
A Results883

In Table 4, we show a summary of the results of AlgoTuner for each of the four frontier models tests.884

In Table 5, we detail the per-task timings for every model and task.885

Table 4: AlgoTuner speedup when using each LM, with a budget of $0.5 for each task. Speedup
percentage is calculated as the percentage of tasks for which AlgoTuner gets at least a 1.1→ speedup.

o4-mini-high R1 Claude 3.7 Sonnet Gemini 2.5 Pro

Pct. of Tasks Sped Up 53.3% 42.5% 34.2% 34.2%

Table 5: Per task speedup for AlgoTuner, using four frontier LMs. Speedup is calculated as the ratio
between the reference solve function’s time and the LM-generated solve function’s time.

Task o4-mini-high R1 Claude 3.7 Sonnet Gemini 2.5 Pro

affine_transform_2d 1.00 1.00 1.00 1.00
articulation_points 4.75 1.00 1.45 1.00
base64_encoding 1.01 1.00 1.00 1.00
btsp 74.47 4.02 3.23 6.74
capacitated_facility_location 8.16 8.19 1.00 1.00
chacha_encryption 1.00 1.00 1.00 1.00
channel_capacity 1.00 1.73 1.71 1.57
chebyshev_center 1.78 2.21 1.23 1.13
cholesky_factorization 2.17 1.00 1.00 1.00
clustering_outliers 1.11 1.00 1.06 1.18
communicability 217.10 162.59 183.45 166.40
convex_hull 2.18 1.00 1.00 1.00
convex_quadratic_check 96.58 2.52 6.05 6.62
convolve2d_full_fill 272.12 229.80 227.84 229.30
convolve_1d 1.00 1.00 1.00 1.00
correlate_1d 1.62 1.00 1.54 1.00
count_connected_components 6.86 1.00 3.92 3.44
count_riemann_zeta_zeros 1.00 1.00 1.02 1.00
crew_pairing 1.00 1.00 1.00 1.00
cumulative_simpson_multid 1.00 1.00 1.00 1.00
cyclic_independent_set 1.00 1.00 1.00 1.00
determinant_matrix_exponential 416.78 1.00 277.06 395.17
dijkstra_from_indices 1.64 1.00 1.00 1.00
discrete_log 1.28 1.00 1.00 1.00
dynamic_assortment_planning 2.45 1.08 1.00 28.82
earth_movers_distance 1.00 1.17 1.09 1.00
edge_expansion 25.22 1.00 1.00 1.00
efficiency 71.63 2.76 1.07 1.11
eigenvalues_complex 1.47 1.52 1.47 1.45
eigenvalues_real 2.43 2.44 2.39 2.41
eigenvectors_complex 1.03 1.00 1.00 1.02
eigenvectors_real 1.03 1.06 1.01 1.02
elementwise_integration 1.01 1.00 1.00 1.00
feedback_controller_design 119.25 1.00 1.00 1.00
fft_real_scipy_fftpack 2.98 2.66 1.00 1.00
generalized_eigenvalues_complex 3.84 2.04 2.04 2.02
generalized_eigenvalues_real 2.55 2.98 2.52 1.00
generalized_eigenvectors_complex 2.84 1.06 1.06 1.05
generalized_eigenvectors_real 1.72 1.71 1.52 1.15
graph_coloring 27.19 1.18 1.00 1.08
graph_isomorphism 56.73 19.68 24.62 1.98
graph_laplacian 1.48 1.00 1.08 1.57

Continued on next page

22

Table 5 – continued from previous page
Task o4-mini-high R1 Claude 3.7 Sonnet Gemini 2.5 Pro

gzip_compression 1.00 1.00 1.00 1.00
job_shop_scheduling 1.42 1.75 1.40 1.48
kalman_filter 71.08 2.96 1.00 1.00
kcenters 1.00 1.00 1.00 1.00
kd_tree 1.23 1.20 1.00 1.01
kernel_density_estimation 1.00 1.00 1.00 1.00
kmeans 32.30 1.00 1.00 1.02
ks_test_2samp 1.00 1.03 1.03 1.00
l0_pruning 3.98 3.15 1.00 2.68
l1_pruning 2.94 2.84 1.27 1.40
lasso 1.00 1.00 1.00 1.00
linear_system_solver 1.10 1.12 1.09 1.09
lp_box 2.26 14.19 1.53 2.25
lp_centering 1.00 1.00 1.00 1.00
lqr 1.05 1.00 1.10 1.00
lu_factorization 1.00 1.00 1.00 1.00
markowitz 1.00 1.00 1.00 1.01
matrix_exponential 1.01 1.00 3.79 1.00
matrix_multiplication 1.08 1.06 1.09 1.08
matrix_sqrt 1.02 1.00 1.04 1.00
max_clique 21.15 1.26 3.80 2.66
max_common_subgraph 20.94 1.00 1.56 1.47
max_flow_min_cost 3.04 20.46 2.09 1.00
max_independent_set 1.00 1.63 1.00 1.51
max_weighted_independent_set 71.37 9.55 1.04 1.00
min_weight_assignment 1.42 1.25 1.00 1.00
minimum_spanning_tree 30.88 3.94 33.52 12.50
minimum_volume_ellipsoid 1.00 1.00 1.00 1.00
multi_dim_knapsack 1.52 1.48 1.37 1.00
nmf 1.00 1.00 1.00 1.00
ode_fitzhughnagumo 1.00 1.00 1.00 1.00
ode_hires 10.72 5.58 1.00 5.49
ode_lorenz96_nonchaotic 1.00 1.00 1.00 1.00
ode_nbodyproblem 1.00 1.00 1.00 1.00
ode_stiff_robertson 18.79 1.00 1.66 4.89
ode_stiff_vanderpol 1.00 1.00 1.00 1.00
odr 1.01 1.00 1.00 1.00
pagerank 1.00 1.00 1.00 1.57
pca 3.77 1.00 3.60 1.54
pde_burgers1d 1.00 1.00 1.00 1.00
pde_heat1d 1.00 1.00 1.00 1.00
polynomial_mixed 1.02 1.01 1.00 1.01
polynomial_real 23.60 142.29 1.00 1.00
portfolio_optimization_cvar 1.00 10.72 8.25 1.15
procrustes 1.23 1.04 1.03 1.04
psd_cone_projection 10.16 8.78 9.30 7.34
qp 1.75 1.76 1.01 1.00
qr_factorization 1.98 1.17 1.16 1.00
quantile_regression 1.27 1.00 1.00 1.03
queens_with_obstacles 1.42 2.40 1.00 1.38
queuing 76.82 6.72 1.00 1.00
qz_factorization 1.00 1.01 1.01 1.01
randomized_svd 5.66 3.84 1.26 1.98
rbf_interpolation 1.00 1.00 1.00 1.00
rectanglepacking 1.67 7.54 1.00 1.55
robust_linear_program 1.00 1.07 458.28 1.00
rotate_2d 1.00 1.00 1.00 1.00
set_cover_conflicts 31.03 4.97 4.49 4.92
set_cover 1.84 1.35 1.44 1.34
sha256_hashing 1.00 1.00 1.00 1.00
shift_2d 1.00 1.00 1.00 1.00

Continued on next page

23

Table 5 – continued from previous page
Task o4-mini-high R1 Claude 3.7 Sonnet Gemini 2.5 Pro

shortest_path_dijkstra 2.31 2.50 53.17 2.46
sparse_eigenvectors_complex 1.00 1.00 1.00 1.00
spectral_clustering 1.00 68.34 1.00 1.00
stable_matching 1.05 1.00 1.00 1.00
toeplitz_solver 1.00 1.00 1.00 1.00
tsp 1.00 1.27 1.00 1.09
two_eigenvalues_around_0 1.41 1.65 1.01 1.58
unit_simplex_projection 1.92 1.05 1.05 1.05
vector_quantization 1.00 1.00 1.00 1.00
vectorized_newton 1.00 1.00 1.00 1.00
vehicle_routing 1.00 1.17 1.00 1.00
vehicle_routing_circuit 1.00 1.47 1.01 1.00
vertex_cover 12.04 1.07 12.52 1.23
vertex_cover_cpsat 14.36 1.44 1.00 1.19
wasserstein_dist 8.15 7.52 1.00 6.78
water_filling 418.00 346.88 109.62 81.21
zoom_2d 1.00 1.00 1.00 1.00

886

24

C AlgoTuner Agent Setup887

Initial Prompt. The LM receives an initial message, consisting of general instructions on how to888

use the system (see §C.1), Numba (Lam et al., 2015), Dask (Rocklin, 2015), and Cython (Behnel et al.,889

2011) (for a full list see Appendix E). Additionally, the LM is given the task’s description, which890

includes input and output descriptions and examples, as well as the task’s solve and is_solution891

functions. In essence, everything apart from the problem generating function is shown to the LM.892

Using the Interface. The goal of the LM is to write a Solver class with a solve() function that893

takes problem instances and produces a correct output. To do this, the LM sends messages that must894

consist of exactly one thought and one command (Yao et al., 2023). Responses given by the system895

always start with a budget status, for example: You have so far sent 3 messages, and used896

up $0.08. You have $0.42 remaining. We use the LiteLLM (BerriAI, 2025) API to access897

all models used. Each model is limited to a budget of $0.50 per task, and is continuously prompted898

until its budget runs out. The budget includes both input and output tokens. Where applicable, we set899

the temperature to 0 and the top_p parameter to 0.95.900

Commands. We detail the available system commands in Table 6. Following Yang et al. (2024)901

after an edit command is used the modified code is ran through a linter. If the linter raises errors, the902

code is reverted, and the linter errors are sent back to the LM. When there are no linter errors, the903

code is evaluated on 100 training samples, with results sent back to the LM. When there are runtime904

errors, those are also sent back to the LM. When there are no runtime errors, the performance score,905

along with average evaluation time is reported back to the LM. If the performance score reached is906

better than any score previously reached, the code state is saved.907

Table 6: Available interface commands.
Command Description
edit Replace a range of lines in a file with new content. Can create new files.
delete Remove a range of lines from a file.
ls List all files in the current working directory.
view_file Display 100 lines of a file from a specified start line.
revert Revert all files to the best-performing version of the code.
reference Get the reference solve’s solution for a given input
eval Evaluate the current solve function on the 100 training instances and report results.
eval_input Run the solver on a given input and compare with the oracle.
profile Profile the performance of the solve method on a given input.
profile_lines Profile specified lines on a given input.

Message History. To manage conversational context within token limits, we truncate the messages908

send to the LM in the following manner: The initial system prompt and the full content of the most909

recent five user and five assistant turns are always sent, following (Yang et al., 2024). Messages older910

than these are truncated to the first 100 characters. If the total token count still exceeds the model’s911

limit, these older, content-truncated messages are progressively dropped starting from the oldest and912

are replaced by a single placeholder message indicating the truncation is inserted after the system913

prompt to signal the discontinuity.914

25

C.1 Initial Prompt915

We show the initial prompt given to the language model. The prompt we use is loosely modeled after916

the one used in SWE-Agent (Yang et al., 2024). For each task, we add a task description and the917

reference solver implementation (see below).918

919
SETTING:920

You're an autonomous programmer tasked with solving a specific problem. You921

are to use the commands defined below to accomplish this task. Every922

message you send incurs a cost--you will be informed of your usage and923

remaining budget by the system.924

You will be evaluated based on the best-performing piece of code you925

produce, even if the final code doesn't work or compile (as long as it926

worked at some point and achieved a score, you will be eligible).927

Apart from the default Python packages, you have access to the following928

additional packages:929

- cryptography930

- cvxpy931

- cython932

- dask933

- diffrax934

- ecos935

- faiss-cpu936

- hdbscan937

- highspy938

- jax939

- networkx940

- numba941

- numpy942

- ortools943

- pandas944

- pot945

- pulp946

- pyomo947

- python-sat948

- scikit-learn949

- scipy950

- sympy951

- torch952

953

YOUR TASK:954

Your objective is to define a class named `Solver` in `solver.py` with a955

method:956

```957

class Solver:958

def solve(self, problem, **kwargs) -> Any:959

"""Your implementation goes here."""960

...961

```962

963

IMPORTANT: Compilation time of your init function will not count towards964

your function's runtime.965

966

This `solve` function will be the entrypoint called by the evaluation967

harness. Strive to align your class and method implementation as968

closely as possible with the desired performance criteria.969

For each instance, your function can run for at most 10x the baseline970

runtime for that instance. Strive to have your implementation run as971

fast as possible, while returning the same output as the baseline972

26

function (for the same given input). Be creative and optimize your973

approach!974

975

Your messages should include a short thought about what you should do,976

followed by a _SINGLE_ command. The command must be enclosed within ```977

and ```, like so:978

<Reasoning behind executing the command>979

```980

<command>981

```982

983

IMPORTANT: Each set of triple backticks (```) must always be on their own984

line, without any other words or anything else on that line.985

986

Here are the commands available to you. Ensure you include one and only one987

of the following commands in each of your responses:988

- `edit`: Replace a range of lines with new content in a file. This is how989

you can create files: if the file does not exist, it will be created.990

Here is an example:991

```992

edit993

file: <file_name>994

lines: <start_line>-<end_line>995

---996

<new_content>997

---998

```999

1000

The command will:1001

1. Delete the lines from <start_line> to <end_line> (inclusive)1002

2. Insert <new_content> starting at <start_line>1003

3. If both <start_line> and <end_line> are 0, <new_content> will be1004

prepended to the file1005

1006

Example:1007

edit1008

file: solver.py1009

lines: 5-71010

---1011

def improved_function():1012

print("Optimized solution")1013

---1014

- `ls`: List all files in the current working directory.1015

- `view_file <file_name> [start_line]`: Display 100 lines of `<file_name>`1016

starting from `start_line` (defaults to line 1).1017

- `revert`: Revert the code to the best-performing version thus far.1018

- `baseline <string>`: Query the baseline solver with a problem and receive1019

its solution. If the problem's input is a list, this command would1020

look like:1021

```1022

baseline [1,2,3,4]1023

```1024

- `eval_input <string>`: Run your current solver implementation on the1025

given input. This is the only command that shows stdout from your1026

solver along with both solutions. Example:1027

```1028

eval_input [1,2,3,4]1029

```1030

- `eval`: Run evaluation on the current solution and report the results.1031

27

- `delete`: Delete a range of lines from a file using the format:1032

```1033

delete1034

file: <file_name>1035

lines: <start_line>-<end_line>1036

1037

The command will delete the lines from <start_line> to <end_line> (1038

inclusive)1039

1040

Example:1041

delete1042

file: solver.py1043

lines: 5-101044

```1045

- `profile <filename.py> <input>`: Profile your currently loaded solve1046

method's performance on a given input. Shows the 25 most time-consuming1047

lines. Requires specifying a python file (e.g., `solver.py`) for1048

validation, though profiling runs on the current in-memory code.1049

Example:1050

```1051

profile solver.py [1, 2, 3]1052

```1053

1054

- `profile_lines <filename.py> <line_number1, line_number2, ...> <input>`:1055

Profiles the chosen lines of the currently loaded code on the given1056

input. Requires specifying a python file for validation.1057

Example:1058

```1059

profile_lines solver.py 1,2,3 [1, 2, 3]1060

```1061

1062

TIPS:1063

After each edit, a linter will automatically run to ensure code quality. If1064

there are critical linter errors, your changes will not be applied,1065

and you will receive the linter's error message. Typically, linter1066

errors arise from issues like improper indentation--ensure your edits1067

maintain proper code formatting.1068

Cython Compilation: Edits creating or modifying Cython (`.pyx`) files1069

will automatically trigger a compilation attempt (requires a `setup.py`)1070

. You will be notified if compilation succeeds or fails. If it fails,1071

the edit to the `.pyx` file will be automatically reverted.1072

You have 8 CPU cores at your disposal, you can use them for parallelization.1073

1074

If the code runs successfully without errors, the in-memory 'last known1075

good code' will be updated to the new version. Following successful1076

edits, you will receive a summary of your `solve` function's1077

performance compared to the baseline.1078

If you get stuck, try reverting your code and restarting your train of1079

thought.1080

Do not put an if __name__ == "__main__": block in your code, as it will not1081

be ran (only the solve function will).1082

Keep trying to better your code until you run out of money. Do not stop1083

beforehand!1084

1085

GOALS:1086

Your primary objective is to optimize the `solve` function to run as as1087

fast as possible, while returning the optimal solution.1088

28

You will receive better scores the quicker your solution runs, and you will1089

be penalized for exceeding the time limit or returning non-optimal1090

solutions.1091

1092

Below you find the description of the task you will have to solve. Read it1093

carefully and understand what the problem is and what your solver1094

should do.10951096

1097
<task/description.txt>10981099

1100
Here is the baseline which you will be graded against. Your task is to1101

write a function that produces the same output, in less time.11021103

1104
<task.solve>11051106

1107
This function will be used to check if your solution is valid for a given1108

problem. If it returns False, it means the solution is invalid:11091110

1111
<task.is_solution>11121113

29

C.2 AlgoTuner Interface Feedback1114

In this section, we show the type and style of feedback given back to the LM (within the running of1115

AlgoTuner) in three different scenarios.1116

C.2.1 Successful Edit and Evaluation1117

LM Message

I'll create our solver function in solver.py which transforms the generalized
eigenvalue problem into a standard one using Cholesky decomposition and
then solves it using NumPy's eigenvalue routines.

```
edit
file: solver.py
lines: 1-100
---
import numpy as np
from typing import List, Tuple

class Solver:
@staticmethod
def solve(problem: Tuple[List[List[float]], List[List[float]]]) -> Tuple[
List[float], List[List[float]]]:

"""
Solve the generalized eigenvalue problem A x = lambda B x.

Given:
- A: a symmetric matrix,
- B: a symmetric positive definite matrix,

this function computes the eigenpairs (eigenvalues and eigenvectors)
where the eigenvectors are

B-normalized and mutually B-orthogonal.

The eigenvalues are returned in descending order along with their
corresponding eigenvectors.

:param problem: Tuple (A, B), where A and B are given as list-of-lists.
:return: tuple (eigenvalues_list, eigenvectors_list) where:

- eigenvalues_list is a list of eigenvalues (sorted in
descending order),

- eigenvectors_list is a list of eigenvectors (each a list of
floats) corresponding to those eigenvalues.

"""
A, B = problem
A = np.array(A, dtype=float)
B = np.array(B, dtype=float)

# Use Cholesky decomposition for numerical stability when dealing with
B

L = np.linalg.cholesky(B)
Linv = np.linalg.inv(L)
Atilde = Linv @ A @ Linv.T

# Compute eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eigh(Atilde)

# Transform eigenvectors back to the original space
eigenvectors = Linv.T @ eigenvectors

# Normalize eigenvectors with respect to the B-inner product
for i in range(eigenvectors.shape[1]):

v = eigenvectors[:, i]
1118

30



norm = np.sqrt(np.dot(v, B @ v))
if norm > 0:

eigenvectors[:, i] = v / norm

# Reverse to get descending order
eigenvalues = eigenvalues[::-1]
eigenvectors = eigenvectors[:, ::-1]

# Convert to lists
eigenvalues_list = eigenvalues.tolist()
eigenvectors_list = [eigenvectors[:, i].tolist() for i in range(

eigenvectors.shape[1])]

return eigenvalues_list, eigenvectors_list
---
```

1119

System Message

You have sent 2 messages and have used up $0.0130. You have $0.4870 remaining.

Edit successful for solver.py.

Contents of solver.py (lines 1-50 out of 53)
(| = existing code, > = modified code)

> 01: import numpy as np
> 02: from typing import List, Tuple
> 03:
> 04: class Solver:
> 05: @staticmethod
> 06: def solve(problem: Tuple[List[List[float]], List[List[float]]]) ->

Tuple[List[float], List[List[float]]]:
> 07: """
> 08: Solve the generalized eigenvalue problem A x = lambda B x.
> 09:
> 10: Given:
> 11: - A: a symmetric matrix,
> 12: - B: a symmetric positive definite matrix,
> 13: this function computes the eigenpairs (eigenvalues and

eigenvectors) where the eigenvectors are
> 14: B-normalized and mutually B-orthogonal.
> 15:
> 16: The eigenvalues are returned in descending order along with their

corresponding eigenvectors.
> 17:
> 18: :param problem: Tuple (A, B), where A and B are given as list-of-

lists.
> 19: :return: tuple (eigenvalues_list, eigenvectors_list) where:
> 20: - eigenvalues_list is a list of eigenvalues (sorted in

descending order),
> 21: - eigenvectors_list is a list of eigenvectors (each a

list of floats) corresponding to those eigenvalues.
> 22: """
> 23: A, B = problem
> 24: A = np.array(A, dtype=float)
> 25: B = np.array(B, dtype=float)
> 26:
> 27: # Use Cholesky decomposition for numerical stability when dealing

with B
1120

31

> 28: L = np.linalg.cholesky(B)
> 29: Linv = np.linalg.inv(L)
> 30: Atilde = Linv @ A @ Linv.T
> 31:
> 32: # Compute eigenvalues and eigenvectors
> 33: eigenvalues, eigenvectors = np.linalg.eigh(Atilde)
> 34:
> 35: # Transform eigenvectors back to the original space
> 36: eigenvectors = Linv.T @ eigenvectors
> 37:
> 38: # Normalize eigenvectors with respect to the B-inner product
> 39: for i in range(eigenvectors.shape[1]):
> 40: v = eigenvectors[:, i]
> 41: norm = np.sqrt(np.dot(v, B @ v))
> 42: if norm > 0:
> 43: eigenvectors[:, i] = v / norm
> 44:
> 45: # Reverse to get descending order
> 46: eigenvalues = eigenvalues[::-1]
> 47: eigenvectors = eigenvectors[:, ::-1]
> 48:
> 49: # Convert to lists
> 50: eigenvalues_list = eigenvalues.tolist()
...

Speedup: 1.00x
(Speedup = Baseline Time / Your Time; Higher is better)

Valid Solutions: 100%
Invalid Solutions: 0%
Timeouts: 0%

Snapshot saved (Best speedup reached, state saved!)

1121

C.2.2 Linter Errors1122

LM Message

I'll create the solver.py file with our numba-accelerated implementation using
the proper prepend command.

edit
file: solver.py
lines: 0-0

import numpy as np
from numba import njit

Global up and down factors. These might be overridden externally.
up = 1
down = 1

@njit(cache=True)
def _upfirdn1d_numba(h, x, up, down):

Lx = x.shape[0]
Lh = h.shape[0]
The length of the convolved signal after upsampling.
Lfull = (Lx - 1) * up + Lh
Compute the length of the output after downsampling.

1123

32

Lout = (Lfull - 1) // down + 1
y = np.zeros(Lout, dtype=x.dtype)
for n in range(Lout):

pos = n * down
s = 0.0
kmin = 0
if pos - (Lx - 1) * up > 0:

kmin = pos - (Lx - 1) * up
kmax = pos
if kmax > Lh - 1:

kmax = Lh - 1
for k in range(kmin, kmax + 1):

r = pos - k
if r % up == 0:

m = r // up
if m < Lx:

s += x[m] * h[k]
y[n] = s

return y

def solve(problem: list) -> list:
"""
Compute the upfirdn operation for each filter-signal pair in the problem
list.

Each tuple (h, x) is processed by upsampling x by factor 'up', filtering
with h, and then downsampling by factor 'down'.

:param problem: A list of tuples (h, x) where h and x are 1D arrays.
:return: A list of 1D arrays representing the upfirdn results.
"""
results = []
for h, x in problem:

h_arr = np.ascontiguousarray(np.array(h, dtype=np.float64))
x_arr = np.ascontiguousarray(np.array(x, dtype=np.float64))
res = _upfirdn1d_numba(h_arr, x_arr, up, down)
results.append(res)

return results

1124

System Message

You have sent 2 messages and have used up $0.0304. You have $0.0696 remaining.

Edit failed (and thus not applied) for solver.py: Line 9: Redefining name 'up'
from outer scope (line 5) (redefined-outer-name)

Line 9: Redefining name 'down' from outer scope (line 6) (redefined-outer-name)

PROPOSED CHANGES - This is what you tried to apply (lines 1-50 out of 50):
(| = existing code, > = modified code)

> 01: import numpy as np
> 02: from numba import njit
> 03:
> 04: # Global up and down factors. These might be overridden externally.
> 05: up = 1
> 06: down = 1
> 07:
> 08: @njit(cache=True)
> 09: def _upfirdn1d_numba(h, x, up, down):

1125

33

> 10: Lx = x.shape[0]
> 11: Lh = h.shape[0]
> 12: # The length of the convolved signal after upsampling.
> 13: Lfull = (Lx - 1) * up + Lh
> 14: # Compute the length of the output after downsampling.
> 15: Lout = (Lfull - 1) // down + 1
> 16: y = np.zeros(Lout, dtype=x.dtype)
> 17: for n in range(Lout):
> 18: pos = n * down
> 19: s = 0.0
> 20: kmin = 0
> 21: if pos - (Lx - 1) * up > 0:
> 22: kmin = pos - (Lx - 1) * up
> 23: kmax = pos
> 24: if kmax > Lh - 1:
> 25: kmax = Lh - 1
> 26: for k in range(kmin, kmax + 1):
> 27: r = pos - k
> 28: if r % up == 0:
> 29: m = r // up
> 30: if m < Lx:
> 31: s += x[m] * h[k]
> 32: y[n] = s
> 33: return y
> 34:
> 35: def solve(problem: list) -> list:
> 36: """
> 37: Compute the upfirdn operation for each filter-signal pair in the

problem list.
> 38:
> 39: Each tuple (h, x) is processed by upsampling x by factor 'up',

filtering with h, and then downsampling by factor 'down'.
> 40:
> 41: :param problem: A list of tuples (h, x) where h and x are 1D arrays.
> 42: :return: A list of 1D arrays representing the upfirdn results.
> 43: """
> 44: results = []
> 45: for h, x in problem:
> 46: h_arr = np.ascontiguousarray(np.array(h, dtype=np.float64))
> 47: x_arr = np.ascontiguousarray(np.array(x, dtype=np.float64))
> 48: res = _upfirdn1d_numba(h_arr, x_arr, up, down)
> 49: results.append(res)
> 50: return results

Contents of current file:
File solver.py is empty.

1126

C.2.3 Runtime Errors1127

LM Message

```
eval_input [[1.2, -0.5], [0.3, 2.1]
```

1128

34

System Message

You have sent 0 messages and have used up $0.2630. You have $0.2370 remaining.

Starting evaluation...

numpy.linalg.LinAlgError: 0-dimensional array given. Array must be at least two-
dimensional in function 'solve' at line 22 in solver.py

Code Context:
12: """
13: Solve the eigenvector problem for the given non-symmetric matrix.

14: Compute eigenvalues and eigenvectors using np.linalg.eig.
15: Sort the eigenpairs in descending order by the real part (and
then imaginary part) of the eigenvalues.

16: Return the eigenvectors (each normalized to unit norm) as a list
of lists of complex numbers.

17:
18: :param problem: A non-symmetric square matrix.
19: :return: A list of normalized eigenvectors sorted in descending
order.

20: """
21: A = problem

! 22: eigenvalues, eigenvectors = np.linalg.eig(A)
23: # Zip eigenvalues with corresponding eigenvectors (columns of
eigenvectors matrix)

24: pairs = list(zip(eigenvalues, eigenvectors.T))
25: # Sort by descending order of eigenvalue real part, then
imaginary part

26: pairs.sort(key=lambda pair: (-pair[0].real, -pair[0].imag))
27: sorted_evecs = []
28: for _, vec in pairs:
29: vec_arr = np.array(vec, dtype=complex)
30: norm = np.linalg.norm(vec_arr)
31: if norm > 1e-12:
32: vec_arr = vec_arr / norm

1129

35

E Python Packages1130

In Table 7 we show the Python packages used AlgoTune, as well as packages installed on the1131

AlgoTuner agent interface.1132

Table 7: Python packages used in the AlgoTune benchmark, installed on the AlgoTune Agent
interface, and their open-source licenses.
Package AlgoTune (Benchmark) AlgoTuner (Agent) License

NumPy (Harris et al., 2020) ✁ ✁ BSD 3-Clause
SciPy (Virtanen et al., 2020) ✁ ✁ BSD 3-Clause
Pandas (McKinney, 2010) ✂ ✁ BSD 3-Clause
Cython (Behnel et al., 2011) ✂ ✁ Apache 2.0
Numba (Lam et al., 2015) ✂ ✁ BSD 2-Clause
Dask (Rocklin, 2015) ✂ ✁ BSD 3-Clause
PuLP (Mitchell et al., 2009) ✁ ✁ MIT
OR-Tools (Google, 2020) ✁ ✁ Apache 2.0
Pyomo (Hart et al., 2011) ✂ ✁ BSD 3-Clause
HiGHS / HighSpy (Huangfu and Hall, 2018) ✂ ✁ MIT
NetworkX (Hagberg et al., 2008) ✁ ✁ BSD 3-Clause
python-sat (Biere et al., 2012) ✁ ✁ MIT
JAX (Bradbury et al., 2018) ✂ ✁ Apache 2.0
Diffrax (Kidger, 2021) ✁ ✁ Apache 2.0
CVXPY (Agrawal et al., 2018; Diamond and Boyd, 2016) ✁ ✁ Apache 2.0

36

F Performance Improvements in Python Repositories1133

In this section, we show a sample of performance improving pull requests to three Python repositories:1134

NumPy, SciPy, and NetworkX. All of the below pull requests were submitted in the past two years,1135

and greatly increase performance (as reported in the PR itself). For each PR, we highlight the most1136

significant reported performance greatest improvement.1137

NumPy:1138

• ENH: Add a fast-path for ufunc.at on aligned 1D arrays (PR #22889): Up to 6.3x faster1139

when no casting is needed on 1D aligned inputs (e.g. bench_ufunc.At.time_sum_at1140

dropped from 54.0 ± 0.2ms to 8.42 ± 0.02ms). https://github.com/numpy/numpy/1141

pull/228891142

• ENH: Vectorize quicksort for 16-bit and 64-bit dtype using AVX512 (PR #22315): Up1143

to 15x speedup for 16-bit sorts and 9x speedup for 64-bit sorts on AVX-512-capable CPUs.1144

https://github.com/numpy/numpy/pull/223151145

• ENH: Accelerate unique for integer dtypes via hash tables (PR #26018): Roughly 2.7x1146

speedup on 1 billion random integers (unique count in 7.815 s vs. 21.436 s for the previous1147

implementation). https://github.com/numpy/numpy/pull/260181148

SciPy:1149

• ENH: Vectorize stats.mannwhitneyu (PR #19749): Vectorizes the statistic calculation,1150

achieving up to ↑21x speedup (1.38 s → 64.4 ms in certain cases). https://github.com/1151

scipy/scipy/pull/197491152

• ENH: Vectorize stats.rankdata (PR #19776): Vectorizes rankdata along an axis,1153

yielding up to ↑ 296x faster runtimes (2.58 ms → 8.7 µs for a (100, 100) array). https:1154

//github.com/scipy/scipy/pull/197761155

• ENH: Fast-path for sparse Frobenius norm (PR #14317): Directly accesses the data array1156

to compute the norm, resulting in up to 5x speedup in some cases. https://github.com/1157

scipy/scipy/pull/143171158

NetworkX:1159

• BUG: Fix weakly_connected_components() performance on graph views1160

(PR #7586): Moves the repeated len(G) call outside the loop, cutting runtime from ↑ 15.4 s1161

to 0.064 s per iteration, over 240→ faster. https://github.com/networkx/networkx/1162

pull/75861163

• ENH: Speed up harmonic_centrality (PR #7595): Implements graph reversal for node-1164

subset queries, reducing computation on large wheel graphs from 95.9ms to 717µs, 134x1165

faster. https://github.com/networkx/networkx/pull/75951166

• ENH: Speed up common_neighbors / non_neighbors (PR #7244): Replaces generator-1167

based neighbor lookups with direct _adj dict operations, achieving up to ↑600x speedup1168

on star-center queries and around 11x on complete-graph common neighbors. https:1169

//github.com/networkx/networkx/pull/72441170

37

https://github.com/numpy/numpy/pull/22889
https://github.com/numpy/numpy/pull/22889
https://github.com/numpy/numpy/pull/22889
https://github.com/numpy/numpy/pull/22315
https://github.com/numpy/numpy/pull/26018
https://github.com/scipy/scipy/pull/19749
https://github.com/scipy/scipy/pull/19749
https://github.com/scipy/scipy/pull/19749
https://github.com/scipy/scipy/pull/19776
https://github.com/scipy/scipy/pull/19776
https://github.com/scipy/scipy/pull/19776
https://github.com/scipy/scipy/pull/14317
https://github.com/scipy/scipy/pull/14317
https://github.com/scipy/scipy/pull/14317
https://github.com/networkx/networkx/pull/7586
https://github.com/networkx/networkx/pull/7586
https://github.com/networkx/networkx/pull/7586
https://github.com/networkx/networkx/pull/7595
https://github.com/networkx/networkx/pull/7244
https://github.com/networkx/networkx/pull/7244
https://github.com/networkx/networkx/pull/7244

G AlgoTune vs KernelBench1171

Concurrent work, KernelBench (Ouyang et al., 2025) is similar to AlgoTune: both are code optimiza-1172

tion benchmarks. In this section, we summarize the main differences between them.1173

KernelBench is made up of 250 GPU kernels, where the goal is to write highly optimized low level1174

code that speeds up their runtime, while still producing correct outputs. KernelBench is split into1175

three levels based on kernel complexity. The first level contains simple funcitons like softmax or1176

tanh, while the third level contains more complex kernels like ShuffleNet or LSTM.1177

This approach has two downsides: first, the runtimes of kernels in the benchmark is highly varied;1178

level 1 kernels run in microseconds, while level 3 kernels run in milliseconds (see Table 8). 40.8% of1179

the kernels in KernelBench run in under 0.1 milliseconds, while the rest take between 0.1 and 1001180

milliseconds to run. Kernels with low runtimes are harder to optimize, as the process overhead takes1181

a significant part of the runtime. This makes the comparison between the improvement of different1182

kernel runtimes somewhat complicated.1183

In contrast, AlgoTune’s tasks have controllable runtimes, which results in the benchmark having1184

more uniform runtimes (see I). Importantly, AlgoTune covers a broage range of functions in math,1185

science, computer science, machine learning, and more (see §1 for a discussion).1186

Table 8: Number of kernels per time interval as reported by Ouyang (2025), for KernelBench (Ouyang
et al., 2025), by level.

Time Interval Level 1 (100 ops) Level 2 (100 ops) Level 3 (50 ops) Pct of Total [%]
10–20 µs 21 0 0 8.4
20–50 µs 24 12 0 14.4
50–100 µs 4 37 4 18.0
0.1–1 ms 22 21 8 20.4
1–10 ms 23 20 20 25.2
10–100 ms 6 10 18 13.6

38

H Task Size Determination1187

Algorithm 1 shows the two phase search algorithm used to find the problem size parameter n for each1188

Task in the benchmark.1189

Algorithm 1 FINDKFORTIME — choose n whose mean solve time best matches target time ω

Require: task T ; target time ω ; bounds [kmin, kmax]; examples m; seed s; initial samples ninit;
refinement steps nref

Ensure: estimate k̂ (or ⊋ if none succeeds)
1: function PROBE(k)
2: if k ↓ cache then
3: return cache[k]
4: end if
5: (tk, stats) ↔ measure_solve_time(T, k, ω,m, s, . . .)
6: cache[k] ↔ (tk, stats)
7: return (tk, stats)
8: end function
9: cache ↔ empty map

10: if kmin = kmax then
11: return PROBE(kmin)
12: end if
13: Ksample ↔

{
↗10x↘ : x ↓ linspace(log10 kmin, log10 kmax, ninit)

}
≃ {kmin, kmax}

14: sort Ksample and deduplicate
15: klastOK ↔ ⊋, kupper ↔ ⊋
16: for all k ↓ Ksample do
17: (tk, _) ↔ PROBE(k)
18: if tk = ⊋ ⇐ tk > ω then
19: if klastOK ⇒= ⊋ then
20: kupper ↔ k; break
21: end if
22: else
23: klastOK ↔ k
24: end if
25: end for
26: k̂ ↔ arg min

(k,tk)→cache, tk ↑=⊋

(
|tk ⇑ ω |, k

)

27: if klastOK ⇒= ⊋ and kupper ⇒= ⊋ then
28: lo ↔ klastOK, hi ↔ kupper
29: for i = 1 to nref do
30: if hi⇑ lo ⇓ 1 then break
31: end if
32: mid ↔ ↗(lo+ hi)/2⇔
33: (tmid, _) ↔ PROBE(mid)
34: if tmid ⇒= ⊋ and (|tmid ⇑ ω |,mid) < (|tk̂ ⇑ ω |, k̂) then
35: k̂ ↔ mid
36: end if
37: if tmid = ⊋ ⇐ tmid > ω then
38: hi ↔ mid⇑ 1
39: else
40: lo ↔ mid
41: end if
42: end for
43: end if
44: return k̂

39

I Task Timings1190

We report the size parameter n and per task timings in Table 9. The average time per task is calculated1191

by running the reference solver on 100 development instances, and repeating this three times.1192

Table 9: Per task size parameter n values and average time for the reference solve function, across
three timing runs.

Task n Average Time (ms)

affine_transform_2d 520 17.46 ± 0.14
articulation_points 841 98.41 ± 0.48
base64_encoding 2387 4.41 ± 0.01
btsp 8 0.82 ± 0.02
capacitated_facility_location 6 263.55 ± 1.69
chacha_encryption 3196 0.99 ± 0.00
channel_capacity 138 96.18 ± 0.25
chebyshev_center 242 101.06 ± 0.58
cholesky_factorization 668 8.77 ± 0.18
clustering_outliers 2359 92.37 ± 0.39
communicability 61 98.25 ± 1.79
convex_hull 191235 20.19 ± 0.33
convex_quadratic_check 605 100.75 ± 1.84
convolve2d_full_fill 6 147.48 ± 0.23
convolve_1d 16325 15.32 ± 0.09
correlate_1d 88 10.12 ± 0.04
count_connected_components 794 16.09 ± 0.10
count_riemann_zeta_zeros 15849 68.00 ± 0.18
crew_pairing 343 131.36 ± 1.00
cumulative_simpson_multid 67 10.01 ± 0.50
cyclic_independent_set 4 87.97 ± 0.17
determinant_matrix_exponential 662 10.04 ± 0.02
dijkstra_from_indices 1607 9.88 ± 0.02
discrete_log 25 19.72 ± 0.16
dynamic_assortment_planning 36 99.46 ± 0.94
earth_movers_distance 409 9.26 ± 0.05
edge_expansion 8507 67.99 ± 0.38
efficiency 500 101.01 ± 0.40
eigenvalues_complex 476 99.02 ± 0.21
eigenvalues_real 358 10.10 ± 0.02
eigenvectors_complex 467 99.26 ± 0.08
eigenvectors_real 445 19.36 ± 0.13
elementwise_integration 378 101.44 ± 0.04
feedback_controller_design 12 79.83 ± 0.33
fft_real_scipy_fftpack 631 8.14 ± 0.03
generalized_eigenvalues_complex 275 103.61 ± 0.05
generalized_eigenvalues_real 363 20.12 ± 0.08
generalized_eigenvectors_complex 272 102.09 ± 0.21
generalized_eigenvectors_real 236 9.92 ± 0.05
graph_coloring_assign 42 101.39 ± 0.20
graph_isomorphism 127 92.04 ± 0.12
graph_laplacian 4839 10.03 ± 0.12
gzip_compression 653 99.40 ± 0.01
job_shop_scheduling 17 99.40 ± 6.36
kalman_filter 23 97.41 ± 0.33
kcenters 33 9.63 ± 0.02
kd_tree 77 10.13 ± 0.05
kernel_density_estimation 631 199.79 ± 0.25
kmeans 278 96.28 ± 0.38
ks_test_2samp 50610 9.97 ± 0.06
l0_pruning 83829 9.95 ± 0.13
l1_pruning 96069 19.84 ± 0.22

Continued on next page

40

Table 9 – continued from previous page
Task n Average Time (ms)

lasso 87 10.14 ± 0.09
linear_system_solver 532 10.01 ± 0.04
lp_box 297 100.38 ± 0.59
lp_centering 304 105.24 ± 0.32
lqr 111 99.62 ± 1.41
lu_factorization 497 17.62 ± 0.19
markowitz 396 103.83 ± 0.25
matrix_exponential 552 98.32 ± 0.68
matrix_multiplication 298 11.27 ± 0.09
matrix_sqrt 281 100.40 ± 0.21
max_clique 17 88.86 ± 2.94
max_common_subgraph 4 24.21 ± 0.49
max_flow_min_cost 63 99.08 ± 1.20
max_independent_set 15 55.09 ± 1.68
max_weighted_independent_set 27 10.83 ± 0.82
min_weight_assignment 233 9.58 ± 0.01
minimum_spanning_tree 574 101.43 ± 0.62
minimum_volume_ellipsoid 27 115.07 ± 0.78
multi_dim_knapsack 215 192.66 ± 18.89
nmf 6 83.00 ± 0.07
ode_fitzhughnagumo 17 81.52 ± 0.16
ode_hires 706 120.77 ± 0.38
ode_lorenz96_nonchaotic 3 25.78 ± 0.23
ode_nbodyproblem 9 113.80 ± 0.73
ode_stiff_robertson 9999999 82.71 ± 0.15
ode_stiff_vanderpol 2 111.07 ± 0.55
odr 17637 45.08 ± 0.02
pagerank 7978 76.79 ± 0.54
pca 36 105.81 ± 0.59
pde_burgers1d 12 103.34 ± 0.52
pde_heat1d 9 98.58 ± 0.66
polynomial_mixed 415 103.33 ± 2.37
polynomial_real 396 99.12 ± 0.09
portfolio_optimization_cvar 15 97.71 ± 0.24
procrustes 307 19.76 ± 0.09
psd_cone_projection 349 100.60 ± 0.11
qp 278 97.59 ± 0.15
qr_factorization 500 18.42 ± 0.56
quantile_regression 187 98.70 ± 0.82
queens_with_obstacles 14 142.63 ± 3.12
queuing 420 4.83 ± 0.01
qz_factorization 271 99.88 ± 0.22
randomized_svd 310 10.23 ± 0.02
rbf_interpolation 85 68.17 ± 0.12
rectanglepacking 10 341.44 ± 150.17
robust_linear_program 12 99.10 ± 0.41
rotate_2d 506 18.41 ± 0.08
set_cover_conflicts 9 9.90 ± 1.05
set_cover 74 154.40 ± 11.25
sha256_hashing 1818 1.00 ± 0.00
shift_2d 555 18.72 ± 0.02
shortest_path_dijkstra 352 100.62 ± 0.27
sparse_eigenvectors_complex 1561 183.99 ± 0.35
spectral_clustering 27 133.05 ± 1.21
stable_matching 471 9.60 ± 0.03
toeplitz_solver 8588 101.29 ± 2.20
tsp 39 106.21 ± 26.47
two_eigenvalues_around_0 568 19.76 ± 0.12
unit_simplex_projection 127543 9.86 ± 0.10
vector_quantization 30 9.97 ± 0.00
vectorized_newton 40684 4.99 ± 0.02

Continued on next page

41

Table 9 – continued from previous page
Task n Average Time (ms)

vehicle_routing 14 91.82 ± 1.85
vehicle_routing_circuit 8 140.19 ± 2.36
vertex_cover 1 9.83 ± 1.12
vertex_cover_cpsat 17 79.95 ± 1.28
wasserstein_dist 15439 19.17 ± 0.11
water_filling 4075 98.59 ± 0.65
zoom_2d 480 26.06 ± 0.15

1193

42

	1 Introduction
	2 The AlgoTune Benchmark
	3 The AlgoTuner Agent
	4 Results
	4.1 Quantitative Analysis
	4.2 Qualitative Analysis

	5 Related Work
	6 Limitations and Future Work
	7 Conclusion
	A Results
	C AlgoTuner Agent Setup
	C.1 Initial Prompt
	C.2 AlgoTuner Interface Feedback
	C.2.1 Successful Edit and Evaluation
	C.2.2 Linter Errors
	C.2.3 Runtime Errors

	E Python Packages
	F Performance Improvements in Python Repositories
	G AlgoTune vs KernelBench
	H Task Size Determination
	I Task Timings

