Author’s response to the comments

The reviewers commend the paper for clearly framing the challenge of discovering
thermodynamically stable metal superhydrides, executing a polished workflow that melds
chemical templates with machine-learning—guided screening, and expanding the catalogue of
structural prototypes, demonstrating promising in-silico discoveries. Efficiency claims lack
support because no computational-cost benchmarks are given and the authors could instead
have run high-throughput DFT on all 8,000 lattices.

The conditional acceptance is based upon addressing the following:

Comments: Explain why a stack-ensembling AutoGluon approach was selected and compare
its performance to graph-based ML architectures cited in the literature.

Authors’ reply: Graph based ML architectures were not cited. This work uses a supervised
learning approach to screen templates, it is not feasible to benchmark the model against
graph-based ML architectures. The prediction of the high-accuracy thermodynamic stability
of metal superhydrides was performed using ensembling multiple ML algorithms integrated
into the AutoGluon framework, which has demonstrated high reliability in previous
works [1-3].

Comments: Provide complete, reproducible details of the ensemble setup (base models,
meta-learner, hyper-parameters, training protocol, code).

Authors’ reply: The details of the ensemble setup are uploaded into Github:
https://github.com/hison001/Metal-superhydrides/tree/main.

Comments: List and justify the 46 input features shown in Figure 1B.

Authors’ reply: The input features and their importance in Figure 1B are shown below.

Feature name Feature importance
max packing efficiency 1.019936
ELFmax 0.326033
maximum neighbor distance variation 0.171131
minimum neighbor distance variation 0.136029
mean neighbor distance variation 0.110488
number H 0.09614
dimensionality 0.087374
ELFavg 0.066839
mean Average bond length 0.051677
packing fraction 0.044652
vpa 0.028975
MagpieData avg dev MeltingT formula 0.02519
ratio H2M 0.020042
MagpieData avg dev GSvolume pa formula 0.019598




MagpieData mean MendeleevNumber formula 0.019044
MagpieData avg dev MendeleevNumber formula 0.017875
density 0.016197
MagpieData mean GSvolume pa formula 0.015639
PymatgenData mean atomic radius formula 0.014709
number M 0.013134
MagpieData mean MeltingT formula 0.01156
MagpieData mean Column formula 0.011531
MagpieData range Electronegativity formula 0.010626
MagpieData avg dev Column formula 0.01
MagpieData avg dev CovalentRadius formula 0.009912
M MagpieData mean CovalentRadius 0.008839
M MagpieData mean MendeleevNumber 0.008722
MagpieData mean NdValence formula 0.008402
MagpieData avg dev NdUnfilled formula 0.008157
PymatgenData std dev atomic radius formula 0.007511
MagpieData mean CovalentRadius formula 0.00741
MagpieData mean Electronegativity formula 0.005855
MagpieData avg dev Electronegativity formula 0.005351
MagpieData maximum AtomicWeight formula 0.005034
MagpieData avg dev NValence formula 0.004871
MagpieData mean NValence formula 0.004327
MagpieData minimum Electronegativity formula 0.003902
MagpieData avg dev AtomicWeight formula 0.003231
MagpieData range Number formula 0.002902
PymatgenData mean thermal conductivity formula 0.001599
MagpieData avg dev Number formula 0.000866
MagpieData avg dev NUnfilled formula 0.000562
MagpieData mean Number formula 0.000093
MagpieData mean Row formula -0.001119
MagpieData mean AtomicWeight formula -0.001633

Comments: Describe the training data in full: name the 57 starting prototypes, outline the
metal-substitution augmentation, and show that none re-appear in the evaluation split.

Authors’ reply: The 57 starting prototypes are shown below.

No. Protptype No. Protptype

1 AcH;;, Cm 30 PaH, Fmmm
2 AcH,;, P6/mmm 31 PrH, C2/m

3 AcH, Cmcm 32 PrH; P6;mc
4 AcH;_C2/m 33 ScH,,_Cmcm
5 AcH, Cmc2, 34 ScH,;, C2/c




6 AcHg_ C2/m 35 ScH,, Cmcm
7 BaH,, Cmmm 36 ScHy Cmcm
8 BaH,, I4/mmm 37 ScH, Cmcm

9 BaH,, P6,/mmc 38 ScHg Immm
10 BaH,, P2, 39 ScH, 14,md
11 BaH,_Imm?2 40 SrH,, P2,/c

12 BaH; Imma 41 SrH;, C2/m
13 CaH,, C2/c 42 SrHg P2,/c

14 CaH,, R3 43 ThH,, Fm3m
15 Cal, Im3m 44 ThH,_P2,/c
16 CaH, C2/m 45 Ti,H,;_Immm
17 CeH, P6;/mmc 46 TiH,, C2/m
13 HfH,, C2/m 47 TiH,, Pbam
19 HfH, Fddd 48 TiH,, C2/m
20 HfH; Cmc2, 49 UH; P6;/mmc
21 LaH,, P4/nmm 50 UH, Fm3m
22 LaH,, P6/mmm 51 YH,, C/m

23 LaH, I4/mmm 52 YH;; R 3m

24 LaH, C2/m 53 YH, P6y/m
25 LaH, R3c 54 ZrH,, P6;/mmc
26 LaH, Cmc2, 55 ZrH,_Cmc2,
27 LaH; C2/m 56 ZrHy, P2,/c
28 LaH, Cc 57 ZrHg I4/mmm
29 NdH, FA3m

Comments: Specify how the test set was constructed and report model metrics on this
held-out data.

Authors’ reply: The efficient identification of suitable metal lattices is crucial for advancing

the discovery of metal superhydrides. Besides the body-centered cubic (BCC), face-centered
cubic (FCC), and hexagonal close-packed (HCP) frameworks, which typically host only a few

X
metal atoms per primitive cell and rarely yield stable superhydrides with non-integer x—” (e.g.,
M

Ti,H,; [4]), we broadened the search to include 52 complex metal lattice prototypes selected
from the Crystal Lattice Structure sites (http://cst-www.nrl.navy.mil/lattice/) and from variant
stacking sequences of close-packed atomic layers [5].

Comments: Define the ‘“rapid evaluation method” that served as a proxy for full
electron-phonon calculations.

Authors’ reply: The estimated 7, by applying TC = (7SOCDDO — 85)K proposed by Belli et

S

al [6]. Where, CIDD 0s = oH f Vi @ is the maximum electron localization function (ELF)

DOS’


https://www.atomic-scale-physics.de/lattice/index.html

value that the 3D ELF network spanning through the entire cell, H f is the fraction of number
of hydrogen atoms with respect to number of whole atoms in the primitive cell, H D0S is the

hydrogen fraction of the total density of states (DOS) at the Fermi level, respectively.[more
detailed explanations are shown in Nat. Commun. 12, 5381 (2021)]

Comments: Unambiguously state that the 30 predicted compounds that did not receive full
electron-phonon calculations are preliminary results for which this calculation will need to be
performed as the next step.

Authors’ reply: Following the reviewer’s suggestion, we add the clear statement in the
revised manuscript.
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