ses A Results

g4 In Table 4, we show a summary of the results of AlgoTuner for each of the four frontier models tests.
gss In Table 5, we detail the per-task timings for every model and task.

Table 4: AlgoTuner speedup when using each LM, with a budget of $0.5 for each task. Speedup
percentage is calculated as the percentage of tasks for which AlgoTuner gets at least a 1.1x speedup.

04-mini-high R1 Claude 3.7 Sonnet  Gemini 2.5 Pro
Pct. of Tasks Sped Up 53.3% 42.5% 34.2% 34.2%

Table 5: Per task speedup for AlgoTuner, using four frontier LMs. Speedup is calculated as the ratio
between the reference solve function’s time and the LM-generated solve function’s time.

Task o4-mini-high R1 Claude 3.7 Sonnet Gemini 2.5 Pro
affine_transform_2d 1.00 1.00 1.00 1.00
articulation_points 4.75 1.00 1.45 1.00
base64_encoding 1.01 1.00 1.00 1.00
btsp 74.47 4.02 3.23 6.74
capacitated_facility_location 8.16 8.19 1.00 1.00
chacha_encryption 1.00 1.00 1.00 1.00
channel_capacity 1.00 1.73 1.71 1.57
chebyshev_center 1.78 2.21 1.23 1.13
cholesky_factorization 2.17 1.00 1.00 1.00
clustering_outliers 1.11 1.00 1.06 1.18
communicability 217.10 162.59 183.45 166.40
convex_hull 2.18 1.00 1.00 1.00
convex_quadratic_check 96.58 2.52 6.05 6.62
convolve2d_full_fill 272.12 229.80 227.84 229.30
convolve_1d 1.00 1.00 1.00 1.00
correlate_1d 1.62 1.00 1.54 1.00
count_connected_components 6.86 1.00 3.92 3.44
count_riemann_zeta_zeros 1.00 1.00 1.02 1.00
crew_pairing 1.00 1.00 1.00 1.00
cumulative_simpson_multid 1.00 1.00 1.00 1.00
cyclic_independent_set 1.00 1.00 1.00 1.00
determinant_matrix_exponential 416.78 1.00 277.06 395.17
dijkstra_from_indices 1.64 1.00 1.00 1.00
discrete_log 1.28 1.00 1.00 1.00
dynamic_assortment_planning 245 1.08 1.00 28.82
earth_movers_distance 1.00 1.17 1.09 1.00
edge_expansion 25.22 1.00 1.00 1.00
efficiency 71.63 2.76 1.07 1.11
eigenvalues_complex 1.47 1.52 1.47 1.45
eigenvalues_real 243 2.44 2.39 241
eigenvectors_complex 1.03 1.00 1.00 1.02
eigenvectors_real 1.03 1.06 1.01 1.02
elementwise_integration 1.01 1.00 1.00 1.00
feedback_controller_design 119.25 1.00 1.00 1.00
fft_real_scipy_fftpack 2.98 2.66 1.00 1.00
generalized_eigenvalues_complex 3.84 2.04 2.04 2.02
generalized_eigenvalues_real 2.55 2.98 2.52 1.00
generalized_eigenvectors_complex 2.84 1.06 1.06 1.05
generalized_eigenvectors_real 1.72 1.71 1.52 1.15
graph_coloring 27.19 1.18 1.00 1.08
graph_isomorphism 56.73 19.68  24.62 1.98
graph_laplacian 1.48 1.00 1.08 1.57

Continued on next page
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Table 5 — continued from previous page

Task

o4-mini-high RI1

Claude 3.7 Sonnet Gemini 2.5 Pro

gzip_compression
job_shop_scheduling
kalman_filter
kcenters

kd_tree
kernel_density_estimation
kmeans

ks_test_2samp
10_pruning

11_pruning

lasso
linear_system_solver
1p_box

lp_centering

lgr

lu_factorization
markowitz
matrix_exponential
matrix_multiplication
matrix_sqrt
max_clique
max_common_subgraph
max_flow_min_cost
max_independent_set
max_weighted_independent_set
min_weight_assignment
minimum_spanning_tree
minimum_volume_ellipsoid
multi_dim_knapsack
nmf
ode_fitzhughnagumo
ode_hires
ode_lorenz96_nonchaotic
ode_nbodyproblem
ode_stiff_robertson
ode_stiff_vanderpol
odr

pagerank

pca

pde_burgersid
pde_heatld
polynomial_mixed
polynomial_real
portfolio_optimization_cvar
procrustes
psd_cone_projection
Pig

qr_factorization
quantile_regression
queens_with_obstacles
queuing
qz_factorization
randomized_svd
rbf_interpolation
rectanglepacking
robust_linear_program
rotate_2d
set_cover_conflicts
set_cover
sha256_hashing
shift_2d

1.00
1.42
71.08
1.00
1.23
1.00
32.30
1.00
3.98
2.94
1.00
1.10
2.26
1.00
1.05
1.00
1.00
1.01
1.08
1.02
21.15
20.94
3.04
1.00
71.37
1.42
30.88
1.00
1.52
1.00
1.00
10.72
1.00
1.00
18.79
1.00
1.01
1.00
3.77
1.00
1.00
1.02
23.60
1.00
1.23
10.16
1.75
1.98
1.27
1.42
76.82
1.00
5.66
1.00
1.67
1.00
1.00
31.03
1.84
1.00
1.00

1.00
1.75
2.96
1.00
1.20
1.00
1.00
1.03
3.15
2.84
1.00
1.12
14.19
1.00
1.00
1.00
1.00
1.00
1.06
1.00
1.26
1.00
20.46
1.63
9.55
1.25
3.94
1.00
1.48
1.00
1.00
5.58
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.01
142.29
10.72
1.04
8.78
1.76
1.17
1.00
2.40
6.72
1.01
3.84
1.00
7.54
1.07
1.00
4.97
1.35
1.00
1.00

1.00
1.40
1.00
1.00
1.00
1.00
1.00
1.03
1.00
1.27
1.00
1.09
1.53
1.00
1.10
1.00
1.00
3.79
1.09
1.04
3.80
1.56
2.09
1.00
1.04
1.00
33.52
1.00
1.37
1.00
1.00
1.00
1.00
1.00
1.66
1.00
1.00
1.00
3.60
1.00
1.00
1.00
1.00
8.25
1.03
9.30
1.01
1.16
1.00
1.00
1.00
1.01
1.26
1.00
1.00
458.28
1.00
4.49
1.44
1.00
1.00

1.00
1.48
1.00
1.00
1.01
1.00
1.02
1.00
2.68
1.40
1.00
1.09
2.25
1.00
1.00
1.00
1.01
1.00
1.08
1.00
2.66
1.47
1.00
1.51
1.00
1.00
12.50
1.00
1.00
1.00
1.00
5.49
1.00
1.00
4.89
1.00
1.00
1.57
1.54
1.00
1.00
1.01
1.00
1.15
1.04
7.34
1.00
1.00
1.03
1.38
1.00
1.01
1.98
1.00
1.55
1.00
1.00
4.92
1.34
1.00
1.00
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Table 5 — continued from previous page

Task

o4-mini-high RI1

Claude 3.7 Sonnet

Gemini 2.5 Pro

shortest_path_dijkstra
sparse_eigenvectors_complex
spectral_clustering
stable_matching
toeplitz_solver

tsp
two_eigenvalues_around_0O
unit_simplex_projection
vector_quantization
vectorized_newton
vehicle_routing
vehicle_routing_circuit
vertex_cover
vertex_cover_cpsat
wasserstein_dist
water_filling

zoom_2d

2.31
1.00
1.00
1.05
1.00
1.00
1.41
1.92
1.00
1.00
1.00
1.00
12.04
14.36
8.15

418.00

1.00

2.50
1.00
68.34
1.00
1.00
1.27
1.65
1.05
1.00
1.00
1.17
1.47
1.07
1.44
7.52
346.88
1.00

53.17
1.00
1.00
1.00
1.00
1.00
1.01
1.05
1.00
1.00
1.00
1.01
12.52
1.00
1.00
109.62
1.00

2.46
1.00
1.00
1.00
1.00
1.09
1.58
1.05
1.00
1.00
1.00
1.00
1.23
1.19
6.78
81.21
1.00
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887

888
889
890
891
892

893
894
895
896
897
898
899
900

901
902
903
904
905
906

908
909
910
911
912

914

C AlgoTuner Agent Setup

Initial Prompt. The LM receives an initial message, consisting of general instructions on how to
use the system (see §C.1), Numba (Lam et al., 2015), Dask (Rocklin, 2015), and Cython (Behnel et al.,
2011) (for a full list see Appendix E). Additionally, the LM is given the task’s description, which
includes input and output descriptions and examples, as well as the task’s solve and is_solution
functions. In essence, everything apart from the problem generating function is shown to the LM.

Using the Interface. The goal of the LM is to write a Solver class with a solve () function that
takes problem instances and produces a correct output. To do this, the LM sends messages that must
consist of exactly one thought and one command (Yao et al., 2023). Responses given by the system
always start with a budget status, for example: You have so far sent 3 messages, and used
up $0.08. You have $0.42 remaining. We use the LiteLLM (BerriAl, 2025) API to access
all models used. Each model is limited to a budget of $0.50 per task, and is continuously prompted
until its budget runs out. The budget includes both input and output tokens. Where applicable, we set
the temperature to 0 and the top_p parameter to 0.95.

Commands. We detail the available system commands in Table 6. Following Yang et al. (2024)
after an edit command is used the modified code is ran through a linter. If the linter raises errors, the
code is reverted, and the linter errors are sent back to the LM. When there are no linter errors, the
code is evaluated on 100 training samples, with results sent back to the LM. When there are runtime
errors, those are also sent back to the LM. When there are no runtime errors, the performance score,
along with average evaluation time is reported back to the LM. If the performance score reached is
better than any score previously reached, the code state is saved.

Table 6: Available interface commands.

Command  Description

edit Replace a range of lines in a file with new content. Can create new files.

delete Remove a range of lines from a file.

Is List all files in the current working directory.

view_file Display 100 lines of a file from a specified start line.

revert Revert all files to the best-performing version of the code.

reference Get the reference solve’s solution for a given input

eval Evaluate the current solve function on the 100 training instances and report results.
eval_input Run the solver on a given input and compare with the oracle.

profile Profile the performance of the solve method on a given input.

profile_lines  Profile specified lines on a given input.

Message History. To manage conversational context within token limits, we truncate the messages
send to the LM in the following manner: The initial system prompt and the full content of the most
recent five user and five assistant turns are always sent, following (Yang et al., 2024). Messages older
than these are truncated to the first 100 characters. If the total token count still exceeds the model’s
limit, these older, content-truncated messages are progressively dropped starting from the oldest and
are replaced by a single placeholder message indicating the truncation is inserted after the system
prompt to signal the discontinuity.
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915

916
917
918

919
920

921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956

958
959
960
961
962
963
964
965
966
967
968
969

971
972

C.1 Initial Prompt

We show the initial prompt given to the language model. The prompt we use is loosely modeled after
the one used in SWE-Agent (Yang et al., 2024). For each task, we add a task description and the
reference solver implementation (see below).

SETTING:
You're an autonomous programmer tasked with solving a specific problem. You
are to use the commands defined below to accomplish this task. Every
message you send incurs a cost--you will be informed of your usage and
remaining budget by the system.

You will be evaluated based on the best-performing piece of code you
produce, even if the final code doesn't work or compile (as long as it
worked at some point and achieved a score, you will be eligible).

Apart from the default Python packages, you have access to the following
additional packages:

- cryptography
- CVXpYy

- cython

- dask

- diffrax

- ecos

- faiss-cpu
- hdbscan

- highspy

- jax

- networkx

- numba

- numpy

- ortools

- pandas

- pot

- pulp

- pyomo

- python-sat
- scikit-learn
- scipy

- Sympy

- torch

YOUR TASK:
Your objective is to define a class named “Solver™ in “solver.py with a
method:
class Solver:
def solve(self, problem, **kwargs) -> Any:
"""Your implementation goes here."""

IMPORTANT: Compilation time of your init function will not count towards
your function's runtime.

This “solve” function will be the entrypoint called by the evaluation
harness. Strive to align your class and method implementation as
closely as possible with the desired performance criteria.

For each instance, your function can run for at most 10x the baseline
runtime for that instance. Strive to have your implementation run as
fast as possible, while returning the same output as the baseline
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973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991

993

994

995

996

997

998

999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031

function (for the same given input). Be creative and optimize your
approach!

Your messages should include a short thought about what you should do,
followed by a _SINGLE_ command. The command must be enclosed within
and ~°°, like so:

<Reasoning behind executing the command>

<command>

IMPORTANT: Each set of triple backticks (°°°) must always be on their own
line, without any other words or anything else on that line.

Here are the commands available to you. Ensure you include one and only one

of the following commands in each of your responses:

- “edit’: Replace a range of lines with new content in a file. This is how
you can create files: if the file does not exist, it will be created.
Here is an example:

edit
file: <file_name>
lines: <start_line>-<end_line>

<new_content>

The command will:

1. Delete the lines from <start_line> to <end_line> (inclusive)

2. Insert <new_content> starting at <start_line>

3. If both <start_line> and <end_line> are 0, <new_content> will be
prepended to the file

Example:
edit
file: solver.py
lines: 5-7
def improved_function():
print ("Optimized solution")
- "1s”: List all files in the current working directory.
- “view_file <file_name> [start_line] : Display 100 lines of ~<file_name>"
starting from “start_line® (defaults to line 1).
- "revert : Revert the code to the best-performing version thus far.
- “baseline <string>": Query the baseline solver with a problem and receive
its solution. If the problem's input is a list, this command would
look like:

baseline [1,2,3,4]
- “eval_input <string>": Run your current solver implementation on the
given input. This is the only command that shows stdout from your
solver along with both solutions. Example:

eval_input [1,2,3,4]

“eval®: Run evaluation on the current solution and report the results.
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- “delete’: Delete a range of lines from a file using the format:
delete
file: <file_name>
lines: <start_line>-<end_line>

The command will delete the lines from <start_line> to <end_line> (
inclusive)

Example:

delete

file: solver.py

lines: 5-10

- "profile <filename.py> <input>": Profile your currently loaded solve
method's performance on a given input. Shows the 25 most time-consuming
lines. Requires specifying a python file (e.g., “solver.py ) for

validation, though profiling runs on the current in-memory code.

Example:

profile solver.py [1, 2, 3]

- "profile_lines <filename.py> <line_numberl, line_number2, ...> <input>:
Profiles the chosen lines of the currently loaded code on the given
input. Requires specifying a python file for validation.

Example:

profile_lines solver.py 1,2,3 [1, 2, 3]

**x TIPS : **
After each edit, a linter will automatically run to ensure code quality. If
there are critical linter errors, your changes will not be applied,
and you will receive the linter's error message. Typically, linter
errors arise from issues like improper indentation--ensure your edits
maintain proper code formatting.
**%Cython Compilation:#** Edits creating or modifying Cython ( .pyx~) files
will automatically trigger a compilation attempt (requires a “setup.py’)
You will be notified if compilation succeeds or fails. If it fails,
the edit to the "~ .pyx~ file will be automatically reverted.
You have 8 CPU cores at your disposal, you can use them for parallelization.

If the code runs successfully without errors, the in-memory 'last known
good code' will be updated to the new version. Following successful
edits, you will receive a summary of your “solve  function's
performance compared to the baseline.

If you get stuck, try reverting your code and restarting your train of
thought.

Do not put an if __name__ == "__main__": block in your code, as it will not

be ran (only the solve function will).

Keep trying to better your code until you run out of money. Do not stop
beforehand!

**%GOALS : **

Your primary objective is to optimize the “solve” function to run as as
fast as possible, while returning the optimal solution.

28



1089
1090
1091
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1093
1094

1638

1097

1698

1100
1101

1183

1104

1188

1107
1108

1198

1111

1113

You will receive better scores the quicker your solution runs, and you will
be penalized for exceeding the time limit or returning non-optimal
solutions.

Below you find the description of the task you will have to solve. Read it
carefully and understand what the problem is and what your solver
should do.

<task/description.txt>

Here is the baseline which you will be graded against. Your task is to
write a function that produces the same output, in less time.

<task.solve>

This function will be used to check if your solution is valid for a given
problem. If it returns False, it means the solution is invalid:

<task.is_solution>
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1114  C.2  AlgoTuner Interface Feedback

1115 In this section, we show the type and style of feedback given back to the LM (within the running of
1116 AlgoTuner) in three different scenarios.

1117 C.2.1 Successful Edit and Evaluation
LM Message

I'll create our solver function in solver.py which transforms the generalized
eigenvalue problem into a standard one using Cholesky decomposition and
then solves it using NumPy's eigenvalue routines.

edit
file: solver.py
lines: 1-100

import numpy as np
from typing import List, Tuple

class Solver:
Ostaticmethod
def solve(problem: Tuple[List[List[float]], List[List[float]]]) -> Tuplel
List[float], List[List[float]]l]:

Solve the generalized eigenvalue problem A x = lambda B x.

Given:
- A: a symmetric matrix,
- B: a symmetric positive definite matrix,
this function computes the eigenpairs (eigenvalues and eigenvectors)
where the eigenvectors are
B-normalized and mutually B-orthogonal.

The eigenvalues are returned in descending order along with their
corresponding eigenvectors.

:param problem: Tuple (A, B), where A and B are given as list-of-lists.
:return: tuple (eigenvalues_list, eigenvectors_list) where:
- eigenvalues_list is a list of eigenvalues (sorted in
descending order),
- eigenvectors_list is a list of eigenvectors (each a list of
floats) corresponding to those eigenvalues.
nnn
A, B = problem
A = np.array(A, dtype=float)
B = np.array(B, dtype=float)

# Use Cholesky decomposition for numerical stability when dealing with

L = np.linalg.cholesky(B)
Linv = np.linalg.inv(L)
Atilde = Linv @ A @ Linv.T

# Compute eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eigh(Atilde)

# Transform eigenvectors back to the original space
eigenvectors = Linv.T @ eigenvectors

# Normalize eigenvectors with respect to the B-inner product
for i in range(eigenvectors.shape[1]):
v = eigenvectors[:, i]

1118
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1119

1120

norm = np.sqrt(np.dot(v, B @ v))
if norm > O:
eigenvectors[:, i] = v / norm

# Reverse to get descending order

eigenvalues = eigenvalues[::-1]

eigenvectors = eigenvectors[:, ::-1]

# Convert to lists

eigenvalues_list = eigenvalues.tolist()

eigenvectors_list = [eigenvectors[:, i].tolist() for i in range(

eigenvectors.shape[1])]

return eigenvalues_list, eigenvectors_list

System Message

You have sent 2 messages and have used up $0.0130. You have $0.4870 remaining.
Edit successful for solver.py.

Contents of solver.py (lines 1-50 out of 53)

(| = existing code, > = modified code)

> 01: import numpy as np

> 02: from typing import List, Tuple

> 03:

> 04: class Solver:

> 05: @staticmethod

> 06: def solve(problem: Tuple[List[List[float]], List[List[float]]]) ->
Tuple[List[float], List[List[float]]]:

> 07: nnn

> 08: Solve the generalized eigenvalue problem A x = lambda B x.

> 09:

> 10: Given:

> 11: - A: a symmetric matrix,

> 12: - B: a symmetric positive definite matrix,

> ilge this function computes the eigenpairs (eigenvalues and
eigenvectors) where the eigenvectors are

> 14: B-normalized and mutually B-orthogonal.

> 15:

> 16: The eigenvalues are returned in descending order along with their
corresponding eigenvectors.

> 17:

> 18: :param problem: Tuple (A, B), where A and B are given as list-of-
lists.

> 19: :return: tuple (eigenvalues_list, eigenvectors_list) where:

> 20: - eigenvalues_list is a list of eigenvalues (sorted in
descending order),

> 21: - eigenvectors_list is a list of eigenvectors (each a
list of floats) corresponding to those eigenvalues.

> 22: nmnn

> 23: A, B = problem

> 24: A = np.array(A, dtype=float)

> 25: B = np.array(B, dtype=float)

> 26:

> 27: # Use Cholesky decomposition for numerical stability when dealing
with B
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> 28: L = np.linalg.cholesky(B)

> 29: Linv = np.linalg.inv(L)

> 30: Atilde = Linv @ A @ Linv.T

> 31:

> 32: # Compute eigenvalues and eigenvectors

> 33: eigenvalues, eigenvectors = np.linalg.eigh(Atilde)
> 34:

> 35: # Transform eigenvectors back to the original space
> 36: eigenvectors = Linv.T @ eigenvectors

> 37:

> 38: # Normalize eigenvectors with respect to the B-inner product
> 39: for i in range(eigenvectors.shape[1]):

> 40: v = eigenvectors[:, il

> 41: norm = np.sqrt(np.dot(v, B @ v))

> 42: if norm > O:

> 43: eigenvectors[:, i] = v / norm

> 44:

> 45: # Reverse to get descending order

> 46: eigenvalues = eigenvalues[::-1]

> 47: eigenvectors = eigenvectors[:, ::-1]

> 48:

> 49: # Convert to lists

> 50: eigenvalues_list = eigenvalues.tolist()

Speedup: 1.00x
(Speedup = Baseline Time / Your Time; Higher is better)

Valid Solutions: 100%
Invalid Solutions: 0%
Timeouts: 0%

Snapshot saved (Best speedup reached, state saved!)

1121
1122 C.2.2 Linter Errors

LM Message

I'll create the solver.py file with our numba-accelerated implementation using
the proper prepend command.

edit
file: solver.py
lines: 0-0

import numpy as np
from numba import njit

# Global up and down factors. These might be overridden externally.
up = 1
down = 1

@njit (cache=True)
def _upfirdnid_numba(h, x, up, down):
Lx = x.shape[0]
Lh = h.shape[0]
# The length of the convolved signal after upsampling.
Lfull = (Lx - 1) * up + Lh
# Compute the length of the output after downsampling.

1123
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1124

1125

Lout = (Lfull - 1) // down + 1
y = np.zeros(Lout, dtype=x.dtype)
for n in range(Lout):
pos = n * down
s = 0.0
kmin = 0
if pos - (Lx - 1) * up > O:
kmin = pos - (Lx - 1) * up
kmax = pos
if kmax > Lh - 1:
kmax = Lh - 1
for k in range(kmin, kmax + 1):

r =pos - k
if r % up == O:
m=r // up
if m < Lx:
s += x[m] * h[k]
y[n] = s
return y

def solve(problem: list) -> list:
nnn
Compute the upfirdn operation for each filter-signal pair in the problem
list.

Each tuple (h, x) is processed by upsampling x by factor 'up', filtering
with h, and then downsampling by factor 'down'.

:param problem: A list of tuples (h, x) where h and x are 1D arrays.

:return: A list of 1D arrays representing the upfirdn results.

nmnn

results = []

for h, x in problem:
h_arr = np.ascontiguousarray(np.array(h, dtype=np.float64))
x_arr = np.ascontiguousarray(np.array(x, dtype=np.float64))
res = _upfirdnld_numba(h_arr, x_arr, up, down)
results.append(res)

return results

System Message

You have sent 2 messages and have used up $0.0304. You have $0.0696 remaining.
Edit failed (and thus not applied) for solver.py: Line 9: Redefining name 'up'
from outer scope (line 5) (redefined-outer-name)

Line 9: Redefining name 'down' from outer scope (line 6) (redefined-outer-name)

PROPOSED CHANGES - This is what you tried to apply (lines 1-50 out of 50):

(|l = existing code, > = modified code)

> 01: import numpy as np

> 02: from numba import njit

> 03:

> 04: # Global up and down factors. These might be overridden externally.
> 05: up =1

> 06: down = 1

> 07:

> 08: @njit(cache=True)

> 09: def _upfirdnld_numba(h, x, up, down):
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> 10: Lx = x.shape[0]

> 11: Lh = h.shape[0]

> 12: # The length of the convolved signal after upsampling.

> 13: Lfull = (Lx - 1) * up + Lh

> 14: # Compute the length of the output after downsampling.

> 15: Lout = (Lfull - 1) // down + 1

> 16: y = np.zeros(Lout, dtype=x.dtype)

> 17: for n in range(Lout):

> 18: pos = n * down

> 19: s = 0.0

> 20: kmin = O

> 21: if pos - (Lx - 1) * up > 0:

> 22: kmin = pos - (Lx - 1) * up

> 23: kmax = pos

> 24: if kmax > Lh - 1:

> 25: kmax = Lh - 1

> 26: for k in range(kmin, kmax + 1):

> 27: r = pos - k

> 28: if r % up == 0:

> 29: m=r // up

> 30: if m < Lx:

> 31: s += x[m] * h([k]

> 32: y[nl = s

> 33: return y

> 34:

> 35: def solve(problem: list) -> list:

> 36: nun

> 37: Compute the upfirdn operation for each filter-signal pair in the
problem list.

> 38:

> 39: Each tuple (h, x) is processed by upsampling x by factor 'up',
filtering with h, and then downsampling by factor 'down'.

> 40:

> 41: :param problem: A list of tuples (h, x) where h and x are 1D arrays.

> 42: :return: A list of 1D arrays representing the upfirdn results.

> 43: nun

> 44: results = []

> 45: for h, x in problem:

> 46: h_arr = np.ascontiguousarray(np.array(h, dtype=np.float64))

> 47: x_arr = np.ascontiguousarray(np.array(x, dtype=np.float64))

> 48: res = _upfirdnld_numba(h_arr, x_arr, up, down)

> 49: results.append(res)

> 50: return results

Contents of current file:
File solver.py is empty.

1126

1127 C.2.3 Runtime Errors

LM Message

eval_input [[1.2, -0.5], [0.3, 2.1]

1128
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1129

System Message

You have sent O messages and have used up $0.2630. You have $0.2370 remaining.
Starting evaluation...

numpy.linalg.LinAlgError: O-dimensional array given. Array must be at least two-
dimensional in function 'solve' at line 22 in solver.py

Code Context:

12 . nnn

13: Solve the eigenvector problem for the given non-symmetric matrix.

14: Compute eigenvalues and eigenvectors using np.linalg.eig.

15: Sort the eigenpairs in descending order by the real part (and
then imaginary part) of the eigenvalues.

16: Return the eigenvectors (each normalized to unit norm) as a list
of lists of complex numbers.

17:

18: :param problem: A non-symmetric square matrix.

19: :return: A list of normalized eigenvectors sorted in descending
order.

20 . nnn

21: A = problem

! 22: eigenvalues, eigenvectors = np.linalg.eig(A)

23: # Zip eigenvalues with corresponding eigenvectors (columns of
eigenvectors matrix)

24: pairs = list(zip(eigenvalues, eigenvectors.T))

25: # Sort by descending order of eigenvalue real part, then
imaginary part

26: pairs.sort(key=lambda pair: (-pair[0].real, -pair[0].imag))

27: sorted_evecs = []

28: for _, vec in pairs:

29: vec_arr = np.array(vec, dtype=complex)

30: norm = np.linalg.norm(vec_arr)

31: if norm > le-12:

32: vec_arr = vec_arr / norm

35



1130

1131
1132

E Python Packages

In Table 7 we show the Python packages used AlgoTune, as well as packages installed on the

AlgoTuner agent interface.

Table 7: Python packages used in the AlgoTune benchmark, installed on the AlgoTune Agent

interface, and their open-source licenses.

Package

AlgoTune (Benchmark) AlgoTuner (Agent)

License

NumPy (Harris et al., 2020)

SciPy (Virtanen et al., 2020)

Pandas (McKinney, 2010)

Cython (Behnel et al., 2011)

Numba (Lam et al., 2015)

Dask (Rocklin, 2015)

PuLP (Mitchell et al., 2009)

OR-Tools (Google, 2020)

Pyomo (Hart et al., 2011)

HiGHS / HighSpy (Huangfu and Hall, 2018)
NetworkX (Hagberg et al., 2008)

python-sat (Biere et al., 2012)

JAX (Bradbury et al., 2018)

Diffrax (Kidger, 2021)

CVXPY (Agrawal et al., 2018; Diamond and Boyd, 2016)

NN XN X XN N X X% X% X% NN

SNSASSNRNSNSNSNSSSSNSNANANN

BSD 3-Clause
BSD 3-Clause
BSD 3-Clause
Apache 2.0
BSD 2-Clause
BSD 3-Clause
MIT
Apache 2.0
BSD 3-Clause
MIT
BSD 3-Clause
MIT
Apache 2.0
Apache 2.0
Apache 2.0
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1139
1140
1141
1142

1143
1144
1145

1146
1147
1148

1149

1150
1151
1152

1153
1154
1155

1156
1157
1158

1159

1160
1161
1162
1163

1164
1165
1166

1167
1168
1169
1170

F Performance Improvements in Python Repositories

In this section, we show a sample of performance improving pull requests to three Python repositories:
NumPy, SciPy, and NetworkX. All of the below pull requests were submitted in the past two years,
and greatly increase performance (as reported in the PR itself). For each PR, we highlight the most
significant reported performance greatest improvement.

NumPy:

SciPy:

¢ ENH: Add a fast-path for ufunc. at on aligned 1D arrays (PR #22889): Up to 6.3x faster
when no casting is needed on 1D aligned inputs (e.g. bench_ufunc.At.time_sum_at
dropped from 54.0 £ 0.2ms to 8.42 + 0.02ms). https://github.com/numpy/numpy/
pull/22889

* ENH: Vectorize quicksort for 16-bit and 64-bit dtype using AVX512 (PR #22315): Up
to 15x speedup for 16-bit sorts and 9x speedup for 64-bit sorts on AVX-512-capable CPUs.
https://github.com/numpy/numpy/pull/22315

* ENH: Accelerate unique for integer dtypes via hash tables (PR #26018): Roughly 2.7x
speedup on 1 billion random integers (unique count in 7.815 s vs. 21.436 s for the previous
implementation). https://github. com/numpy/numpy/pull/26018

* ENH: Vectorize stats.mannwhitneyu (PR #19749): Vectorizes the statistic calculation,
achieving up to ~21x speedup (1.38 s — 64.4 ms in certain cases). https://github.com/
scipy/scipy/pull/19749

 ENH: Vectorize stats.rankdata (PR #19776): Vectorizes rankdata along an axis,
yielding up to ~ 296x faster runtimes (2.58 ms — 8.7 us for a (100, 100) array). https:
//github.com/scipy/scipy/pull/19776

* ENH: Fast-path for sparse Frobenius norm (PR #14317): Directly accesses the data array
to compute the norm, resulting in up to 5x speedup in some cases. https://github.com/
scipy/scipy/pull/14317

NetworkX:

* BUG: Fix weakly_connected_components() performance on graph views
(PR #7586): Moves the repeated 1en (G) call outside the loop, cutting runtime from ~ 15.4 s
to 0.064 s per iteration, over 240x faster. https://github.com/networkx/networkx/
pull/7586

* ENH: Speed up harmonic_centrality (PR #7595): Implements graph reversal for node-
subset queries, reducing computation on large wheel graphs from 95.9ms to 717us, 134x
faster. https://github.com/networkx/networkx/pull/7595

* ENH: Speed up common_neighbors /non_neighbors (PR #7244): Replaces generator-
based neighbor lookups with direct _adj dict operations, achieving up to ~600x speedup
on star-center queries and around 11x on complete-graph common neighbors. https:
//github.com/networkx/networkx/pull/7244
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G AlgoTune vs KernelBench

Concurrent work, KernelBench (Ouyang et al., 2025) is similar to AlgoTune: both are code optimiza-
tion benchmarks. In this section, we summarize the main differences between them.

KernelBench is made up of 250 GPU kernels, where the goal is to write highly optimized low level
code that speeds up their runtime, while still producing correct outputs. KernelBench is split into
three levels based on kernel complexity. The first level contains simple funcitons like sof tmax or
tanh, while the third level contains more complex kernels like ShuffleNet or LSTM.

This approach has two downsides: first, the runtimes of kernels in the benchmark is highly varied;
level 1 kernels run in microseconds, while level 3 kernels run in milliseconds (see Table 8). 40.8% of
the kernels in KernelBench run in under 0.1 milliseconds, while the rest take between 0.1 and 100
milliseconds to run. Kernels with low runtimes are harder to optimize, as the process overhead takes
a significant part of the runtime. This makes the comparison between the improvement of different
kernel runtimes somewhat complicated.

In contrast, AlgoTune’s tasks have controllable runtimes, which results in the benchmark having
more uniform runtimes (see I). Importantly, AlgoTune covers a broage range of functions in math,
science, computer science, machine learning, and more (see §1 for a discussion).

Table 8: Number of kernels per time interval as reported by Ouyang (2025), for KernelBench (Ouyang
et al., 2025), by level.

Time Interval Level 1 (100 ops) Level 2 (100 ops) Level 3 (50 ops) Pct of Total [%]

10-20 ps 21 0 0 8.4
20-50 ps 24 12 0 14.4
50-100 ps 4 37 4 18.0
0.1-1 ms 22 21 8 20.4
1-10 ms 23 20 20 25.2
10-100 ms 6 10 18 13.6
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H

Task Size Determination

Algorithm 1 shows the two phase search algorithm used to find the problem size parameter n for each
Task in the benchmark.

Algorithm 1 FINDKFORTIME — choose n whose mean solve time best matches target time 7

Require: task T’; target time 7; bounds [kmin, kmax); €xamples m; seed s; initial samples niyir;

refinement Steps et

Ensure: estimate k (or @ if none succeeds)

1:

27:
28:
29:
30:
31:
32:
33:

34:

35:
36:
37:
38:
39:
40:
41:
42:
43:
44:

function PROBE(k)

if k£ € cache then
return cache[k]

end if
(tg, stats) < measure_solve_time(T, k, 7, m, s, ...)
cache[k] < (i, stats)
return (¢, stats)

end function

cache < empty map

if knin = kmax then
return PROBE(kpin)

: end if

¢ Ksample {LlOﬂ : x € linspace(10g; 4 kmin, 10810 Kmax, ninit)} U {kmin, kmax
¢ sort Kgample and deduplicate

¢ kasiok + 9, kupper — g

: for all k € Kgample do

(tg, _) < PROBE(k)

ift, =@ V ty > 7 then
if klastOK 7& & then

Eupper < k; break

end if

else
lastok < k

end if

: end for
c k< arg

min (|tx — 7|, k)
(k,tr)€Ecache, t, #2

if klasiox 7# @ and Kypper 7 @ then
lo < Kpsiok, hi kupper
for i = 1 to n,r do
if hi — lo < 1 then break
end if
mid < |(lo+ hi)/2]
(tmids _) < PROBE(mid)
if tonia # @ and ([tyiq — 7|, mid) < ([t; — 7|, k) then
k + mid
end if
ift,;g =9 V tig > 7 then
hi < mid — 1
else
lo + mid
end if
end for
endif
return k
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110 I Task Timings

1191 We report the size parameter n and per task timings in Table 9. The average time per task is calculated
1192 by running the reference solver on 100 development instances, and repeating this three times.

Table 9: Per task size parameter n values and average time for the reference solve function, across
three timing runs.

Task n Average Time (ms)
affine_transform_2d 520 17.46 £+ 0.14
articulation_points 841 98.41 £ 0.48
base64_encoding 2387 441+ 0.01
btsp 8 0.82 + 0.02
capacitated_facility_location 6 263.55 £ 1.69
chacha_encryption 3196 0.99 £ 0.00
channel_capacity 138 96.18 £ 0.25
chebyshev_center 242 101.06 + 0.58
cholesky_factorization 668 8.77+0.18
clustering_outliers 2359 92.37 £0.39
communicability 61 98.25 £ 1.79
convex_hull 191235  20.19 £0.33
convex_quadratic_check 605 100.75 £+ 1.84
convolve2d_full_fill 6 147.48 + 0.23
convolve_1d 16325 15.32 £ 0.09
correlate_1d 88 10.12 + 0.04
count_connected_components 794 16.09 £+ 0.10
count_riemann_zeta_zeros 15849 68.00 + 0.18
crew_pairing 343 131.36 £ 1.00
cumulative_simpson_multid 67 10.01 &+ 0.50
cyclic_independent_set 4 87.97 £0.17
determinant_matrix_exponential 662 10.04 + 0.02
dijkstra_from_indices 1607 9.88 +0.02
discrete_log 25 19.72 £ 0.16
dynamic_assortment_planning 36 99.46 + 0.94
earth_movers_distance 409 9.26 £+ 0.05
edge_expansion 8507 67.99 £+ 0.38
efficiency 500 101.01 £ 0.40
eigenvalues_complex 476 99.02 + 0.21
eigenvalues_real 358 10.10 £ 0.02
eigenvectors_complex 467 99.26 + 0.08
eigenvectors_real 445 19.36 + 0.13
elementwise_integration 378 101.44 £ 0.04
feedback_controller_design 12 79.83 £ 0.33
fft_real_scipy_fftpack 631 8.14 £0.03
generalized_eigenvalues_complex 275 103.61 £ 0.05
generalized_eigenvalues_real 363 20.12 £ 0.08
generalized_eigenvectors_complex 272 102.09 + 0.21
generalized_eigenvectors_real 236 9.92 £+ 0.05
graph_coloring_assign 42 101.39 £ 0.20
graph_isomorphism 127 92.04 + 0.12
graph_laplacian 4839 10.03 £ 0.12
gzip_compression 653 99.40 + 0.01
job_shop_scheduling 17 99.40 £ 6.36
kalman_filter 23 97.41 £0.33
kcenters 33 9.63 £ 0.02
kd_tree 77 10.13 £ 0.05
kernel_density_estimation 631 199.79 + 0.25
kmeans 278 96.28 £ 0.38
ks_test_2samp 50610 9.97 £0.06
10_pruning 83829 9.95 £0.13
11_pruning 96069 19.84 £ 0.22
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Table 9 — continued from previous page

Task n Average Time (ms)
lasso 87 10.14 £+ 0.09
linear_system_solver 532 10.01 £+ 0.04
lp_box 297 100.38 £ 0.59
lp_centering 304 105.24 £ 0.32
lqr 111 99.62 + 1.41
lu_factorization 497 17.62 + 0.19
markowitz 396 103.83 £ 0.25
matrix_exponential 552 98.32 £ 0.68
matrix_multiplication 298 11.27 £ 0.09
matrix_sqrt 281 100.40 + 0.21
max_clique 17 88.86 +2.94
max_common_subgraph 4 2421 +0.49
max_flow_min_cost 63 99.08 + 1.20
max_independent_set 15 55.09 + 1.68
max_weighted_independent_set 27 10.83 £ 0.82
min_weight_assignment 233 9.58 £ 0.01
minimum_spanning_tree 574 101.43 £ 0.62
minimum_volume_ellipsoid 27 115.07 £ 0.78
multi_dim_knapsack 215 192.66 £+ 18.89
nmf 6 83.00 &+ 0.07
ode_fitzhughnagumo 17 81.52+£0.16
ode_hires 706 120.77 + 0.38
ode_lorenz96_nonchaotic 3 25.78 £0.23
ode_nbodyproblem 9 113.80 £ 0.73
ode_stiff_robertson 9999999 82.71 £ 0.15
ode_stiff_vanderpol 2 111.07 & 0.55
odr 17637 45.08 £ 0.02
pagerank 7978 76.79 + 0.54
pca 36 105.81 £ 0.59
pde_burgersid 12 103.34 4+ 0.52
pde_heatid 9 98.58 &+ 0.66
polynomial_mixed 415 103.33 £+ 2.37
polynomial_real 396 99.12 + 0.09
portfolio_optimization_cvar 15 97.71 £0.24
procrustes 307 19.76 £+ 0.09
psd_cone_projection 349 100.60 & 0.11
qp 278 97.59 £ 0.15
qr_factorization 500 18.42 + 0.56
quantile_regression 187 98.70 + 0.82
queens_with_obstacles 14 142.63 £+ 3.12
queuing 420 4.83 £ 0.01
gz_factorization 271 99.88 +£0.22
randomized_svd 310 10.23 +0.02
rbf_interpolation 85 68.17 = 0.12
rectanglepacking 10 341.44 + 150.17
robust_linear_program 12 99.10 £ 0.41
rotate_2d 506 18.41 £ 0.08
set_cover_conflicts 9 9.90 £+ 1.05
set_cover 74 154.40 £ 11.25
sha256_hashing 1818 1.00 £ 0.00
shift_2d 555 18.72 £ 0.02
shortest_path_dijkstra 352 100.62 £ 0.27
sparse_eigenvectors_complex 1561 183.99 £ 0.35
spectral_clustering 27 133.05 + 1.21
stable_matching 471 9.60 + 0.03
toeplitz_solver 8588 101.29 £+ 2.20
tsp 39 106.21 £ 26.47
two_eigenvalues_around_0 568 19.76 £ 0.12
unit_simplex_projection 127543  9.86 £ 0.10
vector_quantization 30 9.97 £ 0.00
vectorized_newton 40684 4.99 £+ 0.02

Continued on next page
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1193

Table 9 — continued from previous page

Task n Average Time (ms)
vehicle_routing 14 91.82 £ 1.85
vehicle_routing_circuit 8 140.19 £ 2.36
vertex_cover 1 9.83 £1.12
vertex_cover_cpsat 17 79.95 + 1.28
wasserstein_dist 15439 19.17 £ 0.11
water_filling 4075 98.59 £ 0.65
zoom_2d 480 26.06 + 0.15
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