
Published as a conference paper at ICLR 2024

(counterfactual)

PlaSma

PLASMA

: PROCEDURAL KNOWLEDGE MODELS FOR
LANGUAGE-BASED PLANNING AND RE-PLANNING

Faeze Brahman 12 Chandra Bhagavatula 1

Valentina Pyatkin 1† Jena D. Hwang 1† Xiang Lorraine Li 15 Hirona J. Arai 3

Soumya Sanyal 3 Keisuke Sakaguchi 4 Xiang Ren 13 Yejin Choi 12

1Allen Institute for Artificial Intelligence 2University of Washington
3University of Southern California 4Tohoku University 5University of Pittsburg
faezeb@allenai.org

ABSTRACT

Procedural planning, which entails decomposing a high-level goal into a sequence
of temporally ordered steps, is an important yet intricate task for machines. It
involves integrating common-sense knowledge to reason about complex and often
contextualized situations, e.g. “scheduling a doctor’s appointment without a phone”.
While current approaches show encouraging results using large language models
(LLMs), they are hindered by drawbacks such as costly API calls and reproducibil-
ity issues. In this paper, we advocate planning using smaller language models. We
present PLASMA, a novel two-pronged approach to endow small language models
with procedural knowledge and (constrained) language planning capabilities. More
concretely, we develop symbolic procedural knowledge distillation to enhance
the commonsense knowledge in small language models and an inference-time
algorithm to facilitate more structured and accurate reasoning. In addition, we
introduce a new related task, Replanning, that requires a revision of a plan to cope
with a constrained situation. In both the planning and replanning settings, we show
that orders-of-magnitude smaller models (770M-11B parameters) can compete
and often surpass their larger teacher models’ capabilities. Finally, we showcase
successful application of PLASMA in an embodied environment, VirtualHome.1

1 INTRODUCTION

Powered by massive scale, large language models (LLMs) excel on many downstream tasks that
require commonsense. One such task is procedural planning (Schank & Abelson, 1975b; Pearson &
Laird, 2005), a task that involves decomposing a high-level goal into a sequence of coherent, logical,
and goal-oriented steps (plan) (e.g. “see a movie" → “Look up movie showings", “Choose a movie"
. . .). Recent approaches model this task as a conditional language generation problem using LLMs
(Madaan et al., 2022; Huang et al., 2022; Ahn et al., 2022; Zhao et al., 2023). Despite their reasonable
performance on the task, their steep computational cost and inaccessibility to models’ parameters
hinder the wider adoption of LLMs (OpenAI, 2023) for procedural planning.

We present PLASMA (PLAn with SMAll models), a novel framework and model to impart procedural
knowledge and language-based planning abilities in small LMs.2 In the first phase of the framework,
we enhance the implicit commonsense knowledge in small LMs through symbolic procedural
knowledge distillation (West et al., 2022; Bhagavatula et al., 2023) as illustrated in Figure 1. We
formulate it in two stages: (i) Knowledge verbalization to generate procedural knowledge from an
LLM, and (ii) Knowledge distillation to transfer LLM-generated knowledge to a smaller LM.

For the knowledge distillation stage, we introduce two constrained settings: Constrained planning
and Counterfactual replanning in addition to the standard language planning task. These tasks enable

†Authors contributed equally.
1Our data and code is publicly available at: https://github.com/allenai/PlaSma
2Hereafter, we will use ‘planning’ to refer to ‘language-based planning’ for brevity.

1

https://github.com/allenai/PlaSma

Published as a conference paper at ICLR 2024

goal + plan + condition

Prompt
Templates: Distilled

PLASMA

Procedural Knowledge Verbalization

Supervised
Critic

goal
goal + plan

COPLAN Dataset

Goals Plans Conditions Counterfactual
Plans

Provide steps:
 [goal] see a movie

Provide steps conditionally:
 [goal] see a movie
 [condition] see the movie at home

Planning (P)

Constrained Planning (CP)

Counterfactual Re-planning (CR)

PLAN:
1.Look up movie showings and times
2.Choose a movie to see
3.Drive to the movie theater
4.Get items from the concession stand
5.Walk together towards the theater
6.Sit down in the assigned seats
7.See a movie.

1.Choose a streaming service
2.Choose the movie and start streaming it
3.Get snacks or drinks from the kitchen
4.Set up the viewing device

in a comfortable and safe place
5.Sit and enjoy the movie.

COUNTERFACTUAL PLAN:

Multitasking

P CP CR

Procedural Knowledge Distillation

N/A

Rewrite steps:
 [goal] see a movie
 [plan] 1. Look up movie showings and
 times; 2. Choose a movie to see;
 … 7. See a movie
 [condition] see the movie at home

LLM

Figure 1: Symbolic Procedural Knowledge Distillation.

a more realistic setting by requiring models to reason about contextually constrained situations in
real-world applications. Specifically, the model generates or revises a plan based on a given goal
(e.g., "see a movie") while adhering to an additional condition (e.g., "at home"). Our knowledge
verbalization process results in a large dataset for (i) language-based planning, (ii) language-based
planning under constraints, and (iii) language-based re-planning of existing plans under constraints.
Our dataset, COPLAN, is then used to train smaller models, PLASMA, using both task-specific and
multi-task distillation.

For the second phase of PLASMA, we enable structured, tree-based reasoning via a novel inference-
time decoding algorithm (Figure 2). We observe that the standard next-token prediction objective
in auto-regressive LMs (applied during distillation) does not equip them with sufficient causal and
temporal reasoning abilities to generate high-quality plans, or a mechanism to rectify their mistakes
in earlier steps. To address this challenge, we develop a verifier-guided step-wise beam search to
better leverage the multi-step structure of plans (resulting in PLASMA+). Concretely, we incorporate a
step-wise verifier in a tree-based decoding algorithm to guide PLASMA+ to generate more semantically
coherent and temporally accurate plans.

Experimental results show that our approach is effective at endowing smaller LMs with planning
abilities. For the standard planning task, smaller student models (of varying sizes) achieve 17.57%
relative improvements, on average, over their teacher. The best student model is comparable even to
GPT-3, a model 16 times the student’s size. For the first time, we distill constrained and counterfactual
planning abilities in small-size models, achieving 93% and 86% validity rates according to human
evaluation. Interestingly, in the VirtualHome environment (Puig et al., 2018), our model significantly
outperforms previous work based on GPT-3 (Huang et al., 2022) on executability (absolute 17%) and
correctness (absolute 25%). Our framework including symbolic procedural distillation, decoding-time
algorithm, and the proposed tasks and the accompanying COPLAN dataset provide valuable resource
and direction for advancing research in the field of procedural language-based planning.

2 SMALL LANGUAGE MODELS AS PROCEDURAL KNOWLEDGE MODELS

In this section, we discuss how to endow small student models with procedural knowledge for (con-
strained and counterfactual) planning capabilities. We first describe our knowledge verbalization and
distillation framework which we collectively refer to as Symbolic Procedural Knowledge Distillation
(§2.1, §2.2). We then propose a strategy to enhance the reasoning capabilities of small students via a
novel verifier-guided step-wise decoding algorithm (§2.3).

2.1 COPLAN: PROCEDURAL KNOWLEDGE VERBALIZATION FROM LARGE TEACHERS

Large language model can perform new tasks by adapting to a few in-context examples (Brown et al.,
2020). We thus leverage this emergent reasoning capabilities of LLM to circumvent the challenge of
crowdsourcing supervised datasets at scale. We collect data targeting the following three tasks:

2

Published as a conference paper at ICLR 2024

1. Goal-based Planning (pl.), decomposing a high-level goal g into a sequence of temporally
extended steps y = {st}Tt=1.

2. Constrained Planning (cp.), decomposing a high-level goal g into a sequence of temporally
extended steps y = {st}Tt=1 while satisfying a given condition c.

3. Counterfactual Replanning (cr.), rewriting an initial plan y to a given goal g into a new plan
y′ in order to satisfy a given condition c.

Our knowledge verbalization pipeline shown in the left side of Figure 1 is a two-stage process: 1)
instance generation through few-shot prompting, and 2) automatic data curation using a critic to filter
out the low quality data. The process results in COPLAN, a quality dataset containing goals, plans,
conditions, and counterfactual plans.

Step 1. Data Generation We start by generating a large pool of goals G with a diverse range of
topics in a bootstrapping fashion. Concretely, we start with 5 manually written goals and expand them
through prompting GPT-3. We then manually filter out low-quality (in terms of acceptability/achiev-
ability) ones and repeat this expansion/filtering for several iterations until we obtain a seed goal pool
with 100 goals. We subsequently use this goal pool for randomly selecting few-shot examples for
prompting and generating a large number of goals in our final dataset.

For each generated goal g ∈ G, we few-shot prompt a teacher model M to generate a set of ordered
steps, as a plan y to achieve the goal. The input to M, including instruction and few-shot examples,
takes the format shown in Appendix Figure 7. Since LLMs can be sensitive to instruction, and/or
few-shot examples (Perez et al., 2021; Lu et al., 2022b), we randomize the prompt by (i) manually
creating a set of semantically similar instructions and each time randomly sample from the instruction
set, and (ii) using different set of in-context examples for each input. We use a subset of the existing
ProScript (Sakaguchi et al., 2021) and DeScript (Wanzare et al., 2016) datasets as our seed source
to form in-context examples, P = {(gj , yj)}Mj=1:

yi ∼ M(yi|gi,P)

The result is a pool of 140k pairs of goal and plans, (g, y), generated from the teacher model.

For the constrained and counterfactual (re)planning tasks, we also obtain conditions c, and modified
plans y′ from a teacher model M through few-shot prompting. We manually design our prompts P
to collect natural language conditions concerning the environment the task is performed in such as
Location (“the store is closed”), Equipment (“you don’t have a sharp tool”), Safety (“the car
breaks down”) or user’s specifications such as Physical Condition and Preference (“you
have an injury“). For a given goal gi and plan yi, we sample conditions:

ci ∼ M(ci|gi, yi,P)

Next, we few-shot prompt M to rewrite an initial plan y for a given goal g such that it satisfies the
requirement of a condition c:

y′i ∼ M(y′i|gi, yi, ci,P)

The prompting templates and examples of conditions are shown in Appendix Figure 8 and Table 6.

Step 2. Automatic Data Curation To retain high-quality data for (re)planning under the original
and constrained settings, we filter out generated samples from Step 1, i.e. generated plans, conditions
and counterfactuals, that are invalid or of low quality. A plan y is considered invalid if it contains an
illogical order of steps, is off-topic (w.r.t the goal) or incomplete. Whereas a modified plan y′ should
not only satisfies these general criteria but should also adhere to the condition.

To this end, we train separate supervised critic models to judge the quality of generated samples
of different types. We collect 13K human annotations of valid vs. invalid samples on Amazon
Mechanical Turk to train a RoBERTa-Large (Liu et al., 2019a) as our critic models (see Appendix
B.1 and B.2 for more details on annotation instruction and hyper-parameter tuning). All critics are
binary classifiers which identify whether a tuple of either (goal, plan), (goal, plan, condition) or (goal,
plan, condition, modified plan) is valid.

Naturally, there is a trade-off between dataset size and precision. Following West et al. (West
et al., 2022), we test several confidence thresholds at which the critic rejects a pair and choose the
best values (0.65, 0.76, 0.82)3 according to precision-recall curves. After filtering out low quality

3These values are for plan, condition and counterfactual plans, respectively.

3

Published as a conference paper at ICLR 2024

Buy a new car

Plan-so-far:

Step-wise
Verifier

Distilled
PLASMA+

1. Research vehicle and features
2. [next step]

… …
…

Test drive a car

Research vehicle

Go to dealership

Make the purchase

Check sales price

…

Contact seller

Fill out registration

…

Write a check

Negotiate a best price

Get the keys

.35

.68

.84

.69

.19

.76

.24

.73

.41

… …

.72

.54

.70

.81

.56

.91

.48

.18

…

.52

.76

.11

…

Does [next step] logically follows the
[plan-so-far] to help achieve the goal?

Temporality,
Logicality,

Based on: Completeness,
Achievability

Figure 2: Verifier-guided Step-wise Beam Search. For brevity, we only showcase with N = 5 and
K = 2 for the first step and N = 4 and K = 2 for the second step. The scores are for illustration.

data, our final COPLAN dataset consists of 2 main subsets including 57,794 (goal, plan) for the
original goal-based planning task (Dpl.), and 43,690 (goal, plan, condition, modified plan) for the
constrained and counterfactual settings, (Dcp. and Dcr.). On the original planning task, COPLAN
is ×11 larger in scale than existing datasets (Sakaguchi et al., 2021; Wanzare et al., 2016) while
keeping the precision at 74%. On the proposed constrained and counterfactual settings, our dataset is
to the best of our knowledge the first large-scale constrained procedural (re)planning dataset with
free-form (open vocabulary) conditions. Analyses show that the COPLAN includes a diverse array of
topics covered by goals (§A.1) and conditions (§A.2).

2.2 PLASMA: PROCEDURAL KNOWLEDGE DISTILLATION INTO SMALL STUDENTS

After obtaining our procedural planning data COPLAN, we use it to fine-tune student models on
the three different task settings described in §2.1. We consider both task-specific and multi-task
distillation objectives to transfer generated procedural knowledge into the student models:

Task-specific Distillation. Following the common practice, we use the standard autoregressive
language modeling objective (Radford et al., 2018) to fine-tune separate student models for each task:

L(θ) = E(x,y)∼Dtask

[
− log pθ(y|T (x))

]
, for task∈{pl.,cp.,cr.} (1)

where T (x) is a task-specific template for each task-specific input x (see right side of Figure 1).

Multi-task Distillation. We aim to improve the generalization of the student by exploiting the
knowledge found in the three related tasks as an inductive bias (Raffel et al., 2020; Wei et al., 2022).
We thus minimize the joint loss including all three task settings. We name this student PLASMA-Mul.

2.3 PLASMA+: ADVANCING STUDENT WITH VERIFIER-GUIDED DECODING

During inference, the student may generate logically and/or temporally ill-formed sequence of steps
y = {st}Tt=1 as it is only trained to maximize the next-token probability. For example, in Figure 2, it
may generate “write a check” at step 3 with relatively high confidence due to a spurious correlation
between “sales price” and “check”. We mitigate this issue via step-wise guided decoding. Rather
than generating plans greedily, we instead generate step-by-step by sampling several candidate next
steps and searching for those with a high log-probability under both the distilled student and a verifier.
The verifier is tasked to check for sequential ordering and semantic completeness. In an embodied
setting, the verifier could be taken over by any affordance or safety module (Ahn et al., 2022) that
determines the executability of an action in a given environment.

Step Verifier. We introduce a verifier, which is trained to check the validity of plan steps and
encourage PLASMA to produce more temporally and causally valid plans. The verifier takes as
input a goal, the plan-so-far and a candidate next step and outputs a continuous validity score
pverifier(st|g, s<t) ∈ [0, 1].

We implement the verifier by fine-tuning a RoBERTa model (Liu et al., 2019b) to classify a candidate
step as valid or invalid. For training, we reuse only 3K human-written plans from existing datasets
(Sakaguchi et al., 2021) to form positive examples (valid next steps). However, since no negative

4

Published as a conference paper at ICLR 2024

examples are readily available, we automatically create a set of invalid steps as pseudo-negative
examples. Inspired by the common model errors, we design perturbations over ground-truth plans to
target sequential ordering , semantic completeness , topicality, and fluency .4 See Appendix B.3 for
details on perturbation strategies. Our verifier achieves an F1 score of 78% on a held out test set.

Verifier-guided Step-wise Beam Search. We illustrate our verifier-guided decoding in Figure
2. The procedure generates a plan y = (s1, ..., sT) by sequentially sampling and pruning the next
step candidate st. Concretely, at each iteration, it selects and expands a size-K beam of plan-so-far,
Yt−1 = {sk<t}Kk=1, and generates N next-step candidates,

Yt = ∪s<t∈Yt−1{(s<t||snt) | snt ∼ q(.|T (x, s<t)}Nn=1 (2)

where || is concatenation, x is a task-specific input, and q is a decoding algorithm. We encourage
exploration at each step, by generating candidates using multiple decoding methods such as beam
search, and nucleus sampling with temperature 1.0.

To select the top-K scoring next-step candidates S∗
t , we use a value function v(s≤t) −→ R which

returns the weighted sum of normalized sequence log-likelihood from the student model and the
verifier validity score,

S∗
t = arg top-Ks≤t∈Yt

v(s≤t) (3)

v(s≤t) = α log pθ(s≤t) + (1− α) log pverifier(st|g, s<t) (4)

with α controlling the impact of the distilled student and the verifier. The search ends when the beam
contains K completed plans. We return the highest-scored plan as the final output. Our step-wise
beam search strategy maintains a diverse set of candidate plans during the decoding process, allowing
the model to explore multiple plausible paths before converging on a most promising one.

3 EXPERIMENTS

Implementation Details. While any model with few-shot capabilities could be used, we choose our
teacher model M to be GPT-3 text-curie-001 (Brown et al., 2020) for collecting the goals and
initial plans, and GPT-3 text-davinci-003 for collecting conditions and counterfactual plans.5
We sample data points from GPT-3 using nucleus sampling (p = 0.98) and temperature of T = 0.9.
For our student models, we try a range of model sizes in T5 family (Raffel et al., 2020), such as
T5-large, T5-3B, and T5-11B. Student models are trained using Huggingface Transformers (Wolf
et al., 2020). Main experiments can be done on 2 GPUs with 48GB of memory.

During inference, we use a beam K = 5 for regular beam search, and N = 10 (next-step candidates),
beam K = 5, p = 0.9, and α = 0.5 for our verifier-guided step-wise decoding (see §2.3).

Baselines. For each task, we compare our distilled students with their corresponding teacher,
zero-shot and few-shot variants of GPT-3 (Brown et al., 2020), COCOGEN (Madaan et al., 2022) and
human performance (when available). COCOGEN frames the planning task as a code generation task
and use a pre-trained code LM (code-davinci-002) in a few-shot setting.

Next, we present the experimental setup for each task, along with their results.

3.1 GOAL-BASED PLANNING

In this section, we aim to study two key research questions through our experiments. Firstly, we seek
to investigate the extent to which scale impacts the distillation of procedural knowledge. Secondly,
we aim to examine whether the scale gap can be bridged through the use of multitasking and/or a
novel decoding algorithm. In essence, we seek to determine whether small language models can
perform procedural planning tasks with the same level of proficiency as large language models.

Evaluation Set. For the original planning task, we use human-written plans from the test set of
ProScript (Sakaguchi et al., 2021) dataset as our evaluation data.

4In total, we automatically create 47K +/- pairs of (plan-so-far, next-step) using 3K human-written plans.
5In our preliminary experiment, we found text-davinci-003 (the strongest GPT-3 version at the time)

to be helpful for the more challenging counterfactual data collection.

5

Published as a conference paper at ICLR 2024

Setup. We compare several student models of varying scales (770M-11B) with the teacher model,
text-curie-001, and extremely large scale models (175B). For all student models, we decode
using both regular beam search (PLASMA) and our verifier-guided step-wise beam search (PLASMA+).

Metrics. Since there may exist many equally valid plans to a goal, we conduct human eval-
uations for the main results and report automatic metrics such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004) and BERTScore (Zhang et al., 2020) in Appendix Table 7. We ask human
annotators on the Amazon Mechanical Turk (AMT) platform to rate the generated plans for 250
randomly sampled goals on three aspects: 1) Order: how well-ordered the plan is (captures se-
quential correctness), 2) Coverage: how well the plan covers the necessary steps to accomplish
the goal (captures semantic completeness), and 3) Overall quality: overall quality and cor-
rectness of the plan. Details of the human evaluation can be found in Appendix D.3 Figure 10.

Table 1: Averaged 5-point Likert scale human eval-
uation for the goal-based planning. Small students
paired with our decoding algorithm consistently out-
perform their teacher (text-curie-001) and are
competitive with order of magnitude larger models
in zero/few-shot settings. *CoCoGen (Madaan et al.,
2022) is a 16-shot baseline using code LLM.

Modelsize Coverage Order
Overall
Quality

Distilled 770M

PLASMA 3.18 3.64 3.17

PLASMA+ 4.25 4.55 4.28

PLASMA-Mul 2.84 3.36 2.85

PLASMA-Mul+ 4.16 4.48 4.23

Distilled 3B

PLASMA 3.78 4.07 3.83

PLASMA+ 4.38 4.60 4.35

PLASMA-Mul 3.96 4.35 4.03

PLASMA-Mul+ 4.29 4.62 4.33

Distilled 11B

PLASMA 4.01 4.33 4.03

PLASMA+ 4.33 4.60 4.39

PLASMA-Mul 4.24 4.59 4.28

PLASMA-Mul+ 4.53 4.77 4.58

Curie (Teacher) few-shot (5) 3.75 4.27 3.75

Davinci (175B)
zero-shot 4.83 4.87 4.84

few-shot (5) 4.88 4.90 4.90

COCOGEN (175B) few-shot (16) 4.48 4.70 4.55

Human 4.56 4.61 4.57

Table 1 and Figure 3 summarize the human
evaluation for the original planning task.

Does scale matter? Larger models perform
relatively better across all aspects.

Does multi-task distillation help bridge the
scale gap? As we observe, multi-task distilla-
tion almost always wins over its task-specific
counterpart with the exception of the small-
est student, PLASMA (770M). We posit that
very small student models might not have
enough capacity to leverage the related tasks
efficiently during multitasking.

Does verifier-guided decoding help bridge
the scale gap? Pairing models with our
verifier-guided step-wise decoding substan-
tially improves performance across students
of varying sizes over all aspects. Specifically,
compared with regular beam search, our pro-
posed decoding results in 7%48% relative im-
provements in overall quality across different
student sizes. The improvements achieved by
the proposed decoding is larger for smaller
students. We showcase the comparisons with
qualitative examples in Table 8.

The best distilled students with 770M, 3B,
and 11B parameters achieved respectively
14.13%, 16%, and 22.59% relative improve-
ments over their teacher model (text-curie-001). Finally, our best distilled model (11B PLASMA-
Mul+) performs equally well as human and is competitive with orders-of-magnitude larger models
(175B).6 These results support our claim that a smaller model can, in fact, be as powerful as larger
models when augmented with smarter decoding-time techniques. Figure 3 visualizes how we bridge
the scale gap using our multi-task distillation and verifier-guided decoding. Since the initial submis-
sion, we conduct an additional comparison with GPT-4 (see Table 14), indicating similar trends.

Effect of symbolic distillation. In this experiment, we investigate the utility of CoPlan that is
obtained through symbolic distillation in the presence of manually curated ProScript dataset
(Sakaguchi et al., 2021). We thus compare a T5-11B distilled model trained on CoPlan with a T5-11B
model trained only on ProScript, and the mix of both. Due to potential distribution shifts, we
evaluated them on both their in- and out-of-domain test sets. We generate plans using our proposed
verifier-guided decoding for randomly sampled 150 goals from ProScript and COPLAN. We
use the same human evaluation setup as before. Table 2 shows that training on our LLM-generated

6Pairwise annotator agreements (i.e., how often do two annotators agree on the answer) are 0.78, 0.84, and
0.80 for coverage, order and overall quality, respectively.

6

Published as a conference paper at ICLR 2024

770M 3B 11B 175B

250 samples

Table 2: Effect of symbolic knowledge distilla-
tion. The model trained on our COPLAN dataset
transfers better to other dataset, ProScript.

Test on → ProScript COPLAN

Train on ↓ Coverage Order
Overall

Quality
Coverage Order

Overall

Quality

ProScript 4.47 4.68 4.51 4.51 4.81 4.58

COPLAN 4.58 4.78 4.73 4.72 4.86 4.73

Mix 4.82 4.83 4.83 4.77 4.88 4.78

Figure 3: Bridging the scale gap in goal-based planning. Smaller models are able to achieve
comparable performance and sometimes surpass larger models via multi-tasking and guided decoding.

COPLAN dataset, consistently transfers better to human-written dataset, ProScript across all
dimensions. Training on the mix of both datasets, however, achieves the best performance.

3.2 CONSTRAINED AND COUNTERFACTUAL (RE)PLANNING

Here, we seek to benchmark language models’ planning abilities under constrained (contextually
grounded) situations. This task goes beyond the original planning task, requiring models to produce
novel linguistic alternatives to unseen situations.

Evaluation Set. We created the test set of COPLAN by generating conditions and counterfactual
plans for the human-written (goal, plan) in the ProScript. Additionally, instead of using trained
critic to filter out low-quality samples, we used human annotators to verify them. We only used
human-verified tuples of (goal, plan, condition, cf. plan) as the test set of COPLAN.

Setup. We compare 3B and 11B student models with GPT-3 Curie and text-davinci-003,
the 175B teacher, in zero/few-shot settings. During inference, we use our verifier-guided step-wise
decoding with α = 0.75 to outweigh student model’s probability over the verifier validity score.7

Metric. We conduct human evaluation on the AMT. We generate (counterfactual) plans for 300
randomly sampled examples using each model. We ask 3 workers to rate if each generated plan
contains the necessary steps to make the goal achievable while satisfying the condition. We provide 3
answer options: A: The plan contains all the necessary steps to meet the requirements of the condition
on the goal, B: The plan addresses the condition, but it is trivial and lacks thoughtfulness8, and C:
The plan does NOT address the condition or does so very poorly. We take the majority vote for the
final results. Details on crowd-sourcing human evaluation can be found in Appendix Figure 12.

Results. Figure 4 depicts the results. Large students perform better on both tasks. In constrained
planning, our 11B PLASMA-Mul+ demonstrates a 93.33% success rate in producing high-quality plans
while adhering to the given condition, which is comparable to the performance of the 175B parameter
Davinci model in a zero-shot setting. Furthermore, our model generates slightly fewer low-quality
plans, only 7 as opposed to 12 by Davinci. While multi-tasking seems to be somewhat helpful in
constrained planning, this is not always the case for replanning. We hypothesize that the reason for
this could be that the original and constrained planning tasks, which do not involve modifying an
existing plan, may negatively impact the replanning task. The best performance for the counterfactual
replanning is achieved by Davinci (90%) followed by PLASMA+ (86.33%).9 Nonetheless, statistical
T -test of our best models for constrained and counterfactual (re)planning tasks indicate that they are
statistically on par with the much larger Davinci GPT-3.5 (175B). Human-annotated error types are
reported in Appendix Table 11, showing “missing necessary steps” is the most prevalent mistake.10

7We performed a hyperparameter search over α = {0.5, 0.75, 0.8}.
8Example: addressing the condition “you have no money” with adding a step “find money” in the plan.
9Pairwise annotator agreements are 0.96 and 0.94 for constrained and counterfactual (re)planning.

10Results with 95% confidence intervals are reported in the Appendix Table 13 and Figure 9.

7

Published as a conference paper at ICLR 2024

264 264 274 280 204 208 280 287 220 234 259 251 133 127 270 266

20 12 7 7

67 58

12 9

40 36
17 29

141 122

19 11

Figure 4: Human evaluation of 300 generations. PLASMA+ models (in left and right plots) are trained
on the constrained and counterfactual (re)planning subsets of COPLAN. Statistical T-test indicates
that our best models for constrained and counterfactual (re)planning are statistically on par with the
much larger Davinci (175B) and are able to generate good plans 93.33% and 86.33% of the times.

We provide qualitative examples of model generations across all three tasks in Table 4. More examples
of (good and bad) generations according to human annotators are provided in Appendix Tables 9, 10.

3.3 APPLICATION TO EMBODIED AGENTS

Table 3: Human-evaluated correctness along with
(automatic) executability and Longest-common sub-
sequence (LCS) scores on VirtualHome (Puig et al.,
2018). Steps generated by our model are more exe-
cutable and correct for accomplishing the task.

model
Executability

(%)

LCS

(%)

Correctness

(%)

Planner (175B) (Huang et al., 2022) 77.17 19.10 18.33

PLASMA-MulFT (11B) 76.38 28.36 41.38

PLASMA-Mul+FT (11B) 94.18 31.93 43.68

Human 100 N/A 66.66

As an extrinsic evaluation, we investigate the
application of PLASMA in a domain with hard
executability conditions. We evaluate PLASMA
on the task of planning in the VirtualHome
(Puig et al., 2018) environment. In this envi-
ronment, agents can perform household activ-
ities, e.g. “paint ceiling", through programs, in
the form of supported actions (42 in total) and
arguments. For evaluation, we use their test
set consisting of 88 goals (and corresponding
gold programs). We compare our best student
PLASMA-Mul (11B) with the best-performing
model on VirtualHome environment accord-
ing to Huang et al. (2022). Specifically, we
compare with Planner, a 1-shot GPT-3 (175B)
model with several inference-time strategies designed to ensure executability in embodied environ-
ments. Following their setup, we translate generated steps from natural language to steps executable
in the environment. To apply our model to VirtualHome, we finetune PLASMA-Mul on ∼ 4K human
labeled examples and also finetune the verifier on the same data using the method described in Section
2.3. This human-labeled data, obtained from previous work (Huang et al., 2022), consists of pairs
of ⟨task, natural language plan⟩. The same data was used to finetune supervised models including
GPT-3 13B, resulting in performance inferior to that of Planner (Huang et al., 2022).

We evaluate models on: (i) Executability: measures whether a generated action is executable
within the environment, (ii) Correctness: measures whether the generated actions accomplish the
task, and (iii) Longest common subsequence (LCS): measures the action-level similarity between a
generated program and a human-annotated one. We show, in Table 3, that PLASMA generates steps
that are significantly more executable (according to automatic metric) and also more correct/complete
(according to human judges). This suggests successful application of PLASMA in embodied setting.
More experimental details can be found in Appendix E.

8

Published as a conference paper at ICLR 2024

Table 4: PLASMA generations for Constrained planning and Counterfactual replanning tasks. More
examples are provided in Appendix Table 15.

Goal Condition Initial Plan Generated (Counterfactual) Plan

Empty lint filter Find lint filter > Remove lint filter > Clean lint filter >
Replace lint filter

If the lint trap is
too hot to touch

Unplug dryer > Open dryer > Locate lint trap > Use heat-
resistant glove or mitt to pick up lint trap > Pull lint trap
out of dryer > Empty lint trap

Load clothes into dryer > Locate lint trap > Move
hand towards lint trap > Grip lint trap with fin-
gers > Pull lint trap out of dryer > Use other hand
to lift lint from lint trap > Empty lint filter

Load clothes into dryer > Locate lint trap > Use gloved
hand to move hand toward lint trap > Grip lint trap with
fingers > Use other hand to lift lint from lint trap > Remove
lint trap from dryer

4 RELATED WORKS

Procedural Planning The problem of planning to accomplish a goal via sub-steps is widely studied in
two contexts. One is script knowledge generation, which is a long-standing NLP problem (Schank &
Abelson, 1975a). Collecting script knowledge requires either human annotation (Wanzare et al., 2016),
unsupervised feature-based extraction (Chambers & Jurafsky, 2008), or, more recently, methods that
utilize task-specific fine-tuned LLMs (Sakaguchi et al., 2021) and pipeline-based approaches (Sancheti
& Rudinger, 2022). In addition, there is a line of procedural planning that involves planning with
executable actions that can be executed by robots in real-life environments (Huang et al., 2022; Ahn
et al., 2022; Wu et al., 2022; Jansen, 2020; Guan et al., 2023). Recent approaches view planning as a
conditional text generation problem using LLMs (Madaan et al., 2022; Huang et al., 2022; Ahn et al.,
2022; Lu et al., 2023). Despite showing strong performance, their success heavily relies on scale.

Symbolic Knowledge Distillation Crowd-sourcing human-written datasets at scale is both chal-
lenging and costly, leading to a growing interest in using LLM-generated data to train smaller models
which falls under the conceptual framework of symbolic knowledge distillation (West et al., 2022).
In a concurrent work, Yuan et al. (Yuan et al., 2023) proposed a similar approach to distill script
knowledge from LLMs for constrained planning task. However unlike our conditions which allows
nuanced and free-form format, their constraints are limited to specific types by extending an orig-
inal goal with a modifier. Relatedly, Collins et al. (2022) benchmarked LLMs’ planning abilities
(Valmeekam et al., 2023) under 28 manually constructed constrained goals. We instead investigate a
broader range of constraints in a larger-scale COPLAN and distill this knowledge into smaller models.

Decoding-time Algorithm Decoding-time algorithm is an emerging approach for adapting language
models’ output for task-specific characteristics. Works in this line often focus on incorporating
explicit lexical constraints (Lu et al., 2021; 2022a; Hokamp & Liu, 2017; Pascual et al., 2020).
Besides discrete lexical constraints, applying continuous optimization functions, e.g. KL loss, has
been found to be effective (Qin et al., 2020; 2022; Kumar et al., 2021; Hoang et al., 2017). Perhaps
our approach is most similar to function-guided decoding methods. Krause et al. (Krause et al., 2021)
and Yang et al. (Yang & Klein, 2021) fuse next-token probability with desired attributes’ probabilities
at inference using a discriminator model. These and related token-level beam search variants assume
access to per-token logits and gradient updates. Our decoding method however only relies on model
log-probabilities and a verifier to facilitate semantic and temporal constraints at a step level.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we focus on procedural planning, a challenging task that involves decomposing high-
level goals into ordered steps. We introduce PLASMA as an effective approach that uses smaller
and more accessible models. By leveraging symbolic procedural knowledge distillation and an
inference-time algorithm, we have endowed smaller models with enhanced procedural knowledge
and planning capabilities. Furthermore, we introduced the task of Counterfactual Planning, which
involves generating/revising plans to accommodate realistic counterfactual scenarios. Our results
demonstrate that significantly smaller models can effectively compete with and often outperform
their larger teacher models in both original and counterfactual settings. We hope our work sheds light
on new directions towards developing smaller yet powerful multi-modal models for (counterfactual)
procedural planning and reasoning.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

This work was funded in part by the DARPA MCS program through NIWC Pacific (N66001-19-2-
4031), and the Allen Institute for AI. We thank the Beaker Team at the Allen Institute for AI for
helping with the compute infrastructure, OpenAI for providing access to the GPT-3 API, and the
anonymous reviewers for the helpful discussions.

ETHICS STATEMENT

IRB AND ANNOTATION ETHICS

We obtained IRB exemption for our data collection and evaluation from our institution’s internal
review board. In full compliance to the exemption clauses as published in the code of federal
regulations (45 CFR 46.104(d)(2,3)), we did not collect any deanomyzing information, and we do not
publish our dataset with worker specific information such as the MTurk’s worker id. Based on our
exempted status, according to our internal regulations, does not require for us to use consent forms
with our crowdsourcing.

Additionally, our data collection and evaluation efforts only involve human judgments about world
knowledge relating to general real-world goals and plans. We have no reason to believe that our
crowdsourcing posed harm or discomfort beyond the minimal risk as defined by 45 CFR 46.102(i).

LIMITATIONS

One potential limitation of our work is that the verbalization component of our framework involves
open text generation from large-scale language models (GPTs). Works such as Bender et al. (Bender
et al., 2021) have argued that generations from LLMs can be prone to harmful biases stemming from
the massive language data they are trained on. In the process of constructing the dataset, we have
not directly observed levels of biases to cause us alarm. We believe harmful and discriminatory
generations are largely mitigated by the very nature of the goals and scripts we obtain: our data
is primarily composed of low-level everyday situations such as education, self-care, and mundane
chores like vacuuming the floor or cooking a meal (see §A.1, A.2). This said, we acknowledge that
prejudices like gender roles, for example, do also surface in the most mundane scenarios.

A related limitation is that LLMs have been trained on primarily English pretraining data, likely
sourced from texts that reflect North American or European culture or norms. Consequently, we note
that the goals in COPLAN may reflect the goals that are most culturally expected or appropriate to the
cultures of English-speaking countries. This is also expected of the plans that may include culturally
limited processes and procedures. This should be a consideration that any follow-up studies using
our data and model should attend to. Extending our study to include more socio-culturally inclusive
goals and plans is a compelling direction for our future research.

BROADER IMPACTS

Related to the concerns discussed in the Limitations section above, it is important for any downstream
application to be aware that our data may have a limited representation of the goals and procedures of
dominant cultures of English-speaking countries.

REPRODUCIBILITY STATEMENT

We include all experimental details for reproducing the distillation and decoding algorithm in the
beginning of §3, Appendix B, and E. Additionally, instruction for collecting COPLAN and human
evaluations are provided in §2.1 and Appendix D.3.

10

Published as a conference paper at ICLR 2024

REFERENCES

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine
Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui Ruano, Kyle Jeffrey,
Sally Jesmonth, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee,
Sergey Levine, Yao Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka
Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas Sievers, Clayton Tan, Alexander
Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy
Zeng. Do as i can and not as i say: Grounding language in robotic affordances. In arXiv preprint
arXiv:2204.01691, 2022.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021
ACM Conference on Fairness, Accountability, and Transparency, FAccT ’21, pp. 610–623, New
York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450383097. doi:
10.1145/3442188.3445922. URL https://doi.org/10.1145/3442188.3445922.

Chandra Bhagavatula, Jena D. Hwang, Doug Downey, Ronan Le Bras, Ximing Lu, Lianhui Qin,
Keisuke Sakaguchi, Swabha Swayamdipta, Peter West, and Yejin Choi. I2d2: Inductive knowledge
distillation with neurologic and self-imitation, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Ben-
jamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.
cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Nathanael Chambers and Dan Jurafsky. Unsupervised learning of narrative event chains. In Proceed-
ings of ACL-08: HLT, pp. 789–797, Columbus, Ohio, June 2008. Association for Computational
Linguistics. URL https://aclanthology.org/P08-1090.

Katherine M Collins, Catherine Wong, Jiahai Feng, Megan Wei, and Josh Tenenbaum. Structured,
flexible, and robust: benchmarking and improving large language models towards more human-like
behavior in out-of-distribution reasoning tasks. In Proceedings of the Annual Meeting of the
Cognitive Science Society, volume 44, 2022.

Sebastian Gehrmann, Tosin Adewumi, Karmanya Aggarwal, Pawan Sasanka Ammanamanchi, An-
uoluwapo Aremu, Antoine Bosselut, Khyathi Raghavi Chandu, Miruna-Adriana Clinciu, Dipanjan
Das, Kaustubh Dhole, Wanyu Du, Esin Durmus, Ondřej Dušek, Chris Chinenye Emezue, Varun
Gangal, Cristina Garbacea, Tatsunori Hashimoto, Yufang Hou, Yacine Jernite, Harsh Jhamtani,
Yangfeng Ji, Shailza Jolly, Mihir Kale, Dhruv Kumar, Faisal Ladhak, Aman Madaan, Mounica
Maddela, Khyati Mahajan, Saad Mahamood, Bodhisattwa Prasad Majumder, Pedro Henrique
Martins, Angelina McMillan-Major, Simon Mille, Emiel van Miltenburg, Moin Nadeem, Shashi
Narayan, Vitaly Nikolaev, Andre Niyongabo Rubungo, Salomey Osei, Ankur Parikh, Laura
Perez-Beltrachini, Niranjan Ramesh Rao, Vikas Raunak, Juan Diego Rodriguez, Sashank San-
thanam, João Sedoc, Thibault Sellam, Samira Shaikh, Anastasia Shimorina, Marco Antonio
Sobrevilla Cabezudo, Hendrik Strobelt, Nishant Subramani, Wei Xu, Diyi Yang, Akhila Yerukola,
and Jiawei Zhou. The GEM benchmark: Natural language generation, its evaluation and metrics.
In Antoine Bosselut, Esin Durmus, Varun Prashant Gangal, Sebastian Gehrmann, Yacine Jernite,
Laura Perez-Beltrachini, Samira Shaikh, and Wei Xu (eds.), Proceedings of the 1st Workshop
on Natural Language Generation, Evaluation, and Metrics (GEM 2021), pp. 96–120, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.gem-1.10. URL
https://aclanthology.org/2021.gem-1.10.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task planning,
2023.

11

https://doi.org/10.1145/3442188.3445922
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/P08-1090
https://aclanthology.org/2021.gem-1.10

Published as a conference paper at ICLR 2024

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
ArXiv, abs/1503.02531, 2015.

Cong Duy Vu Hoang, Gholamreza Haffari, and Trevor Cohn. Towards decoding as continuous
optimisation in neural machine translation. In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pp. 146–156, Copenhagen, Denmark, September
2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1014. URL https:
//aclanthology.org/D17-1014.

Chris Hokamp and Qun Liu. Lexically constrained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1535–1546, Vancouver, Canada, July 2017. Association
for Computational Linguistics. doi: 10.18653/v1/P17-1141. URL https://aclanthology.
org/P17-1141.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-
shot planners: Extracting actionable knowledge for embodied agents. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), International
Conference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA,
volume 162 of Proceedings of Machine Learning Research, pp. 9118–9147. PMLR, 2022. URL
https://proceedings.mlr.press/v162/huang22a.html.

Peter Jansen. Visually-grounded planning without vision: Language models infer detailed plans
from high-level instructions. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 4412–4417, Online, November 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.findings-emnlp.395. URL https://aclanthology.org/
2020.findings-emnlp.395.

Subbarao Kambhampati, Sarath Sreedharan, Mudit Verma, Yantian Zha, and Lin Guan. Symbols as a
lingua franca for bridging human-ai chasm for explainable and advisable ai systems, 2021.

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, Nitish Shirish Keskar, Shafiq Joty, Richard
Socher, and Nazneen Fatema Rajani. GeDi: Generative discriminator guided sequence generation.
In Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 4929–4952,
Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.findings-emnlp.424. URL https://aclanthology.org/2021.
findings-emnlp.424.

Sachin Kumar, Eric Malmi, Aliaksei Severyn, and Yulia Tsvetkov. Controlled text generation as
continuous optimization with multiple constraints. In Neural Information Processing Systems,
2021.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
URL https://aclanthology.org/W04-1013.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv, abs/1907.11692, 2019a.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019b.

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi.
NeuroLogic decoding: (un)supervised neural text generation with predicate logic constraints.
In Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 4288–4299, Online, June 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.339. URL https:
//aclanthology.org/2021.naacl-main.339.

12

https://aclanthology.org/D17-1014
https://aclanthology.org/D17-1014
https://aclanthology.org/P17-1141
https://aclanthology.org/P17-1141
https://proceedings.mlr.press/v162/huang22a.html
https://aclanthology.org/2020.findings-emnlp.395
https://aclanthology.org/2020.findings-emnlp.395
https://aclanthology.org/2021.findings-emnlp.424
https://aclanthology.org/2021.findings-emnlp.424
https://aclanthology.org/W04-1013
https://aclanthology.org/2021.naacl-main.339
https://aclanthology.org/2021.naacl-main.339

Published as a conference paper at ICLR 2024

Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras,
Lianhui Qin, Youngjae Yu, Rowan Zellers, Noah A. Smith, and Yejin Choi. NeuroLogic a*esque
decoding: Constrained text generation with lookahead heuristics. In Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Seattle, United States, July 2022a. Association for Computational
Linguistics. doi: 10.18653/v1/2022.naacl-main.57. URL https://aclanthology.org/
2022.naacl-main.57.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Proceedings of
the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 8086–8098, Dublin, Ireland, May 2022b. Association for Computational Linguistics. doi:
10.18653/v1/2022.acl-long.556. URL https://aclanthology.org/2022.acl-long.
556.

Yujie Lu, Weixi Feng, Wanrong Zhu, Wenda Xu, Xin Eric Wang, Miguel Eckstein, and William Yang
Wang. Neuro-symbolic procedural planning with commonsense prompting. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=iOc57X9KM54.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang, and Graham Neubig. Language models of
code are few-shot commonsense learners. In Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing, pp. 1384–1403, Abu Dhabi, United Arab Emirates,
December 2022. Association for Computational Linguistics. URL https://aclanthology.
org/2022.emnlp-main.90.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4, 2023.

OpenAI. Openai api pricing. https://openai.com/pricing, 2023. Accessed: 2023-05-15.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for auto-
matic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics, pp. 311–318, Philadelphia, Pennsylvania, USA,
July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL
https://aclanthology.org/P02-1040.

Damian Pascual, Béni Egressy, Florian Bolli, and Roger Wattenhofer. Directed beam search: Plug-
and-play lexically constrained language generation. ArXiv, abs/2012.15416, 2020.

Douglas Pearson and John Laird. Incremental learning of procedural planning knowledge in challeng-
ing environments. Computational Intelligence, 21:414–439, 11 2005. doi: 10.1111/j.1467-8640.
2005.00280.x.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. True few-shot learning with language models.
NeurIPS, 2021. URL https://arxiv.org/abs/2105.11447.

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba.
Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 8494–8502, 2018.

Lianhui Qin, Vered Shwartz, Peter West, Chandra Bhagavatula, Jena D. Hwang, Ronan Le Bras,
Antoine Bosselut, and Yejin Choi. Back to the future: Unsupervised backprop-based decoding for
counterfactual and abductive commonsense reasoning. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 794–805, Online, November
2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.58. URL
https://aclanthology.org/2020.emnlp-main.58.

Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin Choi. Cold decoding: Energy-based
constrained text generation with langevin dynamics. Advances in Neural Information Processing
Systems, 2022.

13

https://aclanthology.org/2022.naacl-main.57
https://aclanthology.org/2022.naacl-main.57
https://aclanthology.org/2022.acl-long.556
https://aclanthology.org/2022.acl-long.556
https://openreview.net/forum?id=iOc57X9KM54
https://openreview.net/forum?id=iOc57X9KM54
https://aclanthology.org/2022.emnlp-main.90
https://aclanthology.org/2022.emnlp-main.90
https://openai.com/pricing
https://aclanthology.org/P02-1040
https://arxiv.org/abs/2105.11447
https://aclanthology.org/2020.emnlp-main.58

Published as a conference paper at ICLR 2024

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL
http://jmlr.org/papers/v21/20-074.html.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le Bras, Niket Tandon, Peter Clark, and Yejin Choi.
proScript: Partially ordered scripts generation. In Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 2138–2149, Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics. doi: 10.18653/v1/2021.findings-emnlp.184. URL
https://aclanthology.org/2021.findings-emnlp.184.

Abhilasha Sancheti and Rachel Rudinger. What do large language models learn about scripts? In
Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pp. 1–11,
Seattle, Washington, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.starsem-1.1. URL https://aclanthology.org/2022.starsem-1.1.

Roger C. Schank and Robert P. Abelson. Scripts, plans and knowledge. In International Joint
Conference on Artificial Intelligence, 1975a.

Roger C. Schank and Robert P. Abelson. Scripts, plans and knowledge. In PN Johnson-Laird and
PC Wason (eds.), Thinking: Readings in Cognitive Science, Proceedings of the Fourth International
Joint Conference on Artificial Intelligence, pp. 151–157. Tbilisi, USSR, 1975b.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large language
models still can’t plan (a benchmark for llms on planning and reasoning about change), 2023.

Lilian D. A. Wanzare, Alessandra Zarcone, Stefan Thater, and Manfred Pinkal. A crowdsourced
database of event sequence descriptions for the acquisition of high-quality script knowledge. In Pro-
ceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16),
pp. 3494–3501, Portorož, Slovenia, May 2016. European Language Resources Association (ELRA).
URL https://www.aclweb.org/anthology/L16-1556.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=gEZrGCozdqR.

Peter West, Chandra Bhagavatula, Jack Hessel, Jena Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu,
Sean Welleck, and Yejin Choi. Symbolic knowledge distillation: from general language models to
commonsense models. In Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 4602–4625,
Seattle, United States, July 2022. Association for Computational Linguistics. doi: 10.18653/v1/
2022.naacl-main.341. URL https://aclanthology.org/2022.naacl-main.341.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-demos.6. URL
https://aclanthology.org/2020.emnlp-demos.6.

Te-Lin Wu, Alex Spangher, Pegah Alipoormolabashi, Marjorie Freedman, Ralph Weischedel,
and Nanyun Peng. Understanding multimodal procedural knowledge by sequencing multi-
modal instructional manuals. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 4525–4542, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.310. URL
https://aclanthology.org/2022.acl-long.310.

14

http://jmlr.org/papers/v21/20-074.html
https://aclanthology.org/2021.findings-emnlp.184
https://aclanthology.org/2022.starsem-1.1
https://www.aclweb.org/anthology/L16-1556
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://aclanthology.org/2022.naacl-main.341
https://aclanthology.org/2020.emnlp-demos.6
https://aclanthology.org/2022.acl-long.310

Published as a conference paper at ICLR 2024

Kevin Yang and Dan Klein. FUDGE: Controlled text generation with future discriminators. In
Proceedings of the 2021 Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies. Association for Computational Linguistics,
2021. doi: 10.18653/v1/2021.naacl-main.276. URL https://doi.org/10.18653.

Siyu Yuan, Jiangjie Chen, Ziquan Fu, Xuyang Ge, Soham Shah, Charles Jankowski, Yanghua
Xiao, and Deqing Yang. Distilling script knowledge from large language models for constrained
language planning. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 4303–4325, Toronto, Canada, July 2023. Association for
Computational Linguistics. URL https://aclanthology.org/2023.acl-long.236.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with BERT. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL https://
openreview.net/forum?id=SkeHuCVFDr.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning, 2023.

15

https://doi.org/10.18653
https://aclanthology.org/2023.acl-long.236
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

Published as a conference paper at ICLR 2024

SUPPLEMENTARY MATERIAL

A COPLAN ANALYSIS DETAILS

A.1 GOAL DIVERSITY

Fitness
3%

Social
5%

Financial
8%

Career
9%

Service
14%

Self-Improvement
20%

Other
20%

Education
21%

Figure 5: Goal diversity in COPLAN Figure 6: Condition diversity in COPLAN

In this section, we demonstrate that the goals in our COPLAN dataset broadly cover a diverse set of
everyday, real-world human activities.

For this analysis, we first define seven goal-relevant categories based on categories defined by the US
Bureau of Labor Statistics11: (1) career and work related activities; (2) education and professional
growth; (3) financial and commercial activities; (4) fitness and health; (5) service and civic activities;
(6) social activities and relationships; and (7) self-improvement and leisure.

Next, using the seven categories, we manually annotate 200 most frequent verb unigrams, 300 most
frequent noun unigrams, and 300 most frequent nominal (nouns + adjectives) bigrams extracted from
the goals statement. Only when the unigram (e.g. “make”) or the bigram (e.g. “new word”) indicates
one of the seven categories (e.g., “close friend” for relationship or “college university” for education)
the instance is annotated with the category. Otherwise, it is annotated with an eight category, other.
For each goal in COPLAN, each (verb, noun) unigram or (nominal) bigram casts a category as a vote
if found in the annotated data. If not found, then it casts other as vote. Majority vote is taken as the
category of the larger goal statement.

Figure 5 shows the distribution of the activity types in COPLAN. Education is the largest category
(“join an online course to learn a new language”) followed by self-improvement (“develop my creative
writing skills”). Service (“cooking meals for a homeless shelter”), career (“get interview for a new
job”), and financial (“upgrade to a new car”) are the next largest categories. The other category
includes miscellaneous activies like chores and events like “vaccuum the livingroom floor”.

A.2 CONDITION DIVERSITY

We assess the diversity of the conditions in COPLAN by analyzing the verbal use and nominal trigrams
employed in the statements.

We manually analyze 20 most frequent verbs and phrasal verbs (e.g., “have access”) appearing in
the condition statements. The verbs are grouped into 5 semantic categories: (1) want (to want, to
desire, etc); (2) possess (to have, to possess, etc); (3) access (to obtain, to get, to procure etc); (4)

11https://www.bls.gov/news.release/atus.t12.htm defines 11 categories to cover common
everyday civilian activities. We cluster these categories into five.

16

https://www.bls.gov/news.release/atus.t12.htm

Published as a conference paper at ICLR 2024

able (to be able to, be capable of, etc); and (5) trust (to be safe, to rely, etc). Note that each of these
categories include conditions of both polarity; for example, for possess, it includes both the condition
imposed by having (“have enough money”) and by lacking (“not have enough money”). A sixth
category, other, was included for the verbs not included in the above categories. For each condition in
COPLAN, the first trigram made up of verbs, adjectives, and nouns appearing after the main verb (e.g.,
“If you want to [apply to an online program]” –> main verb: want, trigram: apply online program)
were extracted. Trigrams were then associated with each of the 5 semantic categories based on the
main verb.

Figure 6 shows the most frequent unique trigrams in each category. The graph includes the 20
most frequent trigrams for each category. The displayed trigrams were manually clustered when
appropriate for readability purposes (e.g., “take course online” clustered with “take online course”).

We find a wide variety of real-world constraints that pose varying levels of restriction such as
preference and desire (“want to take an online course”) and hindrances posed by the state of having
or not having something (“not having enough money” or “having a disability”).

B ADDITIONAL EXPERIMENTAL DETAILS

B.1 CRITIC MODELS: COLLECTING HUMAN ANNOTATIONS

We gather human annotations of valid vs. invalid teacher generations. Annotations are crowdsourced
through the Amazon Mechanical Turk (AMT) platform. We qualify 263 best performing workers
through a paid qualification round. Additionally, we chose annotators among those who were located
in US, GB and CA, and had 98% approval rate for at least 10,000 previous annotations. Crowdworker
compensation for qualification and annotation HITs is maintained at an average of $15 per hour.

Plans. For plans, the crowdworkers were presented with randomly-sampled 13K generated (goal,
plan) pairs, and were asked to evaluate the plans along three dimensions: topicality—the topic of the
plan is relevant and appropriate for the goal, ordering—the steps in the plan are appropriately ordered,
and completeness—the plan provides complete and informative steps to achieve the goal. We asked
the workers to evaluate the goal’s achievability as a separate (fourth) dimension. Each dimension was
rated on a 5-point likert scale with three valid labels (Definitely, Mostly, and Somewhat; numeric
value 1) and two invalid labels (Hardly, Not at all; numeric value 0). Each (goal, plan) pairs were
annotated by three crowdworkers. The template used is shown in Figure 10.

We determine the validity of a (goal, plan) pair in the following manner. We then calculate the mean
score (over the three annotator responses) for each of the dimensions. A (goal, plan) pair is considered
valid only if: (1) it receives a score greater than 0.25 for each of the achievablility, topicality, or
ordering dimensions, and (2) receives a scores greater or equal to 0.65 on the completeness dimension.
Failing that, a pair is considered invalid.

Conditions. For conditions, we collect human judgements on whether the condition makes the goal
more specific or harder to achieve (but not impossible) on a randomly-sampled set of 6100 generated
tuples of (goal, plan, condition). We include screenshot of our annotation template in Figure 11.

batch size learning rate

Plan Critic 16 1e-6

Condition Critic 32 1e-5

Counterfactual Critic 32 1e-6

Table 5: Hyper-parameter values for
training different critic models.

Counterfactual Plans. And finally, for counterfactual
plans, we collect 10.5K human judgements on whether
the modified plan contain all the necessary steps to make
the goal achievable while adhering to the condition. We
include screenshot of our annotation template in Figure
12.

B.2 CRITIC MODELS: TRAINING DETAILS

We train 3 binary classifiers (critics) for filtering out low quality teacher generations in §2.1 using
pre-trained RoBERTa-Large Liu et al. (2019a). We conduct a small grid search on validation loss for
batch size bs = {16, 32, 64} and learning rate lr = {1e− 4, 1e− 5, 1e− 6, 5e− 6}. We report the
effective hyper-parameters for each critic in Table 5. We use early stopping on validation loss.

17

Published as a conference paper at ICLR 2024

B.3 TRAINING THE VERIFIER

Constructing Pseudo-negative Examples. For training the step verifier, we use the human-written
plans Sakaguchi et al. (2021) to construct positive examples of (plan-so-far, next-step) pairs and
devise three main perturbation strategies to automatically construct negative examples as explained
below:

• Reordered Steps: Conflicting logical order results from inaccurate causal or temporal dependencies
in a plan. Thus, we apply both near and distant reordering by randomly reordering two consecutive
and two distant steps.

• Repetitive Steps: Degeneration i.e., generating repetitive text is commonly observed in language
models. Similarly, we include both near and distant repetition by repeating the immediate previous
step and distant previous step as a pseudo-negative next-step.

• Missing Steps: Another common mistake made by language models is missing necessary steps,
leading to incoherent plans. To simulate this behaviour, we randomly select a non-immediate step
as a pseudo-negative next-step.

We collect a training set of 47k positive and negative pairs of (plan-so-far, next-step) using only 3k
human-written plans.

Training Details. We fine-tune RoBERTa Large Liu et al. (2019a) as a binary classifier identifying
the validity of a candidate next-step. We train for 10 epochs with early stopping on validation accuracy
using batch size of 32 and learning rate of 1e− 5.

Category Goal Condition

Location Purchase gardening supplies there are no local gardening stores nearby
Sing the lyrics you want to sing the lyrics in a recording studio

Equipment Studying for the exam you want to use a laptop or computer
Practice pottery techniques you don’t have the right tools or clay

Safety Take out several plates the plates are too heavy or fragile
Transport materials home the car breaks down or runs out of gas

User’s condition/
specification

Practice playing the instrument you are unable to read sheet music
Rent rock climbing equipment you need size specific equipment

Table 6: Examples for different categories of conditions in COPLAN dataset.

C OUT-OF-DOMAIN EVALUATION

Collins et al. (2022) proposed two out-of-distribution reasoning tasks to evaluate LLMs,

Model % good
PLASMA 71
GPT-3 (from (Collins et al., 2022)) 36

GPT-3 zero shot 64

Table 12: Percent of generated counter-
factual plans which have been rated as
good by annotators.

one of which involved constrained planning. For a given
goal and one or more conditions, the task is to gener-
ate a plan. We evaluate PLASMA on the 28 constrained
goals provided by the paper. We compare our generations
to the GPT-generated plans provided by the paper and
text-davinci-002 prompted in a zero shot manner.
To evaluate the generations we perform a human evalua-
tion, as described in §D.3.

The human evaluation results in Table 12 show that
PLASMA outperforms the other baselines in this out-of-
domain subset of counterfactual planning task.

D EVALUATION DETAILS

D.1 AUTOMATIC EVALUATION

We report automatic evaluation of models for the original planning task in Table 7. Note that human-
written plans are not the only possible plans, hence these automatic metrics may not provide an

18

Published as a conference paper at ICLR 2024

modelsize BLEU ROUGE-2 ROUGE-L BERT-f1

Distilled 770M

PLASMA 12.97 14.02 28.23 84.31

PLASMA + 14.26 16.31 31.02 85.30

PLASMA-Mul 14.47 14.43 27.99 84.02

PLASMA-Mul+ 14.49 16.70 31.49 85.35

Distilled 3B

PLASMA 12.89 14.39 28.57 84.70

PLASMA + 13.92 15.56 30.83 85.19

PLASMA-Mul 13.62 15.42 29.31 84.80

PLASMA-Mul+ 14.96 16.80 31.97 85.28

Distilled 11B

PLASMA 12.64 13.93 28.14 84.56

PLASMA + 14.65 15.84 31.04 85.33

PLASMA-Mul 13.61 15.67 29.99 85.10

PLASMA-Mul+ 15.54 16.76 31.98 85.37

Curie (Teacher) few-shot (3-5) 7.13 9.24 22.78 83.08

Davinci (175B)
zero-shot 4.98 7.81 21.38 81.20

few-shot (3-5) 10.27 10.27 24.57 83.48

CoCoGen (175B) few-shot (16) 18.07 21.01 33.99 86.41

Table 7: Automatic Evaluation Results for the Planning task. Note that the human-written plans are
not the only possible plans, hence these automatic metrics may not provide an informative measure
of performance.

informative measure of performance. To further verify this, we computed the correlation between the
most commonly used BLEU score and human scores. We find that BLEU has very weak correlations
to human scores of coverage, ordering an overall quality, with a Pearson correlation of 7.7%, 5.9%,
and 5.6%.

D.2 CONFIDENCE INTERVALS

We provide the 95% confidence intervals for our main results on goal-based (Table 13) and constrained
and counterfactual (re)planning (Figure 9).

D.3 HUMAN EVALUATION ON AMT

All human evaluations were conducted on the Amazon Mechanical Turk (AMT). We sourced our
annotators from the same pool of qualified workers (see B.1). Throughout the entirety project, we
maintained an average of $15/hour pay rate based on our estimation of time needed to complete
the task. Each examples were annotated by 3 workers and majority vote was taken for the reported
results. The layout templates for evaluating plans and counterfactual plans are shown in Figures 10
and 12, respectively.

E EXPERIMENTAL DETAILS OF VIRTUALHOME EVALUATION

We follow the same experimental setup and metrics for evaluation as Planner Huang et al. (2022).
The test set consists of 88 high-level goals. To translate a generated natural language step into an
executable step, we follow Huang et al. (2022) and find an executable action closest in embedding
space to the generated step. To compute these embeddings, we use the stsb-roberta-large
model. Executability and LCS are computed identical to Huang et al. (2022). Due to challenges
with reproducibility of GPT-3 outputs, evaluation results of GPT-3 do not exactly match between our
works.

Note that the previous method (Huang et al., 2022) involves extracting the most relevant (in-domain)
human-annotated examples by matching goals (Make breakfast ⟨-⟩ Make toast) as well as sampling
LLMs several times for each step and ranking them.

19

Published as a conference paper at ICLR 2024

Model Plan
Goal: put coffee in coffee machine

Curie (Teacher) Step 1: find coffee machine Step 2: unlock coffee machine Step 3: put coffee in coffee
machine Step 4: close coffee machine Step 5: wait a few minutes Step 6: coffee should
be ready

PLASMA-Mul (11B) Step 1: get coffee Step 2: put coffee in coffee machine Step 3: turn on coffee machine
Step 4: wait for coffee to brew Step 5: drink coffee

PLASMA-Mul+ (11B) Step 1: buy coffee beans Step 2: grind the coffee beans Step 3: put the ground coffee
into the coffee filter Step 4: put the filter into the machine Step 5: turn the machine on
Step 6: wait for the coffee to brew Step 7: enjoy your coffee

Goal: put on baseball jersey
Curie (Teacher) Step 1: get baseball jersey Step 2: put baseball jersey on Step 3: take baseball jersey off

PLASMA (11B) Step 1: find a baseball jersey Step 2: put on baseball jersey Step 3: take off baseball
jersey Step 4: put on another baseball jersey Step 5: take off second baseball jersey Step
6: put on third baseball jersey Step 7: put on fourth baseball jersey

PLASMA+ (11B) Step 1: walk to closet Step 2: open closet Step 3: look for baseball jersey Step 4: find
baseball jersey Step 5: take baseball jersey out of closet Step 6: put on baseball jersey

Goal: sit at the table with dinner date
Curie (Teacher) Step 1: text or call the person to let them know that you will be late Step 2: arrive at the

restaurant on time Step 3: take a seat at the table Step 4: wait for the other person to
arrive Step 5: eat dinner Step 6: say goodbye and thank you

PLASMA (3B) Step 1: find dinner date Step 2: go to dinner date’s house Step 3: sit at the table Step 4:
talk to dinner date Step 5: eat dinner Step 6: leave dinner date’s house

PLASMA+ (3B) Step 1: choose a restaurant Step 2: make a reservation Step 3: drive to the restaurant
Step 4: park the car Step 5: enter the restaurant Step 6: find a seat Step 7: sit at the table
with dinner date

Goal: brush all teeth
Curie (Teacher) Step 1: get in the car Step 2: drive to the dental office Step 3: park the car Step 4: go

inside the office Step 5: pay the bill Step 6: get a receipt Step 7: brush all teeth Step 8:
leave office

PLASMA (770M) Step 1: Get toothbrush Step 2: Get toothpaste Step 3: Get toothbrush Step 4: Get
toothbrush Step 5: Get toothbrush Step 6: Get toothbrush Step 7: Brush all teeth

PLASMA+ (770M) Step 1: Get toothbrush Step 2: Get toothpaste Step 3: Put toothpaste on toothbrush Step
4: Grab toothbrush Step 5: Hold toothbrush up to mouth Step 6: Brush all teeth

Table 8: Qualitative examples generated by different models for the goal-based planning task.

F COMPARISON WITH GPT-4

It is noteworthy to mention that the planning subset of COPLAN is collected from the smaller GPT
model (as teacher), i.e., text-curie-001 which is significantly less powerful that the most recent
GPT-4 model. Nonetheless, we conduct a comparison of our best goal-based PLASMA model (11B
PLASMA-Mul+) with its teacher, GPT-312 and GPT-4 in few-shot setting on 50 instances (total of
200). Results are shown in Table 14. As we observe, the trend remains the same as in Table 1, with
GPT-4 slightly surpassing its predecessor (text-davinci-003) only in the ordering dimension.

12text-davinci-003

20

Published as a conference paper at ICLR 2024

Type Conditional Plan

good

Goal:
eat ice cream if you have an ice cream maker

Step 1: Decide to eat ice cream
Step 2: Locate the ice cream maker
Step 3: Turn on the ice cream maker
Step 4: Add ingredients to the ice cream maker
Step 5: Follow the instructions to churn the ice cream
Step 6: Remove the ice cream from the ice cream maker
Step 7: Put the ice cream in a bowl
Step 8: Eat ice cream

good

Goal:
brush all teeth if you are out of toothpaste

Step 1: Decided to brush all teeth
Step 2: Locate a store that sells toothpaste
Step 3: Purchase toothpaste
Step 4: Drive to the store
Step 5: Purchase toothpaste
Step 6: Drive back home
Step 7: Unpack the toothpaste
Step 8: Open the toothpaste
Step 9: Brush all teeth

bad

Goal:
write names on the cards if you have a shaky hand

Step 1: find a pen or pencil with a large tip
Step 2: hold the pen or pencil in one hand
Step 3: hold the pen or pencil in the other hand
Step 4: use a pen or pencil to write the names on the cards
Step 5: once the names are on the cards, place them in a drawer or file
Step 6: close the drawer or file
Step 7: write names on the cards

bad

Goal:
walk into town if you have a disability that limits your mobility

Step 1: Decide to walk into town
Step 2: Put on shoes
Step 3: Get a cane or other mobility aid if necessary
Step 4: Put the cane or other mobility aid in a backpack
Step 5: Put the backpack on
Step 6: Leave the house
Step 7: Walk to the bus stop
Step 8: Take the bus into town
Step 9: Walk into town

Table 9: Qualitative examples of the constrained planning task.

21

Published as a conference paper at ICLR 2024

Type Original Plan Counterfactual Plan

good

Goal: empty lint filter
Step 1: load clothes into dryer
Step 2: locate lint trap
Step 3: move hand towards lint trap
Step 4: grip lint trap with fingers
Step 5: pull lint trap out of dryer
Step 6: use other hand to lift lint
from lint trap
Step 7: empty lint filter

Goal: empty lint filter if the lint trap
is too hot to touch
Step 1: Load clothes into dryer
Step 2: Locate lint trap
Step 3: Move hand towards lint trap
Step 4: Use a heat-resistant glove to grip
lint trap with fingers
Step 5: Pull lint trap out of dryer
Step 6: Use other hand to lift lint from lint trap
Step 7: Empty lint filter

good

Goal: take a shower after work
Step 1: decided to take a shower after work
Step 2: drive home from work
Step 3: go to bath room
Step 4: take off clothes
Step 5: start water to get heat
Step 6: take hot shower
Step 7: take a shower after work

Goal: take a shower after work if you want to
take a shower at the gym
Step 1: Decide to take a shower after work
Step 2: Drive to gym
Step 3: Go to locker room
Step 4: Remove clothes
Step 5: Enter shower room
Step 6: Start water to get heat
Step 7: Take hot shower
Step 8: Take a shower after work

bad

Goal: empty old left overs from the fridge
Step 1: go through the house
Step 2: walk into the kitchen
Step 3: locate the refridgerator
Step 4: walk to the refridgerator
Step 5: grab the door handle
Step 6: open the refrigerator door
Step 7: empty old left overs from the fridge

Goal: empty old left overs from the fridge
if you have difficulty bending down
Step 1: go through the house
Step 2: walk into the kitchen
Step 3: locate the refridgerator
Step 4: walk to the refridgerator
Step 5: grab a chair or stool
Step 6: place the chair or stool in front
of the refrigerator
Step 7: use the chair or stool to open
the refrigerator door
Step 8: empty old left overs from the fridge

bad

Goal: buy a new watch
Step 1: decided to buy a new watch
Step 2: search the internet for watch retailers
Step 3: pick a reliable retailer
Step 4: search the retailer site for watches
Step 5: add watch to cart
Step 6: click check out
Step 7: add payment information
Step 8: add address information
Step 9: buy a new watch

Goal: buy a new watch if your
payment information is compromised
Step 1: decide to buy a new watch
Step 2: search the internet for watch retailers
Step 3: pick a reliable retailer
Step 4: search the retailer site for watches
Step 5: add watch to cart
Step 6: click check out
Step 7: add payment information
Step 8: verify payment information
Step 9: buy a new watch

Table 10: Qualitative examples of the counterfactual re-planning task.

22

Published as a conference paper at ICLR 2024

Constrained Planning Counterfactual Replanning

Error Type
Edits

Required

Missing

steps

Unnecessary

steps

Edits

Required

Missing

steps

Unnecessary

steps

Plasma+ (3B) 4.66 8.33 3.66 13.33 19.33 6.00

Plasma-Mul+ (3B) 4.33 7.66 3.66 10.66 14.66 4.33

Plasma+ (11B) 3.66 5.00 3.33 4.66 10.00 3.33

Plasma-Mul+ (11B) 3.00 3.33 3.66 6.00 11.66 4.66

curie-001 zero-shot 7.00 27.00 6.66 26.00 49.33 13.66

curie-001 few-shot 6.00 25.33 5.00 30.00 48.00 13.33

davinci-003 zero-shot 1.33 6.33 0.66 5.33 7.33 2.66

davinci-003 few-shot 1.33 3.00 0.66 4.33 8.66 2.66

Table 11: Percent of generated (counterfactual) plans with each error type. “Missing Steps” is the
most common error types across all models.

Modelsize Overall Quality 95% CI

Distilled 770M

PLASMA 3.17 [2.94; 3.41]

PLASMA+ 4.28 [4.12; 4.44]

PLASMA-Mul 2.85 [2.60; 3.09]

PLASMA-Mul+ 4.23 [4.05; 4.42]

Distilled 3B

PLASMA 3.83 [3.69; 3.97]

PLASMA+ 4.35 [4.20; 4.50]

PLASMA-Mul 4.03 [3.85; 4.20]

PLASMA-Mul+ 4.33 [4.17; 4.48]

Distilled 11B

PLASMA 4.03 [3.85; 4.20]

PLASMA+ 4.39 [4.23; 4.54]

PLASMA-Mul 4.28 [4.12; 4.42]

PLASMA-Mul+ 4.58 [4.46; 4.71]

Curie (Teacher) few-shot (5) 3.75 [3.54; 3.95]

Davinci (175B)
zero-shot 4.84 [4.77; 4.92]

few-shot (5) 4.90 [4.85; 4.95]

COCOGEN (175B) few-shot (16) 4.55 [4.43; 4.68]

Human 4.57 [4.46; 4.69]

Table 13: Averaged 5-point human ‘quality ratings’ for original planning along with 95% Confidence
Intervals.

G COMPLEXITY AND DIVERSITY ANALYSIS OF STUDIED DATASETS

We analyze the complexity of proScript and CoPlan from several dimensions:

• Lexical diversity: We use generally accepted measures (Gehrmann et al., 2021) to analyze
the diversity of datasets. We compute 1/2/3-gram entropy and the mean segmented token
type ratio (MSTTR). To establish a comparison, we compute these values for three other
datasets: XSUM (extreme summarization of news articles), DialogSum (real-life scenario
dialogue summarization), and TinyStories. These have been specifically picked as they are
stylistically different from our goal and script setup, and they often contain longer more
natural sentences. In Table 16, we observe that even though the goals and steps in our
dataset are shorter, the overall lexical diversity of proScript and Coplan are comparable
with other datasets. XSUM displays a higher MSTTR score, but this is likely attributed to

23

Published as a conference paper at ICLR 2024

Coverage Order
Overall

Quality

PLASMA-Mul+ (11B) 4.31 4.68 4.23

Curie (teacher) 3.53 4.37 3.58

GPT-3.5 (Davinci-003) 4.78 4.84 4.81

GPT-4 4.78 5.00 4.81

Table 14: Comparison of our best goal-based PLASMA model with its teacher, GPT-3.5 and GPT-4 in
fewshot setting.

the characteristics of news and more formal text. We also note that the machine-generated
CoPlan exhibits slightly higher lexical diversity than the human-written proScript.

• Perplexity of an LM: We also report the perplexity of an off-the-shelf language model which
measures the degree of uncertainty (surprise) of an LM when it generates the next tokens.
The higher the perplexity, the more surprised the LM is. As we see from the last column,
with the exception of XSUM, the remaining datasets exhibit comparable perplexity scores.
The higher perplexity in the case of XSUM is, again, attributed to its association with the
news domain, a distinct characteristic compared to the other datasets, which predominantly
encompass everyday scenarios. Also note that, LMs generally have lower perplexity scores
on machine-generated data (as seen for CoPlan vs proScript).

Overlapping of the plans. We additionally analyze the amount of overlap between the steps in
the train and test set. To this end, we identify the direct noun object of a given goal (e.g., “Carry [a
plate] to the kitchen”) and remove it from the goal (i.e., “Carry to the kitchen”) as well as all the
steps in the corresponding plan (e.g., “Pick up the plate” –> “Pick up”. We then concatenate each
goal with individual steps (i.e., “Carry to the kitchen. Pick up.”) and measure the maximum longest
subsequence match of goal+step in the test set over all goal+step in the train set.

In the ProScript dataset, we find that only 4.3% of steps in the test set have exact overlap with steps
in the train set. If we relax the overlap to 90% and 80% (as opposed to an exact 100% overlap),
this number increases to 5.5% and 10%, respectively. If the same is computed for plan overlap (as
opposed to the step level; i.e., the direct object removed goal and plan—not individual steps—are
concatenated), we observe 0% overlap.

In the COPLAN dataset, commuting overlap w.r.t full train set is still in progress (due to its large
scale). However, on a randomly sampled 10K instances from the train set, the numbers are 1.8%, 2%,
3.3% for exact, 90% and 80% overlap, respectively. And 0% for plan overlap.

This suggests that differences in the object taken by the verb do not necessarily mean minimal changes
to the plan. Intuitively speaking, this is sensical: changes in the direct object, in the real world, should
affect the way we resolve a goal. For example, what extra steps we take (e.g., stack plates, but not
mugs), the final goal location of the item (e.g., kitchen sink for plates, but the fridge for apples), or
the manner of carrying (e.g., glasses vs. boxes) will affect the steps we take in a plan even if the goal
is constant (i.e. “Carry X to the kitchen”). This is even more pronounced in CoPlan as it contains a
broad set of everyday human goals (see Appendix A) which can lead to vastly distinct plans even
when the event (verb) itself is the same. While learning is learning, the differences between the path
taken to “Learn to play a violin” vs. “Learn to play Monopoly” vs. “Learn to speak Spanish fluently”
are non-trivially different.

H DISCUSSION

On the importance of Distillation. Finetuning LLMs requires updating models’ parameters which
is not only costly but often inaccessible for the broader community. Reducing the scale and cost of
strong models via teacher distillation is the key to developing open-sourced LMs that are accessible to
all, facilitating fine-tuning and seamless adaptation to various domains and custom use cases. Given
the large-scale training dataset used for PlaSma, we hope it can serve as a foundation model that

24

Published as a conference paper at ICLR 2024

Goal Condition Initial Plan Generated (Counterfactual) Plan

Buy a new
videogame

Find a store that sells videogames > Go to the store > Find
the videogame you want to buy > Buy the videogame >
Take the videogame home > Play the videogame

If the game store
is too far away

Decide to buy a new videogame > Research online game
stores > Compare prices and reviews > Select the game to
buy > Purchase the game online > Wait for the game to be
delivered > Buy a new videogame

Decided to buy a new videogame > Decide on
game > Get into car > Drive to game store >
Walk into game store > Find the desired game >
Buy a new videogame

Decided to buy a new videogame > Decide on game >
Search for the game online > Compare prices online > Pur-
chase the game online > Wait for the game to be delivered
> Unbox the game > Play the game > Enjoy the game

Eat some ice cream
from an ice cream shop

Find ice cream shop > Enter ice cream shop > Find ice
cream > Choose ice cream > Eat ice cream

If you have
allergies to
dairy products

Decide to eat some ice cream from an ice cream shop >
Find an ice cream shop > Walk into ice cream shop > Ask
for a dairy-free ice cream > Pick out ice cream > Pay for
ice cream > Eat some ice cream from an ice cream shop

Decided to eat some ice cream from an ice
cream shop > Decide to eat ice cream > Gather
the family > Drive to ice cram parlor > Get fam-
ily out and lock car > Walk in ice cream shop
and sit > Eat some ice cream from an ice cream
shop

Decide to eat some ice cream from an ice cream shop >
Research ice cream shops in your area that offer dairy-free
options > Gather the family > Drive to ice cream parlor >
Get family out and lock car > Walk in ice cream shop and
sit > Ask the staff about their dairy-free options > Select a
dairy-free option > Eat some ice cream from an ice cream
shop

get extra exercise Set a goal for how many hours a week you want to exercise
> Research different types of exercise > Choose one type of
exercise to start with > Make a plan to follow the exercise
plan > Start exercising > Keep exercising

If the fitness activity
presents a risk of injury

Decide what type of exercise you would like to do > Re-
search the activity to make sure you understand the risks
and benefits > Consult with a medical professional to en-
sure the activity is safe for you > Find a place to do the
activity > Set a goal for how often you would like to do the
activity > Start doing the activity > Monitor your progress
and adjust the activity as needed > Get extra exercise

Decided to get extra exercise > Open the calen-
dar > Identify open time slots during the week
> Schedule a fitness activity during free time
> Set reminder for activity on phone > Attend
weekly fitness activity > Get extra exercise

Decide to get extra exercise > Open the calendar > Identify
open time slots during the week > Research and select a
fitness activity that presents a low risk of injury > Schedule
the fitness activity during free time > Set reminder for
activity on phone > Attend weekly fitness activity > Get
extra exercise

chop the wood Get a chopping block > Get a chopping knife > Chop the
wood > Clean the chopping block > Put the chopping block
away

If you have a
chainsaw

Pick up the wood > Place the wood on the ground > Set up
the chainsaw > Sharpen the chainsaw > Start the chainsaw
> Cut the wood > Chop the wood

Pick up axe > Pick up a piece of wood > Check
the condition of wood > Make sure wood is dry
enough > Set the wood upright > Swing the axe
at wood > Chop the wood

Pick up the chainsaw > Pick up a piece of wood > Check
the condition of wood > Make sure wood is dry enough
> Set the wood upright > Start the chainsaw > Guide the
chainsaw along the wood > Chop the wood

Table 15: Additional PLASMA generations for constrained planning and counterfactual replanning
tasks.

can be quickly adapted to specific domains with minimal additional annotation (like we demonstrate
by adapting Plasma to VirtualHome). Moreover, we could not augment most of the LLMs with our
decoding-time algorithm due to limited access to the model’s log probabilities.

25

Published as a conference paper at ICLR 2024

Dataset H1 H2 H3 MSTTR Perplexity
(GPT-med)

XSUM 10.45 15.49 17.15 0.80 18.55
DialogSum 9.04 14.38 16.73 0.66 13.20
TinyStories 8.65 14.25 17.80 0.61 7.53
ProScript 8.86 13.67 15.61 0.59 12.93
COPLAN 9.27 15.00 18.05 0.64 10.05

Table 16: Lexical Diversity of proScript and COPLAN.

“Symbolic” AI vs. “Symbolic” Knowledge Distillation. We would like to draw attention to
the evolving use of the term "symbolic" within the contemporary AI community, particularly in
the context of natural language. It is important to note that the term "symbolic" has acquired
multiple connotations, and its modern usage may differ from its original application in symbolic AI
(Kambhampati et al., 2021).

In our case, “Symbolic” (in symbolic knowledge distillation) refers to human-readable textual formats
(West et al., 2022) rather than the transfer of obscure/soft model weights as in standard distillation
(Hinton et al., 2015).

I EXTENDED RELATED WORKS

Building Smaller Models. There is a recent line of work on building general-purpose small models
for reasoning tasks such as Orca (Mukherjee et al., 2023). While our work shares a similar spirit
with Orca, we find the key distinction in (1) our goal is to develop a specialized small model for
procedural/counterfactual planning and replanning with potential application to an embodied domain,
and (2) Orca is focused on learning from GPT-4 explanations (Chain of Thought) to improve models
capabilities. Nonetheless, building specialized models on top of them can be explored in future works
as we only worked on models that were accessible at the time of submission.

26

Published as a conference paper at ICLR 2024

Example Template:

Given a goal write down a list of steps to achieve the goal:

Goal: take a nap on the bed
Step 1: sit on the bed for a little
Step 2: pull back the blanket
Step 3: pull back the sheet
Step 4: fluff up the pillow
Step 5: lay down on the bed
Step 6: fall asleep on the bed
Step 7: take a nap on the bed
...

Goal: hire a dog walker
Step 1:

Prompt Prefix Generator:

def generate_prompt_prefix():
w1_list = ["For a given goal", "Given a goal"]
w2_list = ["write down", "break down into", "put down" "jot

down"]
w3_list = ["steps", "subgoals", "a list of steps", "several

steps", "several subgoals", "
some steps", "some small
steps"]

w4_list = ["to achieve the goal", "for achieving the goal", "to
attain the goal"]

w1 = random.sample(w1_list, 1)[0]
w2 = random.sample(w2_list, 1)[0]
w3 = random.sample(w3_list, 1)[0]
w4 = random.sample(w4_list, 1)[0]

prompt_prefix = f"{w1}, {w2} {w3} {w4}.\n\n"
return prompt_prefix

Figure 7: Randomize prompt template for eliciting plans.

27

Published as a conference paper at ICLR 2024

Prompt Template (Conditions)

You want to use social media. How can you do this in 7 steps?
step 1: decided to use social media; step 2: Grab the phone;
step 3: Open, Start phone; step 4: Go to app store; step 5:
Download Facebook from store; step5: Open and use
facebook; step6: use social media
What is the hindrance that might affect the plan above?
If your phone screen is cracked.

You want to plant a tomato plant. How can you do this in 7
steps?
step 1: decided to plant a tomato plant; step 2 : Go to
nursery; step 3: Purchase tomato seedling.; step 4: Purchase
potting soil and a pot.; step 5: Return to home.; step 6: Plant
seedling in soil and pot.; step 7: plant a tomato plant
What is a specification that might affect the plan above?
If you want to use compost for soil.

… x 3

You want to print the report. How do you do this in 7 steps?
step 1: type the edited draft; step 2: save the edited draft;
step 3: open the file menu in the word processor; step 4:
select print from the file menu; step 5: select printer settings;
step 6: send document to the printer; step 7: print the report
What is the hindrance that might affect the plan above?

Prompt Template (Counterfactual Plan)

You want to learn how to swim. How can you do this in 7
Steps?
Step 1: Decided to learn how to swim; Step 2: Find swimming
instructor; Step 3: Travel to pool; Step4: Meet swimming
teacher; Step 5: Practice swimming during classes; Step 6:
Review mistakes with teacher until right; Step 7: Learn how to
swim.
You want to learn how to swim. How can you do this in
several steps if you forget your swimsuit?
Step 1: Decided to learn how to swim; Step 2: Find swimming
instructor; Step 3: Travel to pool; Step4: Meet swimming
teacher; Step 5: If you have forgotten your swimsuit, ask the
instructor if it is possible to borrow one or if there is a place
where you can purchase one; Step 6: Practice swimming
during classes; Step 7: Review mistakes with teacher until
right; Step 8: Learn how to swim

… x 3

You want to pick up pen. How can you do this in 6 steps?
step 1: look for a pen; step 2: find a pen; step 3: walk over to
pen; step 4: extend hand out to pen; step 5: reach for pen;
step 6: pick up pen
You want to pick up pen. How can you do this in several
steps if you want to pick up the pen from a high shelf?

Figure 8: Prompt templates for acquiring Conditions and Counterfactual Plans.

88.0 88.0 91.33 93.33

68.0 69.0

93.33 95.66

73.33
78.00

86.33
83.66

44.33 42.33

90.0 88.66

Figure 9: Human evaluation of constrained and counterfactual (re)planning tasks. We report the
proportion of plans labeled as "Good" by annotators along with 95% confidence intervals. Applying
statistical tests (t-test) indicates a significant difference between all PLASMA variants and Curie
(p < 0.01) as well as a significant difference between students of different sizes (p < 0.05). No
statistical significance was found between variants w/ or wo/ multitasking as well as between our
best PLASMA and ×16 larger text-davinci-003.

28

Published as a conference paper at ICLR 2024

Figure 10: AMT human evaluation template for the original planning task. For validation round we
substituted goal achievability (is the goal achievable with appropriate steps?) for overall question (is
the plan overall good?).

29

Published as a conference paper at ICLR 2024

Figure 11: AMT template for assessing validity of conditions for critic model training.

30

Published as a conference paper at ICLR 2024

Figure 12: AMT human evaluation template for counterfactual re-planning. We use a similar layout
for counterfactual planning task only removing the initial plan.

31

	Introduction
	Small Language Models as Procedural Knowledge Models
	CoPlan: Procedural Knowledge Verbalization from Large Teachers
	PlaSma: Procedural Knowledge Distillation into Small Students
	PlaSma+: Advancing Student with Verifier-guided Decoding

	Experiments
	Goal-based Planning
	Constrained and Counterfactual (Re)planning
	Application to Embodied Agents

	Related Works
	Conclusions and Future Work
	CoPlan Analysis Details
	Goal diversity
	Condition diversity

	Additional Experimental Details
	Critic Models: Collecting Human Annotations
	Critic Models: Training Details
	Training the Verifier

	Out-of-domain Evaluation
	Evaluation Details
	Automatic Evaluation
	Confidence Intervals
	Human Evaluation on AMT

	Experimental Details of VirtualHome Evaluation
	Comparison with GPT-4
	Complexity and Diversity Analysis of Studied Datasets
	Discussion
	Extended Related Works

