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1 Additional Qualitative Results

In Fig. 1, we compare our LMC framework with the baseline Softmax, and present qualitative
results on the TinyImageNet dataset. Note that for the baseline Softmax, we do not simulate any
virtual open-set classes. As shown, via simulating additional virtual open-set classes that share the
spurious-discriminative features, our framework can prevent the closed-set score S of the open-set
testing image from being easily overestimated by approaching the image to both a certain closed-set
class and certain virtual open-set classes. This demonstrates the effectiveness of our framework in
reducing the reliance on spurious-discriminative features.

2 Details of Our Used Evaluation Metrics

In our experiments, following [1, 1 1], we use the following two metrics: AUROC and OSCR [3].
Below, we discuss them in more detail.

AUROC. AUROC is a widely-used threshold-independent evaluation metric. It measures the area of
the region under the Receiver Operating Characteristic (ROC) curve. We directly use the function
inside the scikit-learn package to calculate AUROC.

OSCR. OSCR, introduced in [3], measures the trade-off between classification accuracy and open-set
recognition performance. Let § € [0, 1] be a threshold. According to [3, 1], to calculate OSCR, we
first need to calculate the Correct Classification Rate (CCR) and the False Positive Rate (FPR) at 6.
Specifically, denoting D, testing images from closed-set classes, CCR is calculated as the fraction of
images from D, where the correct class § has maximum probability and this probability is greater
than or equal to 6:
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Moreover, denoting D, testing images from open-set classes, FPR is calculated as the fraction of
images from D, that are misclassified as any closed-set class y € Y, with a probability greater than
or equal to 0:
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After calculating CCR and FPR, we then plot CCR versus FPR at different §. OSCR is then calculated
as the area under the plotted curve.

3 Details of Baseline Softmax

In our main paper, we introduce a baseline named Softmax, which treats the ensemble of CLIP
and DINO as a closed-set classifier, and does not simulate any virtual open-set classes. Below, we
introduce this baseline in more detail.

Before entering the inference process, similar to our framework, Softmax also pre-stores certain
CLIP and DINO features to make the inference process more efficient. Denote Dgo fmaz the text
descriptions “a photo of [class]” for all the closed-set classes (i.e., Y.), CLIP;.,; the CLIP’s text
encoder, and fg(%?;maw = CLIP;cut(Dso ftmaz) the CLIP text feature of all the closed-set classes,
Softmax first stores fgll;}[;mam. Moreover, denote DINO,,;s the DINO’s encoder, and I, the set of
images generated from class y through the cyclic cross-assessing module. Softmax also stores the

DINO visual feature f'™? = DINO,;(1,,) for each closed-set class y € Y.

Then during the inference process, given a testing image 4.5, Softmax first aligns ¢;.; With the
names of the closed-set classes through CLIP as:

PSR — o ftmae (CLIP s (irest) (FHE ) ) G)
where CLIP,,;; denotes the CLIP’s visual encoder and p(S:f[J;tmaz denotes the softmax probability

derived from CLIP in baseline Softmax. At the same time, Softmax also aligns %;.s; With the images
generated from the closed-set classes through DINO as:

pgfgg)mm = softmaz ({lyno | ¥ € Ye}), where [fy, = average (DINOvis(itest)(f?]J)INo)T)
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where [\ is derived from aligning i;es; with I, through DINO, and pgﬁ\{émaw denotes the softmax

probability correspondingly calculated for all the closed-set classes. After deriving pgfj{;m” and

pgﬁ\{émam, Softmax then incorporates them to calculate the closed-set score S as:

S S 4 Soft S : .
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where « is a hyperparameter denoting the incorporation weight, pf;fcf fmaT denotes the softmax

probability derived from incorporating po ™ and p5cdi™®  and pi o™ (y)isee) denotes the
Softmax

probability value that class y corresponds to in p

inc .

4 Additional Ablation Studies

Here, we conduct more ablation experiments. In these experiments, unless specifically specified, we
report the AUROC metric averaged over five dataset splits on the TinylmageNet evaluation protocol.

Experiments under the cross-dataset setup. In our main paper, we evaluate our framework under
the standard set-up where the open-set class images and the closed-set class images come from the
same dataset. Here, we also evaluate our method under a common cross-dataset setup following
[12,9, 10, 14, 5]. In this setup, closed-set class images are from CIFAR-10, and open-set class images
are from ImageNet-crop [2], ImageNet-resize [2], LSUN-crop [13], and LSUN-resize [13]. We use
the same evaluation metric Fl-score as [12, 9, 10, 14, 5] under this setup. As shown in Tab. 1, under
the cross-dataset setup, our method also achieves significant performance improvement over previous
methods, further demonstrating the effectiveness of our method.



Table 1: Experiments under the cross-dataset setup.

Method ImageNet-crop | ImageNet-resize | LSUN-crop | LSUN-resize
CROSR [12] 73.3 76.3 72.0 74.9
GFROSR [9] 82.1 79.2 84.3 80.5
CGDL [10] 84.0 83.2 80.6 81.2
PROSER [14] 84.9 82.4 86.7 85.6
CVAECapOSR [5] 85.7 83.4 86.8 88.2
Z0C [4] 84.6 81.8 87.4 86.8
PMAL [7] 85.8 83.2 86.5 87.6
LMC 88.0 86.0 91.5 93.5

Impact of using different backbones for the CLIP’s visual encoder.
In the experiments in the main paper, we leverage CLIP and DINO in
collaboration to perform open-set object recognition during inference.
Specifically, we use CLIP with ViT-B/32 as the backbone for its visual

Table 2: Evaluation on

using different

back-

bones for the CLIP’s

visual encoder.

encoder, and we use the second version of DINO with ViT-B/14 as its Backbone AUROC

. . ZOC [1] 346
backbone. Here to verify the generality of our framework, we first fix —TycResNerT0T) | 855
the backbone of DINO and test using other off-the-shelf backbones for ~ LMC(ViT-B/32) 86.7
the CLIP’s visual encoder, including ResNet-101, ViT-B/16, and ViT- Emgg’gfﬁg; g;:g
L/14. As shown in Tab. 2, our framework with these models used as
the backbone for CLIP’s visual encoder can also achieve superior perfor-
mance compared to the state-of-the-art method ZOC [4], demonstrating .
the generality of our framework. Table 3:  Evaluation

on using different

Impact of using different backbones for DINO. Moreover, we also backbones for DINO.
fix the backbone of CLIP and test using other off-the-shelf backbones = Backbone AUROC
for the second version of DINO, including ViT-S/14, ViT-L/14, and ViT- _Z0C[!] 84.6
G/14. As shown in Tab. 3, our framework with these models used as the tﬁggﬁg}lg ggg
backbone for DINO can also achieve better performance compared to the LMC(ViT-L/14) 903
state-of-the-art method ZOC [4]. This further demonstrates the generality _LMC(VIT-G/14) | 912

of our framework. )
Table 4: Evaluation on

Impact of using different versions of GPT. Besides, we also test using  ysing different versions

different versions of GPT with different capabilities, including GPT of GPT.

3.0 and GPT 3.5 (ChatGPT). As shown in Tab. 4, our framework with Backbone | AUROC
different versions of GPT used can achieve different results. This shows GPT 3.0 85.2
that the performance of our framework is affected by the version of GPT. ~ GPT 3.5 86.7

Impact of the maximum Typle 5: Evaluation on the maximum number of cycle times for Chat-
number of cycle times for  GPT’s self-checking.

ChatGPT’s self-checking. {ethod AUROC
In our framework, we set  “Naximum number of cycle times for self-checking = 1 85.9
the maximum number ?f Maximum number of cycle times for self-checking = 2 86.4
cycle times for ChatGPT’s Maximum number of cycle times for self-checking = 3 86.7
self-checking to 3. Here Maximum number of cycle times for self-checking = 4 86.7

we evaluate other choices of
maximum cycle times and report the results in Tab. 5. Note to avoid confusion, in our paper, the
number of cycle times for self-checking refers to the number of times that the set of three questions
is asked. As shown, when the maximum number of cycle times is smaller than 3, the performance
of the framework improves with the increase in the maximum number of cycle times. This might
be because, by setting the maximum number of cycle times to be a larger number, ChatGPT can
better cover the spurious-discriminative features. Moreover, when the maximum number of cycle
times is larger than 3, the performance does not enhance anymore. Thus, taking the efficiency of the
framework into consideration, we set the maximum number of cycle times to 3.

Check w.r.t. the reasonability of the generated descriptions. In our framework, we use ChatGPT
to generate text descriptions for the evaluated classes, and we further design a cyclic cross-assessing
module in which we guide ChatGPT to modify its generated descriptions. Here, we perform a check
w.r.t. the reasonability of the generated descriptions before and after passing into the cross-assessing



module. Specifically, we find that, before passing into the cross-assessing module, 3% of descriptions
are checked to be unreasonable, but none of the descriptions output by the module is checked to be
unreasonable. This shows that ChatGPT has small probability to generate unreasonable descriptions,
while our cross-assessing module can further mitigate this problem. The above check is done by
inviting 3 volunteers and passing the same 1000 descriptions to them. The 3 volunteers first make
decisions independently and then discuss disagreed decisions.

Impact of the number of descriptions K. In our framework, during Table 6: Evaluation
generating images, we set the number of diverse detailed descriptions K on the number of de-
generated for each class to 10. As shown in Tab. 6, the model performance scriptions K.

consistently improves with the increase of description numbers. This might Method | AUROC
be because, with more descriptions per class, the framework can deepen K=1 83.5
its understanding of all the classes. When the number of descriptions K K=5 86.2
per class exceeds 10, the performance of the framework becomes stable. & =10 86.7
Therefore, we set K to 10 in our experiments. K=15] 867

Impact of the maximum
number of cycle times for
cyclic cross-assessing. In

Table 7: Evaluation on the maximum number of cycle times for cyclic
Cross-assessing.

the cyclic cross-assessin Method AUROC
y & Maximum number of cycle times for cross-assessing = 1 84.9
module of our framework, . . .
. Maximum number of cycle times for cross-assessing = 2 86.2
we set the maximum num- . . .2
ber of evele ti 03 H Maximum number of cycle times for cross-assessing = 3 86.7
ceroteycieimes to 5. Here Maximum number of cycle times for cross-assessing = 4 86.8

we evaluate other choices of
maximum cycle times for cyclic cross-assessing and report the results in Tab. 7. As shown, the
performance of the framework improves with the increase in the maximum number of cycle times for
cyclic cross-assessing. This might be because, by setting the maximum number of cycle times for
cyclic cross-assessing to be a larger number, the generated images can be better refined. Moreover,
the performance improvement becomes trivial when the maximum number of cycle times for cyclic
cross-assessing is larger than 3. Hence, we set the maximum number of cycle times for cyclic
cross-assessing to 3.

Impact of the incorporation weight «. To 20
calculate the closed-set score .S during in- 89
ference, in our framework, we incorporate

pcLrp and ppivo with « as the incorpora- 8 86
tion weight. In our experiments, we set & 85

o to 0.6. Here we also assess the other 2 g;‘
choices of « and plot the results in Fig. 2. 82
As shown, with different choices of «, the 8l
performance of our framework is consis- 80701 02 03 04 05 06 07 08 09

the incorporation weight a

tent, which demonstrates the robustness of . :
Figure 2: Evaluation of hyperparameter a.

our framework to this hyperparameter.

Impact of using .the training Table 8: Evaluation on the usage of the training data.
data. In the main paper, we Method AUROC

have shown the effectiveness of LMC with generated images only 367

our framework LMC without us- . — .
ing any training data (LMC with LMC with training data and generated images 87.5

generated images only). Here, to explore the impact of the training data on our framework, we also
assess a variant (LMC with training data and generated images). This variant follows the same
inference process as our framework, except that besides the generated images, it passes the same
number of training images to DINO as well. As shown in Tab. 8, while our framework is already
effective without using any training data, using training data can further improve the performance
of our framework. This demonstrates that our framework can be used effectively no matter whether
the training data is available or not. Also note that in the real world, the training data may no longer
be accessible during deployment (e.g., due to privacy concerns [8, 6]). Our framework can better
facilitate real-world applications, as it can perform open-set object recognition effectively even
without access to training data.




Evaluation of other baselines. In our framework, we leverage different Table 9: Evaluation of
off-the-shelf large models in collaboration. To validate the effectiveness two other baselines.

of collaborating different large models, we test the following two base- ~Method AUROC
lines. In each of these two baselines, only one large model is used. 1) DINO only 87.0
DINO only: this baseline uses only DINO but no other large models.  CLIP only 81.1
Specifically, since this baseline does not hold the ability to generate any LMC 86.7
images, it leverages training images instead. Denote [ 5 the set of training

images randomly selected from class y where |I}| = |I,| for fair comparison. This baseline first
calculates p5ofi™*” in the same way as in Eq. 4 above, except that JP™O is calculate from I, but

. . o Softmax .
not J,,. This baseline then calculates the closed-set score S as S = maxyey, (Ppo  Ylitest))-

2) CLIP only: this baseline uses only CLIP but no other large models to perform open-set object

recognition. Specifically, it first calculates p“g&’;tm” in the same way as in Eq. 3 above. After that,

the baseline calculates the closed-set score S as S = maxycy, (pgf{;m” (y|it€st)). As shown in

Tab. 9, both these two baselines utilizing only a single large model cannot perform open-set object
recognition well.

Impact of specifying the number of simulated classes. In our framework, Table 10: Evaluation
during asking ChatGPT questions to simulate the names of virtual open-set  of whether to specify
classes, we don’t specify how many classes ChatGPT should answer and  the number of simu-
let ChatGPT decide this by itself. Here, we consider an alternative way, |ated classes.

in which the number of classes ChatGPT should answer is specified in the Method | AUROC
asked question. Specifically, in this alternative way, we replace the original N=1 360
third question ‘‘Can you list other classes that also share N=2 86.5
these discriminative visual features?’ with ‘“Can you list N=3 86.4
[N] other classes that also share these discriminative N=4 86.4
visual features?’’, where IN represents the number of classes this LMC 86.7

question requires ChatGPT to generate. We report the results with different

N in Tab. 10. As shown, this alternative way consistently performs slightly worse than our framework.
This might be because, the optimal number of virtual open-set classes for ChatGPT to generate per
closed-set class can vary across different closed-set classes. In our framework, we then do not specify
the number of simulated classes and let ChatGPT decide this automatically by itself.

Preparation time. In our framework, before entering the infer- Table 11: Total preparation time of
ence process, we first prepare the framework by simulating the our framework. Note that the whole
names of virtual open-set classes, generating diverse images preparation process can be automat-
for each class, and pre-storing certain features of CLIP and ically conducted with a script.
DINO. We here report the preparation time of our framework Method | Total preparation time
on one dataset split of the TinyImageNet protocol. First, the LMC around 38.9 min
simulation of the names of virtual open-set classes takes around
5.2 minutes. Next, the generation of diverse images along with cross-assessing takes around 32.7
minutes. Lastly, the pre-storage of CLIP and DINO features takes around 1.0 minute. In this way,
our framework totally needs around 38.9 minutes (see Tab. 11) to prepare for one dataset split of the
TinyImageNet protocol. Note that a dataset split from one of the other three evaluation protocols, with
fewer closed-set classes, can have even shorter preparation time. Also note that the whole preparation
process of our framework can be achieved with a single script automatically.

Inference speed. We test the inference speed of our framework Table 12: Inference speed of our
on an RTX 3090 GPU. Based on the test, our framework can framework.

process around 45.2 images per second (see Tab. 12), which ~ Method Inference speed
satisfies most real-time requirements. LMC around 45.2 images per sec

5 Additional Visualizations

Visualization of some dialogues between ChatGPT and us. In Fig. 3, we visualize some dialogues
between ChatGPT and us. Note in these dialogues, ChatGPT is guided with intermediate reasoning
through our asked questions. As shown, when guided with intermediate reasoning in this way,
ChatGPT can understand our purpose, and simulate virtual open-set classes that share spurious-
discriminative features successfully.



Visualization w.r.t. self-checking. In our framework, we propose to enable ChatGPT to perform
self-checking, so that a more comprehensive list of virtual open-set classes can be simulated to better
cover the spurious-discriminative features. In Fig. 4, we visualize the self-checking process. As
shown, when enabled to perform self-checking, ChatGPT can better cover the spurious-discriminative
features, and simulate names of virtual open-set classes in a more comprehensive manner.

Visualization w.r.t. the cyclic cross-assessing module. In this work, we also incorporate our
framework with a cyclic cross-assessing module, which is designed to refine those generated images
that are less accurate. In Fig. 5, we visualize the refining process of the proposed cyclic cross-
assessing module. As shown, through the proposed module, those images that are originally not
most aligned with their desired classes can be refined to better represent their desired classes. This
demonstrates the effectiveness of the proposed cross-assessing module.

Visualization of the simulated virtual open-set classes for all the closed-set classes. Moreover,
in Fig. 6, we also visualize the virtual open-set classes simulated for all the closed-set classes in
a certain dataset split. As shown, via guiding ChatGPT with intermediate reasoning and enabling
ChatGPT to perform self-checking, our proposed framework can effectively simulate virtual open-set
classes for all the closed-set classes.

6 Licenses

Dataset licenses. We use CIFAR10 dataset by following the MIT License. We use CIFAR100
dataset in CIFAR+10 and CIFAR+50 evaluation protocols by following the MIT License. As for the
TinyImageNet dataset, as it is a subset of ImageNet, we follow the license of ImageNet.

Large model licenses. We use ChatGPT and DALL-E by following the terms of using the services
of OpenAl. We use CLIP by following the MIT License. We use DINO by following this license.


https://www.image-net.org/download.php
https://openai.com/policies/terms-of-use
https://openai.com/policies/terms-of-use
https://github.com/facebookresearch/dinov2/blob/main/LICENSE
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Figure 1: Qualitative results of our proposed LMC framework and the baseline Softmax. The above
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Given a list of classes [sea cucumber, goldfish, bighorn, ...], can you [ ) A ( Given a list of classes [bucket, bison, thatch, ...], can you describe the [ ] \
describe the visual features of each class in the list? - visual features of each class in the list?
Sure. Sea cucumber is a cylindrical, soft-bodied marine creature with a Sure. Bucket is a container with a handle used for carrying or storing
leathery skin. Goldfish is a brightly colored fish with a forked tail. ... materials. Bison is a large, shaggy-haired mammal with large horns. ...
What are the discriminative visual features of class sea cucumber ‘ What are the discriminative visual features of class bucket compared with &
compared with other classes in the list? other classes in the list?
Compared with other classes in the list, sea cucumbers have several Compared with other classes in the list, buckets have several
discriminative visual features including: shape (sea cucumbers have a discriminative visual features including: shape (buckets are typically
distinct elongated, cylindrical body shape); texture (sea cucumbers often cylindrical-shaped containers with a handle. They have a smooth, round
have soft and flexible skin and slimy body texture); ... edge at the top); material (buckets are often made of metal or plastic); ...
Can you list other classes that also share these discriminative visual features? ‘ Can you list other classes that also share these discriminative visual features? &
Sure, here are some other classes that share some of the discriminative Sure, here are some other classes that share some of the discriminative
visual features of sea cucumbers: visual features of buckets:
- Leech: a segmented animal that is typically found in freshwater - Cup: a small, usually cylindrical container used for drinking or holding
habitats. They also have soft and flexible skin. liquids or small objects.
- Earthworm: a long and segmented animal with a soft, cylindrical body - Flower pot: a container usually made of ceramic, metal, or plastic and
and a multitude of tiny bristles covering its exterior. with a hole at the bottom for drainage.
J - J

(a)

(b)

Figure 3: Visualization of some dialogues between ChatGPT and us.
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Figure 4: Visualization w.r.t. self-checking. In (a), self-checking terminates when a maximum
number of cycle times is reached. In (b), self-checking terminates when ChatGPT stop proposing new
virtual open-set classes. As shown, when ChatGPT is enabled to perform self-checking, it can better
cover the spurious-discriminative features, and more comprehensively simulate names of virtual

open-set classes.
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Figure 5: Visualization w.r.t. the cyclic cross-assessing module. Images in (a) are not most aligned
with their desired classes until the third cycle, and images in (b) are not most aligned with their
desired classes until the second cycle.
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Figure 6: Visualization of the simulated virtual open-set classes for all the closed-set classes for
text represents the closed-set classes and blue text
represents the corresponding simulated virtual open-set classes.

the fifth dataset split following [1]. Here,
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