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ABSTRACT

Robust Markov Decision Processes (MDPs) and risk-sensitive MDPs are both
powerful tools for making decisions in the presence of uncertainties. Previous
efforts have aimed to establish their connections, revealing equivalences in specific
formulations. This paper introduces a new formulation for risk-sensitive MDPs,
which assesses risk in a slightly different manner compared to the classical Markov
risk measure [71], and establishes its equivalence with a class of soft robust MDP
(RMDP) problems, including the standard RMDP as a special case. Leveraging this
equivalence, we further derive the policy gradient theorem for both problems, prov-
ing gradient domination and global convergence of the exact policy gradient method
under the tabular setting with direct parameterization. This forms a sharp contrast
to the Markov risk measure, known to be potentially non-gradient-dominant [39].
We also propose a sample-based offline learning algorithm, namely the robust
fitted-Z iteration (RFZI), for a specific soft RMDP problem with a KL-divergence
regularization term (or equivalently the risk-sensitive MDP with an entropy risk
measure). We showcase its streamlined design and less stringent assumptions due
to the equivalence and analyze its sample complexity.

1 INTRODUCTION

Making decisions amidst uncertainty presents a fundamental challenge cutting across diverse domains,
including finance [32, 80], engineering [45, 74], and robotics [88] etc. Within these realms, decisions
carry consequences that depend not only on expected rewards but also on the level of uncertainty and
associated risks. Addressing this challenge necessitates approaches such as robust, and risk-sensitive
decision-making. These approaches explicitly incorporate uncertainty and aim to find policies that
perform well across a spectrum of scenarios and adeptly strike a balance between expected gains and
potential risks.

For robust decision-making in a dynamic environment, the robust Markov Decision Process (RMDP)
is a popular framework. RMDPs model the environment as a Markov decision process, seeking
policies that excel across various potential models. This involves solving a max-min problem,
optimizing an objective function that considers the policy’s worst-case performance across all models
within a defined uncertainty set. The RMDP framework was introduced by [41, 57], spurring research
into efficient planning algorithms when the model is given [34, 96, 93, 100, 56].There are also
works focusing on the computational facets for these problems [37, 6, 35, 21] which leverage convex
formulation and regularization techniques to tackle robustness. In cases of unknown models 1,
recent efforts have designed reinforcement learning (RL) algorithms with guarantees, but most are
model-based for tabular cases, i.e., requiring an empirical estimation of the probability transition
model [51, 63, 105, 99, 98, 77], thereby impeding their applicability to large state spaces. Some
works focus on the model-free setting and employ linear function approximation for handling large
state spaces [85, 70, 4]. However, these approaches provide only asymptotic guarantees and rely on
approximated robust dynamic programming, which inherently is computationally more expensive
than standard dynamic programming. A recent contribution by [64] offers non-asymptotic sample

1By ‘unknown model’ we refer to the setting where the nominal probability transition model is unknown.
Both model-based and model-free methods belong to this setting, where model-based methods keep an empirical
estimate of the nominal model whereas model-free algorithms don’t require this empirical estimation step.
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complexity guarantees in the context of model-free robust RL. This achievement, however, introduces
additional dual variables, thus adding additional computational complexity and imposing more
stringent assumptions.

An alternative approach for handling uncertainty is risk-sensitive decision-making, which intriguingly
shares an elegant equivalence with robust decision-making. The concept of coherent risk measures was
initially introduced and explored in [2, 18, 69], where the uncertainty is represented by a static random
variable. The connection to robustness was established by characterizing risk measures as the infimum
of expected shortfall across a set of probability measures, known as the risk envelope. The risk notion
is further extended to convex risk measures which capture a broader class of risk evaluation functions
[30, 73, 31]. Subsequently, conditional and dynamic risk measures were introduced to generalize
risk assessment from static random variables to stochastic processes [3, 14, 29, 22, 68, 72, 65]. In
particular, [71] introduces the Markov risk measure in the context of Markov Decision Processes
(MDPs). However, the equivalence between the Markov risk measure and robust MDPs is not as
straightforward as in static settings. Notably, [71, 75, 11, 5, 62] established the equivalence between
optimizing the Markov risk measure and solving a modified RMDP problem, where the uncertainty
set dynamically changes with the implemented policy. This differs from the standard RMDPs, where
the uncertainty sets are typically unrelated to the policy. Though [62] attains stronger equivalence
results with RMDPs, it is only applicable to specific risk measures, such as Conditional Value at
Risk (CVaR). Similar to RMDPs, optimizing Markov risk measures also faces many challenges.
Firstly, building upon the equivalence with the modified RMDP with policy-dependent uncertainty
set, Huang et al. [39] highlights that, even in a tabular setting with direct parameterization, Markov
risk measures may lack gradient-dominance – a stark contrast to the gradient domination observed in
standard MDPs [1]. This implies that policy gradient algorithms may not ensure global optima, even
in a straightforward, full-information environment. Further, the sample complexity is also harder to
obtain. While there is a series of efforts dedicated to optimizing the Markov risk measure within the
realm of RL [12, 76, 46], these works primarily provide asymptotic convergence results.

The challenges outlined above motivate us to investigate the potential of introducing an alternative
risk formulation. This new formulation seeks to capture risk in a way similar to Markov risk measures
while achieving a stronger and broader equivalence with RMDPs. Moreover, we aim to enhance
convergence properties, including the crucial aspect of gradient domination. These improvements are
poised to support the development of learning algorithms for both RMDPs and risk-sensitive MDPs
while maintaining provable guarantees.

Our Contributions: In this paper, we propose a new formulation for risk-sensitive MDP, whose
definition incorporates the general concepts of convex risk measures. We first establish the equivalence
of risk-sensitive MDP with a class of soft RMDP problems, which includes the standard RMDP as a
special case. Leveraging this equivalence, we proceed to derive the policy gradient theorem for both
the aforementioned class of soft RMDPs and risk-sensitive MDPs (Theorem 3) and prove the global
convergence of the exact policy gradient method under the tabular setting with direct parameterization.
Our result, to the best of our knowledge, presents the first global convergence analysis with iteration
complexity for a general class of risk-sensitive MDPs.

Based on the policy gradient theorem, we also highlight the difficulty of gradient estimation using
samples compared with the standard MDP setting, motivating us to seek other types of sample-based
learning methods. In the last part of this paper, we mainly focus on the setting of offline learning
with nonlinear function approximation which is a relatively less-studied scenario, and propose a
sample-based offline learning algorithm, namely the robust fitted-Z iteration (RFZI), that resembles
policy iteration rather than policy gradient.Specifically, we focus on a setting where the regularization
term for the RMDP is a KL-divergence term, which is equivalent to the risk-sensitive MDP with
the entropy risk measure. The algorithm utilizes the equivalence between the two problems, which
enables simpler algorithm design. Notably, our algorithm is model-free and does not rely on an
empirically estimated probability transition model. The sample complexity for RFZI is also provided.
Compared with [64] which considers offline robust RL with sample-complexity guarantees, our work
considers a different uncertainty set, requires less computational and implementation complexity, and
less stringent assumptions.

Due to space limit, we defer a detailed literature review and numerical simulations to the appendix.
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2 PROBLEM SETTINGS AND PRELIMINARIES

Markov Decision Processes (MDPs). A finite Markov decision process (MDP) is defined by a
tupleM = (S,A, P, r, γ, ρ), where S is a finite set of states, A is a finite set of actions available to
the agent, and P is the transition probability function such that P (s′|s, a) describes the probability
of transitioning from one state s to another s′ given a particular action a. For the sake of notation
simplicity, we use Ps,a to denote the probability distribution P (·|s, a) over the state space S. r :
S × A → [0, 1] is a reward function, γ ∈ [0, 1) is a discounting factor, and ρ specifies the initial
probability distribution over the state space S.

A stochastic policy π : S → ∆|A| specifies a strategy where the agent chooses its action based on the
current state in a stochastic fashion; more specifically, the probability of choosing action a at state s is
given by Pr(a|s) = π(a|s). A deterministic policy is a special case of the stochastic policy where for
every state s there is an action as such that π(as|s) = 1. For notation simplicity, we slightly overload
the notation and use π(s) to denote the action as for deterministic policies. For a given stationary
policy π and a set of transition probability distributions {Ps,a}s∈S,a∈A, we denote the discounted
state visitation distribution by

dπ,P (s) := (1− γ)
∑+∞

t=0 γ
tPrπ,P (st = s | s0 ∼ ρ).

Robust MDPs (RMDPs) and Soft Robust MDPs. Unlike the standard MDP which considers a
fixed transition model {Ps,a}, the robust MDP considers a set P of transition probability distributions
and aims to solve the sup-inf problem [41]

supπ inf{P̂t∈P}t≥0
Est,at∼π,P̂ ,s0∼ρ

∑+∞
t=0 γ

t (r(st, at))
2 (1)

where the objective is to find the best action sequence that maximizes a worst-case objective over all
possible models in the uncertainty set P . Many papers [41, 57, 99, 63, 4] consider the uncertainty set
under the (s, a)-rectangularity condition P = ⊗s∈S,a∈APs,a, where Ps,a = {P̂s,a : ℓ(P̂s,a, Ps,a) ≤
ϵ}, and ℓ is a penalty function that captures the deviation of P̂s,a from a nominal model Ps,a. Some
popular penalty functions are KL divergence, total variation distance, etc.

In this paper, we generalize the above robust MDP problem to a wider range of problems which we
call the soft robust MDP3. The objective of the soft robust MDP solves the following sup-inf problem:

supπ inf{P̂t}t≥0
Est,at∼π,P̂ ,s0∼ρ

∑+∞
t=0 γ

t
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
)
. (2)

Note that here inf{P̂t}t≥0
is with respect to all the possible state-transition probability distributions.

When the penalty function D is chosen as the indicator function

D(P̂s,a, Ps,a) =

{
0 ℓ(P̂s,a, Ps,a) ≤ ϵ

+∞ otherwise
,

it recovers the robust MDP problem (1). When D is set as non-indicator functions, for example,
D(P̂s,a, Ps,a) = KL(P̂s,a||Ps,a), Problem (2) is a robust MDP with a soft penalty term D on the
deviation of P̂s,a from Ps,a rather than a hard constraint on P̂s,a.

Similar to the robust MDP problem, we can define the optimal value function as

V
⋆
(s) :=supπinf{P̂t}t≥0

Est∼P̂

[∑+∞
t=0 γ

t
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
) ∣∣∣s0 = s

]
. (3)

Additionally, given a stationary policy π, the value function V
π

under policy π is defined as follows:

V
π
(s) := inf{P̂t}t≥0

Est,at∼π,P̂

[∑+∞
t=0 γ

t
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
) ∣∣∣s0 = s

]
. (4)

We also define the corresponding Q-functions as

Q
⋆
(s, a) :=sup{at}t≥1

inf{P̂t}t≥0
Est∼P̂

[∑+∞
t=0 γ

t
(
r(st, at)+γD(P̂t;st,at

,Pst,at
)
) ∣∣∣s0=s, a0=a

]
Q

π
(s, a) :=inf{P̂t}t≥0

Est,at∼π,t≥1,P̂

[∑+∞
t=0 γ

t
(
r(st, at)+γD(P̂t;st,at

, Pst,at
)
) ∣∣∣s0=s, a0=a

]
.

2For the sake of generality, we allow the transition probability to be non-stationary and the policy to be
non-Markovian and stochastic. However, in later sections we will show that the sup-inf solution can be obtained
by a stationary deterministic Markov policy and a stationary transition probability (Theorem 2).

3We adopt the term from robust optimization literature, the concept of regularizing the adversaries actions is
referred as soft-robustness [9] (or comprehensive robustness [8] and globalized robustness [10]).
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Remark 1 (Soft Robust MDP.). The soft robust MDP problem is useful, especially when the uncer-
tainty set is not explicitly given. In this case, it is more desirable to consider all possible probability
transition models {P̂t}t≥0 while treating the deviation from the nominal model as a soft penalty term
D rather than constraining it to be within a specified uncertainty set.

In this paper, we establish a connection between the soft robust MDP and another class of MDPs,
namely risk-sensitive MDPs. To define the risk-sensitive MDP, we will first introduce the notation of
convex risk measures.

Convex Risk Measures [30]. Consider a finite set S , let R|S| denote the set of real-valued functions
over S . A convex risk measure σ : R|S| → R is a function that satisfies the following properties:

1. Monotonicity: for any V ′, V ∈ R|S|, if V ′ ≤ V , then σ(V ) ≤ σ(V ′).

2. Translation invariance: for any V ∈ R|S|,m ∈ R, σ(V +m) = σ(V )−m .

3. Convexity: for any V ′, V ∈ R|S|, λ ∈ [0, 1], σ(λV +(1−λ)V ′) ≤ λσ(V )+(1−λ)σ(V ′).

Using standard duality theory, it is shown in classical results [30] that convex risk measures satisfy
the following dual representation theorem:

Theorem 1 (Dual Representation Theorem [30]). The function σ : R|S| → R is a convex risk
measure if and only if there exists a “penalty function” D(·) : ∆|S| → R such that

σ(V ) = supµ̂∈∆|S| (−Eµ̂V −D(µ̂)) . (5)

Further, the penalty function D can be chosen to satisfy the condition D(µ̂) ≥ −σ(0) for any
µ̂ ∈ ∆|S| and it can be taken to be convex and lower-semicontinuous. In specific, it can be written in
the following form:

D(µ̂) = supV (−σ(V )− Es∼µ̂V (s)) (6)

Note that σ and D serve as the Fenchel conjugate of each other. In most cases, the convex risk
measure σ(V ) can be interpreted as the risk associated with a random variable that takes on values
V (s) where s is drawn from some distribution s ∼ µ. Consequently, most commonly used risk
measures are typically associated with an underlying probability distribution µ∈∆|S| (e.g., Examples
1). This paper focuses on this type of risk measures and thus we use σ(µ, ·) to denote the risk measure,
where the additional variable µ indicates the associated probability distribution. Correspondingly, we
denote the penalty term D(µ̂) of σ(µ, ·) in the dual representation theorem as D(µ̂, µ).4

Here we provide an example of convex risk measure and its dual form.
Example 1 (Entropy risk measure [30]). For a given β > 0, the entropy risk measure takes the form:

σ(µ, V ) = β−1 logEs∼µe
−βV (s).

Its corresponding penalty function D in the dual representation theorem is the KL divergence

D(µ̂, µ) = β−1KL(µ̂||µ) = β−1
∑

s∈S µ̂(s) log (µ̂(s)/µ(s)) .

Risk-Sensitive MDPs. Convex risk measures capture the risk associated with random variables. It
would be desirable if the notion could be adapted to the MDP to capture the risk of a given policy
under the Markov process. Given an MDPM, a class of convex risk measures {σ(Ps,a, ·)}s∈S,a∈A,
and a policy π(·|s), the risk-sensitive value function Ṽ π for the infinite discounted MDP is given as

Ṽ π(s) =
∑

a π(a|s)
(
r(s, a)− γσ(Ps,a, Ṽ

π)
)
,∀s ∈ S. (7)

With the definition of risk-sensitive Ṽ π, the risk-sensitive MDP problem is to find the policy that
maximizes maxπ Ṽ

π. We denote the optimal value by Ṽ ⋆, which is the fix-point solution of the
following equation,

4Please note that the symbol D serves a dual purpose, representing both the regularization term in (2) and
the penalty function for a risk measure in (5) and (6). This intentional notation overlap will become clear in the
following sections, which reveal the connection between these two terms.
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Ṽ ⋆(s) := maxa

(
r(s, a)− γσ(Ps,a, Ṽ

⋆)
)
,∀s ∈ S. (8)

It is worth noting that the fixed point operators for (7),(8) are contractive (proof deferred to Appendix
D), which immediately implies the following lemma which verifies that the fixed point equations for
Ṽ π (7) and Ṽ ⋆ (8) are well-defined .
Lemma 1. The solution to (7) exists and is unique. Same argument holds for (8).
Remark 2. We would like to emphasize that when the policy π is stochastic, our definition of the
value functions Ṽ π are different from the Markov risk measures defined in [71, 39, 86, 87] 5. However,
the two quantities are equivalent when π is deterministic. Additionally, when further assuming that
the risk measure σ is mixture quasiconcave (c.f. [17]), the optimal policy for the Markov risk measure
is also deterministic and thus the risk-sensitive MDP and the Markov risk measure obtain the same
optimal value Ṽ ⋆ 6 (see Appendix C for more details).

We also define the Q-function of the risk sensitive MDP as:

Q̃⋆(s, a) := r(s, a)− γσ(Ps,a, Ṽ
⋆), Q̃π(s, a) := r(s, a)− γσ(Ps,a, Ṽ

π).

Other notations: For any function f : S × A → R, state-action distribution µ ∈ ∆(S × A) the
µ-weighted 2-norm of f is defined as ∥f∥2,µ =

(
Es,a∼µf(s, a)

2
)1/2

.

3 EQUIVALENCE OF SOFT RMDPS AND RISK-SENSITIVE MDPS

Theorem 2 (Equivalence of Soft RMDPs and Risk-Sensitive MDPs). For a given MDPM, a penalty
function D, a class of convex risk measures {σ(Ps,a, ·)}, and a stationary policy π, if the penalty
function D satisfies

D(P̂s,a, Ps,a) = supV

(
−σ(Ps,a, V )− Es′∼P̂s,a

V (s′)
)
, (9)

then the value functions and Q-functions of the soft RMDP and the risk-sensitive MDP are always
the same. That is, V

⋆
= Ṽ ⋆=:V ⋆, V

π
= Ṽ π=:V π, Q

⋆
=Q̃⋆=:Q⋆, Q

π
=Q̃π=:Qπ. 7

Further, for every initial state s0, the sup-inf solution of the policy and transition probabilities for
V ⋆(s0) defined in (3) is given by:

π⋆(s) = argmaxa (r(s, a)− γσ(Ps,a, V
⋆)) , (10)

P̂ ⋆
t;s,a = P̂ ⋆

s,a = argminP̂ D(P̂ , Ps,a) + Es′∼P̂V
⋆(s′).

where (10) means that the optimal action sequence {at}t≥1 can be achieved by implementing the
deterministic policy at = π⋆(st).

Similarly, for any initial state s0, the minimum solution of the transition probabilities for V π(s0)
defined in (4) is given by

P̂π
t;s,a = P̂π

s,a = argminP̂ D(P̂ , Ps,a) + Es′∼P̂V
π(s′). (11)

Since Theorem 2 has established the equivalence of risk-sensitive MDPs and soft RMDPs, from
now on we use V ⋆, V π, Q⋆, Qπ to denote the value functions and Q-functions for both settings and
assume by default that the penalty function D and the risk measure σ satisfy relationship (9).
Remark 3. As a comparison to the equivalence result for the Markov risk measures [72, 71, 86],
their uncertainty set for the robust problem generally depends on the policy π (see e.g. Assumption
2.2 in [86]), while in our setting, the penalization function D is independent of the policy and matches
with the most standard formulation of RMDPs.

5Due to this difference, the value function V π can no longer be written as ρ(
∑+∞

t=0 γtr(st, at)) where ρ is a
time-consistent dynamic risk measure. This makes our definition different from the usual interpretation of the
dynamic risk measures.

6We would like to note that the equivalence of optimal value might fail if σ is not mixture semiconcave (e.g.
mean (semi)-deviation, mean (semi)-moment measures [17]) or if policy regularization is added into the value
function because the optimal policy might no longer be deterministic.

7The equivalence V
π
= Ṽ π, Q

π
= Q̃π easily extends to the setting with policy regularization, since adding

regularization only requires changing the reward function r(s, a) to be rπ(s, a) = r(s, a) +R(π(·|s)), where
R is the policy regularizer, in which case the proof of Theorem 2 can still carry through naturally.
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4 POLICY GRADIENT FOR SOFT RMDPS

In this section, we present the policy gradient theorem for a differentiable policy πθ parameterized by
θ, which provides an analytical method for computing the gradient in soft RMDPs. Additionally, we
prove the global convergence of the exact policy gradient ascent algorithm for the direct parameteri-
zation case. For simplicity, in this section we use the abbreviations V θ, Qθ, P̂ θ, V (t), Q(t), P̂ (t) to
denote V πθ , Qπθ , P̂πθ , V π

θ(t) , Qπ
θ(t) , P̂π

θ(t) , respectively.
Theorem 3 (Policy gradient theorem). Suppose that πθ is differentiable with respect to θ and that
σ(Ps,a, ·) : R|S| → R is a differentiable function, then V θ(s) is also a differentiable function with
respect to θ and the gradient is given by

∇θV
θ(s) = Eat∼πθ(·|st),st+1∼P̂ θ

st,at

[∑+∞
t=0 γ

tQθ(st, at)∇θ log πθ(at|st)
∣∣∣s0 = s

]
,

where P̂ θ is defined in (11).

We leave the discussion of this result to the end of this section in Remark 4. Theorem 3 immediately
implies the following corollary on the policy gradient under direct parameterization (c.f. [1, 94]),
where the parameter θs,a directly represents the probability of choosing action a at state s, i.e.,
θs,a = πθ(a|s).
Corollary 1 (Policy gradient for direct parameterization). Under direct parameterization,

∂Es0∼ρV
θ(s0)

∂θs,a
=

1

1− γ
dπθ,P̂

θ

(s)Qθ(s, a). (12)

Note that the policy gradient theorem only holds for the case where σ(Ps,a, ·) is differentiable;
nevertheless, we can generalize (12) to the non-differentiable case by defining the variable G(θ) ∈
R|S|×|A| as follows:

[G(θ)]s,a :=
1

1− γ
dπθ,P̂

θ

(s)Qθ(s, a).

For both differentiable and non-differentiable cases, we could perform the following (‘quasi’-)gradient
ascent algorithm:

θ(t+1) = ProjX (θ(t) + ηG(θ(t))), (13)

where X = ⊗s∈S ∆|A| denotes the feasible region of θ. For the standard MDP case, it is known that
the value function satisfies the gradient domination property under direct parameterization [1], which
enables global convergence of the policy gradient algorithm. Similar properties also hold for the soft
RMDP/risk-sensitive MDP setting which is shown in the following lemma:
Lemma 2 (Gradient domination under direct parameterization).

Es0∼ρV
⋆(s0)− V θ(s) ≤

∥∥∥dπ⋆,P̂θ

dπθ,P̂θ

∥∥∥
∞

maxπ ⟨π − πθ, G(θ)⟩ ,

where
∥∥∥dπ⋆,P̂θ

dπθ,P̂θ

∥∥∥
∞

:= maxs
dπ⋆,P̂θ

(s)

dπθ,P̂θ
(s)

.

The gradient domination property suggests that as long as the term
∥∥∥dπ⋆,P̂θ

dπθ,P̂θ

∥∥∥
∞

is not infinite, all
the first order stationary points are global optimal solutions. Based on this observation, we further
derive the convergence rate for the policy gradient algorithm. Before that, we introduce the following
sufficient exploration assumption:

Assumption 1 (Sufficient Exploration). For any policy π, it holds that dπ,P̂
π

(s) > 0, where P̂π

is defined as in (11). We define the distributional shift factor M to be a constant that satisfies
M ≥ 1

dπ,P̂π (s)
for all state s and policy π.

Note that when we start with a initial distribution where ρ(s) > 0 for every state s, the term M
can be upper bounded by 1

(1−γ)mins ρ(s) . If Assumption 1 is satisfied, it can be concluded that∥∥∥dπ⋆,P̂θ

dπθ,P̂θ

∥∥∥
∞
≤M . Thus we could use gradient domination to derive the global convergence rate.
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Theorem 4 (Convergence rate for exact policy gradient under direct parameterization). Under
Assumption 1, by setting η = (1−γ)3

2|A|M , running (13) guarantees that∑K
k=1

(
Es0∼ρV

⋆(s0)− V (k)(s0)
)2 ≤ 16|A|M4

(1−γ)4 .

Therefore, by setting K≥ 16|A|M4

(1−γ)4ϵ2 , it is guaranteed that min1≤k≤K Es0∼ρ(V
⋆(s0)−V (k)(s0))≤ϵ.

If we apply the same proof technique to standard MDPs, the convergence rate is O
(

|A|M2

(1−γ)4

)
. The

dependency on the distributional shift factor M is worse for soft RMDPs, which is caused by the
choice of a smaller stepsize η (see Remark 7 in the Appendix for more details). It is an interesting
open question whether this worse dependency is fundamental or just a proof artifact.
Remark 4 (Difficulties of Sample-based Gradient Estimation). Though Theorem 4 establishes the
global convergence of exact policy gradient, it is hard to generalize the result to sample-based
settings. Note that the policy gradient in Theorem 3 takes a similar form as compared to standard
MDPs [83], however, there’s a primary distinction that the expectation is taken over trajectories
sampled from the probability transition model P̂ θ instead of the nominal model P . Consequently,
when confined to samples exclusively from the nominal model, estimating this expectation becomes
exceptionally challenging, particularly in the context of non-generative models.

5 OFFLINE REINFORCEMENT LEARNING OF THE KL-SOFT RMDP

Since the previous section considers learning with full information and studies iteration complexity,
the major motivation for this section is to examine sample-based learning for risk sensitivity MDPs
and soft robust MDPs. As discussed in Remark 4, developing sample-based policy gradient learning
methods might be difficult, therefore, we seek an alternative sample-based method that resembles
policy iteration rather than policy gradient. Specifically, we mainly focus on the setting of offline
learning with nonlinear function approximation which is a relatively less-studied scenario. Moreover,
due to the challenge in developing a method for soft MDPs with general D functions (or equivalently
for risk sensitive MDPs with general risk functions σ), in this section, we look into a particular and
important case of soft RMDP where the regularization term is the KL-divergence, i.e.,

maxπ minP̂t
Est,at∼π,P̂t,s0∼ρ

∑+∞
t=0 γ

t
(
r(st, at) + γβ−1KL(P̂t;st,at

||Pst,at
)
)
. (14)

The hyperparameter β represents the penalty strength of the deviation of P̂ from P , the smaller β is,
the larger the penalty strength. From Example 1 and Theorem 2, the KL-soft RMDP is equivalent to
the risk-sensitive MDP problem with the risk measures σ(Ps,a, ·) chosen as the entropy risk measure

σ(Ps,a, V ) = β−1 logEs′∼Ps,a
e−βV (s′).

In this case, the Bellman equations for the value functions V π, V ⋆, Qπ, Q⋆ are given by:

V π(s)=
∑

aπ(a|s)Q(s, a), Qπ(s, a)=r(s, a)−γβ−1logEs′∼Ps,ae
−βV π(s′),

V ⋆(s)=maxa Q(s, a), Q⋆(s, a) = r(s, a)− γβ−1 logEs′∼Ps,ae
−βV ∗(s′).

For notational simplicity, we define the Bellman operator on the Q-functions TQ : R|S|×|A| →
R|S|×|A| as:

[TQQ](s, a) := r(s, a)− γβ−1 logEs′∼P (·|s,a)e
−βmaxa′ Q(s′,a′). (15)

It is not hard to verify from the above arguments that the optimal Q function Q⋆ satisfies

Q⋆ = TQQ⋆.

Offline robust reinforcement learning. The remainder of the paper focuses on finding the optimal
robust policy π⋆ for the soft robust MDP problem (14). Specifically, we explore offline robust
reinforcement learning algorithms which use a pre-collected dataset D to learn π⋆. The dataset
is typically generated under the nominal model {Ps,a}s∈S,a∈A, such that D = {si, ai, ri, s′i}Ni=1,
where the state-action pairs (si, ai) ∼ µ are drawn from a specific data-generating distribution µ.
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Definition 1 (Robustly Admissible Distributions). A distribution ν∈∆|S|×|A| is robustly admissible
if there exists h≥0 and a policy π and transition probability P̂ ∈{P ′ :KL(P ′

t;s,a||Ps,a)≤β} (both
can be non-stationary) such that ν(s, a) = Pr(sh, ah|s0 ∼ ρ, π, P̂ ).

Assumption 2 (Concentrability). The data-generating distribution µ satisfies concentrability if there
exists a constant C such that for any ν that is robustly admissible, maxs,a

ν(s,a)
µ(s,a) ≤ C.

Remark 5. The notion of robustly admissible distribution and concentrability are adapted from the
the corresponding notions defined for the standard MDP setting [13], where they also demonstrate
the necessity of this assumption for standard RL with function approximation. It would be an
interesting open question whether Assumption 2 is also necessary for robust RL settings. Recent
works for standard offline RL also show that by considering variations of the RL algorithms (e.g.
exploring pessimism [95] or the primal-dual formulation [102]), the concentrability assumption can
be weakened to single-policy concentrability. Another interesting future direction is to study whether
applying similar approaches for the soft RMDP would result in the same improvement.

5.1 ROBUST FITTED-Z ITERATION (RFZI)

The offline robust MDP learning method we propose is Robust fitted-Z iteration (RFZI). The main
idea is to utilize the fix point equation Q⋆ = TQQ⋆ with the Bellman operator (15) from the
corresponding equivalent risk-sensitive MDP. However, TQ involves a term logEs′∼Ps,a

which is hard
to approximate with empirical estimation. Thus, instead of directly solving Q∗ using Q⋆ = TQQ⋆,
we introduce an auxiliary variable, Z-function and solve a fix point equation for Z, which play an
important role in our algorithm design and theoretical analysis.

The Z-functions. For a given Q-function Q : S ×A → R, we define its corresponding Z-function
as below:

Z(s, a) := Es′∼Ps,a
e−βmaxa′ Q(s′,a′).

One can establish the relationship between the Z-function and the Q-function by

[TQQ](s, a) = r(s, a)− γβ−1 logZ(s, a).

Further, we also define the Z-Bellman operator on Z-functions as:

[TZZ](s, a) := Es′∼Ps,a
e−βmaxa′ (r(s′,a′)−γβ−1 logZ(s′,a′)).

Then TQ[TQQ]](s, a) = r(s, a) − γβ−1 log[TZZ](s, a). Thus, instead of solving Q⋆ = T̃QQ⋆, an
alternative approach is to solve Z⋆ = T̃ZZ⋆ and recover Q⋆ by Q⋆ = r−γβ−1logZ⋆. This is the
key intuition of our RFZI algorithm. Note that compare with TQ, TZ eliminates the log dependency
on the expectation term Es′∼Ps,a , which makes it easier for empirical estimation.

Function approximation and projected Z-Bellman operator. Given that T̃Z is a contraction
mapping, the solution Z⋆ can be obtained by running Zk+1 = T̃ZZk, limk→+∞ Zk = Z⋆. However,
when the problem considered is of large state space, it is computationally very expensive to compute
the Bellman operator T̃Z exactly. Thus function approximation might be needed to solve the problem
approximately. Given a function class F , we define the projected Z-Bellman operator as:

[TZ,FZ](s, a) := argminZ′∈F ∥Z ′ − TZZ∥22,µ.

One can verify that TZ,FZ is also the minimizer of the following loss function L,

L(Z ′, Z) := Es,a∼µEs′∼Ps,a

(
Z ′(s, a)− exp

(
−βmaxa′(r(s′, a′)− γβ−1 logZ(s′, a′))

))2
,

i.e., TZ,FZ = argminZ′∈F L(Z ′, Z).

We make the following assumptions on the expressive power of the function class F
Assumption 3 (Approximate Completeness). supZ∈F infZ′∈F ∥Z ′ − TZZ∥2,µ ≤ ϵc.

Assumption 4 (Positivity). e−
β

1−γ ≤ Z ≤ 1, ∀Z ∈ F .
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Approximate the projected Z-Bellman operator with empirical loss minimization. The compu-
tation of the loss function L requires knowledge of the empirical model Ps,a which the algorithm
doesn’t have access to. Thus, we introduce the following empirical loss to further approximate
the loss function L. Given an offline data set {(si, ai, s′i)}Ni=1 generated from the distribution
(si, ai)∼µ, s′i∼Psi,ai

, we can define the empirical loss L̂ as:

L̂(Z ′, Z) := 1
N

∑N
i=1

(
Z ′(si, ai)− exp

(
−βmaxa′(r(s′i, a

′)− γβ−1 logZ(s′i, a
′))
))2

Given the empirical loss L̂ the empirical projected Bellman operator is defined as T̂Z,FZ :=

argminZ′∈F L̂(Z ′, Z). Our robust fitted Z iteration (RFZI) is essentially updating the Z-functions
iteratively by Zk+1 = T̂Z,FZk. The detailed algorithm is displayed in Algorithm 1.

Algorithm 1 Robust Fitted Z Iteration (RFZI)

1: Input: Offline dataset D = (si, ai, ri, s
′
i)

N
i=1, function class F .

2: Initialize: Z0 = 1 ∈ F
3: for k = 0, . . . ,K − 1 do
4: Update Zk+1 = argminZ∈F L̂(Z,Zk).
5: end for
6: Output: πK = argmaxa r(s, a)− γβ−1 logZK(s, a)

5.2 SAMPLE COMPLEXITY

This section provides the theoretical guarantee for the convergence of the RFZI algorithm. Due to
space limit, we defer the proof sketches as well as detailed proofs to Appendix H.
Theorem 5 (Sample complexity for RFZI). Suppose Assumption 2,3 and 4 hold, then for any
δ ∈ (0, 1), with probability at least 1− δ, the policy πK obtained from RFQI algorithm (Algorithm
1) satisfies:

Es0∼ρV
⋆(s0)−V πK (s0) ≤

2γK

(1−γ)2
+γβ−1e

β
1−γ

2C

(1−γ)2

(
4

√
2 log(|F|)

N
+5

√
2 log(8/δ)

N
+ϵc

)
.

The performance gap in Theorem 5 consists of three parts. The first part 2γK

(1−γ)2 captures the effect of

γ-contraction of the Bellman operators. The second term, which is the term with γβ−1e
β

1−γ 2C
(1−γ)2 ϵc,

is related to the approximation error caused by using function approximation. The third term

γβ−1e
β

1−γ 2C
(1−γ)2

(
4
√

2 log(|F|)
N + 5

√
2 log(8/δ)

N

)
is caused by the error of replacing the projected

Z-Bellman operator with its empirical version.
Remark 6 (Comparison and Discussions). Under similar Bellman completeness and concentrability
assumptions, the sample complexity for risk-neutral offline RL [13] is Õ

(
C log |F|

(1−γ)4ϵ2

)
, while our result

gives O
(
C2
(
β−1e

β
1−γ

)2
log |F|

(1−γ)4ϵ2

)
(assuming ϵc=0). As a consequence of robustness, our bound

has a worse dependency on the concentrability factor C and an additional factor
(
β−1e

β
1−γ

)2
. Note

that the term β−1e
β

1−γ first decreases and then increases with β as it goes from 0 to +∞, suggesting
that the hyperparameter β also affects the learning difficulty of the problem. The choice of β should
not be either too large or too small, ideally on the same scale with 1−γ. It is still unclear to us
whether the exponential dependency e

β
1−γ is a proof artifact or intrinsic in our setting, however, there

are results under similar settings that suggest this exponential dependency on parameter β and the
effective length 1

1−γ is fundamental (e.g. Theorem 3 in [26]).

We also compare our performance bound with the RFQI algorithm [64] which considers a similar
offline learning setting and obtains sample complexity O

(
log(|F||G|)
(βϵ)2(1−γ)6

)
, where β in their setting is

the radius of the uncertainty set. Note that both results share the same dependency on ϵ and the
concentrability constant C. However, the bound in [64] includes an additional term on the size of the
dual variable space log |G|, whereas we have the exponential dependence term e

2β
1−γ .
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6 CONCLUSIONS AND DISCUSSIONS

This paper proposes a new formulation of risk-sensitive MDP and establishes its equivalence with the
soft robust MDP. This equivalence enables us to develop the policy gradient theorem and prove the
global convergence of the exact policy gradient method under direct parameterization. Additionally,
for the KL-soft robust MDP (or equivalently the risk-sensitive MDP with entropy risk measure)
scenario, we propose a sample-based offline learning algorithm, namely the robust fitted-Z iteration
(RFZI), and analyze its sample complexity.

Our work admittedly has its limitations. Currently, our policy gradient result is limited to the exact
gradient case, and further research is needed to extend it to approximate gradients. The RFZI
algorithm is specifically designed for KL-soft problems and may be more suitable for small action
spaces. Our future work will focus on developing practical algorithms that can handle large or even
continuous state and action spaces, as well as generalizing the approach to accommodate different
penalty functions.
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A MORE RELATED WORKS

Relationship between risk and robustness: Apart from the works mentioned in the Introduction,
there are also other works that discuss the relationship between risk and robustness under different
settings or utility functions [59, 60, 25, 19]. In particular, Eysenbach and Levine [25] do not establish
exact equivalence, but rather an equivalence of a lower-bound of certain robust objective; Noorani and
Baras [59, 60] considers exponential utility which is a different risk measure with the risk-sensitive
MDP considered in the paper as well as the Markov risk measure.

Policy Gradient for Risk-Sensitive/Robust Learning: There are many previous works focusing
on applying policy gradient-based algorithm for risk-sensitive/robust learning [84, 86, 87, 39, 101, 42,
16, 89, 91, 47, 50]. However, most of the works lack theoretical guarantees on the global convergence
of these gradient-based algorithms [84, 86, 87, 42, 16]. There are some recent studies focusing on
the global convergence guarantees for the policy gradient theorem. In particular, the works by Huang
et al. [39] and Yu and Ying [101] are most related to our work. Huang et al. [39] give negative results
showing that Markov risk measures are not gradient-dominant. Yu and Ying [101] prove global
convergence for one specific type of risk measure - expected conditional risk measures (ECRMs).
There are also works that considers policy gradient for RMDP with different types of uncertainty sets,
for example, Wang and Zou [91] considers RMDPs with a particular R-contamination ambiguity set
Kumar et al. [47], Li et al. [50], Wang et al. [89] considers policy gradient for RMDP with different
uncertainty sets (e.g. s-rectangularity and non-rectangularity uncertainty set), which is out of the
scope of discussion of this paper.

Offline learning for robust RL: More and more attention is drawn to the offline learning of
robust MDP. In the tabular setting, Zhou et al. [105] examined the uncertainty set defined by the KL
divergence for offline data with uniformly lower bounded data visitation distribution. Shi and Chi
[77] and Li et al. [49] provide near-optimal sample complexity bound for offline RL with weaker data
coverage assumptions. There are also works focusing on offline learning with large state space, for
example, Ma et al. [54] considers offline RL with linear approximation to deal with large state space.
Our offline algorithm is most related to the work by Panaganti et al. [64], where they propose the
fitted-Q iteration where the Q function as well as certain dual variables are approximated by possibly
nonlinear functions such as neural networks.

Sample complexity for robust RL: Apart from the offline setting, there are a number of works
focusing on finite-sample performance guarantees of robust RL algorithms under different data-
generating mechanisms. For example, Panaganti and Kalathil [63], Yang et al. [99], Shi et al. [78]
developed sample complexities for a model-based robust RL algorithm with a variety of uncertainty
sets where the data are collected using a generative model. In the online learning setting, Wang
and Zou [90] proposed a robust Q-learning algorithm with an R-contamination uncertain set which
achieves a similar bound as its non-robust counterpart. Badrinath and Kalathil [4] proposed a
model-free algorithm with linear function approximation to cope with large state spaces.

Other related works In addition to advances in the learning for RMDPs, there are also works
focusing on the planning and computational facets for these problems [37, 6, 35]. Furthermore,
research efforts have extended beyond theoretical considerations (e.g. [48, 66, 20, 55, 97, 103, 23])
where robust RL algorithms are proposed to handle more complicated practical problems.

A variety of different approaches have been proposed to model and address risk and robustness.
Notably, in addition to Markov risk measures and robust MDPs, researchers have explored alternative
methodologies, such as the use of exponential utility [38, 26, 27, 28, 58, 61], constraint MDPs
[92, 15, 36, 33], distributional RL[7, 79, 53, 81, 82], and robust control [44, 104] etc.

We would also like to note that the risk-sensitive MDP with entropy risk measure (which we have
proved to be equivalent to the KL-soft RMDP) is related but not identical to the exponential utility
[38, 26, 27, 28, 58, 61]. There are works that discuss the equivalence of optimizing the exponential
utility and solving the KL-soft RMDP in the finite-horizon undiscounted-sum setting [62]. However,
the result cannot be generalized to the infinite-horizon-discounted-sum setting which is considered
in this paper. Under this setting, it is unclear whether exponential utility still obtains a similar
interpretation in terms of robustness.
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B NUMERICAL SIMULATIONS

In this section, we present simulation results that evaluate the exact policy gradient algorithm (see
Section 3) and the RFZI algorithm (see Section 5.1) in the following environment.

m
edium

risk

high risk

lo
w

ris
k

0 0

-1

2

-1

0

0-105

-10

0

9
10

1

0

Figure 1: An exemplary 14-state en-
vironment with high-, medium-, and
low-risk zones.

Environment setups: traveling on a cycle graph. This is
a environment with finite state and action space consisting
of n states S = Zn, which can be conceptually regarded as
arranged on a cycle. The initial distribution is a uniformly
random distribution over S . At each state the agent is allowed
to select one action from A = {−1, 0, 1} (corresponding to
left, stay and right), and receives a reward r(s) that
only depends on s (r(·) is called the hitting reward function).
As the aliases suggest, an action a at state s is supposed to
move the agent to (s + a) mod n. The uncertainty in the
environment appears in the form of stochastic transitions, and
is characterized by the probability α ∈ [0, 1

2 ] of missing the
expected destination by one step; i.e., transition probability is

P (s′ | s, a) =


α s′ = (s+ a± 1) mod n

1− 2α s′ = (s+ a) mod n

0 otherwise
.

In this section, we focus on solving the KL-soft robust MDP problem (14) in this environment with
varying penalty magnitude β.

Metrics. The performance of the algorithms may be evaluated by the following metrics:

• Optimality gap Es0∼ρ[V
⋆(s0)− V π(s0)], where π is the policy generated by the algorithm.

• Average test reward over a few test episodes (20 by default).

• Robustness value V̂π(δ) := infP∈Pδ
Eπ,P

[∑H
t=0 γ

tr(st, at)
∣∣∣ s0 ∼ ρ

]
, where the model un-

certainty set is selected as Pδ := {P̃ | KL(P̃s,a||Ps,a) ≤ δ, ∀s, a}.
Note that the optimality gap and average test reward are usually plotted along the training trajectory,
while the robustness value is usually plotted against the perturbation magnitude δ.

Exact policy gradient. We first examine the performance of the exact policy gradient algorithm
under direct parameterization. Here we consider a 14-state environment as illustrated in Figure 1,
where the rewards are marked in the nodes representing states. For this specific example, we can
roughly classify the states into high-, medium-, and low-risk zones, as suggested in the figure.

For clarity of exposition, for now we focus on three specific settings, i.e. (α, β) = (0.01, 0.1),
(0.01, 1.0), (0.15, 1.0) (more results can be found in Section B.1). The optimality gap curves under
these settings are shown in Figure 2 below. It can be observed that the optimality gap decays to
exactly 0 in all these settings, which justifies Theorem 4 that guarantees convergence of the exact
policy gradient algorithm under direct parameterization. We also point out that the loss curve is a
little crooked because we use projected gradient ascent, so that the optimization dynamics is not
smooth when the policy at each state is pushed to the boundary.

Further, we take a closer look at the learned policies in these settings. The policies are illustrated in
Figure 3. To understand the role of β, we compare Figure 3a with 3b — when the uncertainty in the
model (represented by α) is fixed and mild, the optimal policy for β = 0.1 is to greedily pursue the
largest possible reward (i.e., staying at the state in high-risk zone with hitting reward 5); however,
an agent with higher risk-sensitivity level β = 1 cares more about the potential losses caused by
model uncertainty, and thus its optimal policy shifts to seeking safer options (i.e., moving to the
medium-risk zone and staying there).

Similarly, to understand the role of α, we compare Figure 3b with 3c — for an agent with fixed
moderate penalty magnitude β, when the noise in the model is small (α = 0.01), it is still optimal
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(a) α = 0.01, β = 0.1. (b) α = 0.01, β = 1.0. (c) α = 0.15, β = 1.0.

Figure 2: Optimality gap curves for the exact policy gradient algorithm in different settings.
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(c) α = 0.15, β = 1.0

Figure 3: Illustrated policies learned by the exact policy gradient algorithm in different settings.

for the agent to stay in the medium-risk zone for a balance of risks and rewards; nevertheless, if the
agent is put in a noisier environment (α = 0.15), then its optimal policy would be directly moving to
the low-risk zone to avoid potential risks.

To further examine the robustness of the risk-sensitive policies generated by the exact policy gradient
algorithm, we calculate their robustness values with respect to different perturbation magnitudes δ,
and plot them for comparison in Figure 4. Here the risk-neutral policy refers to the optimal policy of
the standard risk-neutral MDP, while the robust baseline policy refers to the optimal policy of the
RMDP with KL-rectangular ambiguity set Pδ (as defined above). It can be observed that, when δ is
large, the risk-sensitive policies outperform the risk-neutral policy in both settings. Meanwhile, our
algorithm generally exhibits a comparable level of robustness as compared to the robust baseline that
directly optimizes over RMDPs; sometimes it is even more robust than the baseline, especially when
the actual ambiguity set is significantly larger than the one assumed in training (see Figure 4a for the
curve where δ ≫ 0.3). Moreover, policies generated from higher penalty magnitude β tend to have
lower robustness values when δ is small, but gradually become more robust as δ increases.

The above discussion reveals that risk-sensitive agents in face of the transition uncertainty do learn
to avoid those states that could bring small instant rewards at the risk of potential future losses, and
their risk-averse tendency increases when β is set larger. These numerical evidence, in turn, further
motivates and justifies our focus on KL-soft RMDPs. On the one hand, learning in the context of
KL-soft RMDPs are generally more computationally tractable by relatively straightforward algorithm
designs, without introducing complicated optimization techniques or additional assumptions. On
the other hand, the optimal policy learned in the KL-soft RMDP context does exhibit robustness in
the presence of model uncertainty. These two observations, in combination, show that the research
into KL-soft RMDPs may offer an alternative, analytically tractable, and potentially more accessible
approach to robust reinforcement learning while maintaining comparable robust behavior.

RFZI. Now we proceed to examine the performance of the RFZI algorithm. The algorithm is tested
in an 100-state environment. The hitting reward design of this environment is conceptually similar to
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(a) α = 0.01. (b) α = 0.15.

Figure 4: Robustness values of the generated policies with respect to different δ.
†Risk-neutral policy refers to the optimal policy of the risk-neutral MDP.

Robust baseline refers to the optimal policy of the RMDP with KL-rectangular ambiguity set Pδ .

the exemplary 14-state environment (see our code for more details). For practical implementation,
the function family is selected as a 3-layer neural network, which may take any proper state-action
representation as input (details deferred to Section B.1). Note that it is crucial to select good
representations for efficient reinforcement learning, as the state itself might not provide sufficient
information for learning (see e.g. [24] for more discussions). Further, since the minimizer in each
iteration cannot be exactly calculated, instead we simply perform a batch of stochastic gradient
descent updates for approximation, where for each update we sample a subset from the offline dataset.
The practical algorithm is shown in Algorithm 2 below.

Algorithm 2 The practical RFZI algorithm

1: Input: Offline dataset D = (si, ai, ri, s
′
i)

N
i=1, function family F = {Z(·; θ) | θ}, learning rate

η, update rate τ , number of batches Tbatch, batch size Nbatch.
2: Initialize: θcurrent, θtarget.
3: for k = 0, . . . ,K − 1 do
4: for t = 1, 2, . . . , Tbatch do
5: Sample a batch of transitions {(si, ai, ri, s′i) | i ∈ [Nbatch]} from the dataset D.
6: Perform gradient descent θcurrent ← θcurrent − η∇L̂(θcurrent), where

L̂(θcurrent) := L̂(Z(·; θcurrent), Z(·; θtarget)).

7: end for
8: Update: θtarget ← (1− τ)θtarget + τθcurrent, θcurrent ← θtarget.
9: end for

10: Output: πK = argmaxa[r(s, a)− γβ−1 logZ(s, a; θtarget)].

Simulation results for different penalty magnitudes are shown below in Figure 5. It can be observed
that in both cases the optimality gap decays to close to 0 over time, and the average test reward also
converges to oscillating around a stable value. To further examine the robustness of the policies, we
compare their robustness values against the risk-neutral policy (i.e., the optimal policy of the standard
risk-neutral MDP). The robustness value curve suggests that the performance of our RFZI policy is
more robust than the risk-neutral policy in face of model uncertainty, and the advantage increases
with larger penalty magnitude β.

However, we would also like to point out some limitations of the practical RFZI algorithm. Firstly,
the training dynamics becomes unstable with larger β, reflected by slower convergence of the gradient
descent updates in each iteration. Additionally, the training of the network is sensitive to other
hyperparameters including learning rate, number of batches and batch size, which have to be carefully
tuned for satisfactory performance. It remains future work to design algorithms that are more robust
and more stable with regard to the choice of the hyperparameters.
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(a) β = 0.01.

(b) β = 0.1.

Figure 5: Simulation results for practical RFZI in the 100-state environment. (Left: optimality gap;
Middle: average test reward; Right: robustness value.)

B.1 MORE NUMERICAL DETAILS

Code for reproducing the simulation results can be found at https://github.com/huyangsh/
risk-sensitive-RL_ICRL-2024.

Exact policy gradient. Here we show the optimality gap (Figure 6) and the policies (Table 1) of a
full range of experiments as specified therein. It can be verified that all converged policies are exactly
the optimal policies obtained by solving the Bellman optimality equation for Q⋆. A closer look at the
policies reveals a pattern that is similar to what we have observed before — agents learn to move
to lower-risk zones when the uncertainty in the environment (i.e., α) is higher or when its penalty
magnitude (i.e., β) is higher.

Table 1: Policies found by the exact policy gradient algorithm.

α β #steps (η = 0.1) policy†

0.01

0.1 226 [-1, -1, 1, 1, 1, 1, 1, 1, 0, -1, -1, -1, -1, -1]
1.0 67 [1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 1, 1]
2.0 76 [-1, -1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 0, -1]
3.0 192 [-1, -1, -1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 0, -1]

0.15
0.01 114 [1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 0, 1]
0.1 109 [1, 1, 1, 0, -1, -1, -1, -1, 0, 1, 1, 1, 0, -1]
1.0 234 [-1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 1, 1, 0, -1]

† Deterministic policies are represented by a vector in An, where an entry
of the vector represents the action taken at the corresponding state.

RFZI. In the implementation, we use sinusoidal embedding of states, i.e.

ϕ(s) =

[
sin

2π

N
, sin

4π

N
, . . . , sin

2Nπ

N
, cos

2π

N
, cos

4π

N
, . . . , cos

2Nπ

N

]
,

which is similar to the embedding used in [67]. The Z-functions are approximated by a 3-layer
network with a 256-dimensional first hidden layer and a 32-dimensional second hidden layer (both
fully-connected and activated by ReLU). The output of the network is normalized by a sigmoid
function to clamp the output in (0, 1) (in accordance with Assumption 4).
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(a) α = 0.01. (b) α = 0.15.

Figure 6: Optimality gap curves for the exact policy gradient algorithm in different settings.

Training details. Training is performed on a workstation equipped with a 32-core CPU (Intel®

Xeon Platinum 8358, 2.60 GHz) and a NVIDIA® A100 GPU. The average training time for a typical
RFZI training scheme of 2000 iterations and 500 batches is about 5 hours.

C RELATIONSHIP AND DIFFERENCE WITH MARKOV RISK MEASURES

In this section, we compare our definition of risk-sensitive MDP with the Markov risk measure.
Intuitively speaking, the Markov risk measure also takes the risk generated by the randomness of
the policy into account whereas our definition treats the randomness of the policy in a risk-neutral
manner and only considers risk from the uncertainty of the transition probability. This intuitively
explains why the two notions are equivalent for deterministic policies but not for stochastic policies.
For clearness, we compare with the definition considered in [39, 86, 87], where the reward r(s) is
only dependent on the state s but not on action a. The Markov risk measure for policy π is defined as
:

V π
MRM(s0) = r(s0)− γσ

(
Pπ
s0 , r(s1)− γσ

(
Pπ
s1 , r(s2)− γσ

(
Pπ
s2 , r(s3)− · · ·

)))
,

where Pπ
s is the transition probability defined by Pπ

s (s
′) =

∑
a π(a|s)Ps,a(s

′). Thus, if we define
the Markov-risk-measure-Bellman operator T̃ π

MRM : R|S|→R|S|
as:

[T̃ π
MRMV ](s) := r(s)− γσ(Pπ

s , V ) = r(s)− γσ(
∑
a

π(a|s)Ps,a, V )

then the Markov risk measure is the fixed point of the Bellman operator, i.e. V π
MRM = T̃ π

MRMV π
MRM.

In contrast, the value function Ṽ π of the risk-sensitive MDP (7) is the fixed point of the following
risk-sensitive Bellman operator:

[T̃ πV ](s) := r(s)− γ
∑
a

π(a|s)σ(Ps,a, V )

Note that the risk-sensitive Bellman operator T̃ π is linear with respect to the policy π, whereas T̃MRM
can be potentially nonlinear w.r.t. π as σ is generally a nonlinear function. Thus for stochastic policies,
V π

MRM and Ṽ π are not equivalent. However, it is not hard to verify that when π is a deterministic
policy, T̃ π and T̃ π

MRM are the same

[T̃ π
MRMV ](s) = r(s)− γσ(Ps,π(s), V ) = [T̃ πV ](s).

Thus, for deterministic policies, the value function Ṽ π and the Markov risk measure V π
MRM are the

same. Additionally, when the risk-measure σ is mixture quasiconcave (c.f. [17]), it can be shown that
the optimal policy π for the Markov risk measure can also be chosen as a deterministic policy; thus
under this case the Markov risk measure and the risk-sensitive MDP obtain the same optimal value,
i.e. V ⋆

MRM = Ṽ ⋆. However, we would also like to emphasize that when adding policy regularization
or that the risk measure σ is not mixture quasiconcave (e.g. mean semi-deviation), the optimal policy
might no longer be a deterministic policy. In this setting, the optimal policy and optimal value of the
Markov risk measure and the risk-sensitive MDP might not be the same.
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D PROOF OF LEMMA 1

Given a Markovian policy π and a function on the state space S, define the Bellman operator as:

[T̃ πV ](s) :=
∑
a

π(a|s) (r(s, a)− γσ(Ps,a, V )) , (16)

Further, define the optimal Bellman operator T̃ ⋆ as:

[T̃ ⋆V ](s) := max
a

(r(s, a)− γσ(Ps,a, V )) . (17)

Lemma 3.
∥T̃ π(V ′ − V )∥∞ ≤ γ∥V ′ − V ∥∞, ∥T̃ ⋆(V ′ − V )∥∞ ≤ γ∥V ′ − V ∥∞.

Proof.

[T̃ π(V ′ − V )](s) =
∑
a

π(a|s) (r(s, a)− γσ(Ps,a, V
′))−

∑
a

π(a|s) (r(s, a)− γσ(Ps,a, V ))

= γ (σ(Ps,a, V )− σ(Ps,a, V
′))

≤ γ
(
σPs,a

(V ′ − ∥V ′ − V ∥∞)− σ(Ps,a, V
′)
)

(monotonicity)

= γ∥V ′ − V ∥∞ (translation invariance).
Using the same analysis we can also get,

[T̃ π(V − V ′)](s) ≤ γ∥V ′ − V ∥∞
=⇒ ∥T̃ π(V ′ − V )∥∞ ≤ γ∥V ′ − V ∥∞.

Similarly, for T̃ ⋆,

[T̃ ⋆(V ′ − V )](s) = max
a

(r(s, a)− γσ(Ps,a, V
′))−max

a
(r(s, a)− γσ(Ps,a, V ))

= γmax
a

(σ(Ps,a, V )− σ(Ps,a, V
′)) (max

x
f(x)−max g(x) ≤ max

x
(f(x)− g(x)))

≤ γmax
a

(
σPs,a

(V ′ − ∥V ′ − V ∥∞)− σ(Ps,a, V
′)
)

(monotonicity)

= γ∥V ′ − V ∥∞ (translation invariance).

=⇒ [T̃ ⋆(V − V ′)](s) ≤ γ∥V ′ − V ∥∞.

=⇒ ∥T̃ ⋆(V ′ − V )∥∞ ≤ γ∥V ′ − V ∥∞.

Proof of Lemma 1. Lemma 1 is an immediate corollary of Lemma 3. Note that Ṽ π and Ṽ ⋆ in (7)
and (8) is the fixed point solution of

Ṽ π = T̃ πṼ π, Ṽ ⋆ = T̃ ⋆Ṽ ⋆.

From Lemma 9 and the contraction mapping theorem [40], the fixed point solution exists and is
unique, which completes the proof.

E PROOF OF THEOREM 2

E.1 FINITE HORIZON DISCOUNTING CASE

We first define the value functions and Bellman operators for the finite horizon case. For any policy π
(doesn’t necessarily need to be stationary or Markovian), define the value function as:

V
π

0:h(s) := min
{P̂t}h

t=0

Est,at∼π,P̂

h∑
t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
)
. (18)

Define V
⋆

0:h(s) as

V
⋆

0:h(s) := max
π

min
{P̂t}h

t=0

Est,at∼π,P̂

h∑
t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at)
)
. (19)
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Lemma 4. V
⋆

0:h is given by:

V
⋆

0:h+1 = T̃ ⋆V
⋆

0:h, (V
⋆

0:−1 := 0)

where T̃ ⋆ is defined as in (17). Further, for all state s, the max-min solution of (19) is given by a
same set of policies and probability transitions:

π⋆
t|h(s) = argmax

a

(
r(s, a)− γσ(Ps,a, V

⋆

0:h−t−1)
)
,

P̂ ⋆
t|h;s,a = argmin

P̂

D(P̂ , Ps,a) + Es′∼P̂V
⋆

0:h−t−1(s
′).

Proof. We prove by induction. The statements are trivial for h = 0. Assume that the statements are
true for 0 ≤ t ≤ h, then for h+ 1, from the definition of V

⋆

h’s we have that

V
⋆

0:h+1(s0) = max
π0

max
{πt}h+1

t=1

min
P̂0

min
{P̂t}

Eπ,P̂

h+1∑
t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
)

≤ max
π0

min
P̂0

max
{πt}h+1

t=1

min
{P̂t}

Eπ,P̂

h+1∑
t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
)

(max
x

min
y

f(x, y) ≤ min
y

max
x

f(x, y))

= max
π0

min
P̂0

Ea0,s1∼π0,P̂0

[
r(s0, a0)+γD(P̂0;s0,a0

, Ps0,a0
)+

[
max

{πt}h+1
t=1

min
{P̂t}

Eπ,P̂

h+1∑
t=1

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
)]]

= max
π0

min
P̂0

Ea0,s1∼π0,P̂0

[
r(s0, a0) + γD(P̂0;s0,a0

, Ps0,a0) + γV
⋆

0:h(s1)
]
.

Further, from the statement that π⋆
t|h, P̂

⋆
t|h;s,a solves the min-max problem (19), we have

V
⋆

0:h+1(s0) = max
π0

max
{πt}h+1

t=1

min
P̂0

min
{P̂t}

Eπ,P̂

h+1∑
t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at)
)

≥ max
π0

min
P̂0

min
{P̂t}

Eπ0,{π⋆
t|h+1

}h+1
t=1 ,P̂

h+1∑
t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
)

= max
π0

min
P̂0

Ea0,s1∼π0,P̂0

[
r(s0, a0) + γD(P̂0;s0,a0

, Ps0,a0
)

+

[
min

{P̂t}h+1
t=1

E{π⋆
t|h+1

}h+1
t=1 ,P̂

h+1∑
t=1

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
)]]

= max
π0

min
P̂0

Ea0,s1∼π0,P̂0

[
r(s0, a0)+γD(P̂0;s0,a0

, Ps0,a0
)+E{π⋆

t|h+1
}h+1
t=1 ,P̂⋆

t|h+1

h+1∑
t=1

γt
(
r(st, at)+γD(P̂t;st,at

, Pst,at
)
)]

= max
π0

min
P̂0

Ea0,s1∼π0,P̂0

[
r(s0, a0) + γD(P̂0;s0,a0

, Ps0,a0) + γV
⋆

0:h(s1)
]

(π⋆
t+1|h+1 = π⋆

t|h, P̂
⋆
t+1|h+1 = P̂ ⋆

t|h).

Thus, we may conclude that

V
⋆

0:h+1(s0) = max
a0

min
P̂0

r(s0, a0) + γ
(
D(P̂0;s0,a0

, Ps0,a0
) + Es1∼P̂0

V
⋆

0:h(s1)
)

= max
a0

r(s0, a0)− γσ(Ps0,a0
, V

⋆

0:h) (dual representation theorem)

= T̃ ⋆V
⋆

0:h,

and that the max-min policies and probability transitions can be taken as:

π⋆
0|h+1(s) = argmax

a
r(s, a)− γσ(Ps,a, V

⋆

0:h)

π⋆
t|h+1(s) = π⋆

t−1|h(s) = argmax
a

r(s, a)− γσ(Ps,a, V
⋆

0:h−t), t ≥ 1
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P̂ ⋆
0|h+1;s,a = argmin

P̂

D(P̂ , Ps,a) + Es′∼P̂V
⋆

0:h(s
′)

P̂ ⋆
t|h+1;s,a = P̂ ⋆

t−1|h;s,a = argmin
P̂

D(P̂ , Ps,a) + Es′∼P̂V
⋆

0:h−t(s
′), t ≥ 1.

The above arguments complete the proof.

Lemma 5. For any stationary and Markovian policy π, we have that

V
π

0:h+1 = T̃ πV
π

0:h,

where T̃ π is defined as in (16). Further, for all state s, minimal solution of (18) is given by the same
set of probability transitions:

P̂π
t|h;s,a = argmin

P̂

D(P̂ , Ps,a) + Es′∼P̂V
π

0:h−t−1(s
′).

Proof. Our proof is largely similar to Lemma 4 and is again by induction. The statements are trivial
for h = 0. Assume that the statements are true for 0 ≤ t ≤ h, then for h+ 1, from the definition of
V π
h ’s we have that

V
π

h+1(s0) = min
P̂0

min
{P̂t}

Eπ,P̂

h+1∑
t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
)

= min
P̂0

min
{P̂t}

Eπ0,P̂0

[
r(s0, a0) + γD(P̂0;s0,a0

, Ps0,a0
) + Eπ1:h+1,P̂1:h+1

h+1∑
t=1

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
)]

= min
P̂0

Eπ0,P̂0

[
r(s0, a0) + γD(P̂0;s0,a0

, Ps0,a0
) + min

{P̂t}
Eπ1:h+1,P̂1:h+1

h+1∑
t=1

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
)]

= min
P̂0

Ea0,s1∼π0,P̂0

(
r(s0, a0) + γD(P̂0;s0,a0

, Ps0,a0) + γV
π

0:h(s1)
)

= Ea0∼π0

(
r(s0, a0) + γmin

P̂0

(
D(P̂0;s0,a0

, Ps0,a0
) + Es1∼P̂0;s0,a0

V
π

0:h(s1)
))

= Ea0∼π0

(
r(s0, a0)− γσ(Ps0,a0

, V
π

0:h)
)
.

Here the last step follows from dual representation theorem. Further, the minimal probability
transitions can be taken as:

P̂π
0|h+1;s,a = argmin

P̂

D(P̂ , Ps,a) + Es′∼P̂V
π

0:h(s
′)

P̂π
t|h+1;s,a = P̂π

t−1|h;s,a = argmin
P̂

D(P̂ , Ps,a) + Es′∼P̂V
π

0:h−t(s
′), t ≥ 1.

The above arguments complete the proof.

E.2 PROOF OF THEOREM 2 (INFINITE HORIZON CASE)

Proof. We first verify that for V
⋆
, V

π
defined in (3), (4),

lim
h→+∞

V
⋆

0:h = V
⋆
, lim

h→+∞
V

π

0:h = V
π
.

From the definition of V
π

, we have that

V
π
(s) = inf

{P̂t}t≥0

Est,at∼π,P̂

[
+∞∑
t=0

γt
(
r(st, at) + γD(P̂t;st,at , Pst,at)

) ∣∣∣s0 = s

]

≤ inf
{P̂t}h

t=0

Est,at∼π,P̂

[
h∑

t=0

γt
(
r(st, at) + γD(P̂t;st,at , Pst,at)

) ∣∣∣s0 = s

]
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+ Est,at∼π,P

[
+∞∑
t=h

γt (r(st, at) + γD(Pst,at , Pst,at))
∣∣∣s0 = s

]

= V
π

0:h(s) + Est,at∼π,P

[
+∞∑
t=h

γt (r(st, at))
∣∣∣s0 = s

]

≤ V
π

0:h(s) +
γh

1− γ
,

V
π
(s) = inf

{P̂t}t≥0

Est,at∼π,P̂

[
+∞∑
t=0

γt
(
r(st, at) + γD(P̂t;st,at , Pst,at)

) ∣∣∣s0 = s

]

≥ inf
{P̂t}t≥0

Est,at∼π,P̂

[
h∑

t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
) ∣∣∣s0 = s

]

= inf
{P̂t}h

t=0

Est,at∼π,P̂

[
h∑

t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
) ∣∣∣s0 = s

]
= V

π

0:h(s)

=⇒ |V π
(s)− V

π

0:h(s)| ≤
γh

1− γ
=⇒ lim

h→+∞
V

π

0:h = V
π
.

And similarly, for V
⋆
, we have

V
⋆
(s) = sup

π
inf

{P̂t}t≥0

Est,at∼π,P̂

[
+∞∑
t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
) ∣∣∣s0 = s

]
.

≤ sup
π

[
inf

{P̂t}h
t=0

Est,at∼π,P̂

[
h∑

t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
) ∣∣∣s0 = s

]

+Est,at∼π,P

[
+∞∑
t=h

γt (r(st, at) + γD(Pst,at
, Pst,at

))
∣∣∣s0 = s

]]

≤ sup
π

inf
{P̂t}h

t=0

Est,at∼π,P̂

[
h∑

t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
) ∣∣∣s0 = s

]

+ sup
π

Est,at∼π,P

[
+∞∑
t=h

γt (r(st, at) + γD(Pst,at
, Pst,at

))
∣∣∣s0 = s

]

= V
π

0:h(s) + sup
π

Est,at∼π,P

[
+∞∑
t=h

γt (r(st, at) + γD(Pst,at , Pst,at))
∣∣∣s0 = s

]

≤ V
π

0:h(s) +
γh

1− γ
,

V
⋆
(s) = sup

π
inf

{P̂t}t≥0

Est,at∼π,P̂

[
+∞∑
t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
) ∣∣∣s0 = s

]
.

≥ sup
π

[
inf

{P̂t}h
t=0

Est,at∼π,P̂

[
h∑

t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
) ∣∣∣s0 = s

]]
= V ⋆

0:h(s)

=⇒ |V ⋆
(s)− V

⋆

0:h(s)| ≤
γh

1− γ
=⇒ lim

h→+∞
V

⋆

0:h = V
⋆
.

Then from Lemma 4 and Lemma 5 we have that

V
⋆

0:h+1 = T̃ ⋆V
⋆

0:h, V
π

0:h+1 = T̃ πV
π

0:h.
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Since T̃ ⋆, T̃ π is a continuous mapping, taking the limit on both sides of the equations we get

V
⋆
= T̃ ⋆V

⋆
, V

π
= T̃ πV

π
,

i.e., (7) and (4) obtains the same solution V
π

and (8) and (3) obtains the same solution V
⋆
.

Next, we will show that the claim that the minimal solution of (4) is given by (11). Since V
π

satisfies
V

π
= T̃ πV

π
, we have

V
π
(s0) = Ea0∼π(·|s0)

(
r(s0, a0) + γmin

P̂0

D(P̂0;s0,a0
, Ps0,a0

) + Es1∼P̂0;s0,a0

V
π
(s1)

)
= Ea0∼π(·|s0),s1∼P̂π

s0,a0

(
r(s0, a0) + γD(P̂π

s0,a0
, Ps0,a0) + γV

π
(s1)

)
.

Apply this equation iteratively, we get

V
π
(s0) = Eat∼π(·|st),st+1∼P̂π

st,at

(
r(s0, a0) + γD(P̂π

s0,a0
, Ps0,a0

) + γr(s1, a1) + γ2D(P̂π
s1,a1

, Ps1,a1
) + γ2V

π
(s2)

)
= ...

= Eat∼π(·|st),st+1∼P̂π
st,at

+∞∑
t=0

γt
(
r(st, at) + γD(P̂π

st,at
, Pst,at)

)
,

which concludes that the minimal solution is given by P̂π defined in (11).

For V
⋆
. We aim to show that V

⋆
= V

π⋆

. From the definition of π⋆ and the fact that V
⋆
= T̃ ⋆V

⋆
,

V
⋆
(s0) = max

a0

r(s0, a0)− γσ(Ps0,a0
, V

⋆
)

(10)
= Ea0∼π⋆(·|s0)

(
r(s0, a0)− γσ(Ps0,a0

, V
⋆
)
)

= Ea0∼π⋆(·|s0)

(
r(s0, a0) + γmin

P̂0

(
D(P̂0;s0,a0

, Ps0,a0
) + Es1∼P̂0;s0,a0

V
⋆
(s1)

))
= min

P̂0

Ea0∼π⋆(·|s0)

(
r(s0, a0) + γ

(
D(P̂0;s0,a0

, Ps0,a0
) + Es1∼P̂0;s0,a0

V
⋆
(s1)

))
.

Apply the above equation iteratively we get

V
⋆
(s0) = min

{P̂t}
+∞
t=1

Eat∼π⋆(·|st),st+1∼P̂t;st,at

+∞∑
t=0

γt
(
r(st, at) + γD(P̂π

st,at
, Pst,at

)
)

= V
π⋆

(s0),

which implies that the optimal value function can be obtained by the stationary policy π⋆. Thus, the
minimal transition probability is given by

P̂ ⋆
s,a = P̂π⋆

s,a = argmin
P̂

D(P̂ , Ps,a) + Es′∼P̂V
⋆
(s′),

which completes the proof.

F PROOF OF THEOREM 3

Proof of Theorem 3. We first prove the differentiability of V θ with respect to θ by the implicit
function theorem [52]. We define the |S|-dimentional multivariate function F (θ, V ) as follows:

[F (θ, V )](s) = V (s)−
∑
a

πθ(a|s)(r(s, a)− γσ(Ps,a, V )).

From the definition of the value function for Markov risk measures, V θ is given by the following
implicit function:

F (θ, V θ) = 0.
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Thus, from the implicit function theorem, to prove the differentiability of V θ with respect to θ, it
suffices to prove that the Jacobian matrix

JF,V (θ, V
θ) =

[
∂Fs

∂Vs′

∣∣∣
V=V θ

]
s,s′∈S

is invertible. Here Fs denotes the s-th entry of F and Vs′ the s′-th entry of V . From Lemma 6,

JF,V (θ, V
θ) = I − γP̂ θ

S ,

where P̂ θ
S is a stochastic matrix. Thus, ∥γP̂ θ

S∥∞ ≤ γ < 1, which implies that I − γP̂ θ
S is invertible,

thus from the implicit function theorem V θ is differentiable w.r.t. θ.

Given the differentiability, what is left is to calculate the gradient. We can further use implicit
function theorem to compute the gradient, yet another easier way is through the following algebraic
manipulation:

V θ(s0) =
∑
a0

πθ(a0|s0)
(
r(s0, a0)− γσ(Ps0,a0

, V θ)
)

=⇒ ∇θV
θ(s0) =

∑
a0

∇θπθ(a0|s0)
(
r(s0, a0)− γσ(Ps0,a0 , V

θ)
)

− γ
∑
a0

πθ(a0|s0)
∑
s1

∂σ(Ps0,a0
, ·)

∂Vs1

∣∣∣
V=V θ

∇θV
θ(s1)

=
∑
a0

πθ(a0|s0)Qθ(s0, a0)∇θ log πθ(a0|s0)

+ γ
∑
a0

πθ(a0|s0)
∑
s1

P̂ θ
s0,a0

(s1)∇θV
θ(s1) (Lemma 6)

= Ea0∼πθ(·|s0)Q
θ(s0, a0)∇θ log πθ(a0|s0) + γEs1∼P̂ θ

s0,a0

∇θV
θ(s1)

Applying the above equation iteratively we get:

V θ(s0) = Ea0∼πθ(·|s0)Q
θ(s0, a0)∇θ log πθ(a0|s0) + γEs1∼P̂ θ

s0,a0

∇θV
θ(s1)

= E
at∼πθ(·|st),st+1∼P̂ θ

st,at
,t=0,1

Qθ(s0, a0)∇θ log πθ(a0|s0) + γQθ(s1, a1)∇θ log πθ(a1|s1) + γ2∇θV
θ(s2)

= · · ·

= Eat∼πθ(·|st),st+1∼P̂ θ
st,at

+∞∑
t=1

γtQθ(st, at)∇θ log πθ(at|st),

which completes the proof.

Lemma 6.
∂σ(Ps,a, ·)

∂Vs′

∣∣∣
V=V θ

= −P̂ θ
s,a(s

′),

which implies that

JF,V (θ, V
θ) = I − γP̂ θ

S ,

where P̂ θ
S is a stochastic matrix given by

[P̂ θ
S ]s,s′ = P̂ θ

S(s
′|s) =

∑
a

πθ(a|s)P̂ θ
s,a(s

′).

Proof. From the definition of P̂ θ
s,a(s

′) (11) and the dual representation theorem (Theorem 1) we have

σ(Ps,a, V
θ) = −

(
min
P̂

Es′∼P̂V
θ(s′) +D(P̂ , Ps,a)

)
= −Es′∼P̂ θ

s,a
V θ(s′)−D(P̂ θ

s,a, Ps,a)
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=⇒ D(P̂ θ
s,a, Ps,a) = −σ(Ps,a, V

θ)− Es′∼P̂ θ
s,a

V θ(s′).

From the definition of D:

D(P̂ θ
s,a, Ps,a) = sup

V
−σ(Ps,a, V )− Es′∼P̂ θ

s,a
V (s′)

=⇒ V θ = argmax
V

−σ(Ps,a, V )− Es′∼P̂ θ
s,a

V (s′),

thus

∇V

(
σ(Ps,a, V ) + Es′∼P̂ θ

s,a
V (s′)

) ∣∣∣
V=V θ

= 0

=⇒ ∂σ(Ps,a, ·)
∂Vs′

∣∣∣
V=V θ

= −
∂Es′′∼P̂ θ

s,a
V (s′′)

∂Vs′

∣∣∣
V=V θ

= −P̂ θ
s,a(s

′).

Then we have
∂Fs

∂Vs′

∣∣∣
V=V θ

=
∂ (V (s)−

∑
a πθ(a|s)(r(s, a)− γσ(Ps,a, V )))

∂Vs′

= 1{s′ = s}+ γ
∑
a

πθ(a|s)
∂σ(Ps,a, ·)

∂Vs′

∣∣∣
V=V θ

= 1{s′ = s} − γ
∑
a

πθ(a|s)P̂ θ
s,a(s

′)

= 1{s′ = s} − γ[P̂ θ
S ]s,s′ ,

which completes the proof.

G PROOF OF LEMMA 2 AND THEOREM 4

Before proving Lemma 2 and Theorem 4, we first introduce the performance difference lemma for
soft RMDPs, which will play an important role in the following proofs. The lemma adopts from the
performance difference lemma for risk-neutral MDPs (c.f. [43])
Lemma 7 (Performance Difference Lemma for soft RMDPs). Given stationary policies π′, π, we
have that

Est,at∼π′,P̂π

+∞∑
t=0

γt
(
r(st, at) + γD(P̂π

t;st,at
, Pst,at)

)
− Est,at∼π,P̂π

+∞∑
t=0

γt
(
r(st, at) + γD(P̂π

t;st,at
, Pst,at)

)
=

1

1− γ

∑
s,a

dπ
⋆,P̂π

(s)(π′(a|s)− π(a|s))Qπ(s, a)

Proof. For notational simplicity in this proof we also define the value function V π,P̂ and Q-function
Qπ,P̂ for a given policy π under a given probability transition P̂ as follows:

V π,P̂ (s) := Est,at∼π,P̂

+∞∑
t=0

[
γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at)
)
|s0 = s

]
,

Qπ,P̂ (s) := Est,at∼π,P̂

+∞∑
t=0

[
γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
)
|s0 = s, a0 = a

]
Also from Theorem 2 we know that V π,P̂π

= V π, Qπ,P̂π

= Qπ . Then we only need to show that

V π′,P̂π

(s)− V π,P̂π

(s) =
1

1− γ

∑
s,a

dπ
⋆,P̂π

(s)(π′(a|s)− π(a|s))Qπ(s, a).

The left hand side of the equation can be decomposed as

Est,at∼π′,P̂π

+∞∑
t=0

γt
(
r(st, at) + γD(P̂π

t;st,at
, Pst,at)

)
− Est,at∼π,P̂π

+∞∑
t=0

γt
(
r(st, at) + γD(P̂π

t;st,at
, Pst,at)

)
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= Est,at∼π′,P̂π

+∞∑
t=0

γt
(
r(st, at)+γD(P̂π

t;st,at
, Pst,at)

)
−Ea0∼π′,st,at∼π,P̂π,t≥1

+∞∑
t=0

γt
(
r(st, at)+γD(P̂π

t;st,at
, Pst,at)

)
︸ ︷︷ ︸

Part A

+ Ea0∼π′,st,at∼π,P̂π,t≥1

+∞∑
t=0

γt
(
r(st, at)+γD(P̂π

t;st,at
, Pst,at

)
)
−Est,at∼π,P̂π

+∞∑
t=0

γt
(
r(st, at)+γD(P̂π

t;st,at
, Pst,at

)
)

︸ ︷︷ ︸
Part B

.

Note that

Part A

= Ea0∼π′

(
Est,at∼π′,P̂π,t≥1

+∞∑
t=0

γt
(
r(st, at) + γD(P̂π

t;st,at
, Pst,at

)
)

−Est,at∼π,P̂π,t≥1

+∞∑
t=0

γt
(
r(st, at) + γD(P̂π

t;st,at
, Pst,at

)
))

= γEa0∼π′,s1∼P̂π (V
π′,P̂π

(s1)− V π′,P̂π

(s1))

and

Part B = Ea0∼π′Qπ,P̂π

(s0, a0)− Ea0∼πQ
π,P̂π

(s0, a0)

=
∑
a0

(π′(a0|s0)− π(a0|s0))Qπ,P̂π

(s0, a0).

Thus we get

V π′,P̂π

(s0)− V π,P̂π

(s0)

= γEa0∼π′,s1∼P̂π (V
π′,P̂π

(s1)− V π′,P̂π

(s1)) +
∑
a0

(π′(a0|s0)− π(a0|s0))Qπ,P̂π

(s0, a0).

Applying this equality iteratively we get

V π′,P̂π

(s0)− V π,P̂π

(s0) =

∞∑
t=0

γtEaτ ,sτ∼π′,P̂π

∑
at

(π′(at|st)− π(at|st))Qπ,P̂π

(st, at)

=
1

1− γ

∑
s,a

dπ
⋆,P̂π

(s)(π′(a|s)− π(a|s))Qπ(s, a),

which completes the proof.

Proof of Lemma 2. From Theorem 2, we have

Es0∼ρV
⋆(s0) = min

{P̂t}h
t=0

Est,at∼π⋆,P̂ θ

+∞∑
t=0

γt
(
r(st, at) + γD(P̂ θ

t;st,at
, Pst,at

)
)

≤ Est,at∼π⋆,P̂ θ

+∞∑
t=0

γt
(
r(st, at) + γD(P̂ θ

t;st,at
, Pst,at)

)
Es0∼ρV

θ(s0) = Est,at∼πθ,P̂ θ

+∞∑
t=0

γt
(
r(st, at) + γD(P̂ θ

t;st,at
, Pst,at

)
)

.

Thus

Es0∼ρV
⋆(s0)− V θ(s0)

≤ Est,at∼π⋆,P̂ θ

+∞∑
t=0

γt
(
r(st, at) + γD(P̂ θ

t;st,at
, Pst,at)

)
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− Est,at∼πθ,P̂ θ

+∞∑
t=0

γt
(
r(st, at) + γD(P̂ θ

t;st,at
, Pst,at)

)
=

1

1− γ

∑
s,a

dπ
⋆,P̂ θ

(s)(π⋆(a|s)− πθ(a|s))Qθ(s, a) (by Lemma 7)

≤ 1

1− γ

∑
s,a

dπ
⋆,P̂ θ

(s)max
π

(π(a|s)− πθ(a|s))Qθ(s, a) (20)

≤ 1

1− γ

∥∥∥∥∥dπ
⋆,P̂ θ

dπθ,P̂ θ

∥∥∥∥∥
∞

∑
s,a

dπθ,P̂
θ

(s)max
π

(π(a|s)− πθ(a|s))Qθ(s, a)

=

∥∥∥∥∥dπ
⋆,P̂ θ

dπθ,P̂ θ

∥∥∥∥∥
∞

max
π

〈
π − πθ,Es0∼ρ∇θV

θ(s0)
〉

Proof of Theorem 4. For notational simplicity, we define use πs := π(·|s) to denote the |A|-
dimentional probability distribution. We also use the abbreviation Q(k), P̂ (k) to denote Qπ(k)

, P̂π(k)

.
We also define the following variable that will be useful throughout the proof.

G(k)
η :=

1

η

(
π(k+1)
s − π(k)

s

)
Similar to the proof of Lemma 2, we have

Es0∼ρV
(k)(s0) = min

{P̂t}h
t=0

Est,at∼π(k),P̂

+∞∑
t=0

γt
(
r(st, at) + γD(P̂t;st,at

, Pst,at
)
)

≤ Est,at∼π(k),P̂ (k+1)

+∞∑
t=0

γt
(
r(st, at) + γD(P̂

(k+1)
t;st,at

, Pst,at
)
)

Es0∼ρV
(k+1)(s0) = Est,at∼π(k+1),P̂ (k+1)

+∞∑
t=0

γt
(
r(st, at) + γD(P̂

(k+1)
t;st,at

, Pst,at)
)
.

Thus

Es0∼ρV
(k+1)(s0)− V (k)(s0) ≥ Est,at∼π(k+1),P̂ (k+1)

+∞∑
t=0

γt
(
r(st, at) + γD(P̂

(k+1)
t;st,at

, Pst,at
)
)

− Est,at∼π(k),P̂ (k+1)

+∞∑
t=0

γt
(
r(st, at) + γD(P̂

(k+1)
t;st,at

, Pst,at)
)

=
1

1− γ

∑
s,a

dπ
(k),P̂ (k+1)

(s)(π(k+1)(a|s)− π(k)(a|s))Q(k+1)(s, a) (by Lemma 7)

=
1

1− γ

∑
s,a

dπ
(k),P̂ (k+1)

(s)(π(k+1)(a|s)− π(k)(a|s))Q(k)(s, a)︸ ︷︷ ︸
Part I

+
1

1− γ

∑
s,a

dπ
(k),P̂ (k+1)

(s)(π(k+1)(a|s)− π(k)(a|s))(Q(k+1)(s, a)−Q(k)(s, a))︸ ︷︷ ︸
Part II

.

From Lemma 13, we have∑
a

(π(k+1)(a|s)− π(k)(a|s))Q(k)(s, a) = ⟨π(k+1)
s − π(k)

s , Q(k)(s, ·)⟩
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=

〈
Proj∆|A|

(
π(k)
s + η

1

1− γ
dπ

(k),P̂ (k)

(s)Q(k)(s, ·)
)
, Q(k)(s, ·)

〉
≥ 1− γ

ηdπ(k),P̂ (k)(s)
∥π(k+1)

s − π(k)
s ∥22.

Thus

Part I ≥ 1

η

∑
s

dπ
(k),P̂ (k+1)

(s)

dπ(k),P̂ (k)(s)
∥π(k+1)

s − π(k)
s ∥22

≥ 1

ηM
∥π(k+1) − π(k)∥22

=
η

M
∥G(k)

η ∥22.

Remark 7. Note that for standard MDP, the corresponding Part I can be bounded by η∥G(k)
η ∥22

instead of η
M ∥G

(k)
η ∥22. This is the key reason why the dependency on M is worse for our setting.

For Part II, we can bound it using Lemma 12

|Part II| ≤ 1

1− γ

∑
s,a

dπ
(k),P̂ (k+1)

(s)
∣∣∣π(k+1)(a|s)− π(k)(a|s)

∣∣∣ ∣∣∣Q(k+1)(s, a)−Q(k)(s, a)
∣∣∣

≤ 1

(1− γ)3

∑
s,a

dπ
(k),P̂ (k+1)

(s)
∣∣∣π(k+1)(a|s)− π(k)(a|s)

∣∣∣max
s
∥π(k+1)

s − π(k)
s ∥1

≤ 1

(1− γ)3

(
max

s
∥π(k+1)

s − π(k)
s ∥1

)2
≤ |A|

(1− γ)3
∥π(k+1) − π(k)∥22

=
η2|A|

(1− γ)3
∥G(k)

η ∥22.

Combining the bounds on Part I and II we get, for η = (1−γ)3

2|A|M

Es0∼ρV
(k+1)(s0)− V (k)(s0) ≥

(
η

M
− η2|A|

(1− γ)3

)
∥G(k)

η ∥22 =
(1− γ)3

4|A|M
∥G(k)

η ∥22

Using the telescoping technique we get

K−1∑
k=0

∥G(k)
η ∥22 ≤

4|A|M2

(1− γ)3

K−1∑
k=0

Es0∼ρ(V
(k+1)(s0)− V (k)(s0))

≤ 4|A|M2

(1− γ)3

(
V (K)(s0)− V (0)(s0)

)
≤ 4|A|M2

(1− γ)4
(21)

where the last inequality uses the fact that 0≤V π(s)≤Est,at∼π,P [
∑+∞

t=0 γ
tr(st, at)

∣∣∣s0=s]≤ 1
1−γ .

Claim:

Es0∼ρV
⋆(s0)− V (k+1)(s) ≤

(
M +

η|A|
(1− γ)3

)
∥G(k)

η ∥2

Proof of Claim. From the definition of projection, for any π′
s ∈ ∆|A|,

⟨π(k)
s + η

1

1− γ
dπ

(k),P̂ (k)

(s)Q(k)(s, ·)− π(k+1)
s , π′

s − π(k+1)
s ⟩ ≤ 0

=⇒ ⟨Q(k)(s, ·), π′
s − π(k+1)

s ⟩ ≤ 1− γ

ηdπ(k),P̂ (k)(s)
⟨π(k+1)

s − π(k)
s , π′

s − π(k+1)⟩
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≤ (1− γ)M

η
∥π(k+1)

s − π(k)
s ∥2∥π′

s − π(k+1)∥2

≤ (1− γ)M∥G(k)
η ∥2∥π′

s − π(k+1)∥2.

Thus

⟨Q(k+1)(s, ·), π′
s − π(k+1)

s ⟩ ≤ ⟨Q(k)(s, ·), π′
s − π(k+1)

s ⟩+ ⟨Q(k+1)(s, ·)−Q(k)(s, ·), π′
s − π(k+1)

s ⟩
≤ (1− γ)M∥G(k)

η ∥2∥π′
s − π(k+1)∥2 + ∥Q(k+1)(s, ·)−Q(k)(s, ·)∥∞∥π′

s − π(k+1)
s ∥1

≤ (1− γ)M∥G(k)
η ∥2∥π′

s − π(k+1)∥2 +
√
|A|∥Q(k+1)(s, ·)−Q(k)(s, ·)∥∞∥π′

s − π(k+1)
s ∥2.

Further, from Lemma 12,

∥Q(k+1)(s, ·)−Q(k)(s, ·)∥∞ ≤
1

(1− γ)2
max
s∈S
∥π(k+1)

s − π
(k)
s ∥1 ≤

√
|A|

(1− γ)2
∥π(k+1) − π(k)∥2

=
η
√
|A|

(1− γ)2
∥G(k)

η ∥2.

Thus

⟨Q(k+1)(s, ·), π′
s − π(k+1)

s ⟩ ≤ (1− γ)M∥G(k)
η ∥2∥π′

s − π(k+1)∥2 +
η|A|

(1− γ)2
∥G(k)

η ∥2∥π′
s − π(k+1)

s ∥2

=

(
(1− γ)M +

η|A|
(1− γ)2

)
∥G(k)

η ∥2∥π′
s − π(k+1)∥2

From the proof of Lemma 2 (inequality (20)), we have

Es0∼ρV
⋆(s0)− V (k+1)(s) ≤ 1

1− γ

∑
s.a

dπ
⋆,P̂ (k+1)

(s)max
π′

(π′(a|s)− πk+1(a|)s)Q(k+1)(s, a)

=
1

1− γ

∑
s.a

dπ
⋆,P̂ (k+1)

(s)max
π′
⟨Q(k+1)(s, ·), π′

s − π(k+1)
s ⟩

≤ 1

1− γ
max

s
max
π′
⟨Q(k+1)(s, ·), π′

s − π(k+1)
s ⟩

≤ 1

1− γ

(
(1− γ)M +

η|A|
(1− γ)2

)
∥G(k)

η ∥2∥π′
s − π(k+1)∥2

=

(
M +

η|A|
(1− γ)3

)
∥G(k)

η ∥2,

which completes the proof of the claim.

Substitute the claim into (21) we get

K∑
k=1

(
Es0∼ρV

⋆(s0)− V (k)(s0)
)2
≤ 16|A|M4

(1− γ)4
,

and thus

min
1≤k≤K

Es0∼ρV
⋆(s0)− V (k)(s0) ≤

√
16|A|M4

(1− γ)4K
.

By setting

K ≥ 16|A|M4

(1− γ)4ϵ2
,

we get

min
1≤k≤K

Es0∼ρV
⋆(s0)− V (k)(s0) ≤ ϵ.
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H PROOF OF THEOREM 5

H.1 PROOF SKETCHES

Before providing the full proof, in this section we first give a brief proof sketch of Theorem 5. The
lemmas in the proof sketch is proved in the following sections. We define the following auxiliary
variables:

Qk(s, a) := r(s, a)− γβ−1 logZk(s, a), πk(s) := argmax
a

Qk(s, a).

The proof of Theorem 5 can be decoupled into the following four steps:

Step 1: Decomposition of the performance difference. In this step, we first decompose the
performance difference Es0∼ρ(V

⋆ − V πk)(s0) in terms of [Q⋆ −Qk] and [Qk −Q⋆].
Lemma 8.

Es0∼ρ(V
⋆ − V πk)(s0) ≤

Es0∼ρ,sτ+1∼P̂
πk
sτ ,aτ ,aτ∼πk(sτ )

+∞∑
t=0

γt([Q⋆ −Qk](st, π
⋆(st))) + ([Qk −Q⋆](st, πk(st))).

where P̂πk is defined as P̂πk(s′|s, a) ∝ P (s′|s, a) exp(−γV πk(s′)).

Step 2: Bound [Q⋆−Qk] and [Qk −Q⋆]. Given Lemma 8, the next step is to further upper-bound
[Q⋆ −Qk] and [Qk −Q⋆]. We have the following lemma:
Lemma 9. For any distribution ν that is admissible,

Es,a∼ν(Qk −Q⋆)(s, a), Es,a∼ν(Q
⋆ −Qk)(s, a) ≤

γk

1− γ
+ C

k∑
m=1

γk−m∥Qm − T̃QQm−1∥1,µ,

where C is defined in Assumption 2.

The upper bound consists of two parts. The first part is caused by the contraction mapping of Bellman
operator, and the second part captures the error of replacing the Bellman operation T̃QQm−1 with its
approximation Qm.

Step 3: Bound ∥Qk − T̃QQk−1∥1,µ. According to Lemma 9, to bound [Q⋆ −Qk] and [Qk −Q⋆],
we need to have a better understanding of ∥Qk − T̃QQk−1∥1,µ.
Lemma 10.

∥Qk − T̃QQk−1∥1,µ ≤ γβ−1e
β

1−γ

(
∥(T̂Z,F − TZ,F )Zk−1∥1,µ + ∥(TZ,F − TZ)Zk−1∥1,µ

)
.

Lemma 10 suggests that the error ∥Qk − T̃QQk−1∥1,µ can be bounded by two parts, the first part
∥(TZ,F − TZ)Zk−1∥1,µ is the error caused by function approximation, i.e., replacing the Bellman
operator with the project Bellman operator. The second part is the error of replacing the projected
Bellman operator with the empirical projected Bellman operator.

Step 4: Bound ∥(T̂Z,F − TZ,F )Zk−1∥1,µ and ∥(TZ,F − TZ)Zk−1∥1,µ. The last step closes the
proof by bounding ∥(T̂Z,F − TZ,F )Zk−1∥1,µ and ∥(TZ,F − TZ)Zk−1∥1,µ which shows up on the
right hand side of Lemma 10.
Lemma 11.

∥(TZ,F − TZ)Zk−1∥2,µ ≤ ϵc.

With probability at least 1− δ,

∥(T̂Z,F − TZ,F )Zk−1∥2,µ ≤ 4

√
2 log(|F|)

N
+ 5

√
2 log(8/δ)

N

Combining the four steps finishes the proof.
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H.2 PROOF OF LEMMAS IN PROOF SKETCHES

In this section we define the following operator TV→Q : R|S| → R|S|×|A| for notational simplicity:

[TV→QV ](s, a) = r(s, a)− γβ−1 logEs′∼P (·|s,a)e
−βV (s′) (22)

Proof of Lemma 8. Define Vk(s) := maxa Qk(s, a), then

(V ⋆ − V πk)(s0) = (V ⋆ − Vk)(s0) + (Vk − V πk)(s0)

= (Q⋆(s0, π
⋆(s0))−Qk(s0, πk(s0))) + (Qk(s0, πk(s0))−Qπk(s0, πk(s0)))

≤ (Q⋆(s0, π
⋆(s0))−Qk(s0, π

⋆(s0))) + (Qk(s0, πk(s0))−Q⋆(s0, πk(s0))) + (Q⋆(s0, πk(s0))−Qπk(s0, πk(s0)))

≤ ([Q⋆ −Qk](s0, π
⋆(s0))) + ([Qk −Q⋆](s0, πk(s0))) + [TV→Q(V

⋆ − V πk)](s0, πk(s0))

Lemma 14
≤ γEs1∼P̂

πk
s0,a0

,a0∼πk(s0)
[V ⋆ − V πk ](s1) + ([Q⋆ −Qk](s0, π

⋆(s0))) + ([Qk −Q⋆](s0, πk(s0)))

Apply the above inequality recursively, and we get:

Es0∼ρ(V
⋆ − V πk)(s0) ≤ Es0∼ρ,sτ+1∼P̂

πk
sτ ,aτ ,aτ∼πk(sτ )

+∞∑
t=0

γt([Q⋆ −Qk](st, π
⋆(st))) + ([Qk −Q⋆](st, πk(st))).

Proof of Lemma 9. We use proof by induction. The inequality naturally holds for k = 0. Assume
that it holds for k − 1, then

Es,a∼ν(Qk −Q⋆)(s, a) = Es,a∼ν [Qk − T̃QQk−1](s, a) + Es,a∼ν [T̃Q(Qk−1 −Q⋆)](s, a)

Lemma 14
≤ Es,a∼ν [Qk − T̃QQk−1](s, a) + γEs,a∼νEs′∼P̂⋆

s,a
max
a′

(Qk−1 −Q⋆)(s′, a′)

= Es,a∼ν [Qk − T̃QQk−1](s, a) + γEs′,a′∼ν′(Qk−1 −Q⋆)(s′, a′),

where ν′ is the marginal distribution on (s′, a′) given the joint distribution on (s, a, s′, a′) by s, a ∼
ν, s′ ∼ P̂ ⋆

s,a, a
′ = argmaxa′(Qk−1 −Q⋆)(s′, a′). Since ν is admissible, ν′ is also admissible. Thus

from the induction assumption, we have

Es,a∼ν(Qk −Q⋆)(s, a) ≤ Es,a∼ν [Qk − T̃QQk−1](s, a) + γ

(
γk−1

1− γ
+ C

k−1∑
m=1

γk−1−m∥Qm − T̃QQm−1∥1,µ

)

≤ γk

1− γ
+ C

k∑
m=1

γk−m∥Qm − T̃QQm−1∥1,µ

Proof of Lemma 10. From the definition of Qk, we have

Qk(s, a) = r(s, a)− γβ−1 logZk(s, a)

T̃QQk−1(s, a) = r(s, a)− γβ−1 logEs′∼P (·|s,a)e
−βmaxa′ Qk−1(s

′,a′)

= r(s, a)− γβ−1 logEs′∼P (·|s,a)e
−βmaxa′(r(s′,a′)−γβ−1 logZk−1(s

′,a′))

= r(s, a)− γβ−1 log([TZZk−1](s, a)).

=⇒ ∥Qk − T̃QQk−1∥1,µ = γβ−1∥ logZk − log TZZk−1∥1,µ
Lemma 15
≤ γβ−1

mins,a min{Zk(s, a), TZZk−1(s, a)}
∥Zk − TZZk−1∥1,µ

≤ γβ−1e
β

1−γ ∥T̂Z,FZk−1 − TZZk−1∥1,µ

≤ γβ−1e
β

1−γ

(
∥(T̂Z,F − TZ,F )Zk−1∥1,µ + ∥(TZ,F − TZ)Zk−1∥1,µ

)
.
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Proof of Lemma 11. The first inequality can be obtained by the approximate completeness assump-
tion (Assumption 3).

sup
Z∈F

inf
Z′∈F

∥Z ′ − TZZ∥2,µ ≤ ϵc

=⇒ inf
Z′∈F

∥Z ′ − TZZk−1∥2,µ ≤ ϵc

=⇒ LHS = ∥T̂Z,FZk−1 − TZZk−1∥2,µ ≤ ϵc
The second inequality can be obtained by applying Lemma 3, eq(12) in [64]. Here we can set
l(Z, (s, a, s′)) =

(
Z(s, a)− exp

(
−βγmaxa′(r(s′, a′)− β−1 logZk−1(s

′, a′))
))2

. Then it is not
hard to verify that l(Z, (s, a, s′)) ≤ 1, l(Z, (s, a, s′)) is 2-Lipschitz in Z and that |Z(s, a)| ≤ 1, thus
we can set c1 = 1, c2 = 1, c3 = 2 in eq(12) in [64] and obtain that with probability at least 1− δ,

Es,a∼µEs′∼Ps,a

[
l(T̂Z,FZk−1, (s, a, s

′))− l(TZ,FZk−1, (s, a, s
′))
]
≤ 4

√
2 log(|F|)

N
+ 5

√
2 log(8/δ)

N

=⇒ L(T̂Z,FZk−1, Zk−1)− L(TZ,FZk−1, Zk−1)

= Es,a∼µ

(
T̂Z,FZk−1(s, a)− Es′∼Ps,ae

−βγ maxa′ (r(s′,a′)−β−1 logZ(s′,a′))
)2

= ∥(T̂Z,F − TZ,F )Zk−1∥2,µ ≤ 4

√
2 log(|F|)

N
+ 5

√
2 log(8/δ)

N

H.3 PROOF OF THEOREM 5

Proof of Theorem 5.
Es0∼ρ(V

⋆ − V πK )(s0)

Lemma 8
= Es0∼ρ,sτ+1∼P̂

πK
sτ ,aτ ,aτ∼πK(sτ )

+∞∑
t=0

γt([Q⋆ −QK ](st, π
⋆(st))) + ([QK −Q⋆](st, πK(st)))

Lemma 9
≤ 2

+∞∑
t=0

γt

(
γK

1− γ
+ C

K∑
k=1

γK−k∥Qk − T̃QQk−1∥1,µ

)

=
2γK

(1− γ)2
+

2C

1− γ

K∑
k=1

γK−k∥Qk − T̃QQk−1∥1,µ

Lemma 10
≤ 2γK

(1− γ)2
+

2C

1− γ
γβ−1e

β
1−γ

K∑
k=1

γK−k
(
∥(T̂Z,F − TZ,F )Zk−1∥1,µ + ∥(TZ,F − TZ)Zk−1∥1,µ

)
≤ 2γK

(1− γ)2
+

2C

1− γ
γβ−1e

β
1−γ

K∑
k=1

γK−k
(
∥(T̂Z,F − TZ,F )Zk−1∥2,µ + ∥(TZ,F − TZ)Zk−1∥2,µ

)
Lemma 11
≤ 2γK

(1− γ)2
+

2C

1− γ
γβ−1e

β
1−γ

K∑
k=1

γK−k

(
4

√
2 log(|F|)

N
+ 5

√
2 log(8/δ)

N
+ ϵc

)

≤ 2γK

(1− γ)2
+ γβ−1e

β
1−γ

2C

(1− γ)2

(
4

√
2 log(|F|)

N
+ 5

√
2 log(8/δ)

N
+ ϵc

)

I AUXILIARIES

Lemma 12.
|Qπ′

(s0, a0)−Qπ(s0, a0)| ≤
1

(1− γ)2
max

s
∥π′

s − πs∥1,

where πs denotes π(·|s) ∈ ∆|S| and ∥π′
s − πs∥1 =

∑
a |π′(a|s)− π(a|s)|.
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Proof.

Qπ′
(s0, a0) = min

{P̂t}t≥1

Est,at∼π′,P̂

+∞∑
t=0

γt
(
r(st, at) + γd(P̂t;st,at

, Pst,at
)
)

≤ Est,at∼π′,P̂π

+∞∑
t=0

γt
(
r(st, at) + γd(P̂t;st,at , Pst,at)

)
.

Qπ(s0, a0) = Est,at∼π,P̂π

+∞∑
t=0

γt
(
r(st, at) + γd(P̂t;st,at

, Pst,at
)
)

Thus

Qπ′
(s0, a0)−Qπ(s0, a0) ≤ Est,at∼π′,P̂π

+∞∑
t=0

γt
(
r(st, at) + γd(P̂t;st,at

, Pst,at
)
)

− Est,at∼π,P̂π

+∞∑
t=0

γt
(
r(st, at) + γd(P̂t;st,at , Pst,at)

)
= Est∼π′,P̂

+∞∑
t=0

γt
∑
a

(π′(a|s)− π(a|s))Qπ(s, a) (by Lemma 7)

≤ 1

1− γ
Est∼π′,P̂

+∞∑
t=0

γt
∑
a

|π′(a|s)− π(a|s)|

≤ 1

(1− γ)2
max

s
∥π′

s − πs∥1

Lemma 13. For any convex set X ⊂ Rn and x ∈ X , f ∈ Rn, η > 0,

⟨ProjX (x+ ηf), f⟩ ≥ 1

η
∥ProjX (x+ ηf)− x∥22.

Proof. From the definition of projection, for any y ∈ X ,

⟨y − ProjX (x+ ηf), x+ ηf − ProjX (x+ ηf)⟩ ≤ 0,

Set y = x we get:

∥ProjX (x+ ηf)− x∥22 ≤ ⟨ProjX (x+ ηf), ηf⟩,

which completes the proof.

Lemma 14. The operators TQ, TV→Q defined in (15), (22) satisfies

[TV→Q(V − V )](s, a) ≤ γEs′∼P̂s,a
(V − V )(s′)

[TQ(Q−Q)](s, a) ≤ γEs′∼P̂s,a
max
a′

(Q−Q)(s′, a′),

where P̂s,a is defined as:

P̂ (s′|s, a) ∝ P (s′|s, a) exp(−βV (s′)) or P̂ (s′|s, a) ∝ P (s′|s, a) exp(−βmax
a′

Q(s′, a′)).

Proof. Let σ(Ps,a, V ) := β−1 logEs′∼Ps,a
e−βV (s′), then from Example 1 and the dual representa-

tion theorem 1

σ(Ps,a, V ) := sup
P̃s,a

−Es′∼P̃s,a
V (s′)− β−1KL(P̃s,a||Ps,a).

[TV→Q(V − V )] = −γ
(
σ(Ps,a, V )− σ(Ps,a, V )

)
(23)
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= γ

(
inf
P̃s,a

(
Es′∼P̃s,a

V (s′) + β−1KL(P̃s,a||Ps,a)
)
− inf

P̃s,a

(
Es′∼P̃s,a

V (s′) + β−1KL(P̃s,a||Ps,a)
))

= γ

(
inf
P̃s,a

(
Es′∼P̃s,a

V (s′) + β−1KL(P̃s,a||Ps,a)
)
−
(
Es′∼P̂s,a

V (s′) + β−1KL(P̂s,a||Ps,a)
))

≤ γ
((

Es′∼P̂s,a
V (s′) + β−1KL(P̂s,a||Ps,a)

)
−
(
Es′∼P̂s,a

V (s′) + β−1KL(P̂s,a||Ps,a)
))

= γEs′∼P̂s,a
(V − V )(s′) (24)

Similarly,

[TQ(Q−Q)](s, a) = −γβ−1 logEs′∼P (·|s,a)e
−βmaxa′ Q(s′,a′) + γβ−1 logEs′∼P (·|s,a)e

−βmaxa′ Q(s′,a′)

= −γ
(
σ(Ps,a,max

a
Q(·, a))− σ(Ps,a,max

a
Q(·, a))

)
Using the same inequality from (23) to (24) we get

−γ
(
σ(Ps,a,max

a
Q(·, a))− σ(Ps,a,max

a
Q(·, a))

)
≤ Es′∼P̂s,a

max
a

(
Q(s′, a)−max

a
Q(s′, a)

)
≤ Es′∼P̂s,a

max
a

(
Q(s′, a)−Q(s′, a)

)
,

which completes the proof.

Lemma 15.
| log x− log y| ≤ 1

min{x, y}
|x− y|

Proof. Without loss of generality, we assume x ≥ y, then

| log x− log y| = log x− log y = log(1 +
x− y

y
)

≤ x− y

y
=

1

y
(x− y) =

1

min{x, y}
|x− y|,

which completes the proof.
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