
Separable PINN - Supplementary Materials

A Source Code1

We provided a demo code to show the implementation details of our work. You can run the Jupyter2

notebook file to reproduce the (2+1)-d Klein-Gordon experiment.3

B Pseudocode4

Alg. 1 shows the pseudocode of forward pass and feature merging step of SPINN when solving5

a 3-dimensional PDE. The outer product and summation between feature vectors can be easily6

implemented and parallelized by the einsum function.7

Algorithm 1 JAX-style pseudocode for SPINN’s forward pass and feature merging.
1 import jax.numpy as jnp
2 from flax import linen as nn
3

4 class SPINN(nn.Module):
5 hidden_sizes: Sequence[int] # list of feature sizes for each layer
6

7 # forward pass and feature merging
8 @nn.compact
9 def forward(self, x, y, z): # 3-dimensional PDE

10 inputs = [x, y, z] # full batch of the sampled coordinates
11 feats = []
12 for X in inputs: # three individual MLPs for each input x, y, z
13 for hidden_size in self.hidden_sizes[:-1]:
14 X = nn.Dense(hidden_size)(X)
15 X = nn.activation.tanh(X)
16 """
17 the output feature size (self.hidden_sizes[-1]) corresponds to the
18 rank of the predicted solution tensor (in case of 1-dimensional output)
19 """
20 X = nn.Dense(self.hidden_sizes[-1])(X)
21 feats += [X] # final feature representations
22 # feature merging (outer product between columns of feats)
23 xy = jnp.einsum('fx, fy->fxy', feats[:, 0], feats[:, 1])
24 return jnp.einsum('fxy, fz->xyz', xy, feats[:, 2])

C Proof of Theorem 18

Here we show the preliminary lemmas and proofs for Theorem 1. in the main paper. We start by9

defining a general tensor product between two Hilbert spaces.10

11

Definition 1. Let {vβ} be an orthonormal basis for H2. Tensor product between Hilbert spaces12

H1 and H2, denoted by H1 ⊗ H2, is a set of all antilinear mappings A : H2 → H1 such that13 ∑
β∥Avβ∥2 <∞ for every orthonormal basis for H2.14
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Then by Theorem 7.12 in Folland [3], H1 ⊗H2 is also a Hilbert space with respect to norm |||·||| and15

associated inner product ⟨·, ·⟩:16

|||A|||2 ≡
∑
β

∥Avβ∥2, (1)

⟨A,B⟩ ≡
∑
β

⟨Avβ , Bvβ⟩, (2)

where A,B ∈ H1 ⊗H2, and {vβ} is any orthonormal basis of H2.17

18

Lemma 1. Let x ∈ H1 and y, y′ ∈ H2. Then, (x⊗ y)y′ = ⟨y, y′⟩x.19

Proof. Let A be a mapping A : y′ → ⟨y, y′⟩x, where ∥y∥ = 1. We expand y′ with orthonormal basis20

{y, zβ}. i.e., {y, zβ} is a basis for H2. Then,21

∥Ay∥2 +
∑
β

∥Azβ∥2 = ∥Ay∥2 +
∑
β

∥⟨y, zβ⟩x∥2 (3)

= ∥Ay∥2 <∞ (4)

It is obvious that A is antilinear. Then by Definition 1, A ∈ H1 ⊗H2 which is, Ay′ = (x ⊗ y)y′.22

Therefore, (x⊗ y)y′ = ⟨y, y′⟩x.23

24

Lemma 2. {uα ⊗ vβ} is an orthonormal basis for H1 ⊗H2.25

Proof. Let A,B ∈ H1 ⊗H2, where B = uα ⊗ vβ . Then by the definition of inner product in Eq. 2,26

⟨A,B⟩ =
∑
i

⟨Avi, Bvi⟩ (5)

=
∑
i

⟨Avi, (uα ⊗ vβ)vi⟩ (6)

=
∑
i

⟨Avi, ⟨vβ , vi⟩uα⟩ (∵ Lemma 1) (7)

=((((((((⟨Av1, ⟨vβ , v1⟩uα⟩+((((((((⟨Av2, ⟨vβ , v2⟩uα⟩+ . . .+ ⟨Avβ , ⟨vβ , vβ⟩uα⟩+ . . . (8)
= ⟨Avβ , uα⟩ (9)

Now we check the Parseval identity:27 ∑
α,β

|⟨A, uα ⊗ vβ⟩|2 =
∑
α,β

|⟨Avβ , uα⟩|2 (∵ uα ⊗ vβ = B) (10)

=
∑
β

∥Avβ∥2 (11)

= |||A|||2. (12)

∴ {uα ⊗ vβ} is a basis.28

29

Now we begin the proof of Theorem 1. in the main paper.30

Theorem 1. Let X,Y be compact subsets of Rd. Choose u ∈ L2(X ×Y ). Then, for arbitrary ε > 0,31

we can find a sufficiently large r > 0 and neural networks f (θ1)j and f (θ2)j such that32 ∥∥∥u−
r∑

j=1

f
(θ1)
j f

(θ2)
j

∥∥∥
L2(X×Y )

< ε. (13)

33
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Proof. Let {ϕi} and {ψj} be orthonormal basis for L2(X) and L2(Y ) respectively. Then {ϕiψj}34

forms an orthonormal basis for L2(X × Y ) (∵ Lemma 2). Therefore, we can find a sufficiently large35

r such that36 ∥∥∥u−
r∑
i,j

aijϕiψj

∥∥∥
L2(X×Y )

<
ε

2
, (14)

where aij denotes

aij =

∫
X×Y

u(x, y)ϕi(x)ψj(y)dxdy.

On the other hand, by the universal approximation theorem [1], we can find neural networks f (θ1)j37

and f (θ2)j such that38

∥ϕi − f
(θ1)
j ∥L2(X) ≤

ε

3j∥u∥L2(X×Y )
and ∥ψj − f

(θ2)
j ∥L2(Y ) ≤

ε

3j∥u∥L2(X×Y )
. (15)

We first consider the difference between u and
∑r

i,j aijf
(θ1)
i f

(θ2)
j :39

∥∥u− r∑
i,j

aijf
(θ1)
i f

(θ2)
j

∥∥
L2(X×Y )

(16)

≤
∥∥∥u−

r∑
i,j

aijϕiψj

∥∥∥
L2(X×Y )

+
∥∥∥ r∑

i,j

aijϕiψj −
r∑
i,j

aijf
(θ1)
i f

(θ2)
j

∥∥∥
L2(X×Y )

(17)

≡ I + II (18)

Since |I| < ε/2 from (14), it is enough to estimate II . For this, we consider40

r∑
i,j

aijϕiψj −
r∑
i,j

aijf
(θ1)
i f

(θ2)
j =

r∑
i,j

aijϕi
(
ψj − f

(θ2)
j

)
+

r∑
i,j

aij
(
ϕi − f

(θ1)
i

)
f
(θ2)
j (19)

≡ II1 + II2. (20)

We first compute II1:41

∥II1∥2L2(X×Y ) =

∫
X×Y


r∑
i,j

aijϕi
(
ψj − f

(θ2)
j

)
2

dxdy (21)

=

∫
X×Y


r∑
j

(
r∑
i

aijϕi

)
(ψj − f

(θ2)
j

)
2

dxdy (22)

We set42

Aj(x) =

r∑
i

aijϕi(x), Bj(y) = ψj(y)− f
(θ2)
j (y) (23)

to write II1 as43

∥II1∥2L2(X×Y ) =

∫
X×Y


r∑
j

Aj(x)Bj(y)


2

dxdy. (24)

We then apply Cauchy-Scharwz inequality to get44

∥II1∥2L2(X×Y ) ≤
∫
X×Y

( r∑
j

|Aj(x)|2
)( r∑

j

|Bj(y)|2
)
dxdy (25)

=

∫
X

r∑
j

|Aj(x)|2dx

∫
Y

r∑
j

|Bj(y)|2dy

 . (26)
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Now45 ∫
X

r∑
j

|Aj(x)|2dx =

∫
X

r∑
j

(
r∑
i

aijϕi

)2

dx (27)

=

r∑
j

∥∥∥ r∑
i

aijϕi

∥∥∥2
L(X)

. (28)

Since {ϕi} is an orthonormal basis, we see that46 ∥∥∥ r∑
i

aijϕi

∥∥∥
L(X)

≤
r∑
i

|aij |
∥∥ϕi∥∥L(X)

=

r∑
i

|aij |. (29)

Therefore,47 ∫
X

r∑
j

|Aj(x)|2dx =

∫
X

r∑
j

(
r∑
i

aijϕi

)2

dx (30)

=

r∑
j

∫
X

(
r∑
i

aijϕi

)2

dx (31)

=

r∑
j

∥∥∥ r∑
i

aijϕi

∥∥∥2
L(X)

(32)

=

r∑
j

( r∑
i

|aij |
)2
. (33)

Finally, we recall48 ( r∑
i

|aij |
)2

≤ 2

r∑
i

|aij |2 (34)

to conclude49 ∫
X

r∑
j

|Aj(x)|2dx ≤ 2

r∑
j

r∑
i

|aij |2 < 2

∞∑
i,j

|aij |2 = 2∥u∥2L2(X×Y ). (35)

On the other hand, we have from (15)50 ∫
Y

r∑
j

|Bj(y)|2dy =

r∑
j

∫
Y

|ψj(y)− f
(θ2)
j (y)|2dy (36)

=

r∑
j

∥∥ψj(y)− f
(θ2)
j (y)

∥∥2
L2(Y )

(37)

≤
r∑
j

ε2

9j∥u∥2L2(X×Y )

(38)

<
ε2

8∥u∥2L2(X×Y )

. (39)

Hence we have51

∥II1∥2L2(X×Y ) <
ε2

8∥u∥2L2(X×Y )

2∥u∥2L2(X×Y ) =
ε2

4
. (40)

Likewise,52

∥II2∥2L2(X×Y ) <
ε2

4
. (41)
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Therefore,53

∥II∥2L2(X×Y ) <
ε2

2
. (42)

We go back to (16) with the estimates (14) and (42) to derive54

∥∥u−
r∑
i,j

aijf
(θ1)
i f

(θ2)
j

∥∥
L2(X×Y )

<
ε

2
+
ε

2
= ε. (43)

Finally, we reorder the index to rewrite55

r∑
i,j

aijf
(θ1)
i f

(θ2)
j =

r̃∑
i

bif̃
(θ1)
i f̃

(θ2)
i (44)

=

r̃∑
i

{
bif̃

(θ1)
i

}
f̃
(θ2)
i (45)

=
r̃∑
i

g
(θ1)
i f̃

(θ2)
i (46)

Without loss of generality, we rewrite r̃, g(θ1)i , f̃ (θ2)i into r, f (θ1)i , f (θ2)i respectively, to complete the56

proof.57

D Training with Physics-Informed Loss58

After SPINN predicts an output function with the methods described above, the rest of the training59

procedure follows the same process used in conventional PINN training [11], except we use forward-60

mode AD to compute PDE residuals (standard back-propagation, a.k.a. reverse-mode AD for61

parameter updates). With the slight abuse of notation, our predicted solution function is denoted as62

û(θ)(x, t) from onwards, explicitly expressing time coordinates. Given an underlying PDE (or ODE),63

the initial, and the boundary conditions, SPINN is trained with a ‘physics-informed’ loss function:64

min
θ

L(û(θ)(x, t)) = min
θ
λpdeLpde + λicLic + λbcLbc, (47)

Lpde =

∫
Γ

∫
Ω

∥N [û(θ)](x, t)∥2dxdt, (48)

Lic =

∫
Ω

∥û(θ)(x, 0)− uic(x)∥2dx, (49)

Lbc =

∫
Γ

∫
∂Ω

∥B[û(θ)](x, t)− ubc(x, t)∥2dxdt, (50)

where Ω is an input domain, N ,B are generic differential operators and uic, ubc are initial, boundary65

conditions, respectively. λ are weighting factors for each loss term. When calculating the PDE66

loss (Lpde) with Monte-Carlo integral approximation, we sampled collocation points from factorized67

coordinates and used forward-mode AD. The remaining Lic and Lbc are then computed with initial68

and boundary coordinates to regress the given conditions. By minimizing the objective loss in Eq. 47,69

the model output is enforced to satisfy the given equation, the initial, and the boundary conditions.70

E FLOPs Estimation71

The FLOPs for evaluating the derivatives can be systematically calculated by disassembling the72

computational graph into elementary operations such as additions and multiplications. Given a73

computational graph of forward pass for computing the primals, AD augments each elementary74

operation into other elementary operations. The FLOPs in the forward pass can be precisely calculated75

since it consists of a series of matrix multiplications and additions. We used the method described76

in [4] to estimate FLOPs for evaluating the derivatives. Table 1 shows the number of additions77
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(ADDS) and multiplications (MULTS) in each evaluation process. Note that FLOPs is a summation78

of ADDS and MULTS by definition.79

One thing to note here is that this is a theoretical estimation. Theoretically, the number of JVP80

evaluations for computing the gradient with respect to the input coordinates is Nd, when N is81

the number of coordinates for each axis and d is the input dimension (see section 4.3 in the main82

paper). However, our actual implementation of gradient calculation involves re-computing the83

feature representations f (θi), which makes the complexity of network propagations from O(Nd) to84

O(Nd2). Ideally, these feature vectors can be computed only once and stored to be used later for85

gradient computations. Although it is still significantly more efficient than the conventional PINN’s86

complexity (Nd2 ≪ Nd), there is a room to bridge the gap between theoretical FLOPs and actual87

training runtime by further software optimization.88

Table 1: The number of elementary operations for evaluating forward pass, first and second-order
derivatives. The calculation is based on 643 collocation points in a 3-d system and the vanilla MLP
settings used for diffusion, Helmholtz, and Klein-Gordon equations. We assumed that each derivative
is evaluated on every coordinate axis.

SPINN (ours) PINN (baseline)

ADDS (×106) MULTS (×106) ADDS (×106) MULTS (×106)

forward pass 20 20 21,609 21,609
1st-order derivative 40 40 86,638 43,419
2nd-order derivative 80 80 130,057 87,040

MFLOPs (total) 280 390,370

F Experimental Details and Results89

In this section, we provide experimental details, numerical results, and visualizations for each90

experiment in the main paper.91

F.1 Diffusion Equation92

The diffusion equation is one of the most representative parabolic PDEs, often used for modeling the93

heat diffusion process. We especially choose a nonlinear diffusion equation where it can be written94

as:95

∂tu = α
(
∥∇u∥2 + u∆u

)
, x ∈ Ω, t ∈ Γ, (51)

u(x, 0) = uic(x), x ∈ Ω, (52)
u(x, t) = 0, x ∈ ∂Ω, t ∈ Γ. (53)

We used diffusivity α = 0.05, spatial domain Ω = [−1, 1]2, temporal domain Γ = [0, 1] and used96

superposition of three Gaussian functions for the initial condition uic. We obtained the reference97

solution (101× 101× 101 resolution) through a widely-used PDE solver platform FEniCS [9]. Note98

that FEniCS is a FEM-based solver. We particularly set the initial condition to be a superposition of99

three gaussian functions:100

uic(x, y) = 0.25 exp
[
−10{(x− 0.2)2 + (y − 0.3)2}

]
+ 0.4 exp

[
−15{(x+ 0.1)2 + (y + 0.5)2}

]
+ 0.3 exp

[
−20{(x+ 0.5)2 + y2}

]
. (54)

For our model, we used three body networks of 4 hidden layers with 64/32 hidden feature/output101

size each. For the baseline model, we used a single MLP of 5 hidden layers with 128 hidden feature102

sizes. We used Adam [6] optimizer with a learning rate of 0.001 and trained for 50,000 iterations for103

every experiment. All weight factors λ in the loss function in Eq. 47 are set to 1. The final reported104

errors are extracted where the total loss was minimum across the entire training iteration. We also105

resampled the input points every 100 epochs. Tab. 3 shows the numerical results, and the visualized106

solutions are provided in Fig. 1.107
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F.2 Helmholtz Equation108

The Helmholtz equation is a time-independent wave equation that takes the form:109

∆u+ k2u = q, x ∈ Ω, (55)
u(x) = 0, x ∈ ∂Ω, (56)

where the spatial domain is Ω = [−1, 1]3. For a given source term q = −(a1π)
2u − (a2π)

2u −110

(a3π)
2u+ k2u, we devised a manufactured solution u = sin(a1πx1) sin(a2πx2) sin(a3πx3), where111

we take k = 1, a1 = 4, a2 = 4, a3 = 3.112

For our model, we used three body networks of 4 hidden layers with 64/32 hidden feature/output113

size each. For the baseline model, we used a single MLP of 5 hidden layers with 128 hidden feature114

sizes. We used Adam [6] optimizer with a learning rate of 0.001 and trained for 50,000 iterations for115

every experiment. All weight factors λ in the loss function in Eq. 47 are set to 1. The final reported116

errors are extracted where the total loss was minimum across the entire training iteration. We also117

resampled the input points every 100 epochs. Tab. 4 shows the numerical results and the visualized118

solutions are provided in Fig. 2.119

F.3 Klein-Gordon Equation120

The Klein-Gordon equation is a nonlinear hyperbolic PDE, which arises in diverse applied physics121

for modeling relativistic wave propagation. The inhomogeneous Klein-Gordon equation is given by122

∂ttu−∆u+ u2 = f, x ∈ Ω, t ∈ Γ, (57)
u(x, 0) = x1 + x2, x ∈ Ω, (58)
u(x, t) = ubc(x), x ∈ ∂Ω, t ∈ Γ, (59)

where we chose the spatial/temporal domain to be Ω = [−1, 1]2 and Γ = [0, 10], respectively. For123

error measurement, we used a manufactured solution u = (x1 + x2) cos(2t) + x1x2 sin(2t) and f ,124

ubc are extracted from this exact solution.125

For our model, we used three body networks of 4 hidden layers with 64/32 hidden feature/output126

size each. For the baseline model, we used a single MLP of 5 hidden layers with 128 hidden feature127

sizes. We used Adam [6] optimizer with a learning rate of 0.001 and trained for 50,000 iterations for128

every experiment. All weight factors λ in the loss function in Eq. 47 are set to 1. The final reported129

errors are extracted where the total loss was minimum across the entire training iteration. We also130

resampled the input points every 100 epochs. Tab. 5 shows the numerical results.131

We used the same settings used in (2+1)-d Klein-Gordon experiment for the (3+1)-d experiment132

except the manufactured solution was chosen as:133

u = (x1 + x2 + x3) cos (2t) + x1x2x3 sin (2t), (60)

where f , ubc are extracted from this exact solution. Tab. 6 shows the numerical results. The134

collocation sizes of 234, 184 were the maximum value for PINN and PINN with modified MLP,135

respectively.136

F.4 (2+1)-d Navier-Stokes Equation137

Navier-Stokes equation is a nonlinear time-dependent PDE that describes the motion of a viscous138

fluid. Various engineering fields rely on this equation, such as modeling the weather, airflow, or ocean139

currents. The vorticity form for incompressible fluid can be written as below:140

∂tω + u · ∇ω = ν∆ω, x ∈ Ω, t ∈ Γ, (61)
∇ · u = 0, x ∈ Ω, t ∈ Γ, (62)
ω(x, 0) = ω0(x), x ∈ Ω, (63)

where u ∈ R2 is the velocity field, ω = ∇ × u is the vorticity, ω0 is the initial vorticity, and ν is141

the viscosity. We used the viscosity 0.01 and made the spatial/temporal domain Ω = [0, 2π]2 and142

Γ = [0, 1], respectively. Note that Eq. 61 models decaying turbulence since there is no forcing term143

and Eq. 62 is the incompressible fluid condition. The reference solution is generated by JAX-CFD144
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solver [7] which specifically used the pseudo-spectral method. The initial condition was generated145

using the gaussian random field with a maximum velocity of 5. The resolution of the obtained146

solution is 100× 128× 128 (Nt ×Nx ×Ny), and we tested our model on this data.147

For our model, we used three body networks (modified MLP) of 3 hidden layers with 128/256 hidden148

feature/output sizes each. We divided the temporal domain into ten time windows to adopt the time149

marching method [8, 13]. We used Adam [6] optimizer with a learning rate of 0.002 and each time150

window is trained for 100,000 iterations. Followed by causal PINN, the PDE (residual) loss and151

initial condition loss function are written as follows.152

Lpde =
λw
Nc

Nc∑
|∂tw + ux∂xw + uy∂yw − ν(∂xxw + ∂yyw)|2 +

λc
Nc

Nc∑
|∂xux + ∂yuy|2, (64)

Lic =
λic
Nic

Nic∑(
|ux − ux0|2 + |uy − uy0|2 + |w − w0|2

)
, (65)

where ux, uy are x, y components of predicted velocity, w = ∂xuy−∂yux, Nc is the collocation size,153

Nic is the number of coordinates for initial condition and ux0, uy0, uw0 are the initial conditions. We154

chose the weighting factors λw = 1, λc = 5, 000, and λic = 10, 000. We also resampled the input155

points every 100 epochs. The periodic boundary condition can be explicitly enforced by positional156

encoding [2], and we specifically used the following encoding function only for the spatial input157

coordinates.158

γ(x) = [1, sin(x), sin(2x), sin(3x), sin(4x), sin(5x), cos(x), cos(2x), cos(3x), cos(4x), cos(5x)]⊤.
(66)

Unlike other experiments, the solution of the Navier-Stokes equation is a 2-dimensional vector-valued159

function u : R3 → R2. We can rewrite the feature merging equation Eq. 5 in the main paper to160

construct SPINN into a 2-dimensional vector function:161

u1 =

r∑
j=1

d∏
i=1

f
(θi)
j (xi), (67)

u2 =

2r∑
j=r+1

d∏
i=1

f
(θi)
j (xi). (68)

For example in our (2+1)-d Navier-Stokes equation setting, r = 128 since the network output feature162

size is 256. This can be applied to any m-dimensional vector function if we use a larger output feature163

size. More formally, if we want to construct an m-dimensional vector function with SPINN of rank r,164

the k-th element of the function output can be written as165

uk =

kr∑
j=(k−1)r+1

d∏
i=1

f
(θi)
j (xi), (69)

where the output feature size of each body network is mr.166

F.5 (3+1)-d Navier-Stokes Equation167

The vorticity form of (3+1)-d Navier-Stokes equation is given as:168

∂tω + (u · ∇)ω = (ω · ∇)u+ ν∆ω + F, x ∈ Ω, t ∈ Γ, (70)
∇ · u = 0, x ∈ Ω, t ∈ Γ, (71)
ω(x, 0) = ω0(x), x ∈ Ω. (72)

We constructed the spatial/temporal domain to be Ω = [0, 2π]3 and Γ = [0, 5], respectively. We169

constructed the analytic solution for (3+1)-d Navier-Stokes equation introduced in Taylor et al. [12].170
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The manufactured velocity and vorticity are171

ux = 2e−9νt cos(2x) sin(2y) sin(z), (73)

uy = −e−9νt sin(2x) cos(2y) sin(z), (74)

uz = −2e−9νt sin(2x) sin(2y) cos(z), (75)

ωx = −3e−9νt sin(2x) cos(2y) cos(z), (76)

ωy = 6e−9νt cos(2x) sin(2y) cos(z), (77)

ωz = −6e−9νt cos(2x) cos(2y) sin(z), (78)

where we chose the viscosity to be ν = 0.05. Each forcing term F in the Eq. 70 is then given as172

Fx = −6e−18νt sin(4y) sin(2z), (79)

Fy = −6e−18νt sin(4x) sin(2z), (80)

Fz = 6e−18νt sin(4x) sin(4y). (81)

We constructed SPINN to be three body networks (modified MLP) of 5 hidden layers with 64/384173

hidden feature/output sizes each. We used Adam [6] optimizer with a learning rate of 0.001 and174

trained for 50,000 iterations. The weight factors in the loss function in Eq. 48 are chosen as λpde = 1,175

λic = 10, and λbc = 1. We also weighted the incompressibility loss (Eq. 71) with 100. The visualized176

solution vector field is shown in Fig. 4.177

G Additional Experiments178

G.1 (5+1)-d Heat Equation179

We tested our model on (5+1)-d heat equation to verify the effectiveness of our model on higher180

dimensional PDE:181

∂u(t, x)

∂t
= ∆u(t, x), x ∈ [−1, 1]5, t ∈ [0, 1], (82)

where the manufactured solution is chosen to be ∥x∥2+10t. When trained with 86 collocation points,182

SPINN achieved a relative L2 error of 0.0074 within 2 minutes.183

G.2 Fine Tuning with L-BFGS184

We also conducted some experiments to explore the use of L-BFGS when training SPINN. We185

found that training with Adam first and then fine-tuning with L-BFGS showed a slight increase in186

accuracy. Note that this training strategy is used by other works [5, 10] and is known to be effective187

in some cases. Tab. 2 shows the numerical results on three 3-d PDEs. Understanding the effect of the188

optimization algorithm is still an open question in PINNs, we believe that investigating this issue in189

the context of SPINN would be a valuable direction for future study.190

Table 2: Numerical result of 3-d PDEs with L-BFGS fine tuning. The number of training collocation
points is 643.

Diffusion Helmholtz Klein-Gordon

Adam 0.0041 0.0360 0.0013
Adam + L-BFGS 0.0041 0.0308 0.0010

191
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Table 3: Full results of diffusion equation. Nc

is the number of collocation points.

model Nc
relative runtime memory
L2 error (ms/iter.) (MB)

PINN
163 0.0095 3.98 1,022
323 0.0082 12.82 2,942
643 0.0081 95.22 18,122

PINN 163 0.0048 14.94 1,918
+ 323 0.0043 29.91 4,990

modified MLP 543 0.0041 134.64 22,248

SPINN

163 0.0447 1.45 766
323 0.0115 1.76 766
643 0.0075 1.90 766
1283 0.0061 2.09 894
2563 0.0061 10.54 2,174

163 0.0390 2.17 766
SPINN 323 0.0067 2.44 768

+ 643 0.0041 2.59 768
modified MLP 1283 0.0036 3.06 896

2563 0.0036 12.13 2,176

Table 4: Full results of the Helmholtz equation.
Nc is the number of collocation points.

model Nc
relative runtime memory
L2 error (ms/iter.) (MB)

PINN
163 0.9819 4.84 2,810
323 0.9757 14.84 2,938
643 0.9723 110.23 18,118

PINN 163 0.4770 18.32 7,034
+ 323 0.5176 35.02 9,082

modified MLP 543 0.4770 159.90 22,244

SPINN

163 0.1177 1.54 762
323 0.0809 1.71 762
643 0.0592 1.85 762
1283 0.0449 1.89 762
2563 0.0435 3.84 1,146

163 0.1161 2.24 764
SPINN 323 0.0595 2.50 764

+ 643 0.0360 2.57 764
modified MLP 1283 0.0300 2.76 764

2563 0.0311 5.50 1,148

Table 5: Full results of the (2+1)-d Klein-
Gordon equation. Nc is the number of col-
location points.

model Nc
relative runtime memory
L2 error (ms/iter.) (MB)

PINN
163 0.0343 4.70 2,810
323 0.0281 14.95 2,938
643 0.0299 112.00 18,118

PINN 163 0.0158 17.87 7,036
+ 323 0.0185 34.61 9,082

modified MLP 543 0.0163 159.20 22,246

SPINN

163 0.0193 1.55 762
323 0.0060 1.71 762
643 0.0045 1.82 762
1283 0.0040 1.85 890
2563 0.0039 3.98 1,658

163 0.0062 2.20 764
SPINN 323 0.0020 2.41 764

+ 643 0.0013 2.57 764
modified MLP 1283 0.0008 2.79 892

2563 0.0009 5.61 1,660

Table 6: Full results of the (3+1)-d Klein-
Gordon equation. Nc is the number of col-
location points.

model Nc
relative runtime memory
L2 error (ms/iter.) (MB)

PINN 164 0.0129 43.51 5,246
234 0.0121 154.24 22,244

PINN + 164 0.0061 100.06 17,534
modified MLP 184 0.0059 174.00 22,246

SPINN
164 0.0122 2.45 890
324 0.0095 2.98 892
644 0.0093 9.22 2,172

SPINN 164 0.0064 3.48 892
+ 324 0.0022 3.66 892

modified MLP 644 0.0012 10.96 2,172
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Figure 1: Visualized solution of nonlinear diffusion equation obtained by the baseline PINN and
SPINN, both trained on 643 collocation points.
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Figure 2: Visualized solution of Helmholtz equation obtained by the baseline PINN and SPINN,
both trained on 643 collocation points.

Figure 3: Visualized vorticity maps of (2+1)-d Navier-Stokes equation experiment predicted by
SPINN. Three snapshots at timestamps t = 0.0, 0.5, 1.0 are presented.
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(a) Exact solution (velocity)

(c) Exact solution (vorticity)

(d) Prediction (vorticity)

(b) Prediction (velocity)

Figure 4: Visualized solution of (3+1)-d Navier-Stokes equation obtained by SPINN, trained on 324

collocation points. Each arrow is colored by its zenith angle.
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