Author's response to the comments

The reviewers commend the paper for clearly framing the challenge of discovering thermodynamically stable metal superhydrides, executing a polished workflow that melds chemical templates with machine-learning—guided screening, and expanding the catalogue of structural prototypes, demonstrating promising in-silico discoveries. Efficiency claims lack support because no computational-cost benchmarks are given and the authors could instead have run high-throughput DFT on all 8,000 lattices.

The conditional acceptance is based upon addressing the following:

Comments: Explain why a stack-ensembling AutoGluon approach was selected and compare its performance to graph-based ML architectures cited in the literature.

<u>Authors' reply:</u> Graph based ML architectures were not cited. This work uses a supervised learning approach to screen templates, it is not feasible to benchmark the model against graph-based ML architectures. The prediction of the high-accuracy thermodynamic stability of metal superhydrides was performed using ensembling multiple ML algorithms integrated into the AutoGluon framework, which has demonstrated high reliability in previous works [1–3].

Comments: Provide complete, reproducible details of the ensemble setup (base models, meta-learner, hyper-parameters, training protocol, code).

<u>Authors' reply:</u> The details of the ensemble setup are uploaded into Github: https://github.com/hison001/Metal-superhydrides/tree/main.

Comments: List and justify the 46 input features shown in Figure 1B.

<u>Authors' reply:</u> The input features and their importance in Figure 1B are shown below.

Feature name	Feature importance
max packing efficiency	1.019936
ELFmax	0.326033
maximum neighbor distance variation	0.171131
minimum neighbor distance variation	0.136029
mean neighbor distance variation	0.110488
number_H	0.09614
dimensionality	0.087374
ELFavg	0.066839
mean Average bond length	0.051677
packing fraction	0.044652
vpa	0.028975
MagpieData avg_dev MeltingT formula	0.02519
ratio H2M	0.020042
MagpieData avg_dev GSvolume_pa formula	0.019598

MagpieData mean MendeleevNumber formula	0.019044
MagpieData avg_dev MendeleevNumber formula	0.017875
density	0.016197
MagpieData mean GSvolume_pa formula	0.015639
PymatgenData mean atomic radius formula	0.014709
number_M	0.013134
MagpieData mean MeltingT formula	0.01156
MagpieData mean Column formula	0.011531
MagpieData range Electronegativity formula	0.010626
MagpieData avg_dev Column formula	0.01
MagpieData avg dev CovalentRadius formula	0.009912
M_MagpieData mean CovalentRadius	0.008839
M MagpieData mean MendeleevNumber	0.008722
MagpieData mean NdValence formula	0.008402
MagpieData avg dev NdUnfilled formula	0.008157
PymatgenData std_dev atomic_radius formula	0.007511
MagpieData mean CovalentRadius formula	0.00741
MagpieData mean Electronegativity formula	0.005855
MagpieData avg dev Electronegativity formula	0.005351
MagpieData maximum AtomicWeight formula	0.005034
MagpieData avg dev NValence formula	0.004871
MagpieData mean NValence formula	0.004327
MagpieData minimum Electronegativity formula	0.003902
MagpieData avg_dev AtomicWeight formula	0.003231
MagpieData range Number formula	0.002902
PymatgenData mean thermal_conductivity formula	0.001599
MagpieData avg dev Number formula	0.000866
MagpieData avg_dev NUnfilled formula	0.000562
MagpieData mean Number formula	0.000093
MagpieData mean Row formula	-0.001119
MagpieData mean AtomicWeight formula	-0.001633

Comments: Describe the training data in full: name the 57 starting prototypes, outline the metal-substitution augmentation, and show that none re-appear in the evaluation split.

<u>Authors' reply:</u> The 57 starting prototypes are shown below.

No.	Protptype	No.	Protptype
1	AcH ₁₀ _Cm	30	PaH ₄ _Fmmm
2	AcH ₁₆ _P6/mmm	31	PrH ₆ _C2/m
3	AcH ₄ _Cmcm	32	PrH ₈ _P6 ₃ mc
4	AcH ₅ _C2/m	33	ScH ₁₀ _Cmcm
5	AcH ₇ _Cmc2 ₁	34	ScH ₁₂ _C2/c

6	AcH ₈ _C2/m	35	ScH ₁₂ _Cmcm
7	BaH ₁₀ _Cmmm	36	ScH ₆ _Cmcm
8	BaH ₁₂ _ I4/mmm	37	ScH ₇ _Cmcm
9	BaH ₁₂ _P6 ₃ /mmc	38	ScH ₈ _Immm
10	BaH ₁₂ P2 ₁	39	ScH ₉ _I4 ₁ md
11	BaH ₆ _Imm2	40	SrH ₁₀ _P2 ₁ /c
12	BaH ₈ _Imma	41	SrH ₁₂ _C2/m
13	CaH ₁₂ _C2/c	42	SrH ₈ _P2 ₁ /c
14	CaH ₁₂ _R3	43	ThH_{10} $Fm\overline{3}m$
15	$CaH_6_Im\overline{3}m$	44	ThH ₇ _P2 ₁ /c
16	CaH ₉ _C2/m	45	Ti ₂ H ₁₃ _Immm
17	CeH ₉ _P6 ₃ /mmc	46	TiH ₁₄ _C2/m
18	HfH ₁₄ _C2/m	47	TiH ₁₆ _Pbam
19	HfH ₄ _Fddd	48	TiH ₂₂ _C2/m
20	HfH ₆ _Cmc2 ₁	49	UH ₇ _P6 ₃ /mmc
21	LaH ₁₁ _P4/nmm	50	$UH_8_Fm\overline{3}m$
22	LaH ₁₆ _P6/mmm	51	$YH_{12}C_2/m$
23	LaH ₄ _I4/mmm	52	$YH_{13}R\overline{3}m$
24	LaH ₅ _C2/m	53	YH ₉ _P6 ₃ /m
25	LaH ₆ _ <i>R</i> 3 <i>c</i>	54	ZrH ₁₀ _P6 ₃ /mmc
26	LaH ₇ _Cmc2 ₁	55	ZrH ₆ _Cmc2 ₁
27	LaH ₈ _C2/m	56	ZrH ₆ _ P2 ₁ /c
28	LaH ₉ _Cc	57	ZrH ₈ _ I4/mmm
29	NdH ₉ _ <i>F</i> 43 <i>m</i>		

Comments: Specify how the test set was constructed and report model metrics on this held-out data.

<u>Authors' reply:</u> The efficient identification of suitable metal lattices is crucial for advancing the discovery of metal superhydrides. Besides the body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed (HCP) frameworks, which typically host only a few metal atoms per primitive cell and rarely yield stable superhydrides with non-integer $\frac{x_H}{x_M}$ (e.g., Ti₂H₁₃ [4]), we broadened the search to include 52 complex metal lattice prototypes selected from the Crystal Lattice Structure sites (http://cst-www.nrl.navy.mil/lattice/) and from variant stacking sequences of close-packed atomic layers [5].

Comments: Define the "rapid evaluation method" that served as a proxy for full electron-phonon calculations.

<u>Authors' reply:</u> The estimated T_c by applying $T_c = (750\Phi_{DOS} - 85)K$ proposed by Belli et al [6]. Where, $\Phi_{DOS} = \varphi H_f \sqrt[3]{H_{DOS}}$, φ is the maximum electron localization function (ELF)

value that the 3D ELF network spanning through the entire cell, H_f is the fraction of number of hydrogen atoms with respect to number of whole atoms in the primitive cell, H_{DOS} is the hydrogen fraction of the total density of states (DOS) at the Fermi level, respectively.[more detailed explanations are shown in *Nat. Commun. 12, 5381 (2021)*]

Comments: Unambiguously state that the 30 predicted compounds that did not receive full electron-phonon calculations are preliminary results for which this calculation will need to be performed as the next step.

<u>Authors' reply:</u> Following the reviewer's suggestion, we add the clear statement in the revised manuscript.

References

- [1] C. Shen et al., Accelerated Screening of Ternary Chalcogenides for Potential Photovoltaic Applications, J. Am. Chem. Soc. **145**, 21925 (2023).
- [2] W. Qi, C. Xu, and X. Xu, AutoGluon: A revolutionary framework for landslide hazard analysis, Nat. Hazards Res. 1, 103 (2021).
- [3] F. Liu, X. Jiang, and M. Zhang, Global burden analysis and AutoGluon prediction of accidental carbon monoxide poisoning by Global Burden of Disease Study 2019, Environ. Sci. Pollut. Res. 29, 6911 (2022).
- [4] J. Zhang, J. M. McMahon, A. R. Oganov, X. Li, X. Dong, H. Dong, and S. Wang, High-temperature superconductivity in the Ti-H system at high pressures, Phys. Rev. B **101**, 134108 (2020).
- [5] L. Dubrovinsky, N. Dubrovinskaia, W. A. Crichton, A. S. Mikhaylushkin, S. I. Simak, I. A. Abrikosov, J. S. de Almeida, R. Ahuja, W. Luo, and B. Johansson, Noblest of All Metals Is Structurally Unstable at High Pressure, Phys. Rev. Lett. 98, 045503 (2007).
- [6] F. Belli, T. Novoa, J. Contreras-García, and I. Errea, Strong correlation between electronic bonding network and critical temperature in hydrogen-based superconductors, Nat. Commun. 12, 5381 (2021).