote by Zt, the batch of input sampled at time t ∈ [T ]. By assumption Z1, · · · ,ZT are independent.
LetFt denote the natural filtration associated toZ1, · · · ,ZT , i.eFt is theσ-algebra generated byZ1, · · · ,Zt,
and let µt denote the corresponding joint-measure of Z1, · · · ,Zt. We let gti denote the gradient for the ith
neuron at time t obtained using the batch Zt+1.
For any time t, let rt denote the dimension of U∗

t and let W ∗
t ∈ Rrt×d denote a matrix with rows forming

a basis of U∗
t , such that (W ∗)⊤W ∗

t is independent of d, n. Thus,W ∗
t represents a dimension independent

basis of U∗
t . Let vj,a ∈ Rrt denote the projections of wt

j along W ∗
t i.e vj,a = W ∗

tw
t
j . Similarly, for an

input z ∈ Rd, we denote the projection of z alongW ∗
t by κ = W ∗

tz. In what follows, we shall say that a
sequence of events En occurs with high-probability as n, d→∞ if there exist constants c, C > 0 such that
P(En) ≥ 1− Cpe−c log(n)2 + Cpe−c log(d)

2

At any timestep t ≥ 1, we prove that the following statements hold with high probability w.r.t µt:

(i) Qt = Q̃ta + O( polylogd√
d

),M t = M̃ t
a + O( polylogd√

d
), where Q̃ta, M̃ t

a denote dimension-independent
matrices with each entry being a polynomial dependent only on a, t of wt

i , dependent on the
second layer i,a.

(ii) Let v ∈ U⋆t , with ∥v∥ = 1 be arbitrary. Denote by vm ∈ Rk, the components of v along
w⋆

1, · · · ,w⋆
r i.e vm = W ⋆v. Then there exists an almost surely positive random variable qt,vm,a,

independent of d, n such that ⟨wi,v⟩) = qt,v,a+O(polylog√
d

). Furthermore, qt,v,a is a non-constant
polynomial in a, v1, · · · , vk .

(iii) For any v ∈ U⊥⋆
t ∩ V ⋆, |⟨wi,v⟩| = O(polylog√

d
), with high probability, for all i ∈ [p].

Proof. We proceed by induction over t. Suppose that the statements hold at some timestep t. We start by
proving that (i) holds at time t+ 1 in expectation:

Lemma 15. E [Qt] = Q̃ta + O( polylogd√
d

) and E [Mt] = M̃ t
a + O( polylogd√

d
) where each entry of Q̃ta, M̃

t
a is a

polynomial of a with degree independent of d, n.
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Proof. Recall that:

Qt+1
i,j = ⟨wt+1

i ,wt+1
j ⟩

= Qti,j + η⟨gti ,wt
j⟩+ η⟨wt

i , g
t
j⟩+ η2⟨gti , gtj⟩.

M t+1
i,j = ⟨w⋆

i ,w
t+1
j ⟩

=M t
i,j + η⟨w⋆

i , g
t
j⟩

(93)

By the induction hypothesis, the entries of E [Qt] ,E [M t] converge with high-probability to polynomial
limits with error O

(
polylog d

d

)
. Therefore, it suffices to show that E

[
⟨gti ,wt

j⟩
]
,E
[
⟨wt

i ,w
t
j⟩
]
,E
[
⟨gti , gtj⟩

]
converge to dimension-inpedendent polynomial limits. First, consider the case i = j. We have, analogous
to Equation 47

E
[
∥gti∥2

]
=

1

np2
E
[
∥zν∥2σ′(⟨wt

i , z
ν⟩)2(f⋆(zν)− f̂(zν ;W t,a))2

]
︸ ︷︷ ︸

T1

+
n(n− 1)

n2
∥E[gi]∥2︸ ︷︷ ︸

T2

(94)

The first term T1 can be decomposed as follows:

1

np2
E
[
∥zν∥2σ′(⟨wt

i , z
ν⟩)2(f⋆(zν)− f̂(zν ;W t,a))2

]
=

d

np2
E
[
σ′(⟨wt

i , z
ν⟩)2(f⋆(zν)− f̂(zν ;W t,a))2

]
+

1

np2
E
[
(d− ∥zν∥2)σ′(⟨wt

i , z
ν⟩)2(f⋆(zν)− f̂(zν ;W t,a))2

]
.

Similar to equation 50, Holder’s inequality implies that conditioned on the event in Ft of Qt,Mt being
bounded independent of d, n, the second term is of order O(

√
d
n ) = O( 1√

d
). Consider the first term,

conditioned on Ft.
d

np2
E
[
σ′(⟨wt

i , z
ν⟩)2(f⋆(zν)− f̂(zν ;W t,a))2|Ft

]
(95)

By assumption, d
np2 = α

p2 for some constant α. Therefore, by definition of f⋆(zν) and f̂(zν ;W t,a), the
term inside the expectation only depends on the overlaps of zν with the neurons and teacher subspace i.e
⟨wt

1, z
ν⟩, · · · , ⟨wt

p, z
ν⟩ ⟨w⋆

1 , z
ν ,⟩, · · · , ⟨w⋆

k, z
ν⟩. By a change of variables the above term can therefore be

expressed as an expectation w.r.t the k + j correlated variables corresponding to the above overlaps.
Concretely, we have:

d

np2
E
[
σ′(⟨wt

i , z
ν⟩)2(f⋆(zν)− f̂(zν ;W t,a))2|Ft

]
= Fg(Qt,Mt), (96)

for some function F : R→ R

Lemma 16. Fg is a polynomial in Qt,Mt independent of d, n.

Proof. By assumption, σ′ and f⋆ are polynomials in ⟨wt
1, z

ν⟩, · · · , ⟨wt
p, z

ν⟩ and ⟨w⋆
1 , z

ν⟩, · · · , ⟨w⋆
k, z

ν⟩
respectively. Therefore, σ′(⟨wt

i , z
ν⟩)2(f⋆(zν)−f̂(zν ;W t,a))2 is a polynomial in the zero mean correlated

Gaussian variables ⟨wt
1, z

ν⟩, · · · , ⟨wt
p, z

ν⟩, ⟨w⋆
1 , z

ν⟩, · · · , ⟨w⋆
k, z

ν⟩. Therefore, by Wick’s theorem, Fg is a
polynomial in Qt,Mt.
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By the induction hypothesis, with high-probability,Qt = Q̃t,a+O(polylog d√
d

) and M̃t,a+O(polylog d√
d

), where
Q̃t,a, M̃t,a denote deterministic matriceswith entries being polynomial functions of a. By propagating the
errors through the polynomial Fg , we obtain that Fg(Qt,Mt) = Fg(Q̃t,a, M̃t,a) + O(polylog d√

d
).

Next, consider the term T2 in Equation 94. By repeatedly applying Stein’s Lemma w.r.t terms ⟨wt
i , z⟩ for

i ∈ [p] and ⟨w∗, z⟩ for j ∈ [r], analogous to Lemma 4, E[gi], can be expressed as a linear combination of
wt

1, · · · ,wt
p and w∗

1 , · · · ,w∗
r . Furthermore, by Wick’s theorem, the coefficients are independent of d and

polynomial in Qt,Mt. Therefore, propagating errors from time t, T2 can be approximated by polynomials
in Qt,Mt with error O(polylog d√

d
)

Similary, the terms E
[
⟨gti , gtj⟩

]
,E
[
⟨w∗

i , g
t
j⟩
]
converge with high-probability to dimension-independent

polynomials in Qt,Mt

Next, we prove that (ii) and (iii) holds in expectation:

Lemma 17. Let v ∈ V ⋆, with ∥v∥ = 1 be arbitrary with components vm ∈ Rr along w⋆
1, · · · ,w⋆

r , then
E
[
⟨v, gtj⟩

]
= h(vm,a, Qt,Mt) + O(polylog d

p
√
d

), where h(vm,a, Qt,Mt) satisfies:

(i) h(vm,a, Qt,Mt) is non-zero, almost surely over a if v ∈ U⋆t+1.

(ii) h(vm,a, Qt,Mt) = 0 otherwise.

Consider the gradient w.r.t the jth neuron’s parameters:

gtj = −∇wj
L
(
f̂(zν ;W t,a), f⋆(zν)

)
=

1

n
aj

n∑
ν=1

zν(f⋆(zν)− f̂(zν ;W t,a))σ′(⟨zν ,wt
j⟩) (97)

Suppose that v ∈ U⋆t+1 ∩ (U⋆t )
⊥ i.e when v is a new direction not yet learned upto time t.Using, equation

(97), the expectation E
[
⟨v, gtj⟩

]
can be expressed as:

E
[
⟨v, gtj⟩

]
= E

[
aj(f

⋆(z)− f̂(z;W t,a))σ′(⟨z,wt
j⟩)⟨z,v⟩

]
. (98)

We first consider the term E
[
f̂(z;W t,a))σ′(⟨z,wt

j⟩)⟨z,v⟩
]
. Through a change of variables, and Wick’s

theorem, one obtains thatE
[
f̂(z;W t,a)σ′(⟨z,w1⟩)j⟨z,v⟩

]
is a polynomial inQ and the overlaps ⟨wi,v⟩

for i ∈ [p] having value 0 when ⟨wi,v⟩ = 0 for all i ∈ [p]. By the induction hypothesis, ⟨wi,v⟩ =
O(polylog d√

d
) with high probability. Therefore E

[
f̂(z;W t,a))σ′(⟨z,wt

j⟩)⟨z,v⟩|Ft
]
= O(polylog d√

d
) with

high probability. Similarly, E
[
f̂(z;W t,a))σ′(⟨z,wt

j⟩)⟨z,v⟩|Ft
]
= O(polylog d√

d
) holds when v /∈ U⋆t+1.

Now, consider the termE
[
ajf

⋆(z)σ′(⟨z,wt
j⟩)⟨z,v⟩

]
. First, using Fubini’s theorem, we take the expectation

w.r.t the component z⊥ of z in V ⋆⊥.
Recall that vj,a = W ∗

tw
t
j and κ = W ∗

tz. The resulting expectation converges in probability to a function
of κ:

Ez⊥
[
ajf

⋆(z)σ′(⟨z,wt
j⟩)⟨z,v⟩

]
= Eκ [ajf⋆(z)f1(a, κ)⟨z,v⟩] , (99)
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where f1(a, κ) is defined as follows:

f1(a, κ) = Ez⊥
[
σ′(z⊤wt

j)
]

= Eu∼N(0,1) [σ
′(cj,au+ ⟨κ,vj,a⟩)]

, where cj,a denotes the norm of wt
j along the orthogonal complement of V ∗. f1(a, κ) generalizes the

“shifted-hermite" µ1,κ,j defined in the section C.7. By assumption on σ, σ′(cj,au+ ⟨κ,vj,a⟩) is a polynomial
in cj,au, ⟨κ,vj,a⟩. Furthermore, only the odd terms in cj,au are zero in expectation u ∼ N(0, 1). Therefore,
f1(a, κ) is a polynomial in ⟨κ,vj,a⟩ and cj,a with only even degree terms in cj,a. By the induction
hypothesis, c2j,a converges in probability to a polynomial in a. Therefore f1(a, κ) is a polynomial in a, κ.

Subsequently, we consider the expectation w.r.t ⟨z,v⟩, at a fixed value of κ. Define the following function
of κ:

f2(κ) = E⟨z,v⟩ [y⟨z,v⟩|κ] . (100)

Using the tower law of expectation, we obtain:

E
[
ajf

⋆(z)σ′(z⊤wt
j)⟨z,v⟩

]
= Eκ [f1(aj , κ)f2(κ)] , (101)

When v /∈ U⋆t+1, f2(κ) is identically 0 and the above expectation vanishes.
We aim to show that the above expectation does not vanish except for ai belonging to a zero-measure set.
By the definition of subspace conditioning (definition 2), ∃κ > 0 such that E⟨z,v⟩ [f

⋆(z)z|κ] has non-zero
overlap with v.
Therefore, f2(κ) is not identically zero. Furthermore, since f⋆ is a polynomial by assumption, and v ⊥ V ⋆,
a rotation of basis implies that f2 is a polynomial in κ. Let Sy,t be the set of degrees s ∈ N0 such that
Ef2(κ)κs [κ] ̸= 0. Since f2 is not identically 0, we have that Sy,t ̸= ϕ.
Now, recall that:

f1(a, κ) = Eu∼N(0,1) [σ
′(cj,au+ ⟨κ,vj,a⟩)]

= Eu∼N(0,1)

deg(σ)−1∑
r=0

(r + 1)br+1(cj,au+ ⟨κ,vj,a⟩)r


=

deg(σ)−1∑
r=0

(r + 1)br+1Eu∼N(0,1) [(cj,au+ ⟨κ,vj,a⟩)r] .

Now, let s ∈ Sy,t be arbitrary. By assumption, deg(σ)− 1 ≥ s. Let ps(a) denote the coefficient of κs in
f1(a, κ). Since cj,a,vj,a are non-constant polynomials in a, the coefficient of κs in (cj,au+ ⟨κ,vj,a⟩)r is
a non-constant polynomial in a for any r such that r− q is even. Furthermore, the degree of the coefficient
of κs in (cj,au+ ⟨κ,vj,a⟩)r is strictly increasing in r. Therefore, for any s ∈ Sy,t, ps(a) is a non-constant
polynomial in a. Now, consider the term in ps(a) with the least degree in aj . From the definition of vj,a,
we have that vj,a = 0 whenever aj = 0. Let dj denote the least s ∈ N0 such that the coefficient of asj in
⟨vj,a, κ⟩ is non-zero. We have that dj > 0. Consequently, the minimum degree of aj in (cj,a)

q(⟨κ,vj,a⟩)s,
is (dj)s for any q. Therefore, the minimum degree of ps(a) is strictly increasing in s. This implies that
ps(a) are linearly independent for s = 1, · · · ,deg(σ)− 1.
Now, consider the function defined above in Equation 101:

h(t,a) = Eκ [f1(a, κ)f2(κ)] . (102)
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By expanding f1, f2 along κ, the coefficient of κs for each s ∈ Sy,t results in a non-constant polynomial in
a. We obtain:

h(t,a) =
∑
s∈Sy,t

csps(a), (103)

where cs denote constants independent of d, n. Therefore, we have that h(a) is a non-constant polynomial
in a. Using Fubini’s theorem, we have that the set of zeros of non-zero multivariate polynomials has 0
measure w.r.t the Lebesque measure (for a generalization, see (Mityagin, 2020)), we obtain that q(a) ̸= 0
almost surely.
Now, suppose that v ∈ (U⋆t ), i.e when v is an already learned direction. By the induction hypothesis, ⟨wt

i ,v⟩
converges to a non-constant polynomial in a. Consider the term aj√

pE
[
f̂(z;W t,a))σ′(⟨z,wt

j⟩)⟨z,v⟩
]
in

⟨gti ,v⟩. By expanding f̂(z;W t,a) we obtain:

aj√
p
E
[
f̂(z;W t,a))σ′(⟨z,wt

j⟩)⟨z,v⟩
]
=
aj
p

p∑
i=1

aiE
[
σ(⟨wt

i , z⟩)σ′(⟨z,wt
j⟩)⟨z,v⟩

]
(104)

The term correspondign to the jth neuron has the form:

a2j
p
E
[
σ(⟨wt

j , z⟩)σ′(⟨z,wt
j⟩)⟨z,v⟩

]
(105)

By Wick’s theorem and assumption on σ, E
[
σ(⟨wt

j , z⟩)σ′(⟨z,wt
j⟩)⟨z,v⟩

]
is a non-zero polynomial in

⟨wt
j ,v⟩. Let dj be the degree of aj in ⟨wt

j ,v⟩. Then, the degree of aj in
a2j
p E
[
σ(⟨wt

j , z⟩)σ′(⟨z,wt
j⟩)⟨z,v⟩

]
is at-least dj + 2. Proceeding similarly for the other terms, one can show that the degree of aj in ⟨gti ,v⟩ is
strictly larger than in ⟨wt

i ,u⟩. This ensures that ⟨wt+1
i ,v⟩ = ⟨gti ,v⟩+ η⟨gti ,v⟩ remains a non-constant

polynomial upto error O(polylog d√
d

). Therefore, almost surely over a, a direction is not “un-learned". Finally,
by decomposing along a general v ∈ U⋆t+1, along U⋆t and U⋆t+1 ∩ (U⋆t )

⊥, one obtains that points (ii) and
(iii) of the induction statements hold in expectation.
Next, we prove that the events (i), (ii), (iii) hold with high probability. By the induction hypothesis, we
have that and the above analysis, we have that:
Lemma 18. Suppose that the induction hypothesis holds at time t. Then, the following events occur with
high-probability for all i, j ∈ [p]

(i) |∥gt+1
i ∥2 − E

[
∥gt+1
i ∥2

]
| = O

(
polylog d√

d

)
(ii) ∥⟨gi, gj⟩ − E [⟨gi, gj⟩]∥ = O

(
polylog d√

d

)
(iii) For any k ∈ [r], and any unit vector w

|⟨w, gi⟩ − E[⟨w, gi⟩]| = O

(
polylog d√

d

)
(106)

Proof. We condition on the event in Ft that Qt,Mt are bounded by some constants independent of d, n.
Subsequently, the proof proceeds similar to Proposition 2, with the additional incorporation of the term due
to f̂(zν ;W t,a)) in the gradient.
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We have:

gtj =
1

n
aj

n∑
ν=1

zi(f
⋆(zν)− f̂(zν ;W t,a))σ′(z⊤

i w
t
j) (107)

Define:
Xν
i = zνσ′(⟨wt

i , z
ν⟩)(f⋆(zν)− f̂(zν ;W t,a)). (108)

Analogous to the proof of Proposition 2, we have:

∥gi∥2 − E[∥gi∥2] =
1

n2p2


n∑
ν=1

∥Xν
i ∥2 − nE[∥Xν∥2]︸ ︷︷ ︸

S1

+
∑
ν ̸=ν′

⟨Xν
i ,X

ν′

i ⟩ − n(n− 1)∥E⟨Xν
i ,X

ν′

i ⟩∥2︸ ︷︷ ︸
S2


(109)

Similarly, we have:

⟨gi, gj⟩−E[gi, gj ] =
1

n2p2


n∑
ν=1

⟨Xν
i ,X

ν
j ⟩ − nE[⟨Xν

i ,X
ν
j ⟩]︸ ︷︷ ︸

S′
1

+
∑
ν ̸=ν′

⟨Xν
i ,X

ν′

j ⟩ − n(n− 1)(E⟨Xν
i ,X

ν′

j ⟩)2︸ ︷︷ ︸
S′
2


(110)

Note that f⋆(zν) and f̂(zν ;W t,a) are polynomials in finite-number of correlated Gaussians
⟨wt

1, z
ν⟩, · · · , ⟨wt

p, z
ν⟩, ⟨w⋆

1 , z
ν⟩, · · · , ⟨w⋆

r , z
ν⟩. Therefore, by repeatedly applying Lemma 2 and The-

orem 5, we obtain that σ′(⟨wt
i , z⟩), f⋆(zν) and f̂(zν ;W

t,a)) have bounded Orlicz norms of some finite
order αt.
Subsequently, similar to Lemma 9, through Holder’s inequality, Lemma 2 and Theorem 5, we obtain that
∥Xν

i ∥2, ⟨Xν
i ,X

ν′

i ⟩, ⟨Xν
i ,X

ν
j ⟩, ⟨Xν

i ,X
ν′

j ⟩, have Orlicz norms of order O(d) with α = αt for some αt
independent of d.
The remaining proof follows by repeating the arguments in Lemmas 9, 10 for Orlicz norms of general order.
Similarly (iii) is obtained by replacing the application of Bernstein’s inequality in Lemma 8 by Theorem
5.

Lemmas 15 and 18 together with C.8 and the induction hypothesis imply statement (iii) at time t+ 1.
It remains to prove the base case i.e t = 1. If the leap index ℓ > 1, U⋆t = 0 for all t ≥ 1. Applying the above
arguments then implies that (i) and (iii) hold for all timesteps t.
Therefore, we consider the case ℓ = 1 At t = 1, U⋆1 is simply the subspace along (C1(f

⋆)). Let v =
± 1

∥C1(f⋆)∥C1(f
⋆) be a vector as per (ii) let i ∈ [p] be an arbitrary neuron. We have:

⟨v,w1
i ⟩ = ⟨v,w0

i ⟩+ η⟨v, gi⟩

= η⟨v, gi⟩+ O(
1√
d
)

It is straightforward to check that 4 hold when σ, g∗ are polynomials, while Lemma 14 holds in expectation.
Applying the concentration results for Orlicz norms of general order as in Lemma 18 imply that Lemma 14
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also holds in probability for polynomial σ, g∗. To establish (i) at time t = 1, we note that Lemma 14 implies
that E [wi]

2 converges to 1 + ca2i where c is independent of d, n. By Lemma 4 the first term equals with
high-probability, ±aiµ1

p ∥C1(f
⋆)∥+ O 1√

d
. Since, aiµ1

p ∥C1(f
⋆)∥ is a non-constant (linear) polynomial in

ai, this proves (ii) for t = 1. Lemmas 4 and part (iii) in Lemma 18 directly imply (iii) of the induction
statements.
Points (ii), (iii) of the induction statements directly imply Theorem 3.

C.9 Prediction of the alignment at the second step

We now utilize the analysis in the previous section to obtain a theoretical prediction for the gradient
orientation after two steps for the above target function. We follow the notation defined in the proof sketch
in Section C.7
We have, using Equation (89):

E
[
⟨u, g1

j ⟩
]
→ E

[
yµ1,x⊤v⋆(x⊤

i u)
]
− E

[
ŷ1i σ

′(x⊤
i w

1)j(x
⊤
i u)

]
. (111)

As explained in the previous section, the second term does not contribute to an alignment towards v⊥.
Therefore we consider the ratio of the first term when u = v⋆ or u = v⊥. We obtain:

⟨g1,v⋆⟩ ≈ E
[
yµ1,(µ1x⊤v⋆)/

√
2p(x

⊤
i v

⋆)
]
, (112)

where µ1 denotes the first Hermite coefficient of the student activation σ, given by 0.5 for Relu.
µ1,x⊤v⋆ corresponds to the first Hermite coefficient of a translated Relu function and is given by:

µ1,κ,j = (1− Φ(−ajηκ)) =
1

2
(1± erf(ηκ/

√
2)). (113)

Therefore, when η = 4
√
p, we obtain:

µ1,(µ1x⊤v⋆)/
√
2p =

1

2
(1± erf(x⊤v⋆)). (114)

Therefore, using the Hermite decomposition of erf, we obtain the following predicted orientations in the
setting considered in the right panel of Fig. 6:

v
(t=2)
1 = (1− 2√

3π
)w⋆

1 + (1 +
2√
3π

)w⋆
2 v

(t=2)
2 = (1 +

2√
3π

)w⋆
1 + (1− 2√

3π
)w⋆

2 (115)

C.10 Limitations of the Staircase Structure

We show that a natural class of teacher functions, containing neurons with identical activation functions
and uniform second-layer weights does not contain a staircase structure:
Proposition 4. Let y = f⋆(z) =

∑r
k=1 σ

⋆(⟨w⋆
k, z⟩) for some σ⋆ having leap index 1, then U⋆i = U⋆1 for all

i ≥ 1.

Proof. For any such target function, the direction v⋆ is given by v⋆ = 1√
r
(
∑r
k=1 w

⋆
k). Without loss of

generality, assume that w⋆
k = ek, where ek denotes the unit vector corresponding to the kth coordinate.
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Now, consider any directionu ⊥ v⋆ in the teacher subspace. Such a vector satisfies
∑r
k=1 ui = 0. Therefore,

for any k ≥ 0, we have:

E
[
f⋆(z)Hk((v

⋆)⊤z)((ui)
⊤z)

]
= (

p∑
i=1

(ui))(E
[
f⋆(z)Hk((v

⋆)⊤z)z1
]
)

= 0.

(116)

Where we used the symmetry of f⋆(z) w.r.t permutations of the first r coordinates. Therefore, the Hermite
decomposition of f⋆(z) does not contain any term that linearly couples u to v⋆.

Therefore, the presence of a staircase structure requires asymmetry between the the dependence of the
target function on different directions in the teacher subspace.
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D Learning the second layer

D.1 Proof of Proposition 1

We first prove the finite p case of Proposition 1. Let a be a second layer vector with ai ≤ c/
√
p, and assume

that W only learns a subspace U ⊆ V ⋆. We write Rd = U ⊕ U⊥ ⊕ V ⋆⊥, where U⊥ is the orthogonal
subspace of U in V ⋆. By assumption, we have ∥PU⊥wi∥ ≤ εd for every i; where εd is going to zero as d
grows.
For any z ∈ Rd, we have

f̂(z;W,a) =

p∑
i=1

ai√
p
σ(⟨wi, PUz⟩+ ⟨wi, PU⊥z⟩+ ⟨wi, PV ⋆⊥z⟩)

=

p∑
i=1

ai√
p
σ(⟨wi, PUz⟩+ ⟨wi, PV ⋆⊥z⟩) + ai√

p
εdσ̃(⟨wi, PU⊥z⟩)

where σ̃ is a Lipschitz function. We call the first term of the above expression f̃(PUz, PV ⋆⊥z), forgetting
the structure of the function f̂ . Then, we can write the risk as

R(W,a) = Ez

[(
f⋆(z)− f̃(PUz, PV ⋆⊥z)

)2]
+O(εd), (117)

having used the Cauchy-Schwarz inequality to bound the contribution of σ̃. Then, by successive expecta-
tions,

R(W,a) = EP
V ⋆⊥z,PUz

[
EP

U⊥z

[(
f⋆(z)− f̃(PUz, PV ⋆⊥z)

)2 ∣∣∣∣PV ⋆⊥z, PUz

]]
+O(εd),

≥ EP
V ⋆⊥z,PUz

[
inf
f

EP
U⊥z

[
(f⋆(z)− f(PUz, PV ⋆⊥z))

2

∣∣∣∣PV ⋆⊥z, PUz

]]
+O(εd)

where the infimum is taken over all measurable functions f : U × V ⋆⊥ → R. But this infimum exactly
corresponds to the definition of conditional expectation/conditional variance, which is independent from
PV ⋆⊥z (since f⋆ is). As a result,

R(W,a) ≥ EPUz [Var (f
⋆(z)|PUz)] +O(εd), (118)

which implies the statement of Proposition 1.

D.2 Full statement of Theorem 4

We now provide the full statement of Theorem 4. It establishes the asymptotic equivalence of the training
and generalization errors of the original features and the conditional Gaussian features defined by equation
(15).
Consider the sequence of vectors vn ∈ Rd defined as in Equation (76) by vn = 1

n

∑n
i=1 yixi. For simplicity,

we omit the dependence of vn on n and denote each entry by v. For any vector z ∈ Rd, define the
decomposition z = zvv + z⊥ and feature maps:

ϕCK(z) = σ(W (1)z), (119)

whereW (1) denotes the weight matrix obtained through the application of a single gradient step.
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Then the random variable ϕCK(z) admits a regular conditional distribution conditioned on the values of zv
(Theorem 8.37 in Klenke (2013)). Therefore, the following mean, correlation, and covariance matrix are
well-defined:

µ(zv) = E [ϕCK(z) | zv] , Ψ(zv) = E
[
ϕCK(z)(z

⊥)⊤ | zv
]
,

Φ(zv) = Cov [ϕCK(z) | zv]−Ψ(zv)Ψ(zv)
⊤ (120)

Now, for each value of zv , define the following random variable:

ϕCL(z;v) = µ (zv) + Ψ(zv)z
⊥ +Φ(zv)ξ. (121)

Then ϕCL(z;v) satisfies:

E [ϕCL(z) | zv] = µ(zv),E
[
ϕCL(z)(z

⊥)⊤ | zv
]
= Ψ(zv), Cov [ϕCL(z) | zv] = Cov [ϕCK(z) | zv] . (122)

Therefore, ϕCL(z;v) is a Gaussian variable having the same conditional mean, covariance as ϕCK(z;v) and
the same corrrelation with z⊥ as ϕCK(z;v). Since z⊥ is Gaussian and independent of zv , this uniquely
characterizes the conditional measure of ϕCL(z;v).
Now, consider a set of n training inputs z1, · · · , zn. For each i ∈ n, generate an equivalent feature map
ΦCL through equation (1), with ξ being independently sampled for each example. Let ΦCK and ΦCL denote
matrices in Rn×p with rows ϕCK(zi) and ϕCL(zi) respectively,
Consider the following minimization problem:

min
a∈Rp

1

n

n∑
ν=1

(⟨a, ϕCK(zν)⟩ − f⋆(zν))2 + λ∥a∥2 (123)

Define the following constraint set:

Sp =
{
θ ∈ Rd

∣∣ ∥θ∥2 ≤ R, ∥θ∥∞ ≤ Cp−η
}
. (124)

We make the following assumption:
Assumption 6. There exist constantsR,C, η such that the minimizer âCK of the optimization problem defined
by equation (123) lies in Sp with high probability as n, d→∞.

The above assumption can be enforced by utilizing constrained minimization for the second layer. Al-
ternatively, for overparameterized models i.e p/n > 1, one could utilize the arguments in Theorem 5 of
Montanari and Saeed (2022). Let R̂⋆n(Φ,y(Z)),R⋆g(Φ,y(Z)) denote the training and generalization errors
respectively with features Φ and labels y(Z).
Theorem 4. Assume that n, p = Θ(d), and that the vector V ⋆1 = v⋆ defined in Theorem 2 is nonzero. Then,
the sequence of vectors vn = 1

n

∑n
i=1 yixi ∈ Rd satisfy:

(i) As n, d→∞, PV ⋆v
P−→ µ√

pv
⋆.

(ii) Under Assumption 6, the training and generalization errors obtained through the minimization of the
objective (15) for training distribution defined by feature maps ϕCK(z) converge in distribution to the
corresponding training and generalization errors for features ϕCL(z;v).

Concretely, we have that for any bounded Lipschitz function Ψ : R→ R:

lim
n,p→∞

∣∣∣E [Ψ(R̂⋆n(ΦCK ,y(Z))
)]
− E

[
Ψ
(
R̂⋆n(ΦCL,y(Z))

)]∣∣∣ = 0
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lim
n,p→∞

|E [Ψ (Rg(ΦCK ,y(Z)))]− E [Ψ (Rg(ΦCL,y(Z)))]| = 0

In particular, for any E ∈ R, and denoting P−→ the convergence in probability:

R̂⋆n(ΦCK ,y(Z))
P−→ E if and only if R̂⋆n(ΦCL,y(Z))

P−→ E

R⋆g(ΦCK ,y(Z))
P−→ E if and only if Rg(ΦCL,y(Z))

P−→ E,
(125)

Part (i) follows directly from Lemma 5. To prove the equivalence of training and generalization errors for
the given direction, we rely on the framework of one-dimensional CLT (Central Limit Theorem), discussed
in Goldt et al. (2022). One-dimensional CLT was recently shown to imply the universality of training and
generalization errors for Random feature models in Hu and Lu (2022). However, in our setting where we
train the model, and as verified empirically in Ba et al. (2022), a naive one-dimensional CLT with equivalent
Gaussian features no longer holds.
Instead, we introduce a generalization termed “conditional one-dimensional CLT", given by the following
Lemma:
Lemma 19. For any Lipschitz function φ : R2 → R,

lim
n,p→∞

sup
θ1∈Sp,θ2∈Sd−1

∣∣E [φ(θ⊤
1 ϕCK(z),θ

⊤
2 z)

∣∣ zv = k
]
− E

[
φ(θ⊤ϕCL(z),θ

⊤
2 z)

∣∣ zv = k
]∣∣ = 0, ∀k ∈ R,

(126)
where Sd−1 denotes the unit sphere in Rd

Proof. For an input z ∼ N(0, Id), we consider the decomposition z = zvv + z⊥ We note that conditioned
on on zv = k, ϕCL(z), z⊥ is a Gaussian random variable. Next, consider ϕCK(z). Our proof relies on the
observation that while the features ϕCK(z) have complex non-linear dependence on zv , for a fixed value of
zv , they are equivalent to a random-features mapping applied to z⊥. Concretely, we have by Lemma 12
that the weight matrixW (1) has the following spike+bulk decomposition (equation (76)):

W (1) = ηuv⊤ +W (0) + η∆, (127)
where u = µ1

p a

LetW⊥ denote the combined matrix W (0) + η∆ with rows w⊥
i for i ∈ [p].

Lemma 14 implies that there exist constants ci for i ∈ [p] depending only on ai such that ∥w⊥
i ∥2 =

ci + O(polylog d√
d

) with high-probability. Define the following neuron-wise activation functions:

σi,zv (u) = σ(cju+ ηvz)− Eu [σ(cju+ ηuizv)] , (128)
where i ∈ [p] denotes the index of the neuron and the expectation is w.r.t z ∼ N(0, 1). Under the choise of
symmetric initialization in Equation (26), it suffices to restrict ourselves to the first half p/2 neurons.
For a fixed value of zv , the feature map ϕCK(z) = σ(W 1z) is equivalent to a random features mapping
with neurons σi,vz applies to inputs z⊥ ∈ Rd with approximately orthogonal weightsW⊥. Consider the
following events for some positive constants C1, C2, C3:

A1 =

{
sup

i,j∈[p/2]

∣∣⟨w⊥
i ,w

⊥
j ⟩ − ciδij

∣∣ ≤ C1

(
polylog d

d

)1/2
}

A2 =
{
∥W⊥∥op ≤ C3(polylog d)

}

We have, using Lemma 12 and a union bound, that for p, d = Θ(n), Pr[A1]
n,d→∞−→ 1. Furthermore, part

(ii) of Lemma 14 in Ba et al. (2022) implies that Pr[A2] → 1. Next, we utilize Corollary 2 and Lemma 3
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in Hu and Lu (2022). Note that the neuron wise activation functions (128) for a fixed value of zv satisfy
Eu [σi,vz (u)] = 0. We relax the requirement of odd-activation in Hu and Lu (2022) by noting that ϕCK , ϕCL
have exactly equivalent means and covariances as in Theorem 6 of Dandi et al. (2023).

The above Lemma states that the one-dimensional projections of ϕCK(z) are asymptotically distributed as
jointly Gaussian variables with z⊥.

D.3 Conditional GET

We now prove part (ii) of Theorem 4 using Lemma 19. This relies on the universality of training and
generalization errors between the given distribution and the “conditional equivalent" distribution. The
central idea of the proof again relies on a the isolation of the effects of the “spikes" and the “noise" in the
features.
The technique presented here is also of independent interest for proving the universality of training,
generalization errors in related setups such as with spiked-covariance inputs.
We utilize the following properties of the features :
Lemma 20. For any fixed zv , the random variable ϕCK − µ(zv) is sub-Gaussian with sub-Gaussian norm
independent of zv and n.

Proof. The result follows from the assumption of uniform boundedness of the derivative of σ⋆ and the
Lipschitz concentration of Gaussian variables.

Lemma 21. There exists a constant C such that the matrix Φ̄CK with rows ϕCK − µ(zv) satisfies:

Pr[∥Φ̄CK∥ ≥ K
√
p] ≤ 2 exp(−Cn) (129)

Proof. By Lemma 20, each row of Φ̄CK is sub-Gaussian. Therefore, the result follows from the concentration
of spectral norm of matrices with independent sub-Gaussian rows (Theorem 5.39 in Vershynin (2010)).

We start by proving certain properties of the optimal parameters ai upon the training of the second layer:
Lemma 22. Let âCK(λ) be the parameters obtained through ridge regression on features ϕCK(zi){i=1,···n}
with regularization strength λ. Then, there exists a constants C such that with high probability as n, d→∞:

1

n

n∑
i=1

(
â⊤CKµ(zi,v)

)2 ≤ C (130)

Proof. By assumption, yi(z) = 1√
pa

⊤σ(Wz)with σ′ uniformly bounded. Therefore, from the concentration
of Lipschitz functions of gaussian variables, yi(z) is sub-Gaussian. Thus y2i (z) are sub-exponential variables.
Using Bernstein’s inequality Vershynin (2018), we obtain:

Pr[
1

n

n∑
i=1

(yi)
2 − E

[
(yi)

2
]
> K] ≤ 2 exp(−min(c1K, c2K

2)n). (131)

For constants c1, c2.
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Let Ay denote the following event:

Ay =

{
1

n

n∑
i=1

(yi)
2 < C1

}
. (132)

By Equation (131), we have Pr [Ay]→ 1 as n, d→∞.

Let R̂(W,a) denote the empirical risk at given values of a,W . We have:

â = argmin
a

R̂(W,a) = argmin
a

1

2n

n∑
i=1

(yi − a⊤ϕk(zi))
2. (133)

We note that when a = 0, we have:

R̂(W,0) =
1

n

n∑
i=1

(yi)
2. (134)

Since â minimizes R̂(W,a), we must have:

R̂(W, â) ≤ R̂(W,0). (135)
We obtain:

1

2n

n∑
i=1

(yi − a⊤ϕk(zi))
2 ≤ 1

n

n∑
i=1

(yi)
2

=⇒ 1

2n

n∑
i=1

(a⊤ϕk(zi))
2 ≤ 1

n

n∑
i=1

a⊤ϕk(zi)yi

=⇒ 1

2n

n∑
i=1

(â⊤ϕk(zi))
2 ≤

√√√√ 1

n

n∑
i=1

(a⊤ϕk(zi))2

√√√√ 1

n

n∑
i=1

y2i ,

where the last inequality follows from Cauchy-Schwarz. Therefore:√√√√ 1

n

n∑
i=1

(a⊤ϕk(zi))2 ≤ 2

√√√√ 1

n

n∑
i=1

y2i

1

n

n∑
i=1

(a⊤µ(zi))
2 +

1

n
∥Φ̄⊤

CKa∥22 ≤ 4(
1

n

n∑
i=1

y2i ).

Applying Lemma 21 and Pr [Ay]
n,d→−→ 1 then completes the proof.

Next, we prove the universality of the training, generalization error, conditioned on the values of the
projections zv . This can be achieved through a number of techniques such as the Lindeberg’s method in Hu
and Lu (2022). We utilize the result of Montanari and Saeed (2022), who apply the interpolation technique
to continuously transform the inputs xi to equivalent Gaussian vectors gi.
Instead, we interpolate between the features ϕCK(z) and ϕCL(z). Define:

ut,i = µ(zi,v) + cos(t)(ϕCK(z)− µ(zi,v)) + sin(t)(ϕCL(z)− µ(zi,v)),

.
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Let A1 denote the event:

A1 =

{
1

n

n∑
i=1

(
â⊤CKµ(zi,v)

)2 ≤ C1

}
(136)

Under the above interpolation path, we generalize Theorem 1 in Montanari and Saeed (2022) to obtain that
for any bounded Lipschitz function Φ : R→ R:

lim
n,p→∞

sup
vz1

,··· ,vzn

∣∣∣E [
1A1Φ

(
R̂

⋆
n(ΦCK ,y(Z))

)
| vz1 , · · · , vzn

]
− E

[
1A1Φ

(
R̂

⋆
n(ΦCL,y(Z))

)
| vz1 , · · · , vzn

]∣∣∣ = 0.

(137)

Below, we explain the modifications to Theorem 1 in Montanari and Saeed (2022) that allow its applicability
to our setting:

(i) We replace equation (12) in Assumption 5 tof Montanari and Saeed (2022) by the conditional
1d-CLT (Lemma 19). This is similar to the conditioning utilized in Dandi et al. (2023) for proving
the universality in mixture models.

(ii) Our target function y = f⋆(z) depends on the projection along the spike vz as well as the
orthogonal component z⊥. Since we condition on the values of vz , their dependence can be
absorbed into the loss function for each input z⊥

i

(iii) While Theorem 1 in Montanari and Saeed (2022) does not allow a dependence of the labels on
the latent variables z, such a target function can be incorporated by considering the inputs to be
the joint variables in (ΦCK(z), z) ∈ Rp+d and constraining the parameters to have 0 components
along the last d directions.

(iv) The event A1 and Lemma 21 ensure that Lemmas 5 and 6 in Montanari and Saeed (2022) hold
under the presence of variable and unbounded means across samples µ(zi,v).

Next, using the Law of total expectation and Equation 137, we obtain:

lim
n,p→∞

∣∣∣E [1A1Φ
(
R̂⋆n(ΦCK ,y(Z))

)]
− E

[
1A1Φ

(
R̂⋆n(ϕCL,y(Z))

)]∣∣∣ = 0.

Finally, we note Lemma 22 implies that Pr[Ac1]→ 0. Since Φ is bounded, we have that

lim
n,p→∞

∣∣∣E [1Ac
1
Φ
(
R̂⋆n(ΦCK ,y(Z))

)]
− E

[
1Ac

1
Φ
(
R̂⋆n(ϕCL,y(Z))

)]∣∣∣ = 0.

This completes the proof of Theorem 4.

D.4 Generalization Error Lower Bounds: Proof of Corollary 1

From Theorem 4, it is sufficient to prove the lower bound for the generalization error corresponding to
the equivalent features ϕCL(z). Let Z denote the input design matrix with rows zi. Similarly, let Ξ denote
the matrix with rows containing n independent Gaussian vectors, denoting the uncorrelated noise in
the equivalent conditional Gaussian features defined by equation (121). We have that âCL(λ,Z,Ξ) =(
Φ⊤
CLΦCL + λn

N I
)−1

Φ⊤
CLy. The generalization error can then be expressed as:

R(W, âCL) = Ez,ξ

[
(f⋆(z)− âCL(λ,Z,Ξ)⊤ϕCL(z))

2
]

= Eξ
[
Ez

[
(f⋆(z)− âCL(λ,Z,Ξ)⊤ϕCL(z))

2
]]
,

where the last line follows from Fubini’s theorem.
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We note that the predictor f̂(z) = 1√
p â

⊤
CLϕCL(z) is a linear function of z⊥ with coefficients dependent on

zv . Therefore, f̂(z) ∈ Pv,1.
For a fixed value of ξ, we obtain the following expression for the generalization error:

Ez

[
(f⋆(z)− f̂(z))2

]
= ∥f⋆ − f̂∥2.

= ∥Pv,1(f⋆ − f̂)∥2 + ∥Pv,>1(f
⋆ − f̂)∥2

≥ ∥Pv,>1(f
⋆)2∥2,

where we used that Pv,>1(f
⋆ − f̂) = Pv,>1(f

⋆). Since the projection of f⋆ on the orthogonal complement
of the teacher subspace is 0, Corollary 1 then follows usingPV ⋆v

P−→ µ√
pv

⋆ and the dominated convergence
theorem for the RHS.
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