
You Can Have Better Graph Neural Networks by Not Training
Weights at All: Finding Untrained GNNs Tickets

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Recent works have impressively demonstrated that there exists a subnetwork in2

randomly initialized convolutional neural networks (CNNs) that can match the3

performance of the fully trained dense networks at initialization, without any4

optimization of the weights of the network (i.e., untrained networks). However,5

the presence of such untrained subnetworks in graph neural networks (GNNs) still6

remains mysterious. In this paper we carry out the first-of-its-kind exploration7

of discovering matching untrained GNNs. With sparsity as the core tool, we8

can find untrained sparse subnetworks at the initialization, that can match the9

performance of fully trained dense GNNs. Besides this already encouraging10

finding of comparable performance, we show that the found untrained subnetworks11

can substantially mitigate the GNN over-smoothing problem, hence becoming12

a powerful tool to enable deeper GNNs without bells and whistles. We also13

observe that such sparse untrained subnetworks have appealing performance in14

out-of-distribution detection and robustness of input perturbations. We evaluate15

our method across widely-used GNN architectures on various popular datasets16

including the Open Graph Benchmark (OGB). Our source codes are submitted in17

the Supplementary.18

1 Introduction19

Graph Neural Networks (GNNs) [1, 2] have shown the power to learn representations from graph-20

structured data. Over the past decade, GNNs and their variants such as Graph Convolutional Networks21

(GCN) [3], Graph Isomorphism Networks (GIN) [4], Graph Attention Networks (GAT) [5] have22

been successfully applied to a wide range of scenarios, e.g., social analysis [6, 7], protein feature23

learning [8], traffic prediction [9], and recommendation systems [10]. In parallel, works on untrained24

networks [11, 12] surprisingly discover the presence of untrained subnetworks in CNNs that can25

already match the accuracy of their fully trained dense CNNs with their initial weights, without any26

weight update. In this paper, we attempt to explore discovering untrained sparse networks in GNNs27

by asking the following question:28

Is it possible to find a well-performing graph neural (sub-) network without any training of the model29

weights?30

Positive answers to this question will have significant impacts on the research field of GNNs. 131

If the answer is yes, it will shed light on a new direction of obtaining performant GNNs, e.g.,32

traditional training might not be indispensable towards performant GNNs. 2 The existence of such33

performant subnetworks will extend the recently proposed untrained subnetwork techniques [11, 12]34

in GNNs. Prior works [11–13] successfully find that randomly weighted full networks contain35

untrained subnetworks which perform well without ever modifying the weights, in convolutional36

neural networks (CNNs). However, the similar study has never been discussed for GNNs. While37

CNNs reasonably contain well-performing untrained subnetworks due to heavy over-parameterization,38

GNN models are usually much more compact, and it is unclear whether a performant subnetwork39

“should” still exist in GNNs.40

Submitted to the First Learning on Graphs Conference (LoG 2022). Do not distribute.

Title Suppressed Due to Excessive Length

Figure 1: Performance of untrained graph subnetworks (UGTs (ours) and Edge-Popup [12]) and the
corresponding trained dense GNNs. We demonstrate that as the model size increases, UGTs is able
to �nd an untrained subnetwork with its random initializations, that can match the performance of the
corresponding fully-trained dense GNNs. The x-axis denotes the corresponding model size for each
point, e.g. “64-2” represents a model with 2 layers and width 64.

Furthermore, we investigate the connection between untrained sparse networks and widely-known41

barriers in deep GNNs, such as over-smoothing. For instance, as analyzed in [14], by naively stacking42

many layers and adding non-linearity, the output features are prone to collapsing and becoming43

indistinguishable. Such undesirable properties signi�cantly limit the power of deeper/wider GNNs,44

hindering the potential application of GNNs on large-scale graph datasets such as the latest Open45

Graph Benchmark (OGB) [15]. It is interesting to see what would happen for untrained graph neural46

networks. Note that the goal of sparsity in our paper isnot for ef�ciency , but to obtain nontrivial47

predictive performance without training (a.k.a., “masking is training” [11]). We summarize our48

contributions as follows:49

• We demonstrate for the �rst time that there exist untrained graph subnetworks with matching per-50

formance (referring to as good as the trained full networks),within randomly initialized dense51

networks and without any model weight training. Distinct from the popular lottery ticket52

hypothesis (LTH) [16, 17], neither the original dense networks nor the identi�ed subnetworks53

need to be trained.54

• We �nd that the gradual sparsi�cation technique [18, 19] can be a stronger performance booster.55

Leveraging its global sparse variant [20], we propose our method – UGTs, which discovers56

matching untrained subnetworks within the dense GNNs atextremely high sparsities. For57

example, our method discovers untrained matching subnetworks with up to 99% sparsity. We58

validate it across various GNN architectures (GCN, GIN, GAT) on eight datasets, including the59

large-scale OGBN-ArXiv and OGBN-Products.60

• We empirically show a surprising observation that our method signi�cantly mitigates the over-61

smoothing problem without any additional tricks and can successfully scale GNNs up with62

negligible performance loss. Additionally, we show that UGTs also enjoys favorable performance63

on Out-of-Distribution (OOD) detection and robustness on different types of perturbations.64

2 Related Work65

Graph Neural Networks. Graph neural networks is a powerful deep learning approach for graph-66

structured data. Since proposed in [1], many variants of GNNs have been developed, e.g., GAT [5],67

GCN [3], GIN [4], GraphSage [21], SGC [22], and GAE [23]. More and more recent works point68

out that deeper GNN architectures potentially provide bene�ts to practical graph structures, e.g.,69

molecules [8], point clouds [24], and meshes [25], as well as large-scale graph dataset OGB. How-70

ever, training deep GNNs usually is a well-known challenge due to various dif�culties such as71

gradient vanishing and over-smoothing problems [14, 26]. The existing approaches to address the72

above-mentioned problem can be categorized into three groups: (1) skip connection, e.g., Jumping73

connections [27, 28], Residual connections [24], and Initial connections [29]; (2) graph normal-74

ization, e.g., PairNorm [26], NodeNorm [30]; (3) random dropping including DropNode [31] and75

DropEdge [32].76

Untrained Subnetworks. Untrained subnetworks refer to the hypothesis that there exists a sub-77

network in a randomly intialized neural network that can achieve almost the same accuracy as a78

fully trained neural network without weight update. [11] and [12] �rst demonstrate that randomly79

2

Title Suppressed Due to Excessive Length

initialized CNNs contain subnetworks that achieve impressive performance without updating weights80

at all. [13] enhanced the performance of untrained subnetworks by iteratively reinitializing the81

weights that have been pruned. Besides the image classi�cation task, some works also explore the82

power of untrained subnetworks in other domains, such as multi-tasks learning [33] and adversarial83

robustness [34].84

Instead of proposing well-versed techniques to enable deep GNNs training, we explore the possibility85

of �nding well-performing deeper graph subnetworks at initialization in the hope of avoiding the86

dif�culties of building deep GNNs without model weight training.87

3 Untrained GNNs Tickets88

3.1 Preliminaries and Setups89

Notations. We represent matrices by bold uppercase characters, e.g.X , vectors by bold lowercase90

characters, e.g.x , and scalars by normal lowercase characters, e.g. x. We denote thei th row of a91

matrixA by A [i; :], and the(i; j)th element of matrixA by A [i; j]. We consider a graphG = fV ; Eg92

whereE is a set of edges andV is a set of nodes. Letg(A ; X ; �) be a graph neural network where93

A 2 f 0; 1gjV j�j V j is adjacency matrix for describing the overall graph topology, andX denotes94

nodal features .A [i; j] = 1 denotes the edge between nodevi and nodevj . Let f (X ; �) be a neural95

network with the weights� . k � k0 denotes theL 0 norm.96

Sparse Neural Networks. Given a dense network� l 2 R dl with a dimension ofdl in each97

layer l 2 f 1; :::; Lg, binary maskm l 2 f 0; 1gdl yielding a sparse Neural Networks with sparse98

weights� l � m l . The sparsity level is the fraction of the weights that are zero-valued, calculated as99

s = 1 �
P

l km l k0P
l dl

.100

Graph Neural Networks. GNNs denote a family of algorithms that extract structural information101

from graphs [35] and it is consisted ofAggregateandCombineoperations. Usually,Aggregateis a102

function that aggregates messages from its neighbor nodes, andCombineis an update function that103

updates the representation of the current node. Formally, given the graphG = (A ; X) with node set104

V and edge setE, thel-th layer of a GNN is represented as follows:105

a l
v = Aggregatel (f h l � 1

u : 8u 2 N (v)g) (1)

106

h l
v = Combinel (h l � 1

v ; a l
v) (2)

wherea l
v is the aggregated representation of the neighborhood for nodev andN (v) denotes the107

neighbor nodes set of the nodev, andh l
v is the node representations at thel-th layer. After propagating108

throughL layers, we achieve the �nal node representationshL
v which can be applied to downstream109

node-level tasks, such as node classi�cation, link prediction.110

Untrained Subnetworks. Following the prior work [11], [12] proposed Edge-Popup which enables111

�nding untrained subnetworks hidden in the a randomly initialized full networkf (�) by solving the112

following discrete optimization problem:113

min
m (S)2f 0;1gj � j

L (f (X ; � � m (S)) ; y) (3)

whereL is task-dependent loss function;� represents an element-wise multiplication;y is the label114

for the inputX andm is the binary mask that controls the sparsity levels. S is the latent score115

behind the binary maskm and it has the same dimension asm . To avoid confusion, here we use116

m (S) instead ofm to indicate thatm is generated byS. We will usem directly for brevity in the117

following content.118

Different from the traditional training of deep neural networks, here the network weights are never119

updated, masksm are instead generated to search for the optimal untrained subnetwork. In practice,120

each maskm i has a latent score variableSi 2 R that represents the importance score of the121

corresponding weight� i . During training in the forward pass, the binary maskm is generated by122

settingtop-s smallest elements ofS to 0 otherwise 1. In the backward pass, all the values inS will123

be updated with straight-through estimation [36]. At the end of the training, an untrained subnetwork124

can be found by the generated maskm according to the converged scoresS.125

3

Title Suppressed Due to Excessive Length

Figure 2: The performance of GNNs with increasing model depths. Experiments are conducted on
various GNNs with Cora, Citeseer, Pubmed and OGBN-Arxiv. We observe that as the model goes
deeper, fully-trained dense GNNs suffer from a sharp accuracy drop, while UGTs preserves the high
accuracy. All the results reported are averaged from 5 runs.

3.2 Untrained GNNs Tickets – UGTs126

In this section, we adopt the untrained subnetwork techniques to GNNs and introduce our new127

approach – Untrained GNNs Tickets (UGTs). We share the pseudocode of UGTs in the Appendix C.128

Formally, given a graph neural networkg(A ; X ; �), whereA andX are adjacency matrix and nodal129

features respectively. The optimization problem of �nding an untrained subnetwork in GNNs can be130

therefore described as follows:131

min
m 2f 0;1gj � j

L (g(A ; X ; � � m); y) (4)

Although Edge-Popup [12] can �nd untrained subnetworks with proper predictive accuracy, its132

performance is still away from satisfactory. For instance, Edge-Popup can only obtain matching133

subnetworks at a relatively low sparsity i.e., 50%.134

We highlight two limitations of the existing prior research. First of all, prior works [12, 13] initially135

set the sparsity level ofm i ass and maintain it throughout the optimization process. This is very136

appealing for the scenarios of sparse training [37–39] that chases a better trade-off between perfor-137

mance and ef�ciency, since the �xed sparsity usually translates to fewer �oating-point operations138

(FLOPs). This scheme, however, is not necessary and perhaps harmful to the �nding of the smallest139

possible untrained subnetwork that still performs well. Particularly as shown in [20], larger searching140

space for sparse neural networks at the early optimization phase leads to better sparse solutions. The141

second limitation is that the existing methods sparsify networks layer-wise with a uniform sparsity142

ratio, which typically leads to inferior performance compared with the non-uniform layer-wise143

sparsity [20, 39, 40], especially for deep architectures [41].144

Untrained GNNs Tickets (UGTs). Leveraging the above-mentioned insights, we propose a new145

approach UGTs here which can discover matching untrained subnetworks with extremely high sparsity146

levels, i.e., up to 99%. Instead of keeping the sparsity ofm �xed throughout the sparsi�cation process,147

we start from an untrained dense GNNs and gradually increase the sparsity to the target sparsity during148

the whole sparsi�cation process. We adjust the original gradual sparsi�cation schedule [18, 19] to149

the linear decay schedule, since no big performance difference can be observed. The sparsity levelst150

4

Title Suppressed Due to Excessive Length

Table 1: Test accuracy (%) of different training techniques. The experiments are based on GCN
models with 16, 32 layers, respectively. Width is set to 448. See Appendix B.7 for GAT architecture.
The results of the other methods are obtained from [42].

Cora Citeseer Pubmed

N-Layers 16 32 16 32 16 32

Trained Dense GCN 21.4 21.2 19.5 20.2 39.1 38.7

+Residual 20.1 19.6 20.8 20.90 38.8 38.7
+Jumping 76.0 75.5 58.3 55.0 75.6 75.3

+NodeNorm 21.5 21.4 18.8 19.1 18.9 18
+PairNorm 55.7 17.7 27.4 20.6 71.3 61.5

+DropNode 27.6 27.6 21.8 22.1 40.3 40.3
+DropEdge 28.0 27.8 22.9 22.9 40.6 40.5

UGTs-GCN 77.3� 0.9 77.5� 0.8 61.1� 0.9 56.2� 0.4 77.6� 0.9 76.3� 1.2

of each adjusting stept is calculated as follows:151

st = sf + (si � sf)(1 �
t � t0

n� t
) (5)

t 2 f t0; t0 + � t; :::; t 0 + n� tg

wheresf andsi refer to the �nal sparsity and initial sparsity, respectively; The initial sparsity is152

the sparsity at the start point of sparsi�cation and it is set to0 in this study. The �nal sparsity is153

the sparsity at the endpoint of sparsi�cation.t0 is the starting point of sparsi�cation;� t is the time154

between two adjusting steps;n is the total number of adjusting steps. We set� t as one epoch of155

mask optimization in this paper.156

To obtain a good non-uniform layer-wise sparsity ratio, we remove the weights with the smallest score157

values (S) across layers at each adjusting step. We do this because [20] showed that the layer-wise158

sparsity obtained by this scheme outperforms the other well-studied sparsity ratios [19, 37, 39].159

More importantly, removing weights across layers theoretically has a larger search space than solely160

considering one layer. The former can be more appealing as the GNN architecture goes deeper.161

4 Experimental Results162

In this section, we conduct extensive experiments among multiple GNN architectures and datasets to163

evaluate UGTs. We summarize the experimental setups here.164

Table 2: Graph datasets statistics.

DataSets #Graphs #Nodes #Edges #Classes #Features Metric

Cora 1 2708 5429 7 1433 Accuracy
Citeseer 1 3327 4732 6 3703 Accuracy
Pubmed 1 19717 44338 3 3288 Accuracy
OGBN-Arxiv 1 169343 1166243 40 128 Accuracy
Texas 1 183 309 5 1703 Accuracy
OGBN-Products 1 24449029 61859140 47 100 Accuracy
OGBG-molhiv 41127 25.5(Average) 27.5(Average) 2 - ROC-AUC
OGBG-molbace 1513 34.1(Average) 36.9(Average) 2 - ROC-AUC

GNN Architectures. We use the three most widely used GNN architectures: GCN, GIN, and GAT1
165

in our paper.166

Datasets. We choose three popular small-scale graph datasets including Cora, Citeseer, PubMed [3]167

and one latest large-scale graph dataset OGBN-Arxiv [15] for our main experiments. To draw a168

solid conclusion, we also evaluate our method on other datasets including OGBN-Products [15],169

TEXAS [43], OGBG-molhiv [15] and OGBG-molbace [15, 44]. More detailed information can be170

found in Table 2.171

1All experiments based on GAT architecture are conducted with heads=1 in this study.

5

	1 Introduction
	2 Related Work
	3 Untrained GNNs Tickets
	3.1 Preliminaries and Setups
	3.2 Untrained GNNs Tickets – UGTs

	4 Experimental Results
	4.1 The Existence of Matching Subnetworks
	4.2 Over-smoothing Analysis
	4.3 The Effect of Sparsity on UGTs
	4.4 Broader Evaluation of UGTs
	4.5 Experiments on Graph-level Task and Other Datasets

	5 Conclusion
	A Implementation Details
	B More Experimental Results
	B.1 TSNE visualization.
	B.2 Out of distribution detection
	B.3 Robustness against input perturbations
	B.4 The accuracy performance w.r.t model width
	B.5 Ablation studies
	B.6 Observations via gradient norm
	B.7 More experiments for mitigating over-smoothing problem

	C Pseudocode

