
Author’s response to the comments 

The reviewers commend the paper for clearly framing the challenge of discovering 
thermodynamically stable metal superhydrides, executing a polished workflow that melds 
chemical templates with machine-learning–guided screening, and expanding the catalogue of 
structural prototypes, demonstrating promising in-silico discoveries. Efficiency claims lack 
support because no computational-cost benchmarks are given and the authors could instead 
have run high-throughput DFT on all 8,000 lattices. 

The conditional acceptance is based upon addressing the following: 

Comments: Explain why a stack-ensembling AutoGluon approach was selected and compare 
its performance to graph-based ML architectures cited in the literature. 

Authors’ reply: Graph based ML architectures were not cited. This work uses a supervised 
learning approach to screen templates, it is not feasible to benchmark the model against 
graph-based ML architectures. The prediction of the high-accuracy thermodynamic stability 
of metal superhydrides was performed using ensembling multiple ML algorithms integrated 
into the AutoGluon framework, which has demonstrated high reliability in previous 
works [1–3]. 

 

Comments: Provide complete, reproducible details of the ensemble setup (base models, 
meta-learner, hyper-parameters, training protocol, code). 

Authors’ reply: The details of the ensemble setup are uploaded into Github: 
https://github.com/hison001/Metal-superhydrides/tree/main. 

 

Comments: List and justify the 46 input features shown in Figure 1B. 

Authors’ reply: The input features and their importance in Figure 1B are shown below. 

Feature name Feature importance 
max packing efficiency 1.019936 
ELFmax 0.326033 
maximum neighbor distance variation 0.171131 
minimum neighbor distance variation 0.136029 
mean neighbor distance variation 0.110488 
number_H 0.09614 
dimensionality 0.087374 
ELFavg 0.066839 
mean Average bond length 0.051677 
packing fraction 0.044652 
vpa 0.028975 
MagpieData avg_dev MeltingT formula 0.02519 
ratio_H2M 0.020042 
MagpieData avg_dev GSvolume_pa formula 0.019598 



MagpieData mean MendeleevNumber formula 0.019044 
MagpieData avg_dev MendeleevNumber formula 0.017875 
density 0.016197 
MagpieData mean GSvolume_pa formula 0.015639 
PymatgenData mean atomic_radius formula 0.014709 
number_M 0.013134 
MagpieData mean MeltingT formula 0.01156 
MagpieData mean Column formula 0.011531 
MagpieData range Electronegativity formula 0.010626 
MagpieData avg_dev Column formula 0.01 
MagpieData avg_dev CovalentRadius formula 0.009912 
M_MagpieData mean CovalentRadius 0.008839 
M_MagpieData mean MendeleevNumber 0.008722 
MagpieData mean NdValence formula 0.008402 
MagpieData avg_dev NdUnfilled formula 0.008157 
PymatgenData std_dev atomic_radius formula 0.007511 
MagpieData mean CovalentRadius formula 0.00741 
MagpieData mean Electronegativity formula 0.005855 
MagpieData avg_dev Electronegativity formula 0.005351 
MagpieData maximum AtomicWeight formula 0.005034 
MagpieData avg_dev NValence formula 0.004871 
MagpieData mean NValence formula 0.004327 
MagpieData minimum Electronegativity formula 0.003902 
MagpieData avg_dev AtomicWeight formula 0.003231 
MagpieData range Number formula 0.002902 
PymatgenData mean thermal_conductivity formula 0.001599 
MagpieData avg_dev Number formula 0.000866 
MagpieData avg_dev NUnfilled formula 0.000562 
MagpieData mean Number formula 0.000093 
MagpieData mean Row formula -0.001119 
MagpieData mean AtomicWeight formula -0.001633 

 

Comments: Describe the training data in full: name the 57 starting prototypes, outline the 
metal-substitution augmentation, and show that none re-appear in the evaluation split. 

Authors’ reply: The 57 starting prototypes are shown below.  

No. Protptype No. Protptype 
1 AcH10_Cm 30 PaH4_Fmmm 
2 AcH16_P6/mmm 31 PrH6_C2/m 
3 AcH4_Cmcm 32 PrH8_P63mc 
4 AcH5_C2/m 33 ScH10_Cmcm 
5 AcH7_Cmc21 34 ScH12_C2/c 



6 AcH8_C2/m 35 ScH12_Cmcm 
7 BaH10_Cmmm 36 ScH6_Cmcm 
8 BaH12_ I4/mmm 37 ScH7_Cmcm 
9 BaH12_ P63/mmc 38 ScH8_Immm 
10 BaH12_P21 39 ScH9_I41md 
11 BaH6_Imm2 40 SrH10_P21/c 
12 BaH8_Imma 41 SrH12_C2/m 
13 CaH12_C2/c 42 SrH8_P21/c 
14 CaH12_R  3 43 ThH10_  𝐹𝑚3𝑚
15 CaH6_  𝐼𝑚3𝑚 44 ThH7_P21/c 
16 CaH9_C2/m 45 Ti2H13_Immm 
17 CeH9_P63/mmc 46 TiH14_C2/m 
18 HfH14_C2/m 47 TiH16_Pbam 
19 HfH4_Fddd 48 TiH22_C2/m 
20 HfH6_Cmc21 49 UH7_P63/mmc 
21 LaH11_P4/nmm 50 UH8_  𝐹𝑚3𝑚
22 LaH16_P6/mmm 51 YH12_C2/m 
23 LaH4_I4/mmm 52 YH13_  𝑅3𝑚
24 LaH5_C2/m 53 YH9_P63/m 
25 LaH6_  𝑅3𝑐 54 ZrH10_P63/mmc 
26 LaH7_Cmc21 55 ZrH6_Cmc21 
27 LaH8_C2/m 56 ZrH6_ P21/c 
28 LaH9_Cc 57 ZrH8_ I4/mmm 
29 NdH9_  𝐹43𝑚   

 

Comments: Specify how the test set was constructed and report model metrics on this 
held-out data. 

Authors’ reply: The efficient identification of suitable metal lattices is crucial for advancing 
the discovery of metal superhydrides. Besides the body-centered cubic (BCC), face-centered 
cubic (FCC), and hexagonal close-packed (HCP) frameworks, which typically host only a few 

metal atoms per primitive cell and rarely yield stable superhydrides with non-integer  (e.g., 
𝑥
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Ti2H13 [4]), we broadened the search to include 52 complex metal lattice prototypes selected 
from the Crystal Lattice Structure sites (http://cst-www.nrl.navy.mil/lattice/) and from variant 
stacking sequences of close-packed atomic layers [5]. 

 

Comments: Define the “rapid evaluation method” that served as a proxy for full 
electron-phonon calculations. 

Authors’ reply: The estimated Tc by applying  proposed by Belli et 𝑇
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https://www.atomic-scale-physics.de/lattice/index.html


value that the 3D ELF network spanning through the entire cell,  is the fraction of number 𝐻
𝑓

of hydrogen atoms with respect to number of whole atoms in the primitive cell,  is the 𝐻
𝐷𝑂𝑆

hydrogen fraction of the total density of states (DOS) at the Fermi level, respectively.[more 
detailed explanations are shown in Nat. Commun. 12, 5381 (2021)] 

 

Comments: Unambiguously state that the 30 predicted compounds that did not receive full 
electron-phonon calculations are preliminary results for which this calculation will need to be 
performed as the next step. 

Authors’ reply: Following the reviewer’s suggestion, we add the clear statement in the 
revised manuscript. 
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