
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DATASET CONSTRUCTION

A.1 BUILDING THE NEEDLE(S) IN THE EMBODIED HAYSTACK BENCHMARK

We construct the Needle(s) in the Embodied Haystack benchmark in three stages: 1) Trajectory
Replay and Metadata Collection; 2) Rule-Based QA Generation; and 3) Cross-validation with Mul-
timodal LLMs. The following sections provide detailed descriptions of each step.

A.1.1 TRAJECTORY REPLAY AND METADATA COLLECTION

We first replay 225 test trajectories generated by →-THOR, logging both visual observations (agent’s
egocentric views) and structured metadata at each timestep. For every step, we store the list of
visible objects, agent-inventory items, openable containers, and their contents from the simulator.
This produces a fine-grained interaction log that captures grounded scene dynamics over time.

An example of the collected metadata at a single timestep is shown below:

Example of metadata entry

{
"img_idx": 2,
"img_filename": "000000002.png",
"step": 1,
"object_log": {

"visible": ["Shelf", "Vase", "Book"],
"pickupable": ["Vase", "Book"],
"isOpen": [],
"inven_obj": [],
"receptacles": ["Shelf"],
"recep_objs": {

"Shelf": ["Vase", "Book"]
}

}
}

Each metadata entry corresponds to a low-level action step and provides the semantic state of the
scene, enabling the construction of temporally grounded QA instances in later stages.

A.1.2 RULE-BASED QA GENERATION

To construct the QA set, we apply rule-based generation templates to each trajectory using its se-
quence of low-level actions and associated metadata. The QA generation process involves parsing
the agent’s interactions with objects, containers, and the environment, and applying a set of hand-
crafted rules to synthesize grounded questions.

Our QA generation logic covers a diverse range of question types, including object presence, ob-
ject state, location tracking, slicing actions, container content reasoning, and action counting. For
instance, if an object is seen for the first time at a particular step, a presence question such as “Is
there any apple in this room?” is generated. Similarly, after a PutObject action, location-based
questions like “Where was the apple before you put it to the microwave?” are produced. When
slicing actions happen, we create questions about the object being sliced and other nearby items
(e.g., “What objects were in the Fridge when you sliced the apple?”). Then, we sample ques-
tions based on the frequency to ensure diversity across object types, and annotate the GT answer
steps using the replay logs. Table 3 summarizes the types of questions generated, and corresponding
trigger conditions and example templates.

A.1.3 CROSS-VALIDATION WITH MULTIMODAL LLMS

To ensure the answerability and clarity of the generated QA pairs, we perform cross-validation using
four powerful multimodal LLMs: LLaVA-OneVision 7B (Li et al., 2024a), Qwen2.5-VL 7B (Bai
et al., 2025), Deepseek-VL 7B (Lu et al., 2024), and Pixtral 12B (Agrawal et al., 2024). Each model

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: QA types, trigger conditions, and corresponding question templates used in rule-based
generation.

QA Type Trigger Condition Example Template(s)
object presence
(Yes/No)

object appears visibly in
the trajectory

Is there any {obj} in this room?
Have you seen a/an {obj}?

open state questions container marked as open
in metadata

Was {container} open?

object location tracing sequences of Pickup
and PutObject actions

Where was {obj} before you put it
to {container}?
Where did you move the {obj} from
the {container}?
Where is {obj} now?

slicing-based questions SliceObject action
detected in trajectory

What did you slice?
What objects were in/on the
{container} when you slice the
{obj}?

container content container visibility with
non-empty contents

What objects were in/on the
{container}?
What object did you put in/on the
{container}?

put action questions unique PutObject ac-
tion for a container

What object did you put in/on the
{container}?

final object state final location of an object
at episode end

Is {obj} in/on the {container}?
What objects are in/on the
{container}?
How many objects were in/on the
{container}?

movement counting object picked up more
than once

How many times did you move {obj}?

is prompted with the GT images corresponding to the annotated QA steps and asked to answer the
associated questions. Given their strong performance on standard visual QA tasks, we use these
models to assess whether a question can be correctly answered or not. We keep only the QA pairs
that are correctly answered by at least one of the four models, and discard those that fail across all
models. This helps improve dataset quality and filtering out ambiguous or visually ungroundable
questions. Table 4 shows the accuracy of each model on the finalized QA set when evaluated with
GT images. Notably, even with access to GT images, all models struggle with questions requiring
reasoning over three or more evidence steps. To maintain the benchmark’s difficulty and support
evaluation of more capable models in future, we manually inspect the multi-clue questions and
include those that are answerable.

Table 4: QA accuracy (%) of multimodal LLMs on ground-truth images.

Model Size # of clues (GT steps) Total
1 2 →3

LLaVA-OneVision 7B 86.61 68.55 23.74 71.15
Qwen2.5-VL 7B 85.94 89.83 64.40 82.20
Deepseek-VL 7B 81.56 39.14 22.57 62.88
Pixtral 12B 91.34 39.60 58.56 76.25

A.2 CONSTRUCTING LONG-HORIZON TRAJECTORIES

To synthesize long-horizon trajectories, we construct each trajectory by sequentially chaining suc-
cessful sub-tasks sampled from a predefined set of task templates. This process is illustrated in
Algorithm 1. We begin by sampling a task template from a fixed task pool, which includes goal
types such as pick and place simple, pick two obj and place, and pick and
place with movable recep. Each sampled template requires relevant objects in the scene
(e.g., pickupable items, target receptacles), which are then used to define the goal for that task.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

We use a classical task planner, which operates over PDDL-defined domains (Shridhar et al., 2020),
to generate a low-level action sequence for the sampled goal, and simulate this plan in an interactive
environment. If the rollout fails (e.g., due to collisions, object occlusions, or unreachable condi-
tions), we discard the sequence and re-sample from the task pool. Otherwise, the successful rollout
is retained and appended to the ongoing trajectory.

This sampling-execution loop is repeated until a long trajectory with a desired number of sub-goals
is formed. The resulting synthetic long-horizon trajectory consists of multiple sub-goals concate-
nated into a continuous sequence. To induce long-term temporal dependencies, the final sub-task is
constrained to involve only objects that appear in the early 20% and late 20% of the overall trajec-
tory, requiring the agent to integrate temporally distant evidence to answer associated questions.

Algorithm 1 Construct Long-horizon Trajectory
1: Input: Task Pool T , max sub goals N
2: Output: Long-horizon trajectory ω
3: Initialize empty trajectory ω ↑ []
4: while len(ω ) < N do
5: Sample task template g ↓ T and objects
6: Plan action sequence εg by planner
7: if Simulate(εg) is successful then
8: Append εg to trajectory: ω ↑ ω ↔ εg

9: else
10: Discard and re-sample
11: end if
12: end while
13: // Final sub-task with long-term object dependency
14: Sample gfinal ↓ T and objects in early 20% and late 20%
15: Plan and simulate εfinal using restricted objects
16: if Simulate(εfinal) is successful then
17: Append εfinal to trajectory: ω ↑ ω ↔ εfinal
18: else
19: Repeat sampling until success
20: end if
21: return ω

B TRAINING AND EVALUATION DETAILS

B.1 INTERACTIVE EVALUATION IN →-THOR

Training. We fine-tune the LLaVA-OneVision 7B model on our training set while freezing the
vision encoder. The model is trained using a next-action prediction objective, where only the action
tokens are optimized, conditioned on the goal and state tokens. Table 5 summarizes the training
specifications for different context lengths. For 32K training, we apply tensor parallelism with a
degree of 4 and pipeline parallelism with a degree of 2, utilizing 8 H100 GPUs in total. Since
pipeline parallelism requires the batch size to match the pipeline degree, we set the batch size to 2.
For longer context lengths, we use context parallelism: 8-way for 64K (on 8 GPUs) and 16-way for
130K (on 16 GPUs). All models are fine-tuned for approximately 3 epochs with a learning rate of
1e-5, using the AdamW optimizer and a linear learning rate schedule with a 0.03 warmup ratio.

Table 5: Training specifications for different context lengths.

Context Length Parallelism # GPUs Training Time
32K Tensor (4) + Pipeline (2) 8 160 hrs
64K Context (8) 8 120 hrs

130K Context (16) 16 134 hrs

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Plan-Level Evaluation. We evaluate agent performance using a plan-level framework, where each
plan corresponds to a short sequence of actions aimed at achieving a specific intermediate sub-goal
(e.g., navigating to an object, placing an item). A trajectory is composed of multiple such plans,
executed sequentially. For the interactive evaluation, the agent is presented with the current plan’s
goal along with the history of previous GT states and actions. Using this context, the agent predicts
the next action and interacts step-by-step with the environment. The interaction continues until
the current plan is either successfully completed or terminated due to failure (e.g., collisions or
deadlocks). After each plan, the context is reset to include the GT actions and states from the
completed portion of the trajectory, and the agent proceeds to the next plan. This ensures that
each plan is evaluated independently, conditioned only on the correct prior history. The agent’s
performance is measured via cumulative reward across all plans in the trajectory. Pseudocode for
this evaluation procedure is provided in Algorithm 2.

Algorithm 2 Plan-Level Evaluation

1: Input: Trajectory T = {P1, P2, . . . , PN}, Agent policy ε, Environment E
2: Initialize: Reward R ↑ 0
3: Initialize state and history with initial observation
4: for each plan Pi in T do
5: Initialize context with GT actions up to Pi→1

6: while not done and not failure do
7: at ↑ ε(context)
8: st+1, rt, done, failure ↑ E .step(at)
9: Append (at, st+1) to context

10: R ↑ R+ rt
11: end while
12: if failure then
13: Break evaluation
14: end if
15: end for
16: return Total accumulated reward R

C ADDITIONAL RESULTS

Figure 7: Agent’s reward across different experimental configurations: (a) context extension meth-
ods at fixed scaling (x4), (b) varying YaRN scaling factors, (c) fine-tuning with different context
lengths using Context Parallelism, (d-e) combinations of scaling during both training and inference,
and (f) summary of the most effective strategies.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.1 INTERACTIVE EVALUATION: HIGH-LEVEL PLANNING

Results and Discussion. Figure 7 presents the accumulated rewards over time across six experi-
mental configurations. The Planner trajectory represents the performance upper bound. Our analysis
focuses on addressing the following key questions:

Q. Which context extension methods perform best? Figure 7(a) compares different context extension
methods at a fixed scaling factor of x4. Similar to the NiEH results, YaRN consistently achieves the
highest performance showing very close performance to Planner.

Q. Does further scaling enhance performance? Figure 7(b) explores YaRN scaling at different
scaling factors (x4, x8, and x16). Interestingly, increasing the scaling factor beyond x4 does not
significantly improve performance, indicating a diminishing return for larger scaling factors.

Q. Is fine-tuning on a dataset with long trajectories effective? Figure 7(c) demonstrates the effec-
tiveness of fine-tuning with Context Parallelism, enabling scaling of context lengths up to 64K and
130K tokens. At a 130K context size, the model can learn sequences comprising approximately 86
steps, substantially longer compared to only 22 steps with a 32K context size. This shows that ex-
posure to longer context during training significantly enhances model performance, suggesting that
incorporating more long-horizon data by →-THOR could further improve model capabilities. We
note that context extension methods were not applied in this experiment.

Q. Does combining context extension methods during both training and inference provide additional

benefits? Results of experiments with scaling at both training and evaluation (Figures 7(d) and 7(e)
in Appendix) indicate that additional scaling at evaluation after fine-tuning with scaled RoPE pro-
vides no further performance improvement and may degrade performance at shorter context lengths
(↗300K tokens).

Based on these observations, we can conclude that fine-tuning strategies are most effective when
long-trajectory datasets are available. In the absence of extensive training data, employing YaRN
scaling at x4 yields performance comparable to the Planner upper-bound, particularly within context
lengths under 200K tokens (Figure 7(f)).

C.2 INTERACTIVE EVALUATION: LOW-LEVEL MANIPULATION

Table 6: Success rates of OpenVLA-7B and SpatialVLA-4B on low-level Pick-up and Put tasks in
ManipulaTHOR.

Task OpenVLA-7B SpatialVLA-4B
Pick-up 3.82% 4.68%
Put 6.38% 9.14%

We evaluate the ability of existing VLA models, OpenVLA-7B (Kim et al., 2024) and SpatialVLA-
4B (Qu et al., 2025), to control robot arms on low-level manipulation tasks. The evaluation protocol
follows the procedure described in Appendix B.1, with the only difference being that low-level VLA
models are used to directly execute Pick-up and Put actions through arm control. For the text input,
we provide task-specific instructions (“Pick-up” or “Put” object), since the existing models are only
trained on single-task formulations. For the image input, we use an ego-centric camera view. Since
these VLA models were originally trained on datasets with different viewing angles, there remains
considerable room for improvement by incorporating additional camera perspectives during training
and evaluation.

For the evaluation criterion, ManipulaTHOR implements a “magnet sphere” hand mechanism: if a
pickupable object is within a specified radius of the agent’s hand when the PickupObject action
is called, the object is successfully picked up. Since neither OpenVLA nor SpatialVLA was trained
in the AI2-THOR environment, we relax this success threshold by setting the radius to 0.5 to account
for discrepancies between training and evaluation environments. This loosened criterion ensures that
small deviations in arm trajectories do not result in an immediate failure, thereby providing a fairer
comparison of the models.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 6 presents accumulated rewards on low-level manipulation tasks. Both models underperform
relative to the Planner baseline, largely due to differences in robot arm configuration and the out-of-
distribution nature of the visual inputs. The results show that SpatialVLA achieves slightly higher
and more stable rewards than OpenVLA across long sequences.

Table 6 reports task success rates. Overall performance remains low, with both models struggling
to achieve success in manipulation tasks. The success rate for Put actions is slightly higher than
for Pick-up, showing relatively lenient criterion for the ReleaseObject action compared to the
PickupObject.

D LIMITATIONS

While →-THOR enables the generation of arbitrarily long trajectories, the diversity of environment
layouts in AI2-THOR is inherently limited. This can lead to repetitive agent behaviors within certain
scenes. For instance, compared to kitchen and living room scenes, bedroom scenes tend to involve
fewer action types, mostly constrained to simple pick-and-place tasks within small spatial areas.
Due to the limited scene size and low task diversity, we excluded bathroom scenes from our dev and
test sets. In future work, we plan to integrate →-THOR with ProcTHOR (Deitke et al., 2022), which
supports procedurally generated environments, enabling a broader range of dynamic and diverse
scene configurations.

Additionally, although the GT action sequences generated by the PDDL-based planner are sufficient
for task completion, they are not guaranteed to be optimal. This may lead to agents learning subopti-
mal behaviors when trained solely on these demonstrations. Incorporating learning from exploration
or reinforcement-based optimization could improve policy quality.

Finally, inference with LLMs in long-context settings remains a computational bottleneck, particu-
larly as context lengths approach 1M tokens. Since our long-horizon tasks require access to informa-
tion spread throughout the entire trajectory, full-context inference becomes increasingly expensive,
even with Context Parallelism. One promising direction is to equip agents with memory systems
that selectively keep relevant information from prior steps, allowing the model to reason without
reprocessing the full context at each step. Other architectural solutions, such as sparse attention
mechanisms (Han et al., 2024; Jiang et al., 2024) or state-space models with linear-time inference
(Gu & Dao, 2024), also hold potential for scalable long-context reasoning.

19


	Introduction
	Related Work
	-Thor: An Environment for Generating, Training, and Evaluating Long-horizon Embodied Tasks
	Static Evaluation: Needle(s) in the Embodied Haystack
	Constructing Long-horizon Trajectories for Interactive Evaluations

	Architectures for Long-Horizon Vision-Language-Action Models
	Experiments
	Static Evaluation: Needle(s) in the Embodied Haystack
	Interactive Evaluation in -Thor

	Conclusion
	Dataset Construction
	Building the Needle(s) in the Embodied Haystack Benchmark
	Trajectory Replay and Metadata Collection
	Rule-Based QA Generation
	Cross-validation with Multimodal LLMs

	Constructing Long-Horizon Trajectories

	Training and Evaluation Details
	Interactive Evaluation in -Thor

	Additional Results
	Interactive Evaluation: High-level Planning
	Interactive Evaluation: Low-level Manipulation

	Limitations

