# White Box Finance: Interpreting Al Decisions in Finance through Rules and Language Models

<sup>1</sup>Pastel Africa <sup>2</sup>Al Saturdays Lagos

Oluwafemi Azeez<sup>1 2</sup> Samson Tontoye<sup>1</sup> Olorunleke White<sup>1</sup> Abuzar Royesh<sup>1</sup>



# **Motivation**

- Loan defaults  $\rightarrow$  major financial losses.
- ML models (e.g., XGBoost) improve prediction, but are black-boxes.
- Finance requires transparent, auditable explanations for regulators, loan officers, and customers.

## Research Goal/Methodology

Enhance interpretability and trust in AI credit risk models by creating and comparing:

- SHAP + GPT-4  $\rightarrow$  feature-based + natural language explanations.
- Rule-based logic → transparent, business-aligned decision rules.

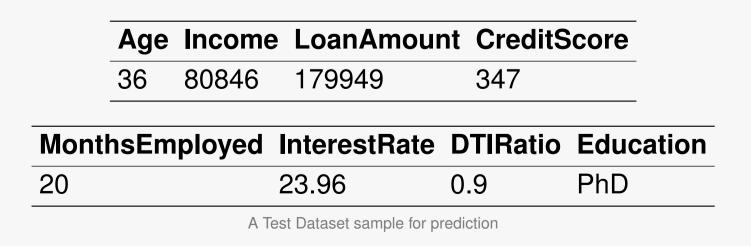
## **Experimental Setup**

- Dataset: Anonymized loan applicant records containing demographics, employment, credit history, and repayment behavior.
- Preprocessing: Missing values removed (<1%), categorical variables frequency-encoded, numerical features preserved.
- Model: XGBoost classifier trained with 5-fold stratified cross-validation. Class imbalance addressed using scale\_pos\_weight.
- Evaluation Metrics: Area Under the Curve (AUC), Precision, Recall, F1-score, and Confusion Matrix analysis.

#### **Explanation Modules**

Two complementary explanation pipelines were applied to model predic-

- SHAP + GPT-4: Local feature attributions  $\rightarrow$  top 3–5 contributors  $\rightarrow$ converted into business-friendly textual narratives.
- Rule-Based Logic: Categorical histograms and KDE plots used to derive interpretable decision rules aligned with institutional underwriting heuristics.



### Result

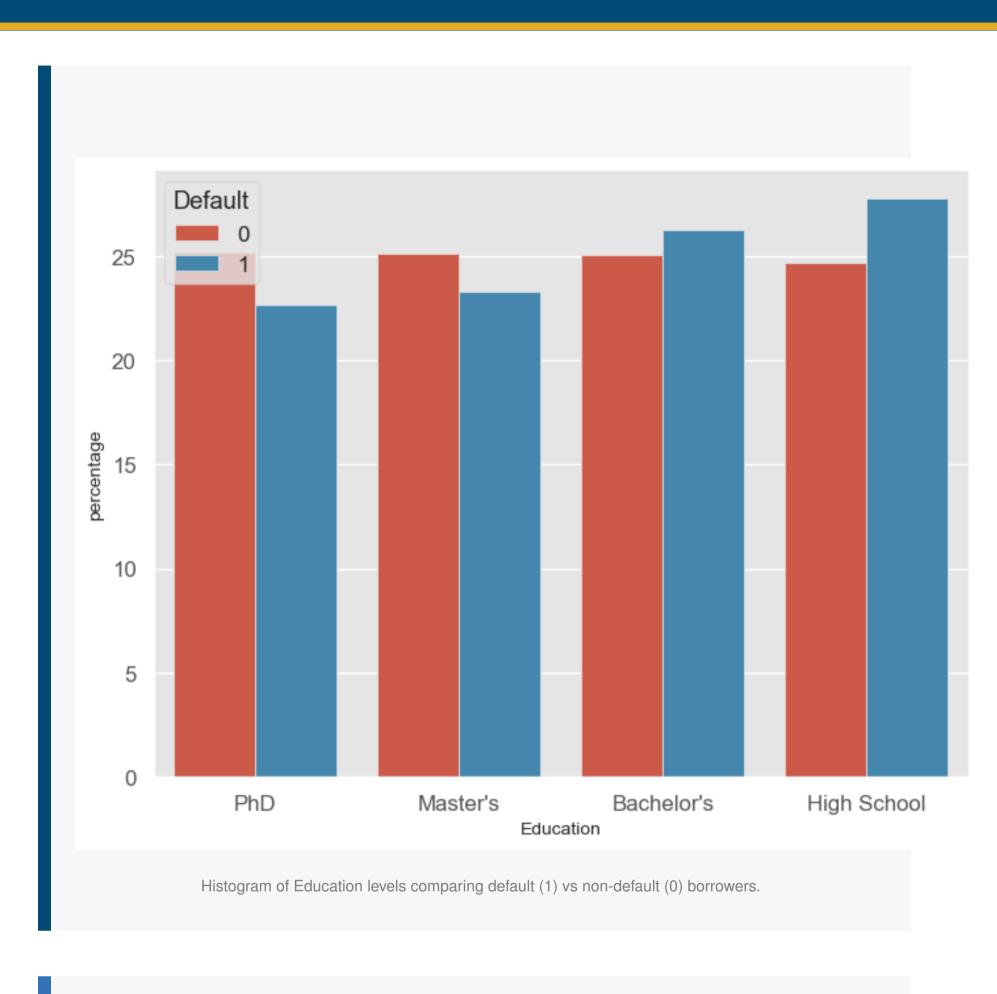
The sample in table 1 was passed into the model and it predicted it as loan default. We then passed it through the explanation pipeline and got the following results.

- GPT-Supported Explanations (SHAP + GPT-4 Pipeline) Based on the provided information, the risk of this customer defaulting on their loan can be explained by examining the key factors and their respective SHAP impacts: The interest rate on the loan is quite high at 22.75%. This significantly increases the cost of borrowing, making it more challenging for the customer to manage their monthly payments. The high SHAP impact of 0.71 indicates that this factor is a strong contributor to the default risk
- Rule-Based Explanations (KDE + Business Logic Rules) From the KDE plot in Figure 1 for example, you would notice that you can visually create a business logic on numerical variable age based on the boundary of 40, The age variable in the table 1 is 36 and less than 40 so a good explanation about young age listed below would be reasonable
  - Short employment duration may indicate job instability.
- . High interest rate increases financial burden, raising risk.
- Low credit score indicates high risk of default
- Young age may indicate lack of financial experience.
- 5. High debt-to-income ratio indicates financial strain. 6. High loan amount increases risk of default.

#### **Comparative Insights**

- GPT Explanations → Rich, nuanced, human-friendly
- Rule-Based Explanations → Transparent, audit-ready, regulatory aligned
- Hybrid Approach = Best of both worlds: trust + compliance





### References

- [1] Scott Lundberg and Su-In Lee. A unified approach to interpreting model predictions, 2017.
- [2] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should i trust you?": Explaining the predictions of any classifier, 2016.
- [3] Shreya and Harsh Pathak. Explainable artificial intelligence credit risk assessment using machine learning, 2025.
- [4] Jiaxing Zhang et al. LLMExplainer: Large Language Model Based Bayesian Inference for Graph Explanation Generation. arXiv preprint arXiv:2407.15351, jul 2024.