Under review as a conference paper at ICLR 2026

A  DATASET CONSTRUCTION

A.1 BUILDING THE NEEDLE(S) IN THE EMBODIED HAYSTACK BENCHMARK

We construct the Needle(s) in the Embodied Haystack benchmark in three stages: 1) Trajectory
Replay and Metadata Collection; 2) Rule-Based QA Generation; and 3) Cross-validation with Mul-
timodal LLMs. The following sections provide detailed descriptions of each step.

A.1.1 TRAJECTORY REPLAY AND METADATA COLLECTION

We first replay 225 test trajectories generated by co-THOR, logging both visual observations (agent’s
egocentric views) and structured metadata at each timestep. For every step, we store the list of
visible objects, agent-inventory items, openable containers, and their contents from the simulator.
This produces a fine-grained interaction log that captures grounded scene dynamics over time.

An example of the collected metadata at a single timestep is shown below:

Example of metadata entry

{

"img_idx": 2,

"img_filename": "000000002.png",

"step": 1,

"object_log": {
"visible": ["Shelf", "Vase", "Book"],
"pickupable": ["Vase", "Book"],
"isOpen": [],
"inven_obij": [],
"receptacles": ["Shelf"],
"recep_objs": {

"Shelf": ["Vase", "Book"]

}

Each metadata entry corresponds to a low-level action step and provides the semantic state of the
scene, enabling the construction of temporally grounded QA instances in later stages.

A.1.2 RULE-BASED QA GENERATION

To construct the QA set, we apply rule-based generation templates to each trajectory using its se-
quence of low-level actions and associated metadata. The QA generation process involves parsing
the agent’s interactions with objects, containers, and the environment, and applying a set of hand-
crafted rules to synthesize grounded questions.

Our QA generation logic covers a diverse range of question types, including object presence, ob-
ject state, location tracking, slicing actions, container content reasoning, and action counting. For
instance, if an object is seen for the first time at a particular step, a presence question such as “Is
there any apple in this room?” is generated. Similarly, after a Put Object action, location-based
questions like “Where was the apple before you put it to the microwave?” are produced. When
slicing actions happen, we create questions about the object being sliced and other nearby items
(e.g., “What objects were in the Fridge when you sliced the apple?”). Then, we sample ques-
tions based on the frequency to ensure diversity across object types, and annotate the GT answer
steps using the replay logs. Table [3]summarizes the types of questions generated, and corresponding
trigger conditions and example templates.

A.1.3 CROSS-VALIDATION WITH MULTIMODAL LLMSs

To ensure the answerability and clarity of the generated QA pairs, we perform cross-validation using
four powerful multimodal LLMs: LLaVA-OneVision 7B (Li et al., 2024a), Qwen2.5-VL 7B

et al.,[2025), Deepseek-VL 7B (Lu et al.,[2024), and Pixtral 12B (Agrawal et al.,[2024). Each model

14



Under review as a conference paper at ICLR 2026

Table 3: QA types, trigger conditions, and corresponding question templates used in rule-based

generation.

QA Type Trigger Condition Example Template(s)
object presence  object appears visibly in  Is there any {obj} in this room?
(Yes/No) the trajectory Have you seen a/an {obj}?

open state questions

object location tracing

container marked as open
in metadata

sequences of Pickup
and PutOb ject actions

Was {container} open?

Where was {obj} before you put it
to {container}?

Where did you move the {obj} from
the {container}?

Where is {obj} now?

What did you slice?

What objects were in/on the
{container} when you slice the

slicing-based questions SliceObject action

detected in trajectory

{ob3}2
container content container visibility with What objects were in/on the
non-empty contents {container}?
What object did you put in/on the
{container}?
put action questions unique PutObject ac- What object did you put in/on the
tion for a container {container}?

final object state final location of an object

at episode end

Is {obj} in/on the {container}?
What objects are in/on the
{container}?

How many objects were in/on the
{container}?

How many times did you move {obj}?

movement counting object picked up more

than once

is prompted with the GT images corresponding to the annotated QA steps and asked to answer the
associated questions. Given their strong performance on standard visual QA tasks, we use these
models to assess whether a question can be correctly answered or not. We keep only the QA pairs
that are correctly answered by at least one of the four models, and discard those that fail across all
models. This helps improve dataset quality and filtering out ambiguous or visually ungroundable
questions. Table ] shows the accuracy of each model on the finalized QA set when evaluated with
GT images. Notably, even with access to GT images, all models struggle with questions requiring
reasoning over three or more evidence steps. To maintain the benchmark’s difficulty and support
evaluation of more capable models in future, we manually inspect the multi-clue questions and
include those that are answerable.

Table 4: QA accuracy (%) of multimodal LLMs on ground-truth images.

Model Size # of clues (GT steps) Total

\ 1 2 >3
LLaVA-OneVision | 7B 86.61 68.55 23.74 | 71.15
Qwen2.5-VL 7B | 8594 89.83 64.40 | 82.20
Deepseek-VL 7B | 81.56 39.14 22.57 | 62.88
Pixtral 12B | 91.34 39.60 58.56 | 76.25

A.2 CONSTRUCTING LONG-HORIZON TRAJECTORIES

To synthesize long-horizon trajectories, we construct each trajectory by sequentially chaining suc-
cessful sub-tasks sampled from a predefined set of task templates. This process is illustrated in
Algorithm |[I} We begin by sampling a task template from a fixed task pool, which includes goal
types such as pick and place simple, pick two obj and place, and pick and
place with movable recep. Each sampled template requires relevant objects in the scene
(e.g., pickupable items, target receptacles), which are then used to define the goal for that task.

15



Under review as a conference paper at ICLR 2026

We use a classical task planner, which operates over PDDL-defined domains (Shridhar et al., 2020),
to generate a low-level action sequence for the sampled goal, and simulate this plan in an interactive
environment. If the rollout fails (e.g., due to collisions, object occlusions, or unreachable condi-
tions), we discard the sequence and re-sample from the task pool. Otherwise, the successful rollout
is retained and appended to the ongoing trajectory.

This sampling-execution loop is repeated until a long trajectory with a desired number of sub-goals
is formed. The resulting synthetic long-horizon trajectory consists of multiple sub-goals concate-
nated into a continuous sequence. To induce long-term temporal dependencies, the final sub-task is
constrained to involve only objects that appear in the early 20% and late 20% of the overall trajec-
tory, requiring the agent to integrate temporally distant evidence to answer associated questions.

Algorithm 1 Construct Long-horizon Trajectory

1: Input: Task Pool 7, max sub goals N

2: Qutput: Long-horizon trajectory 7

3: Initialize empty trajectory 7 < []

4: while len(7) < N do

5: Sample task template g ~ 7 and objects
6: Plan action sequence 7, by planner

7 if Simulate(r,) is successful then

8: Append 74 to trajectory: T < T || 74
9: else

10: Discard and re-sample
11: end if

12: end while

13: // Final sub-task with long-term object dependency

14: Sample gana ~ T and objects in early 20% and late 20%
15: Plan and simulate 74,4 using restricted objects

16: if Simulate(7g,,) is successful then

17: Append 7y to trajectory: T <— T || Tnal

18: else

19: Repeat sampling until success

20: end if

21: return 7

B TRAINING AND EVALUATION DETAILS

B.1 INTERACTIVE EVALUATION IN co-THOR

Training. We fine-tune the LLaVA-OneVision 7B model on our training set while freezing the
vision encoder. The model is trained using a next-action prediction objective, where only the action
tokens are optimized, conditioned on the goal and state tokens. Table [5| summarizes the training
specifications for different context lengths. For 32K training, we apply tensor parallelism with a
degree of 4 and pipeline parallelism with a degree of 2, utilizing 8 H100 GPUs in total. Since
pipeline parallelism requires the batch size to match the pipeline degree, we set the batch size to 2.
For longer context lengths, we use context parallelism: 8-way for 64K (on 8 GPUs) and 16-way for
130K (on 16 GPUs). All models are fine-tuned for approximately 3 epochs with a learning rate of
le-5, using the AdamW optimizer and a linear learning rate schedule with a 0.03 warmup ratio.

Table 5: Training specifications for different context lengths.

Context Length Parallelism #GPUs Training Time
32K Tensor (4) + Pipeline (2) 8 160 hrs
64K Context (8) 8 120 hrs
130K Context (16) 16 134 hrs

16



Under review as a conference paper at ICLR 2026

Plan-Level Evaluation. We evaluate agent performance using a plan-level framework, where each
plan corresponds to a short sequence of actions aimed at achieving a specific intermediate sub-goal
(e.g., navigating to an object, placing an item). A trajectory is composed of multiple such plans,
executed sequentially. For the interactive evaluation, the agent is presented with the current plan’s
goal along with the history of previous GT states and actions. Using this context, the agent predicts
the next action and interacts step-by-step with the environment. The interaction continues until
the current plan is either successfully completed or terminated due to failure (e.g., collisions or
deadlocks). After each plan, the context is reset to include the GT actions and states from the
completed portion of the trajectory, and the agent proceeds to the next plan. This ensures that
each plan is evaluated independently, conditioned only on the correct prior history. The agent’s
performance is measured via cumulative reward across all plans in the trajectory. Pseudocode for
this evaluation procedure is provided in Algorithm 2]

Algorithm 2 Plan-Level Evaluation

1: Input: Trajectory T = { Py, P, ..., Py}, Agent policy 7, Environment £
2: Initialize: Reward R < 0
3: Initialize state and history with initial observation
4: for each plan P; in T do
5: Initialize context with GT actions up to P;_;
6: while not done and not failure do
7: a; <+ 7(context)
8: St41,Tt, done, failure < & .step(ay)
9: Append (a¢, S¢+1) to context

10: R+ R + 7

11: end while

12: if failure then

13: Break evaluation

14: end if

15: end for

16: return Total accumulated reward R

C ADDITIONAL RESULTS

— Planner — Planner — Planner

1754 — Uava 7B FT32K 175 LLaVA 78 FT 32K 175 LLaVA 78 FT 32k
—— LLaVA 7B FT 32k YaRN x4 — LLaVA 7B FT 4k

— LLaVA 78 FT 32k YaRN B — LLaVA 7B FT 130K

1501 — LLaVA 78 FT 32K YaRN x16 150

Reward

50 150 150 200 250 ] 50 160 150 260 250 3 50 100 150 200 250
(context size) (75876) mgrsn)( ) (227087) (301807) (376002) (15876) (149780) ®) (227087) (301807) (376002) (75876) (149780) © (227087) (301807) (376002)
a (9

— Planner — Planner — Planner
175 LLaVA 78 FT 6ak 175 LLaVA 78 FT 130K s LLaVA 78 FT 130K

—— LLaVA 7B FT 64k w/ YaRN x2 —— LLaVA 78 FT 130K w/ YaN xa — LLaVA 7B FT 32k YaRN xd.
—— LLaVA 7B FT 64k w/ YaRN x2 and Eval w/ YaRN x2 —— LLaVA 7B FT 130K w/ YaRN x4 and Eval w/ YaRN x2

e o mmu)(d] o o e e o (e) o o e e e (f) o o e
Figure 7: Agent’s reward across different experimental configurations: (a) context extension meth-
ods at fixed scaling (x4), (b) varying YaRN scaling factors, (c) fine-tuning with different context
lengths using Context Parallelism, (d-e) combinations of scaling during both training and inference,
and (f) summary of the most effective strategies.

17



Under review as a conference paper at ICLR 2026

C.1 INTERACTIVE EVALUATION: HIGH-LEVEL PLANNING

Results and Discussion. Figure [7] presents the accumulated rewards over time across six experi-
mental configurations. The Planner trajectory represents the performance upper bound. Our analysis
focuses on addressing the following key questions:

Q. Which context extension methods perform best? Figure[T(a) compares different context extension
methods at a fixed scaling factor of x4. Similar to the NiEH results, YaRN consistently achieves the
highest performance showing very close performance to Planner.

Q. Does further scaling enhance performance? Figure [](b) explores YaRN scaling at different
scaling factors (x4, x8, and x16). Interestingly, increasing the scaling factor beyond x4 does not
significantly improve performance, indicating a diminishing return for larger scaling factors.

Q. Is fine-tuning on a dataset with long trajectories effective? Figure [7(c) demonstrates the effec-
tiveness of fine-tuning with Context Parallelism, enabling scaling of context lengths up to 64K and
130K tokens. At a 130K context size, the model can learn sequences comprising approximately 86
steps, substantially longer compared to only 22 steps with a 32K context size. This shows that ex-
posure to longer context during training significantly enhances model performance, suggesting that
incorporating more long-horizon data by co-THOR could further improve model capabilities. We
note that context extension methods were not applied in this experiment.

Q. Does combining context extension methods during both training and inference provide additional
benefits? Results of experiments with scaling at both training and evaluation (Figures [7(d) and [7{e)
in Appendix) indicate that additional scaling at evaluation after fine-tuning with scaled RoPE pro-
vides no further performance improvement and may degrade performance at shorter context lengths
(<300K tokens).

Based on these observations, we can conclude that fine-tuning strategies are most effective when
long-trajectory datasets are available. In the absence of extensive training data, employing YaRN
scaling at x4 yields performance comparable to the Planner upper-bound, particularly within context
lengths under 200K tokens (Figure [7[f)).

C.2 INTERACTIVE EVALUATION: LOW-LEVEL MANIPULATION

Table 6: Success rates of OpenVLA-7B and Spatial VLA-4B on low-level Pick-up and Put tasks in
ManipulaTHOR.

Task OpenVLA-7B  Spatial VLA-4B

Pick-up 3.82% 4.68%
Put 6.38% 9.14%

We evaluate the ability of existing VLA models, OpenVLA-7B (Kim et al., 2024) and Spatial VLA-
4B (Qu et al.| [2025)), to control robot arms on low-level manipulation tasks. The evaluation protocol
follows the procedure described in Appendix B.1, with the only difference being that low-level VLA
models are used to directly execute Pick-up and Put actions through arm control. For the text input,
we provide task-specific instructions (“Pick-up” or “Put” object), since the existing models are only
trained on single-task formulations. For the image input, we use an ego-centric camera view. Since
these VLA models were originally trained on datasets with different viewing angles, there remains
considerable room for improvement by incorporating additional camera perspectives during training
and evaluation.

For the evaluation criterion, ManipulaTHOR implements a “magnet sphere” hand mechanism: if a
pickupable object is within a specified radius of the agent’s hand when the PickupOb ject action
is called, the object is successfully picked up. Since neither OpenVLA nor Spatial VLA was trained
in the AI2-THOR environment, we relax this success threshold by setting the radius to 0.5 to account
for discrepancies between training and evaluation environments. This loosened criterion ensures that
small deviations in arm trajectories do not result in an immediate failure, thereby providing a fairer
comparison of the models.

18



Under review as a conference paper at ICLR 2026

Figure[6]presents accumulated rewards on low-level manipulation tasks. Both models underperform
relative to the Planner baseline, largely due to differences in robot arm configuration and the out-of-
distribution nature of the visual inputs. The results show that Spatial VLA achieves slightly higher
and more stable rewards than OpenVLA across long sequences.

Table [6] reports task success rates. Overall performance remains low, with both models struggling
to achieve success in manipulation tasks. The success rate for Put actions is slightly higher than
for Pick-up, showing relatively lenient criterion for the ReleaseObject action compared to the
PickupObject.

D LIMITATIONS

While co-THOR enables the generation of arbitrarily long trajectories, the diversity of environment
layouts in AI2-THOR is inherently limited. This can lead to repetitive agent behaviors within certain
scenes. For instance, compared to kitchen and living room scenes, bedroom scenes tend to involve
fewer action types, mostly constrained to simple pick-and-place tasks within small spatial areas.
Due to the limited scene size and low task diversity, we excluded bathroom scenes from our dev and
test sets. In future work, we plan to integrate co-THOR with ProcTHOR (Deitke et al.,|2022), which
supports procedurally generated environments, enabling a broader range of dynamic and diverse
scene configurations.

Additionally, although the GT action sequences generated by the PDDL-based planner are sufficient
for task completion, they are not guaranteed to be optimal. This may lead to agents learning subopti-
mal behaviors when trained solely on these demonstrations. Incorporating learning from exploration
or reinforcement-based optimization could improve policy quality.

Finally, inference with LLMs in long-context settings remains a computational bottleneck, particu-
larly as context lengths approach 1M tokens. Since our long-horizon tasks require access to informa-
tion spread throughout the entire trajectory, full-context inference becomes increasingly expensive,
even with Context Parallelism. One promising direction is to equip agents with memory systems
that selectively keep relevant information from prior steps, allowing the model to reason without
reprocessing the full context at each step. Other architectural solutions, such as sparse attention
mechanisms (Han et al., [2024; [Jiang et al.l 2024) or state-space models with linear-time inference
(Gu & Dao, [2024), also hold potential for scalable long-context reasoning.

19



	Introduction
	Related Work
	-Thor: An Environment for Generating, Training, and Evaluating Long-horizon Embodied Tasks
	Static Evaluation: Needle(s) in the Embodied Haystack
	Constructing Long-horizon Trajectories for Interactive Evaluations

	Architectures for Long-Horizon Vision-Language-Action Models
	Experiments
	Static Evaluation: Needle(s) in the Embodied Haystack
	Interactive Evaluation in -Thor

	Conclusion
	Dataset Construction
	Building the Needle(s) in the Embodied Haystack Benchmark
	Trajectory Replay and Metadata Collection
	Rule-Based QA Generation
	Cross-validation with Multimodal LLMs

	Constructing Long-Horizon Trajectories

	Training and Evaluation Details
	Interactive Evaluation in -Thor

	Additional Results
	Interactive Evaluation: High-level Planning
	Interactive Evaluation: Low-level Manipulation

	Limitations

