
4 Discussions and open problems

We discuss the assumptions and implications of our results as well as related open problems.

Very large state space. Theorem 1 determines the optimal prediction risk under the assumption of
k ≲

√
n. When k ≳

√
n, Theorem 1 shows that the KL risk is bounded away from zero. However,

as the KL risk can be as large as log k, it is a meaningful question to determine the optimal rate in
this case, which, thanks to the general reduction in (11), reduces to determining the redundancy for
symmetric and general Markov chains. For iid data, the minimax pointwise redundancy is known to
be n log k

n +O(n
2

k ) [SW12, Theorem 1] when k ≫ n. Since the average and pointwise redundancy
usually behave similarly, for Markov chains it is reasonable to conjecture that the redundancy is
Θ(n log k2

n ) in the large alphabet regime of k ≳
√
n, which, in view of (11), would imply the optimal

prediction risk is Θ(log k2

n ) for k ≫
√
n. In comparison, we note that the prediction risk is at most

log k, achieved by the uniform distribution.

Other loss functions As mentioned in Section 1.1, standard arguments based on concentration
inequalities inevitably rely on mixing conditions such as the spectral gap. In contrast, the risk bound
in Theorem 1, which is free of any mixing condition, is enabled by powerful techniques from universal
compression which bound the redundancy by the pointwise maximum over all trajectories combined
with information-theoretic or combinatorial argument. This program only relies on the Markovity
of the process rather than stationarity or spectral gap assumptions. The limitation of this approach,
however, is that the reduction between prediction and redundancy crucially depends on the form of
the KL loss function3 in (1), which allows one to use the mutual information representation and the
chain rule to relate individual risks to the cumulative risk. More general loss in terms of f -divergence
have been considered in [HOP18]. Obtaining spectral gap-independent risk bound for these loss
functions, this time without the aid of universal compression, is an open question.

Stationarity As mentioned above, the redundancy result in Lemma 6 (see also [Dav83, TJW18])
holds for nonstationary Markov chains as well. However, our redundancy-based risk upper bound in
Lemma 5 crucially relies on stationarity. It is unclear whether the result of Theorem 1 carries over to
nonstationary chains.

5 Proofs in Section 2

5.1 Proof of Lemma 5

Proof. The upper bound on the redundancy follows from the chain rule of KL divergence:

D(PXn|θ∥QXn) =
n∑

t=1

D(PXt|Xt−1,θ∥QXt|Xt−1 |PXt−1). (30)

Thus

sup
θ∈Θ

D(PXn|θ∥QXn) ≤
n∑

t=1

sup
θ∈Θ

D(PXt|Xt−1,θ∥QXt|Xt−1 |PXt−1).

Minimizing both sides over QXn (or equivalently, QXt|Xt−1 for t = 1, . . . , n) yields (23).

To upper bound the prediction risk using redundancy, fix any QXn , which gives rise to QXt|Xt−1 for
t = 1, . . . , n. For clarity, let use denote the tth estimator as P̂t(·|xt−1) = QXt|Xt−1=xt−1 . Consider
the estimator Q̃Xn|Xn−1 defined in (25), namely,

Q̃Xn|Xn−1=xn−1 ≜
1

n−m

n∑
t=m+1

P̂t(·|xn−t+1, . . . , xn−1). (31)

That is, we apply P̂t to the most recent t− 1 symbols prior to Xn for predicting its distribution, then
average over t. We may bound the prediction risk of this estimator by redundancy as follows: Fix

3In fact, this connection breaks down if one swap M and M̂ in the KL divergence in (1).
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θ ∈ Θ. To simplify notation, we suppress the dependency of θ and write PXn|θ ≡ PXn . Then

D(PXn|Xn−1∥Q̃Xn|Xn−1 |PXn−1)
(a)
= E

[
D

(
PXn|Xn−1

n−m

∥∥∥ 1
n

n∑
t=1

P̂t(·|Xn−1
n−t+1)

)]
(b)

≤ 1

n−m

n∑
t=m+1

E
[
D(PXn|Xn−1

n−m
∥P̂t(·|Xn−1

n−t+1))
]

(c)
=

1

n−m

n∑
t=m+1

E
[
D(PXt|Xt−1

t−m
∥P̂t(·|Xt−1))

]
(d)
=

1

n−m

n∑
t=m+1

D(PXt|Xt−1∥QXt|Xt−1 |Xt−1)

≤ 1

n−m

n∑
t=1

D(PXt|Xt−1∥QXt|Xt−1 |Xt−1)

(e)
=

1

n−m
D(PXn∥QXn),

where (a) uses the mth-order Markovian assumption; (b) is due to the convexity of the KL divergence;
(c) uses the crucial fact that for all t = 1, . . . , n− 1, (Xn−t, . . . , Xn−1)

law
= (X1, . . . , Xt), thanks to

stationarity; (d) follows from substituting P̂t(·|xt−1) = QXt|Xt−1=xt−1 , the Markovian assumption
PXt|Xt−1

t−m
= PXt|Xt−1 , and rewriting the expectation as conditional KL divergence; (e) is by the

chain rule (30) of KL divergence. Since the above holds for any θ ∈ Θ, the desired (26) follows which
implies that Riskn−1 ≤ Redn

n−m . Finally, Riskn−1 ≤ Riskn follows from E[D(PXn+1|Xn
∥P̂n(X

n
2 ))] =

E[D(PXn|Xn−1
∥P̂n(X

n−1
1 ))], since (X2, . . . , Xn) and (X1, . . . , Xn−1) are equal in law.

Remark 3. Alternatively, Lemma 5 also follows from the mutual information representation (17)
and (22). Indeed, by the chain rule for mutual information,

I(θ;Xn) =

n∑
t=1

I(θ;Xt|Xt−1), (32)

taking the supremum over π (the distribution of θ) on both sides yields (17). For (22), it suffices to
show that I(θ;Xt|Xt−1) is decreasing in t: for any θ ∼ π,

I(θ;Xn+1|Xn) = E log
PXn+1|Xn,θ

PXn+1|Xn

= E log
PXn+1|Xn,θ

PXn+1|Xn
2

+ E log
PXn+1|Xn

2

PXn+1|Xn︸ ︷︷ ︸
−I(X1;Xn+1|Xn

2 )

,

and the first term is

E log
PXn+1|Xn,θ

PXn+1|Xn
2

= E log
PXn+1|Xn

n−m+1,θ

PXn+1|Xn
2

= E log
PXn|Xn−1

n−m,θ

PXn|Xn−1

= I(θ;Xn|Xn−1)

where the first and second equalities follow from the mth-order Markovity and stationarity, respec-
tively. Taking supremum over π yields Riskn ≤ Riskn−1. Finally, by the chain rule (32), we have
I(θ;Xn) ≥ (n−m)I(θ;Xn|Xn−1), yielding Riskn−1 ≤ Redn

n−m .

5.2 Proof of Lemma 6

In this section we bound the pointwise redundancy of the add-one probability assignment (27) over
all (not necessarily stationary) Markov chains on k states. The proof is similar to those of [CS04,
Theorems 6.3 and 6.5], which, in turn, follow the arguments of [DMPW81, Sec. III-B]. Specifically,
we show that for every Markov chain with transition matrix M and initial distribution π, and every
trajectory (x1, · · · , xn), it holds that

log
π(x1)

∏n−1
t=1 M(xt+1|xt)

Q(x1, · · · , xn)
≤ k(k − 1)

[
log

(
1 +

n

k(k − 1)

)
+ 1

]
+ log k, (33)

16



where we abbreviate the add-one estimator Mxt(xt+1|xt) defined in (5) as M(xt+1|xt).

To establish (33), note that Q(x1, · · · , xn) could be equivalently expressed using the empirical counts
Ni and Nij in (4) as

Q(x1, · · · , xn) =
1

k

k∏
i=1

∏k
j=1 Nij !

k · (k + 1) · · · · · (Ni + k − 1)
.

Note that
n−1∏
t=1

M(xt+1|xt) =

k∏
i=1

k∏
j=1

M(j|i)Nij ≤
k∏

i=1

k∏
j=1

(Nij/Ni)
Nij ,

where the inequality follows from
∑

j
Nij

Ni
log

Nij/Ni

M(j|i) ≥ 0 for each i, by the nonnegativity of the KL
divergence. Therefore, we have

π(x1)
∏n−1

t=1 M(xt+1|xt)

Q(x1, · · · , xn)
≤ k ·

k∏
i=1

k · (k + 1) · · · · · (Ni + k − 1)

NNi
i

k∏
j=1

N
Nij

ij

Nij !
. (34)

We claim that: for n1, · · · , nk ∈ Z+ and n =
∑k

i=1 ni ∈ N, it holds that

k∏
i=1

(ni

n

)ni

≤
∏k

i=1 ni!

n!
, (35)

with the understanding that ( 0n )
0 = 0! = 1. Applying this claim to (34) gives

log
π(x1)

∏n−1
t=1 M(xt+1|xt)

Q(x1, · · · , xn)
≤ log k +

k∑
i=1

log
k · (k + 1) · · · · · (Ni + k − 1)

Ni!

= log k +

k∑
i=1

Ni∑
ℓ=1

log

(
1 +

k − 1

ℓ

)

≤ log k +

k∑
i=1

∫ Ni

0

log

(
1 +

k − 1

x

)
dx

= log k +

k∑
i=1

(
(k − 1) log

(
1 +

Ni

k − 1

)
+Ni log

(
1 +

k − 1

Ni

))
(a)

≤ k(k − 1) log

(
1 +

n− 1

k(k − 1)

)
+ k(k − 1) + log k,

where (a) follows from the concavity of x 7→ log x,
∑k

i=1 Ni = n− 1, and log(1 + x) ≤ x.

It remains to justify (35), which has a simple information-theoretic proof: Let T denote the collection
of sequences xn in [k]n whose type is given by (n1, . . . , nk). Namely, for each xn ∈ T , i appears
exactly ni times for each i ∈ [k]. Let (X1, . . . , Xn) be drawn uniformly at random from the set T .
Then

log
n!∏k

i=1 ni!
= H(X1, . . . , Xn)

(a)

≤
n∑

j=1

H(Xj)
(b)
= n

k∑
i=1

ni

n
log

n

ni
,

where (a) follows from the fact that the joint entropy is at most the sum of marginal entropies; (b) is
because each Xj is distributed as (n1

n , . . . , nk

n ).

6 Proofs in Section 3

6.1 Proof of lower bound for three states

In this section we prove the optimal lower bound in Theorem 7 for three states. Let us start by
recalling the following well-known lemma.
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Lemma 8. Let q ∼ Uniform(0, 1). Conditioned on q, let N ∼ Binom(m, q). Then the Bayes
estimator of q given N is the “add-one” estimator:

E[q|N ] =
N + 1

m+ 2

and the Bayes risk is given by

E[(q − E[q|N ])2] =
1

6(m+ 2)
.

Proof of Theorem 7. Consider the following Bayesian setting: First, we draw p uniformly at random
from [0, 1− 1

n ]. Then, we generate the sample path Xn = (X1, . . . , Xn) of a stationary (uniform)
Markov chain with transition matrix Mp as defined in (28). For each t = 1, . . . , n− 1, define

Xt = {xn : x1 = . . . = xt = 1, xi ̸= 1, i = t+ 1, . . . , n}
and let X = ∪n

t=1Xt. Let µ(xn|p) = P [X = xn]. Then

µ(xn|p) = 1

3

(
1− 2

n

)t−1
2

n
pN(xn)

(
1− 1

n
− p

)n−t−1−N(xn)

, xn ∈ Xt, (36)

where N(xn) denotes the number of transitions from state 2 to 3 or from 3 to 2. Then

P [Xn ∈ Xt] =
1

3

(
1− 2

n

)t−1
2

n

n−t−1∑
k=0

(
n− t− 1

k

)
pk
(
1− 1

n
− p

)n−t−1−k

=
1

3

(
1− 2

n

)t−1
2

n

(
1− 1

n

)n−t−1

=
2

3n

(
1− 1

n

)n−2(
1− 1

n− 1

)t−1

(37)

and hence

P [Xn ∈ X ] =

n−1∑
t=1

P [Xn ∈ Xt] =
2(n− 1)

3n

(
1− 1

n

)n−2
(
1−

(
1− 1

n− 1

)n−1
)

(38)

=
2(1− 1/e)

3e
+ on(1).

Consider the Bayes estimator (for estimating p under the mean-squared error)

p̂(xn) = E[p|xn] =
E[p · µ(xn|p)]
E[µ(xn|p)]

.

For xn ∈ Xt, using (36) we have

p̂(xn) =
E
[
pN(xn)+1

(
1− 1

n − p
)n−t−1−N(xn)

]
E
[
pN(xn)

(
1− 1

n − p
)n−t−1−N(xn)

] , p ∼ Uniform

(
0,

n− 1

n

)

=
n− 1

n

E
[
UN(xn)+1 (1− U)

n−t−1−N(xn)
]

E
[
UN(xn) (1− U)

n−t−1−N(xn)
] , U ∼ Uniform(0, 1)

=
n− 1

n

N(xn) + 1

n− t+ 1
,

where the last step follows from Lemma 8. From (36), we conclude that conditioned on Xn ∈ Xt

and on p, N(Xn) ∼ Binom(n− t− 1, q), where q = p
1− 1

n

∼ Uniform(0, 1). Applying Lemma 8
(with m = n− t− 1 and N = N(Xn)), we get

E[(p− p̂(Xn))2|Xn ∈ Xt] =

(
n− 1

n

)2

E

[(
q − N(xn) + 1

n− t+ 1

)2
]

=

(
n− 1

n

)2
1

6(n− t+ 1)
.
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Finally, note that conditioned on Xn ∈ X , the probability of Xn ∈ Xt is close to uniform. Indeed,
from (37) and (38) we get

P [Xn ∈ Xt|X ] =
1

n− 1

(
1− 1

n−1

)t−1

1−
(
1− 1

n−1

)n−1 ≥ 1

n− 1

(
1

e− 1
+ on(1)

)
, t = 1, . . . , n− 1.

Thus

E[(p− p̂(Xn))21{Xn∈X}] = P [Xn ∈ X ]

n−1∑
t=1

E[(p− p̂(Xn))2|Xn ∈ Xt]P [Xn ∈ Xt|X ]

≳
1

n− 1

n−1∑
t=1

1

n− t+ 1
= Θ

(
log n

n

)
. (39)

Finally, we relate (39) formally to the minimax prediction risk under the KL divergence. Consider
any predictor M̂(·|i) (as a function of the sample path X) for the ith row of M , i = 1, 2, 3. By
Pinsker inequality, we conclude that

D(M(·|2)∥M̂(·|2)) ≥ 1

2
∥M(·|2)− M̂(·|2)∥2ℓ1 ≥ 1

2
(p− M̂(3|2))2 (40)

and similarly, D(M(·|3)∥M̂(·|3)) ≥ 1
2 (p− M̂(2|3))2. Abbreviate M̂(3|2) ≡ p̂2 and M̂(2|3) ≡ p̂3,

both functions of X . Taking expectations over both p and X , the Bayes prediction risk can be
bounded as follows

3∑
i=1

E[D(M(·|i)∥M̂(·|i))1{Xn=i}]

≥ 1

2
E[(p− p̂2)

21{Xn=2} + (p− p̂3)
21{Xn=3}]

≥ 1

2

∑
x∈X

µ(xn)
(
E[(p− p̂2)

2|X = xn]1{xn=2} + E[(p− p̂3)
2|X = xn]1{xn=3}

)
≥ 1

2

∑
xn∈X

µ(xn)E[(p− p̂(xn))2|X = xn](1{xn=2} + 1{xn=3})

=
1

2

∑
xn∈X

µ(xn)E[(p− p̂(xn))2|X = xn]

=
1

2
E[(p− p̂(X))21{X∈X}]

(39)
= Θ

(
log n

n

)
.

6.2 Proof of lower bound for k states

In this section, we rigorously carry out the lower bound proof sketched in Section 3.2: In Section
6.2.1, we explicitly construct the k-state chain which satisfies the desired properties in Section 3.2.
In Section 6.2.2, we make the steps in (29) precise and bound the Bayes risk from below by an
appropriate mutual information. In Section 6.2.3, we choose a prior distribution on the transition
probabilities and prove a lower bound on the resulting mutual information, thereby completing
the proof of Theorem 1, with the added bonus that the construction is restricted to irreducible and
reversible chains.
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6.2.1 Construction of the k-state chain

We construct a k-state chain with the following transition probability matrix:

M =


1− 1

n
1

n(k−1)
1

n(k−1) · · · 1
n(k−1)

1/n
1/n

...
1/n

(
1− 1

n

)
T

 , (41)

where T ∈ RS2×S2 is a symmetric stochastic matrix to be chosen later. The transition diagram of M
is shown in Figure 2. One can also verify that the spectral gap of M is Θ( 1n ).

1

2 3 . . . k

S1

S2

1
n(k−1)

1
n(k−1) 1

n(k−1)

1− 1
n

1
n

(1− 1
n )T2,3

(1− 1
n )T2,k

(1− 1
n )T2,2

1
n

(1− 1
n )T3,3

(1− 1
n )T3,k

1
n

1
n

(1− 1
n )Tk,k

Figure 2: Lower bound construction for k-state chains. Solid arrows represent transitions within
S1 and S2, and dashed arrows represent transitions between S1 and S2. The double-headed arrows
denote transitions in both directions with equal probabilities.

Let (X1, . . . , Xn) be the trajectory of a stationary Markov chain with transition matrix M . We
observe the following properties:

(P1) This Markov chain is irreducible and reversible, with stationary distribution
( 12 ,

1
2(k−1) , · · · ,

1
2(k−1) );

(P2) For t ∈ [n−1], let Xt denote the collections of trajectories xn such that x1, x2, · · · , xt ∈ S1

and xt+1, · · · , xn ∈ S2. Then

P(Xn ∈ Xt) = P(X1 = · · · = Xt = 1) · P(Xt+1 ̸= 1|Xt = 1) ·
n−1∏

s=t+1

P(Xs+1 ̸= 1|Xs ̸= 1)

=
1

2
·
(
1− 1

n

)t−1

· 1
n
·
(
1− 1

n

)n−1−t

≥ 1

2en
. (42)
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Moreover, this probability does not depend of the choice of T ;
(P3) Conditioned on the event that Xn ∈ Xt, the trajectory (Xt+1, · · · , Xn) has the same

distribution as a length-(n − t) trajectory of a stationary Markov chain with state space
S2 = {2, 3, · · · , k} and transition probability T , and the uniform initial distribution. Indeed,

P [Xt+1 = xt+1, . . . , Xn = xn|Xn ∈ Xt] =

1
2 ·
(
1− 1

n

)t−1 · 1
n(k−1)

∏n−1
s=t+1 M(xs+1|xs)

1
2 ·
(
1− 1

n

)t−1 · 1
n ·
(
1− 1

n

)n−1−t

=
1

k − 1

n−1∏
s=t+1

T (xs+1|xs).

6.2.2 Reducing the Bayes prediction risk to redundancy

Let Msym
k−1 be the collection of all symmetric transition matrices on state space S2 = {2, . . . , k}.

Consider a Bayesian setting where the transition matrix M is constructed in (41) and the submatrix T
is drawn from an arbitrary prior on Msym

k−1. The following lemma lower bounds the Bayes prediction
risk.
Lemma 9. Conditioned on T , let Y n = (Y1, . . . , Yn) denote a stationary Markov chain on state
space S2 with transition matrix T and uniform initial distribution. Then

inf
M̂

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))]

]
≥ n− 1

2en2
(I(T ;Y n)− log(k − 1)) .

Lemma 9 is the formal statement of the inequality (29) presented in the proof sketch. Maximizing
the lower bound over the prior on T and in view of the mutual information representation (17), we
obtain the following corollary.
Corollary 10. Let Risksymk,n denote the minimax prediction risk for stationary irreducible and reversible
Markov chains on k states and Redsymk,n the redundancy for stationary symmetric Markov chains on k
states. Then

Riskrevk,n ≥ n− 1

2en2
(Redsymk−1,n − log(k − 1)).

We make use of the properties (P1)–(P3) in Section 6.2.1 to prove Lemma 9.

Proof of Lemma 9. Recall that in the Bayesian setting, we first draw T from some prior on Msym
k−1,

then generate the stationary Markov chain Xn = (X1, . . . , Xn) with state space [k] and transition
matrix M in (41), and (Y1, . . . , Yn) with state space S2 = {2, . . . , k} and transition matrix T .

We first relate the Bayes estimator of M and T (given the X and Y chain respectively). For
clarity, we spell out the explicit dependence of the estimators on the input trajectory. For each
t ∈ [n], denote by M̂t = M̂t(·|xt) the Bayes estimator of M(·|xt) give Xt = xt, and T̂t(·|yt)
the Bayes estimator of T (·|yt) give Y t = yt. For each t = 1, . . . , n − 1 and for each trajectory
xn = (1, . . . , 1, xt+1, . . . , xn) ∈ Xt, recalling the form (21) of the Bayes estimator, we have, for
each j ∈ S2,

M̂n(j|xn) =
P
[
Xn+1 = (xn, j)

]
P [Xn = xn]

=
E[ 12M(1|1)t−1M(xt+1|1)M(xt+2|xt+1) . . .M(xn|xn−1)M(j|xn)]

E[ 12M(1|1)t−1M(xt+1|1)M(xt+2|xt+1) . . .M(xn|xn−1)]

=

(
1− 1

n

)
E[T (xt+2|xt+1) . . . T (xn|xn−1)T (j|xn)]

E[T (xt+2|xt+1) . . . T (xn|xn−1)]

=

(
1− 1

n

)
T̂n−t(j|xn

t+1),

where we used the stationary distribution of X in (P1) and the uniformity of the stationary distribution
of Y , neither of which depends on T . Furthermore, by construction in (41), M̂n(1|xn) = 1

n is
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deterministic. In all, we have

M̂n(·|xn) =
1

n
δ1 +

(
1− 1

n

)
T̂n−t(·|xn

t+1), xn ∈ Xt. (43)

with δ1 denoting the point mass at state 1, which parallels the fact that

M(·|x) = 1

n
δ1 +

(
1− 1

n

)
T (·|x), x ∈ S2. (44)

By (P2), each event {Xn ∈ Xt} occurs with probability at least 1/(2en), and is independent of T .
Therefore,

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))]

]
≥ 1

2en

n−1∑
t=1

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xn ∈ Xt]

]
. (45)

By (P3), the conditional joint law of (T,Xt+1, . . . , Xn) on the event {Xn ∈ Xt} is the same as the
joint law of (T, Y1, . . . , Yn−t). Thus, we may express the Bayes prediction risk in the X chain as

ET

[
E[D(M(·|Xn)∥M̂(·|Xn))|Xn ∈ Xt]

]
(a)
=

(
1− 1

n

)
· ET

[
E[D(T (·|Yn−t)∥T̂ (·|Y n−t))]

]
(b)
=

(
1− 1

n

)
· I(T ;Yn−t+1|Y n−t), (46)

where (a) follows from (43), (44), and the fact that for distributions P,Q supported on S2, D(ϵδ1 +
(1− ϵ)P∥ϵδ1 + (1− ϵ)Q) = (1− ϵ)D(P∥Q); (b) is the mutual information representation (20) of
the Bayes prediction risk. Finally, the lemma follows from (45), (46), and the chain rule

n−1∑
t=1

I(T ;Yn−t+1|Y n−t) = I(T ;Y n)− I(T ;Y1) ≥ I(T ;Y n)− log(k − 1),

as I(T ;Y1) ≤ H(Y1) ≤ log(k − 1).

6.2.3 Prior construction and lower bounding the mutual information

In view of Lemma 9, it remains to find a prior on Msym
k−1 for T , such that the mutual information

I(T ;Y n) is large. We make use of the connection identified in [DMPW81, Dav83, Ris84] between
estimation error and mutual information (see also [CS04, Theorem 7.1] for a self-contained exposi-
tion). To lower the mutual information, a key step is to find a good estimator T̂ (Y n) of T . This is
carried out in the following lemma.
Lemma 11. In the setting of Lemma 9, suppose that T ∈ Msym

k with Tij ∈ [ 1
2k ,

3
2k ] for all i, j ∈ [k].

Then there is an estimator T̂ based on Y n such that

E[∥T̂ − T∥2F] ≤
16k2

n− 1
.

We show how Lemma 11 leads to the desired lower bound on the mutual information I(T ;Y n).
Since k ≥ 3, we may assume that k − 1 = 2k0 is an even integer. Consider the following prior
distribution π on T : let u = (ui,j)i,j∈[k0],i≤j be iid and uniformly distributed in [1/(4k0), 3/(4k0)],
and ui,j = uj,i for i > j. Let the transition matrix T be given by

T2i−1,2j−1 = T2i,2j = ui,j , T2i−1,2j = T2i,2j−1 =
1

k0
− ui,j , ∀i, j ∈ [k]. (47)

It is easy to verify that T is symmetric and a stochastic matrix, and each entry of T is supported in
the interval [1/(4k0), 3/(4k0)]. Since 2k0 = k − 1, the condition of Lemma 11 is fulfilled, so there
exist estimators T̂ (Y n) and û(Y n) such that

E[∥û(Y n)− u∥22] ≤ E[∥T̂ (Y n)− T∥2F] ≤
64k20
n− 1

. (48)
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Here and below, we identify u and û as k0(k0+1)
2 -dimensional vectors.

Let h(X) =
∫
−fX(x) log fX(x)dx denote the differential entropy of a continuous random vector

X with density fX w.r.t the Lebesgue measure and h(X|Y ) =
∫
−fXY (xy) log fX|Y (x|y)dxdy the

conditional differential entropy (cf. e.g. [CT06]). Then

h(u) =
∑

i,j∈[k0],i≤j

h(ui,j) = −k0(k0 + 1)

2
log(2k0). (49)

Then

I(T ;Y n)
(a)
= I(u;Y n)

(b)

≥ I(u; û(Y n)) = h(u)− h(u|û(Y n))

(c)

≥ h(u)− h(u− û(Y n))

(d)

≥ k0(k0 + 1)

4
log

(
n− 1

1024πek20

)
≥ k2

16
log

(
n− 1

256πek2

)
.

where (a) is because u and T are in one-to-one correspondence by (47); (b) follows from the data pro-
cessing inequality; (c) is because h(·) is translation invariant and concave; (d) follows from the max-
imum entropy principle [CT06]: h(u − û(Y n)) ≤ k0(k0+1)

4 log
(

2πe
k0(k0+1)/2 · E[∥û(Y n)− u∥22]

)
,

which in turn is bounded by (48). Plugging this lower bound into Lemma 9 completes the lower
bound proof of Theorem 1.

Proof of Lemma 11. Since T is symmetric, the stationary distribution is uniform, and there is a
one-to-one correspondence between the joint distribution of (Y1, Y2) and the transition probabilities.
Motivated by this observation, consider the following estimator T̂ : for i, j ∈ [k], let

T̂ij = k ·
∑n

t=1 1{Yt=i,Yt+1=j}

n− 1
.

Clearly E[T̂ij ] = k · P(Y1 = i, Y2 = j) = Tij . The following variance bound is shown in [TJW18,
Lemma 7, Lemma 8] using the concentration inequality of [Pau15]:

Var(T̂ij) ≤ k2 · 8Tijk
−1

γ∗(T )(n− 1)
,

where γ∗(T ) is the absolute spectral gap of T defined in (8). Note that T = k−1J+∆, where J is
the all-one matrix and each entry of ∆ lying in [−1/(2k), 1/(2k)]. Thus the spectral radius of ∆ is
at most 1/2 and thus γ∗(T ) ≥ 1/2. Consequently, we have

E[∥T̂ − T∥2F] =
∑

i,j∈[k]

Var(T̂ij) ≤
∑

i,j∈[k]

16kTij

n− 1
=

16k2

n− 1
,

completing the proof.

7 Proofs of spectral gap-dependent risk bounds

7.1 Two states

To show Theorem 2, let us prove a refined version. In addition to the absolute spectral gap defined in
(8), define the spectral gap

γ ≜ 1− λ2 (50)
and M′

k(γ0) the collection of transition matrices whose spectral gap exceeds γ0. Parallel-
ing Riskk,n(γ0) defined in (9), define Risk′k,n(γ0) as the minimax prediction risk restricted to
M ∈ M′

k(γ0) Since γ ≥ γ∗, we have Mk(γ0) ⊆ M′
k(γ0) and hence Risk′k,n(γ0) ≥ Riskk,n(γ0).

Nevertheless, the next result shows that for k = 2 they have the same rate:
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Theorem 12 (Spectral gap dependent rates for binary chain). For any γ0 ∈ (0, 1)

Risk2,n(γ0) ≍ Risk′2,n(γ0) ≍
1

n
max

{
1, log log

(
min

{
n,

1

γ0

})}
.

We first prove the upper bound on Risk′2,n. Note that it is enough to show

Risk′2,n(γ0) ≲
log log (1/γ0)

n
, if n−0.9 ≤ γ0 ≤ e−e5 . (51)

Indeed, for any γ0 ≤ n−0.9, the upper bound O (log log n/n) proven in [FOPS16], which does not
depend on the spectral gap, suffices; for any γ0 > e−e5 , by monotonicity we can use the upper bound
Risk′2,n(e

−e5).

We now define an estimator that achieves (51). Following [FOPS16], consider trajectories with a
single transition, namely,

{
2n−ℓ1ℓ, 1n−ℓ2ℓ : 1 ≤ ℓ ≤ n− 1

}
, where 2n−ℓ1ℓ denotes the trajectory

(x1, · · · , xn) with x1 = · · · = xn−ℓ = 2 and xn−ℓ+1 = · · · = xn = 1. We refer to this type of xn

as step sequences. For all non-step sequences xn, we apply the add- 12 estimator similar to (5), namely

M̂xn(j|i) =
Nij +

1
2

Ni + 1
, i, j ∈ {1, 2},

where the empirical counts Ni and Nij are defined in (4); for step sequences of the form 2n−ℓ1ℓ, we
estimate by

M̂ℓ(2|1) = 1/(ℓ log(1/γ0)), M̂ℓ(1|1) = 1− M̂ℓ(2|1). (52)

The other type of step sequences 1n−ℓ2ℓ are dealt with by symmetry.

Due to symmetry it suffices to analyze the risk for sequences ending in 1. The risk of add- 12 estimator
for the non-step sequence 1n is bounded as

E
[
1{Xn=1n}D(M(·|1)∥M̂1n(·|1))

]
= PXn(1n)

{
M(2|1) log

(
M(2|1)
1/(2n)

)
+M(1|1) log

(
M(1|1)

(n− 1
2 )/n

)}
≤ (1−M(2|1))n−1

{
2M(2|1)2n+ log

(
n

n− 1
2

)}
≲

1

n
.

where the last step followed by using (1 − x)n−1x2 ≤ n−2 with x = M(2|1) and log x ≤ x − 1.
From [FOPS16, Lemma 7,8] we have that the total risk of other non-step sequences is bounded
from above by O

(
1
n

)
and hence it is enough to analyze the risk for step sequences, and further by

symmetry, those in
{
2n−ℓ1ℓ : 1 ≤ ℓ ≤ n− 1

}
. The desired upper bound (51) then follows from

Lemma 13 next.
Lemma 13. For any n−0.9 ≤ γ0 ≤ e−e5 , M̂ℓ(·|1) in (52) satisfies

sup
M∈M′

2(γ0)

n−1∑
ℓ=1

E
[
1{Xn=2n−ℓ1ℓ}D(M(·|1)∥M̂ℓ(·|1))

]
≲

log log(1/γ0)

n
.

Proof. For each ℓ using log
(

1
1−x

)
≤ 2x, x ≤ 1

2 with x = 1
ℓ log(1/γ0)

,

D(M(·|1)∥M̂ℓ(·|1)) = M(1|1) log

(
M(1|1)

1− 1
ℓlog(1/γ0)

)
+M(2|1) log (M(2|1)ℓlog(1/γ0))

≲
1

ℓlog(1/γ0)
+M(2|1) log(M(2|1)ℓ) +M(2|1) log log(1/γ0)

≤ 1

ℓlog(1/γ0)
+M(2|1) log+(M(2|1)ℓ) +M(2|1)log log(1/γ0), (53)

where we define log+(x) = max{1, log x}. Recall the following Chebyshev’s sum inequality: for
a1 ≤ a2 ≤ · · · ≤ an and b1 ≥ b2 ≥ · · · ≥ bn, it holds that

n∑
i=1

aibi ≤
1

n

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
.
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The following inequalities are thus direct corollaries: for x, y ∈ [0, 1],

n−1∑
ℓ=1

x(1− x)n−ℓ−1y(1− y)ℓ−1 ≤ 1

n− 1

(
n−1∑
ℓ=1

x(1− x)n−ℓ−1

)(
n−1∑
ℓ=1

y(1− y)ℓ−1

)

≤ 1

n− 1
, (54)

n−1∑
ℓ=1

x(1− x)n−ℓ−1y(1− y)ℓ−1 log+(ℓy) ≤
1

n− 1

(
n−1∑
ℓ=1

x(1− x)n−ℓ−1

)(
n−1∑
ℓ=1

y(1− y)ℓ−1 log+(ℓy)

)

≤ 1

n− 1

n−1∑
ℓ=1

y(1− y)ℓ−1(1 + ℓy) ≤ 2

n− 1
, (55)

where in (55) we need to verify that ℓ 7→ y(1−y)ℓ−1 log+(ℓy) is non-increasing. To verify it, w.l.o.g.
we may assume that (ℓ+ 1)y ≥ e, and therefore

y(1− y)ℓ log+((ℓ+ 1)y)

y(1− y)ℓ−1 log+(ℓy)
=

(1− y) log((ℓ+ 1)y)

log+(ℓy)
≤
(
1− e

ℓ+ 1

)(
1 +

log(1 + 1/ℓ)

log+(ℓy)

)
≤
(
1− e

ℓ+ 1

)(
1 +

1

ℓ

)
< 1 +

1

ℓ
− e

ℓ+ 1
< 1.

Therefore,
n−1∑
ℓ=1

E
[
1{Xn=2n−ℓ1ℓ}D(M(·|1)∥M̂ℓ(·|1))

]
≤

n−1∑
ℓ=1

M(2|2)n−ℓ−1M(1|2)M(1|1)ℓ−1D(M(·|1)∥M̂ℓ(·|1))

(a)

≲
n−1∑
ℓ=1

M(2|2)n−ℓ−1M(1|2)M(1|1)ℓ−1

(
1

ℓ log(1/γ0)
+M(2|1) log+(M(2|1)ℓ) +M(2|1) log log(1/γ0)

)
(b)

≤
n−1∑
ℓ=1

M(2|2)n−ℓ−1M(1|2)M(1|1)ℓ−1

ℓ log(1/γ0)
+

2 + log log(1/γ0)

n− 1
, (56)

where (a) is due to (53), (b) follows from (54) and (55) applied to x = M(1|2), y = M(2|1). To deal
with the remaining sum, we distinguish into two cases. Sticking to the above definitions of x and y, if
y > γ0/2, then

n−1∑
ℓ=1

x(1− x)n−ℓ−1(1− y)ℓ−1

ℓ
≤ 1

n− 1

(
n−1∑
ℓ=1

x(1− x)n−ℓ−1

)(
n−1∑
ℓ=1

(1− y)ℓ−1

ℓ

)
≤ log(2/γ0)

n− 1
,

where the last step has used that
∑∞

ℓ=1 t
ℓ−1/ℓ = log(1/(1− t)) for |t| < 1. If y ≤ γ0/2, notice that

for two-state chain the spectral gap is given explicitly by γ = M(1|2) +M(2|1) = x+ y, so that
the assumption γ ≥ γ0 implies that x ≥ γ0/2. In this case,

n−1∑
ℓ=1

x(1− x)n−ℓ−1(1− y)ℓ−1

ℓ
≤
∑

ℓ<n/2

(1− x)n/2−1 +
∑

ℓ≥n/2

x(1− x)n−ℓ−1

n/2

≤ n

2
e−(n/2−1)γ0 +

2

n
≲

1

n
,

thanks to the assumption γ0 ≥ n−0.9. Therefore, in both cases, the first term in (56) is O(1/n), as
desired.

Next we prove the lower bound on Risk2,n. It is enough to show that Risk2,n(γ0) ≳ 1
n log log (1/γ0)

for n−1 ≤ γ0 ≤ e−e5 . Indeed, for γ0 ≥ e−e5 , we can apply the result in the i.i.d. setting (see, e.g.,
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[BFSS02]), in which the absolute spectral gap is 1, to obtain the usual parametric-rate lower bound
Ω
(
1
n

)
; for γ0 < n−1, we simply bound Risk2,n(γ0) from below by Risk2,n(n

−1). Define

α = log(1/γ0), β =

⌈
α

5 logα

⌉
, (57)

and consider the prior distribution

M = Uniform(M), M =

{
M : M(1|2) = 1

n
,M(2|1) = 1

αm
: m ∈ N ∩ (β, 5β)

}
. (58)

Then the lower bound part of Theorem 2 follows from the next lemma.

Lemma 14. Assume that n−0.9 ≤ γ0 ≤ e−e5 . Then

(i) γ∗ > γ0 for each M ∈ M;

(ii) the Bayes risk with respect to the prior M is at least Ω
(

log log(1/γ0)
n

)
.

Proof. Part (i) follows by noting that absolute spectral gap for any two states matrix M is 1 −
|1−M(2|1)−M(1|2)| and for any M ∈ M, M(2|1) ∈

(
α−5β , α−β

)
⊆ (γ0, γ

1/5
0 ) ⊆ (γ0, 1/2)

which guarantees γ∗ = M(1|2) +M(2|1) > γ0.

To show part (ii) we lower bound the Bayes risk when the observed trajectory Xn is a step sequence
in
{
2n−ℓ1ℓ : 1 ≤ ℓ ≤ n− 1

}
. Our argument closely follows that of [HOP18, Theorem 1]. Since

γ0 ≥ n−1, for each M ∈ M, the corresponding stationary distribution π satisfies

π2 =
M(2|1)

M(2|1) +M(1|2)
≥ 1

2
.

Denote by Risk(M ) the Bayes risk with respect to the prior M and by M̂B
ℓ (·|1) the Bayes estimator

for prior M given Xn = 2n−ℓ1ℓ. Note that

P
[
Xn = 2n−ℓ1ℓ

]
= π2

(
1− 1

n

)n−ℓ−1
1

n
M(1|1)ℓ−1 ≥ 1

2en
M(1|1)ℓ−1. (59)

Then

Risk(M ) ≥ EM∼M

[
n−1∑
ℓ=1

E
[
1{Xn=2n−ℓ1ℓ}D(M(·|1)∥M̂B

ℓ (·|1))
]]

≥ EM∼M

[
n−1∑
ℓ=1

M(1|1)ℓ−1

2en
D(M(·|1)∥M̂B

ℓ (·|1))

]

=
1

2en

n−1∑
ℓ=1

EM∼M

[
M(1|1)ℓ−1D(M(·|1)∥M̂B

ℓ (·|1))
]
. (60)

Recalling the general form of the Bayes estimator in (21) and in view of (59), we get

M̂B
ℓ (2|1) =

EM∼M [M(1|1)ℓ−1M(2|1)]
EM∼M [M(1|1)ℓ−1]

, M̂B
ℓ (1|1) = 1− M̂B

ℓ (2|1). (61)

Plugging (61) into (60), and using

D((x, 1− x)∥(y, 1− y)) = x log
x

y
+ (1− x) log

1− x

1− y
≥ xmax

{
0, log

x

y
− 1

}
,

we arrive at the following lower bound for the Bayes risk:

Risk(M )

≥ 1

2en

n−1∑
ℓ=1

EM∼M

[
M(1|1)ℓ−1M(2|1)max

{
0, log

(
M(2|1) · EM∼M [M(1|1)ℓ−1]

EM∼M [M(1|1)ℓ−1M(2|1)]

)
− 1

}]
.

(62)
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Under the prior M , M(2|1) = 1−M(1|1) = α−m with β ≤ m ≤ 5β.

We further lower bound (62) by summing over an appropriate range of ℓ. For any m ∈ [β, 3β], define

ℓ1(m) =

⌈
αm

logα

⌉
, ℓ2(m) = ⌊αm logα⌋ .

Since γ0 ≤ e−e5 , our choice of α ensures that the intervals {[ℓ1(m), ℓ2(m)]}β≤m≤3β are disjoint.
We will establish the following claim: for all m ∈ [β, 3β] and ℓ ∈ [ℓ1(m), ℓ2(m)], it holds that

α−m · EM∼M [M(1|1)ℓ−1]

EM∼M [M(1|1)ℓ−1M(2|1)]
≳

log(1/γ0)

log log(1/γ0)
. (63)

We first complete the proof of the Bayes risk bound assuming (63). Using (62) and (63), we have

Risk(M ) ≳
1

n
· 1

4β

3β∑
m=β

ℓ2(m)∑
ℓ=ℓ1(m)

α−m(1− α−m)ℓ−1 · log log(1/γ0)

=
log log(1/γ0)

4nβ

3β∑
m=β

{
(1− α−m)ℓ1(m)−1 − (1− α−m)ℓ2(m)

}
(a)

≥ log log(1/γ0)

4nβ

3β∑
m=β

((
1

4

) 1
log α

−
(
1

e

)−1+logα
)

≳
log log(1/γ0)

n
,

with (a) following from 1
4 ≤ (1− x)

1
x ≤ 1

e if x ≤ 1
2 , and α−m ≤ α−β ≤ γ

1/5
0 ≤ 1

2 .

Next we prove the claim (63). Expanding the expectation in (58), we write the LHS of (63) as

α−m · EM∼M [M(1|1)ℓ−1]

EM∼M [M(1|1)ℓ−1M(2|1)]
=

Xℓ +Aℓ +Bℓ

Xℓ + Cℓ +Dℓ
,

where

Xℓ =
(
1− α−m

)ℓ
, Aℓ =

m−1∑
j=β

(
1− α−j

)ℓ
, Bℓ =

5β∑
j=m+1

(
1− α−j

)ℓ
,

Cℓ =

m−1∑
j=β

(
1− α−j

)ℓ
αm−j , Dℓ =

5β∑
j=m+1

(
1− α−j

)ℓ
αm−j .

We bound each of the terms individually. Clearly, Xℓ ∈ (0, 1) and Aℓ ≥ 0. Thus it suffices to show
that Bℓ ≳ β and Cℓ, Dℓ ≲ 1, for m ∈ [β, 3β] and ℓ1(m) ≤ ℓ ≤ ℓ2(m). Indeed,

• For j ≥ m+ 1, we have(
1− α−j

)ℓ ≥ (1− α−j
)ℓ2(m) (a)

≥ (1/4)
ℓ2(m)

αj ≥ (1/4)
log α

α ≥ 1/4,

where in (a) we use the inequality (1−x)1/x ≥ 1/4 for x ≤ 1/2. Consequently, Bℓ ≥ β/2;

• For j ≤ m− 1, we have(
1− α−j

)ℓ ≤ (1− α−j
)ℓ1(m) (b)

≤ e−
αm−j

log α = γ
αm−j−1

log α

0 ,

where (b) follows from (1− x)1/x ≤ 1/e and the definition of ℓ1(m). Consequently,

Cℓ ≤ γ
α

log α

0

m−2∑
j=β

αm−j + αγ
1

log α

0 ≤ e−
α2

log α+(2β+1) logα + elogα− α
log α ≤ 2,

where the last step uses the definition of β in (57);

• Dℓ ≤
∑5β

j=m+1 α
m−j ≤ 1, since α = log 1

γ0
≥ e5.

Combining the above bounds completes the proof of (63).
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7.2 k states

7.2.1 Proof of Theorem 3 (i)

Notice that the prediction problem consists of k sub-problems of estimating the individual rows of
M , so it suffices show the contribution from each of them is O

(
k
n

)
. In particular, assuming the

chain terminates in state 1 we bound the risk of estimating the first row by the add-one estimator
M̂+1(j|1) = N1j+1

N1+k . Under the absolute spectral gap condition of γ∗ ≥ γ0, we show

E
[
1{Xn=1}D

(
M(·|1)∥M̂+1(·|1)

)]
≲

k

n

(
1 +

√
log k

kγ4
0

)
. (64)

By symmetry, we get the desired Riskk,n(γ0) ≲ k2

n

(
1 +

√
log k
kγ4

0

)
. The basic steps of our analysis

are as follows:

• When N1 is substantially smaller than its mean, we can bound the risk using the worst-case
risk bound for add-one estimators and the probability of this rare event.

• Otherwise, we decompose the prediction risk as

D(M(·|1)∥M̂+1(·|1)) =
k∑

j=1

[
M(j|1) log

(
M(j|1)(N1 + k)

N1j + 1

)
−M(j|1) + N1j + 1

N1 + k

]
.

We then analyze each term depending on whether N1j is typical or not. Unless N1j is
atypically small, the add-one estimator works well whose risk can be bounded quadratically.

To analyze the concentration of the empirical counts we use the following moment bounds. The
proofs are deferred to Appendix B.

Lemma 15. Finite reversible and irreducible chains observe the following moment bounds:

(i) E
[
(Nij −NiM(j|i))2 |Xn = i

]
≲ nπiM(j|i)(1−M(j|i)) +

√
M(j|i)
γ∗

+ M(j|i)
γ2
∗

(ii) E
[
(Nij −NiM(j|i))4 |Xn = i

]
≲ (nπiM(j|i)(1−M(j|i)))2 +

√
M(j|i)
γ∗

+ M(j|i)2
γ4
∗

(iii) E
[
(Ni − (n− 1)πi)

4 |Xn = i
]
≲ n2π2

i

γ2
∗

+ 1
γ4
∗
.

When γ∗ is high this shows that the moments behave as if for each i ∈ [k], N1 is approximately
Binomial(n− 1, πi) and Nij is approximately Binomial(Ni,M(j|i)), which happens in case of i.i.d.
sampling. For i.i.d. models [KOPS15] showed that the add-one estimator achieves O

(
k
n

)
risk bound

which we aim here too. In addition, dependency of the above moments on γ∗ gives rise to sufficient
conditions that guarantees parametric rate. The technical details are given below.

We decompose the left hand side in (64) based on N1 as

E
[
1{Xn=1}D

(
M(·|1)∥M̂+1(·|1)

)]
= E

[
1{A≤}D

(
M(·|1)∥M̂+1(·|1)

)]
+ E

[
1{A>}D

(
M(·|1)∥M̂+1(·|1)

)]
where the typical set A> and atypical set A≤ are defined as

A≤ ≜ {Xn = 1, N1 ≤ (n− 1)π1/2} , A> ≜ {Xn = 1, N1 > (n− 1)π1/2} .

For the atypical case, note the following deterministic property of the add-one estimator. Let Q̂ be an
add-one estimator with sample size n and alphabet size k of the form Q̂i =

ni+1
n+k , where

∑
ni = n.

Since Q̂ is bounded below by 1
n+k everywhere, for any distribution P , we have

D(P∥Q̂) ≤ log(n+ k). (65)
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Applying this bound on the event A≤, we have

E
[
1{A≤}D

(
M(·|1)∥M̂+1(·|1)

)]
≤ log (nπ1 + k)P [Xn = 1, N1 ≤ (n− 1)π1/2]

(a)

≲ 1{nπ1γ∗≤10}π1 log (nπ1 + k) + 1{nπ1γ∗>10}π1 log (nπ1 + k)
E
[
(N1 − (n− 1)π1)

4 |Xn = 1
]

n4π4
1

(66)
(b)

≤ 1{nπ1γ∗≤10}
10

nγ∗
log

(
10

γ∗
+ k

)
+ 1{nπ1γ∗>10} log (nπ1 + k)

(
1

n2π1γ2
∗
+

1

n4π3
1γ

4
∗

)
(c)

≲
1

n

{
1{nπ1γ∗≤10}

log(1/γ∗) + log k

γ∗
+ 1{nπ1γ∗>10} (nπ1 + log k)

(
1

nπ1γ2
∗
+

1

n3π3
1γ

4
∗

)}
≲
1

n

{
1{nπ1γ∗≤10}

(
1

γ2
∗
+

log k

γ∗

)
+ 1{nπ1γ∗>10}

(
1

γ2
∗
+

log k

γ∗

)}
≲

1

nγ2
0

+
log k

nγ0
. (67)

where we got (a) from Markov inequality, (b) from Lemma 15(iii) and (c) using x+y ≤ xy, x, y ≥ 2.

Next we bound E
[
1{A>}D

(
M(·|1)∥M̂+1(·|1)

)]
. Define

∆i = M(i|1) log

(
M(i|1)

M̂+1(i|1)

)
−M(i|1) + M̂+1(i|1).

As D(M(·|1)∥M̂+1(·|1)) =
∑k

i=1 ∆i it suffices to bound E
[
1{A>}∆i

]
for each i. For some r ≥ 1

to be optimized later consider the following cases separately

Case (a) nπ1 ≤ r or nπ1M(i|1) ≤ 10: Using the fact y log(y) − y + 1 ≤ (y − 1)2 with
y = M(i|1)

M̂+1(i|1)
= M(i|1)(N1+k)

N1i+1 we get

∆i ≤
(M(i|1)N1 −N1i +M(i|1)k − 1)

2

(N1 + k) (N1i + 1)
. (68)

This implies

E
[
1{A>}∆i

]
≤ E

[
1{A>} (M(i|1)N1 −N1i +M(i|1)k − 1)

2

(N1 + k) (N1i + 1)

]
(a)

≲
E
[
1{A>} (M(i|1)N1 −N1i)

2
]
+ k2π1M(i|1)2 + π1

nπ1 + k

(b)

≲
π1E

[
(M(i|1)N1 −N1i)

2
∣∣∣Xn = 1

]
nπ1 + k

+
1 + rkM(i|1)

n
(69)

where (a) follows from N1 > (n−1)π1

2 in A> and the fact that (x+ y + z)2 ≤ 3(x2 + y2 + z2); (b)
uses the assumption that either nπ1 ≤ r or nπ1M(i|1) ≤ 10. Applying Lemma 15(i) and the fact
that x+ x2 ≤ 2(1 + x2), continuing the last display we get

E
[
1{A>}∆i

]
≲

nπ1M(i|1) +
(
1 + M(i|1)

γ2
∗

)
n

+
1 + rkM(i|1)

n
≲

1 + rkM(i|1)
n

+
M(i|1)
nγ2

0

.

Hence

E
[
1{A>}D(M(·|1)∥M̂+1(·|1))

]
=

k∑
i=1

E
[
1{A>}∆i

]
≲

rk

n
+

1

γ2
0

. (70)
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Case(b) nπ1 > r and nπ1M(i|1) > 10: We decompose A> based on count of N1i into atypical
part B≤ and typical part B>

B≤ ≜ {Xn = 1, N1 > (n− 1)π1/2, N1i ≤ (n− 1)π1M(i|1)/4}
B> ≜ {Xn = 1, N1 > (n− 1)π1/2, N1i > (n− 1)π1M(i|1)/4}

and bound each of E
[
1{B≤}∆i

]
and E

[
1{B>}∆i

]
separately.

Bound on E
[
1{B≤}∆i

]
Using M̂+1(i|1) ≥ 1

N1+k and N1i < N1M(i|1)/2 in B≤ we get

E
[
1{B≤}∆i

]
= E

[
1{B≤}M(i|1) log

(
M(i|1)(N1 + k)

N1i + 1

)]
+ E

[
1{B≤}

(
N1i + 1

N1 + k
−M(i|1)

)]
≤ E

[
1{B≤}M(i|1) log (M(i|1)(N1 + k))

]
+ E

[
1{B≤}

(
N1i

N1
−M(i|1)

)]
+ E

[
1{B≤}

N1

]
≲ E

[
1{B≤}M(i|1) log (M(i|1)(N1 + k))

]
+

1

n
(71)

where the last inequality followed as E
[
1{B≤}/N1

]
≲ P[Xn = 1]/nπ1 = 1

n . Note that for any
event B and any function g,

E
[
g(N1)1{N1≥t0,B}

]
= g(t0)P[N1 ≥ t0, B] +

n∑
t=t0+1

(g(t)− g(t− 1))P[N1 ≥ t, B].

Applying this identity with t0 = ⌈(n− 1)π1/2⌉, we can bound the expectation term in (71) as

E
[
1{B≤}M(i|1) log (M(i|1)(N1 + k))

]
= M(i|1) log (M(i|1)(t0 + k))P

[
N1 ≥ t0, N1i ≤

nπ1M(i|1)
4

, Xn = 1

]
+M(i|1)

n−1∑
t=t0+1

log

(
1 +

1

t− 1 + k

)
P
[
N1 ≥ t+ 1, N1i ≤

nπ1M(i|1)
4

, Xn = 1

]
≤ π1M(i|1) log (M(i|1)(t0 + k))P

[
M(i|1)N1 −N1i ≥

M(i|1)t0
4

∣∣∣∣Xn = 1

]
+

M(i|1)
n

n−1∑
t=t0+1

P
[
M(i|1)N1 −N1i ≥

M(i|1)t
4

∣∣∣∣Xn = 1

]
(72)

where last inequality uses log
(
1 + 1

t−1+k

)
≤ 1

t ≲ 1
nπ1

for all t ≥ t0. Using Markov inequality

P [Z > c] ≤ c−4E
[
Z4
]

for c > 0, Lemma 15(ii) and x+ x4 ≤ 2(1 + x4) with x =
√

M(i|1)/γ∗

P
[
M(i|1)N1 −N1i ≥

M(i|1)t
4

∣∣∣∣Xn = 1

]
≲

(nπ1M(i|1))2 + M(i|1)2
γ4
∗

(tM(i|1))4
.
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In view of above continuing (72) we get

E
[
1{B≤}M(i|1) log (M(i|1)(N1 + k))

]
≲

(
(nπ1M(i|1))2 + M(i|1)2

γ4
∗

)(
π1M(i|1) log(M(i|1)(nπ1 + k))

(nπ1M(i|1))4
+

1

n(M(i|1))3
n∑

t=t0+1

1

t4

)

≲

 (nπ1M(i|1))2 + M(i|1)2
γ4
∗

n

( log(nπ1M(i|1) + kM(i|1))
(nπ1M(i|1))3

+
1

(nπ1M(i|1))3

)

≲
1

n

(
(nπ1M(i|1))2 + M(i|1)2

γ4
∗

)
log(nπ1M(i|1) + kM(i|1))

(nπ1M(i|1))3

≲
1

n

(
log(nπ1M(i|1) + kM(i|1))

nπ1M(i|1)
+

M(i|1) log(nπ1M(i|1) + k)

nπ1γ4
∗(nπ1M(i|1))2

)
(a)

≲
1

n

(
nπ1M(i|1) + kM(i|1)

nπ1M(i|1)
+

M(i|1) log(nπ1M(i|1))
nπ1γ4

∗(nπ1M(i|1))2
+

M(i|1) log k
nπ1γ4

∗(nπ1M(i|1))2

)
(b)

≲
1

n

(
1 + kM(i|1) + M(i|1) log k

rγ4
0

)
where (a) followed using x + y ≤ xy for x, y ≥ 2 and (b) followed as nπ1 ≥ r, nπ1M(i|1) ≥ 10
and log(nπ1M(i|1)) ≤ nπ1M(i|1). In view of (71) this implies

k∑
i=1

E
[
1{B≤}∆i

]
≲

k∑
i=1

1

n

(
1 + kM(i|1)

(
1 +

log k

rkγ4
0

))
≲

k

n

(
1 +

log k

rkγ4
0

)
. (73)

Bound on E
[
1{B>}∆i

]
Using the inequality (68)

E
[
1{B>}∆i

]
≤ E

[
1{B>} (M(i|1)N1 −N1i +M(i|1)k − 1)

2

(N1 + k) (N1i + 1)

]

≲
E
[
1{B>}

{
(M(i|1)N1 −N1i)

2
}]

+ k2π1M(i|1)2 + π1

(nπ1 + k)(nπ1M(i|1) + 1)

≲
π1E

[
(M(i|1)N1 −N1i)

2
∣∣∣Xn = 1

]
(nπ1 + k)(nπ1M(i|1) + 1)

+
kM(i|1)

n

where (a) follows using properties of the set B> along with (x+ y + z)2 ≤ 3(x2 + y2 + z2). Using
Lemma 15(i) we get

E
[
1{B>}∆i

]
≲

nπ1M(i|1) +
(
1 + M(i|1)

γ2
∗

)
n(nπ1M(i|1) + 1)

+
kM(i|1)

n
≲

1 + kM(i|1)
n

+
M(i|1)
nγ2

0

.

Summing up the last bound over i ∈ [k] and using we get for nπ1 > r, nπ1M(i|1) > 10

E
[
1{A>}D(M(·|1)∥M̂+1(·|1))

]
=

k∑
i=1

[
E
[
1{B≤}∆i

]
+ E

[
1{B>}∆i

]]
≲

k

n

(
1 +

1

kγ2
0

+
log k

rkγ4
0

)
.

Combining this with (70) we obtain

E
[
1{A>}D(M(·|1)∥M̂+1(·|1))

]
≲

k

n

(
1

kγ2
0

+ r +
log k

rkγ4
0

)
≲

k

n

(
1 +

√
log k

kγ4
0

)

where we chose r = 10 +
√

log k
kγ4

0
for the last inequality. In view of (67) this implies the required

bound.
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Remark 4. We explain the subtlety of the concentration bound in Lemma 15 based on fourth moment
and why existing Chernoff bound or Chebyshev inequality falls short. For example, the risk bound
in (67) relies on bounding the probability that N1 is atypically small. To this end, one may use
the classical Chernoff-type inequality for reversible chains (see [Lez98, Theorem 1.1] or [Pau15,
Proposition 3.10 and Theorem 3.3])

P [N1 ≤ (n− 1)π1/2|X1 = 1] ≲
1

√
π1

e−Θ(nπ1γ∗); (74)

in contrast, the fourth moment bound in (66) yields P [N1 ≤ (n− 1)π1/2|X1 = 1] = O( 1
(nπ1γ∗)2

).
Although the exponential tail in (74) is much better, the pre-factor 1√

π1
, due to conditioning on the

initial state, can lead to a suboptimal result when π1 is small. (As a concrete example, consider two
states with M(2|1) = Θ( 1n ) and M(1|2) = Θ(1). Then π1 = Θ( 1n ), γ = γ∗ ≈ Θ(1), and (74) leads
to P [N1 ≤ (n− 1)π1/2, Xn = 1] = O( 1√

n
) as opposed to the desired O( 1n ).)

In the same context it is also insufficient to use 2nd moment based bound (Chebyshev), which leads
to P [N1 ≤ (n− 1)π1/2|X1 = 1] = O( 1

nπ1γ∗
). This bound is too loose, which, upon substitution

into (66), results in an extra log n factor in the final risk bound when π1 and γ∗ are large.

7.2.2 Proof of Theorem 3 (ii)

Let k ≥ (log n)6 and γ0 ≥ (log(n+k))2

k . We prove a stronger result using spectral gap as opposed
to the absolute spectral gap. Fix M such that γ ≥ γ0. Denote its stationary distribution by π. For
absolute constants τ > 0 to be chosen later and c0 as in Lemma 16 below, define

ϵ(m) =
2k

m
+

c0(log n)
3
√
k

m
, cn = 100τ2

log n

nγ
,

n±
i = nπi ± τ max

{
log n

nγ
,

√
πi log n

nγ

}
, i = 1, . . . , k. (75)

Let Ni be the number of visits to state i as in (4). We bound the risk by accounting for the contributions
from different ranges of Ni and πi separately:

E

[
k∑

i=1

1{Xn=i}D
(
M(·|i)∥M̂+1(·|i)

)]
=

∑
i:πi≥cn

E
[
1{Xn=i,n−

i ≤Ni≤n+
i }D

(
M(·|i)∥M̂+1(·|i)

)]
+

∑
i:πi≥cn

E
[
1{Xn=i,Ni>n+

i or Ni<n−
i }D

(
M(·|i)∥M̂+1(·|i)

)]
+

∑
i:πi<cn

E
[
1{Xn=i}D

(
M(·|i)∥M̂+1(·|i)

)]
≤ log(n+ k)

∑
i:πi≥cn

P
[
D(M(·|i)∥M̂+1(·|i)) > ϵ(Ni), n

−
i ≤ Ni ≤ n+

i

]
+

∑
i:πi≥cn

E
[
1{Xn=i,n−

i ≤Ni≤n+
i }ϵ(Ni)

]
+ log(n+ k)

∑
i:πi≥cn

[
P
[
Ni ≥ n+

i

]
+ P

[
Ni ≤ n−

i

]]
+

∑
i:πi≤cn

πi log(n+ k)

≲ log(n+ k)
∑

i:πi≥cn

P
[
D(M(·|i)∥M̂+1(·|i)) > ϵ(Ni), n

−
i ≤ Ni ≤ n+

i

]
+

∑
i:πi≥cn

πi max
n−
i ≤m≤n+

i

ϵ(m)

+ log(n+ k)
∑

i:πi≥cn

(
P
[
Ni > n+

i

]
+ P

[
Ni < n−

i

])
+

k (log(n+ k))
2

nγ
. (76)

where the first inequality uses the worst-case bound (65) for add-one estimator. We analyze the terms
separately as follows.
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For the second term, given any i such that πi ≥ cn, we have, by definition in (75), n−
i ≥ 9nπi/10

and n+
i − n−

i ≤ nπi/5, which implies

∑
i:πi≥cn

πi max
n−
i ≤m≤n+

i

ϵ(m) ≤
∑

i:πi≥cn

πi

(
2k

0.9nπi
+

10

9

c0(log n)
3
√
k

nπi

)
≲

k2

n
+

(log n)3k3/2

n
.

(77)

For the third term, applying [HJL+18, Lemma 16] (which, in turn, is based on ther Bernstein

inequality in [Pau15]), we get P
[
Ni > n+

i

]
+ P

[
Ni < n−

i

]
≤ 2n

−τ2

4+10τ .

To bound the first term in (76), we follow the method in [Bil61, HJL+18] of representing the sample
path of the Markov chain using independent samples generated from M(·|i) which we describe below.
Consider a random variable X1 ∼ π and an array W = {Wiℓ : i = 1, . . . , k and ℓ = 1, 2, . . .} of
independent random variables, such that X and W are independent and Wiℓ

i.i.d.∼M(·|i) for each i.
Starting with generating X1 from π, at every step i ≥ 2 we set Xi as the first element in the Xi−1-th
row of W that has not been sampled yet. Then one can verify that {X1, . . . , Xn} is a Markov
chain with initial distribution π and transition matrix M . Furthermore, the transition counts satisfy
Nij =

∑Ni

ℓ=1 1{Wiℓ=j}, where Ni be the number of elements sampled from the ith row of W . Note
the conditioned on Ni = m, the random variables {Wi1, . . . ,Wim} are no longer iid. Instead, we
apply a union bound. Note that for each fixed m, the estimator

M̂+1(j|i) =
∑m

ℓ=1 1{Wiℓ=j} + 1

m+ k
≜ M̂+1

m (j|i), j ∈ [k]

is an add-one estimator for M(j|i) based on an i.i.d. sample of size m. Lemma 16 below provides a
high-probability bound for the add-one estimator in this iid setting. Using this result and the union
bound, we have

∑
i:πi≥cn

P
[
D(M(·|i)∥M̂+1(·|i)) > ϵ(Ni), n

−
i ≤ Ni ≤ n+

i

]
≤

∑
i:πi≥cn

(
n+
i − n−

i

)
max

n−
i ≤m≤n+

i

P
[
D(M(·|i)∥M̂+1

m (·|i)) > ϵ(m)
]
≤

∑
i:πi≥cn

1

n2
≤ k

n2

where the second inequality applies Lemma 16 with t = n ≥ n+
i ≥ m and uses n+

i − n−
i ≤ nπi/5

for πi ≥ cn.

Combining the above with (77), we continue (76) with τ = 25 to get

E

[
k∑

i=1

1{Xn=i}D
(
M(·|i)∥M̂+1(·|i)

)]
≲

k2

n
+

(log n)3k3/2

n
+

k(log(n+ k))2

nγ

which is O
(

k2

n

)
whenever k ≥ (log n)6 and γ ≥ (log(n+k))2

k .

Lemma 16 (KL risk bound for add-one estimator). Let V1, . . . , Vm
iid∼ Q for some distribution

Q = {Qi}ki=1 on [k]. Consider the add-one estimator Q̂+1 with Q̂+1
i = 1

m+k (
∑m

j=1 1{Vj=i} + 1).
There exists an absolute constant c0 such that for any t ≥ m,

P

[
D(Q∥Q̂+1) ≥ 2k

m
+

c0(log t)
3
√
k

m

]
≤ 1

t3
.
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Proof. Let Q̂ be the empirical estimator Q̂i =
1
m

∑m
j=1 1{Vj=i}. Then Q̂+1

i = mQ̂i+1
m+k and hence

D(Q∥Q̂+1) =

k∑
i=1

(
Qi log

Qi

Q̂+1
i

−Qi + Q̂+1
i

)

=

k∑
i=1

(
Qi log

Qi(m+ k)

mQ̂i + 1
−Qi +

mQ̂i + 1

m+ k

)

=

k∑
i=1

(
Qi log

Qi

Q̂i +
1
m

−Qi + Q̂i +
1

m

)
+

k∑
i=1

(
Qi log

m+ k

m
− kQ̂i

m+ k
− k

m(m+ k)

)

≤
k∑

i=1

(
Qi log

Qi

Q̂i +
1
m

−Qi + Q̂i +
1

m

)
+

k

m
(78)

with last equality following by 0 ≤ log
(
m+k
m

)
≤ k/m.

To control the sum in the above display it suffices to consider its Poissonized version. Specifically,
we aim to show

P

[
k∑

i=1

(
Qi log

Qi

Q̂poi
i + 1

m

−Qi + Q̂poi
i +

1

m

)
>

k

m
+

c0(log t)
3
√
k

m

]
≤ 1

t4
(79)

where mQ̂poi
i , i = 1, . . . , k are distributed independently as Poi(mQi). (Here and below Poi(λ)

denotes the Poisson distribution with mean λ.) To see why (79) implies the desired result, letting
w = k

m + c0(log t)3
√
k

m and Y =
∑k

i=1 mQ̂poi
i ∼ Poi(m), we have

P

[
k∑

i=1

(
Qi log

Qi

Q̂i +
1
m

−Qi + Q̂i +
1

m

)
> w

]
(a)
= P

[
k∑

i=1

(
Qi log

Qi

Q̂poi
i + 1

m

−Qi + Q̂poi
i +

1

m

)
> w

∣∣∣∣∣
k∑

i=1

Qpoi
i = 1

]
(b)

≤ 1

t4P[Y = m]
=

m!

t4e−mmm

(c)

≲

√
m

t4
≤ 1

t3
. (80)

where (a) followed from the fact that conditioned on their sum independent Poisson random variables
follow a multinomial distribution; (b) applies (79); (c) follows from Stirling’s approximation.

To prove (79) we rely on concentration inequalities for sub-exponential distributions. A random
variable X is called sub-exponential with parameters σ2, b > 0, denoted as SE(σ2, b) if

E
[
eλ(X−E[X])

]
≤ e

λ2σ2

2 , ∀|λ| < 1

b
. (81)

Sub-exponential random variables satisfy the following properties [Wai19, Sec. 2.1.3]:

• If X is SE(σ2, b) for any t > 0

P [|X − E[X]| ≥ v] ≤

{
2e−v2/(2σ2), 0 < v ≤ σ2

b

2e−v/(2b), v > σ2

b .
(82)

• Bernstein condition: A random variable X is SE(σ2, b) if it satisfies

E
[
|X − E[X]|ℓ

]
≤ 1

2
ℓ!σ2bℓ−2, ℓ = 2, 3, . . . . (83)

• If X1, . . . , Xk are independent SE(σ2, b), then
∑k

i=1 Xi is SE(kσ2, b).
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Define Xi = Qi log
Qi

Q̂poi
i + 1

m

−Qi + Q̂poi
i + 1

m , i ∈ [k]. Then Lemma 17 below shows that Xi’s are

independent SE(σ2, b) with σ2 = c1(logm)4

m2 , b = c2(logm)2

n for absolute constants c1, c2, and hence∑k
i=1 (Xi − E[Xi]) is SE(kσ2, b). In view of (82) for the choice c0 = 8(c1 + c2) this implies

P

[
k∑

i=1

(Xi − E[Xi]) ≥ c0
(log t)3

√
k

m

]
≤ 2e−

c2
0
k(log t)6

2m2σ2 + 2e−
c0

√
k(log t)3

2mb ≤ 1

t3
. (84)

Using 0 ≤ y log y − y + 1 ≤ (y − 1)2, y > 0 and E
[

λ
Poi(λ)+1

]
=
∑∞

v=0
e−λλv+1

(v+1)! = 1− e−λ

E

[
k∑

i=1

Xi

]
≤ E

 k∑
i=1

(
Qi −

(
Q̂poi

i + 1
m

))2
Q̂poi

i + 1
m


=

k∑
i=1

mQ2
iE

[
1

mQ̂poi
i + 1

]
− 1 +

k

m
=

k∑
i=1

Qi

(
1− e−mQi

)
− 1 +

k

m
≤ k

m
.

Combining the above with (84) we get (79) as required.

Lemma 17. There exist absolute constants c1, c2 such that the following holds. For any p ∈ (0, 1)

and nY ∼ Poi(np), X = p log p
Y+ 1

n

− p+ Y + 1
n is SE

(
c1(logn)4

n2 , c2(logn)2

n

)
.

Proof. Note that X is a non-negative random variable. Since E
[
(X − E[X])

ℓ
]
≤ 2ℓE

[
Xℓ
]

, by the

Bernstein condition (83), it suffices to show E[Xℓ] ≤
(

c3ℓ(logn)2

n

)ℓ
, ℓ = 2, 3, . . . for some absolute

constant c3. guarantees the desired sub-exponential behavior. The analysis is divided into following
two cases for some absolute constant c4 ≥ 24.

Case I p ≥ c4ℓ logn
n : Using Chernoff bound for Poisson [Jan02, Theorem 3]

P [|Poi(λ)− λ| > x] ≤ 2e−
x2

2(λ+x/3) , λ, x > 0, (85)

we get

P

[
|Y − p| >

√
c4ℓp log n

4n

]
≤ 2 exp

(
− c4nℓp log n

8np+ 2
√
c4nℓp log n

)

≤ 2 exp

(
− c4ℓ log n

8 + 2
√

c4ℓ log n/np

)
≤ 1

n2ℓ
(86)

which implies p/2 ≤ Y ≤ 2p with probability at least 1− n−2ℓ. Since 0 ≤ X ≤ (Y−p− 1
n )2

Y+ 1
n

, we get

E[Xℓ] ≲

(√
c4ℓp logn/4n

)2ℓ

(p/2)ℓ
+ nℓ

n2ℓ ≲
(

c4ℓ logn
n

)ℓ
.

Case II p < c4ℓ logn
n :

• On the event {Y > p}, we have X ≤ Y + 1
n ≤ 2Y , where the last inequality follows because

nY takes non-negative integer values. Since X ≥ 0, we have Xℓ1{Y >p} ≤ (2Y )ℓ1{Y >p}

for any ℓ ≥ 2. Using the Chernoff bound (85), we get Y ≤ 2c4ℓ logn
n with probability at

least 1− n−2ℓ, which implies

E
[
Xℓ1{Y≥p}

]
≤ E

[
(2Y )ℓ1{Y >p,Y≤ 2c4ℓ log n

n }
]
+ E

[
(2Y )ℓ1{Y >p,Y >

2c4ℓ log n
n }

]
≤
(
4c4ℓ log n

n

)ℓ

+ 2ℓ
(
E[Y 2ℓ]P

[
Y >

2c4ℓ log n

n

]) 1
2

≤
(
c5ℓ log n

n

)ℓ

35



for absolute constant c5. Here, the last inequality follows from Cauchy-Schwarz and us-

ing the Poisson moment bound [Ahl21, Theorem 2.1]:4 E[(nY )2ℓ] ≤
(

2ℓ

log(1+ 2ℓ
np )

)2ℓ

≤

(c6ℓ log n)
2ℓ for some absolute constant c6, with the second inequality applying the assump-

tion p < c4ℓ logn
n .

• As X1{Y≤p} ≤ p log n+ 1
n ≲ ℓ(logn)2

n , we get E
[
Xℓ1{Y≤p}

]
≤
(

c7ℓ(logn)2

n

)ℓ
for some

absolute constant c7.

7.2.3 Proof of Corollary 4

We show the following monotonicity result of the prediction risk. In view of this result, Corollary 4
immediately follows from Theorem 2 and Theorem 3 (i).

Lemma 18. Riskk+1,n(γ0) ≥ Riskk,n(γ0) for all γ0 ∈ (0, 1), k ≥ 2.

Proof. Fix an M ∈ Mk(γ0) such that γ∗(M) > γ0. Denote the stationary distribution π such that
πM = π. Fix δ ∈ (0, 1) and define a transition matrix M̃ with k + 1 states as follows:

M̃ =

(
(1− δ)M δ1
(1− δ)π δ

)
One can verify the following:

• M̃ is irreducible and reversible;

• The stationary distribution for M̃ is π̃ = ((1− δ)π, δ)

• The absolute spectral gap of M̃ is γ∗(M̃) = (1− δ)γ∗(M), so that M̃ ∈ Mk+1(γ0) for all
sufficiently small δ.

• Let (X1, . . . , Xn) and (X̃1, . . . , X̃n) be stationary Markov chains with transition matrices
M and M̃ , respectively. Then as δ → 0, (X1, . . . , Xn) converges to (X̃1, . . . , X̃n) in law,
i.e., the joint probability mass function converges pointwise.

Next fix any estimator M̂ for state space [k + 1]. Note that without loss of generality we can assume
M̂(j|i) > 0 for all i, j ∈ [k+1] for otherwise the KL risk is infinite. Define M̂ trunc as M̂ without the

k+1-th row and column, and denote by M̂ ′ its normalized version, namely, M̂ ′(·|i) = M̂ trunc(·|i)
1−M̂ trunc(k+1|i)

for i = 1, . . . , k. Then

EX̃n

[
D(M̃(·|X̃n)∥M̂(·|X̃n))

]
δ→0−−−→ EXn

[
D(M(·|Xn)∥M̂(·|Xn))

]
≥ EXn

[
D(M(·|Xn)∥M̂ ′(·|Xn))

]
≥ inf

M̂
EXn

[
D(M(·|Xn)∥M̂(·|Xn))

]
where in the first step we applied the convergence in law of X̃n to Xn and the continuity of
P 7→ D(P∥Q) for fixed componentwise positive Q; in the second step we used the fact that for any
sub-probability measure Q = (qi) and its normalized version Q̄ = Q/α with α =

∑
qi ≤ 1, we

have D(P∥Q) = D(P∥Q̄) + log 1
α ≥ D(P∥Q̄). Taking the supremum over M ∈ Mk(γ0) on the

LHS and the supremum over M̃ ∈ Mk+1(γ0) on the RHS, and finally the infimum over M̂ on the
LHS, we conclude Riskk+1,n(γ0) ≥ Riskk,n(γ0).

4For a result with less precise constants, see also [Ahl21, Eq. (1)] based on [Lat97, Corollary 1].
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A Mutual information representation of prediction risk

The following lemma justifies the representation (22) for the prediction risk as maximal conditional
mutual information. Unlike (17) for redundancy which holds essentially without any condition
[Kem74], here we impose certain compactness assumptions which hold finite alphabets such as
finite-state Markov chains studied in this paper.
Lemma 19. Let X be finite and let Θ be a compact subset of Rd. Given {PXn+1|θ : θ ∈ Θ}, define
the prediction risk

Riskn ≜ inf
QXn+1|Xn

sup
θ∈Θ

D(PXn+1|Xn,θ∥QXn+1|Xn |PXn|θ), (87)

Then
Riskn = sup

Pθ∈M(Θ)

I(θ;Xn+1|Xn). (88)

where M(Θ) denotes the collection of all (Borel) probability measures on Θ.

Note that for stationary Markov chains, (22) follows from Lemma 19 since one can take θ to be the
joint distribution of (X1, . . . , Xn+1) itself which forms a compact subset of the probability simplex
on Xn+1.

Proof. It is clear that (87) is equivalent to

Riskn = inf
QXn+1|Xn

sup
Pθ∈M(Θ)

D(PXn+1|Xn,θ∥QXn+1|Xn |PXn,θ).

By the variational representation (14) of conditional mutual information, we have

I(θ;Xn+1|Xn) = inf
QXn+1|Xn

D(PXn+1|Xn,θ∥QXn+1|Xn |PXn,θ). (89)

Thus (88) amounts to justifying the interchange of infimum and supremum in (87). It suffices to
prove the upper bound.

Let |X | = K. For ϵ ∈ (0, 1), define an auxiliary quantity:

Riskn,ϵ ≜ inf
QXn+1|Xn≥ ϵ

K

sup
Pθ∈M(Θ)

D(PXn+1|Xn,θ∥QXn+1|Xn |PXn,θ), (90)

where the constraint in the infimum is pointwise, namely, QXn+1=xn+1|Xn=xn ≥ ϵ
K for all

x1, . . . , xn+1 ∈ X . By definition, we have Riskn ≤ Riskn,ϵ. Furthermore, Riskn,ϵ can be equiva-
lently written as

Riskn,ϵ = inf
QXn+1|Xn

sup
Pθ∈M(Θ)

D(PXn+1|Xn,θ∥(1− ϵ)QXn+1|Xn + ϵU |PXn,θ), (91)

where U denotes the uniform distribution on X .

We first show that the infimum and supremum in (91) can be interchanged. This follows from the
standard minimax theorem. Indeed, note that D(PXn+1|Xn,θ∥(1 − ϵ)QXn+1|Xn + ϵU |PXn,θ) is
convex in QXn+1|Xn , affine in Pθ, continuous in each argument, and takes values in [0, log K

ϵ ]. Since
M(Θ) is convex and weakly compact (by Prokhorov’s theorem) and the collection of conditional
distributions QXn+1|Xn is convex, the minimax theorem (see, e.g., [Fan53, Theorem 2]) yields

Riskn,ϵ = sup
π∈M(Θ)

inf
QXn+1|Xn

D(PXn+1|Xn,θ∥(1− ϵ)QXn+1|Xn + ϵU |PXn,θ). (92)

Finally, by the convexity of the KL divergence, for any P on X , we have

D(P∥(1− ϵ)Q+ ϵU) ≤ (1− ϵ)D(P∥Q) + ϵD(P∥U) ≤ (1− ϵ)D(P∥Q) + ϵ logK,

which, in view of (89) and (92), implies

Riskn ≤ Riskn,ϵ ≤ sup
Pθ∈M(Θ)

I(θ;Xn+1|Xn) + ϵ logK.

By the arbitrariness of ϵ, (88) follows.

37



B Proof of Lemma 15

Recall that for any irreducible and reversible finite states transition matrix M with stationary distribu-
tion π the followings are satisfied:

1. πi > 0 for all i.
2. M(j|i)πi = M(i|j)πj for all i, j.

The following is a direct consequence of the Markov property.
Lemma 20. For any 1 ≤ t1 < · · · < tm < · · · < tk and any Z2 = f (Xtk , . . . , Xtm) , Z1 =
g
(
Xtm−1 , . . . , Xt1

)
we have

E
[
Z21{Xtm=j}Z1|X1 = i

]
= E [Z2|Xtm = j]E

[
1{Xtm=j}Z1|X1 = i

]
(93)

For t ≥ 0, denote the t-step transition probability by P [Xt+1 = j|X1 = i] = M t(j|i), which is the
ijth entry of M t. The following result is standard (see, e.g., [LP17, Chap. 12]). We include the proof
mainly for the purpose of introducing the spectral decomposition.

Lemma 21. Define λ∗ ≜ 1− γ∗ = max {|λi| : i ̸= 1}. For any t ≥ 0, |M t(j|i)− πj | ≤ λt
∗

√
πj

πi
.

Proof. Throughout the proof all vectors are column vectors except for π. Let Dπ denote the diagonal
matrix with entries Dπ(i, i) = πi. By reversibility, D

1
2
πMD

− 1
2

π , which shares the same spectrum

with M , is a symmetric matrix and admits the spectral decomposition D
1
2
πMD

− 1
2

π =
∑k

a=1 λauau
⊤
a

for some orthonormal basis {u1, . . . , uk}; in particular, λ1 = 1 and u1i =
√
πi. Then for each t ≥ 1,

M t =

k∑
a=1

λt
aD

− 1
2

π uau
⊤
a D

1
2
π = 1π +

k∑
a=2

λt
aD

− 1
2

π uau
⊤
a D

1
2
π . (94)

where 1 is the all-ones vector. As ua’s satisfy
∑k

a=1 uau
⊤
a = I we get

∑k
a=2 u

2
ab = 1 − u2

a1 ≤ 1
for any b = 1, . . . , k. Using this along with Cauchy-Schwarz inequality we get

∣∣M t(j|i)− πj

∣∣ ≤√πj

πi

k∑
a=2

|λa|t |uaiuaj | ≤ λt
∗

√
πj

πi

(
k∑

a=2

u2
ai

) 1
2
(

k∑
a=2

u2
aj

) 1
2

≤ λt
∗

√
πj

πi

as required.

Lemma 22. Fix states i, j. For any integers a ≥ b ≥ 1, define

hs(a, b) =
∣∣E [1{Xa+1=i}

(
1{Xa=j} −M(j|i)

)s |Xb = i
]∣∣ , s = 1, 2, 3, 4.

Then

(i) h1(a, b) ≤ 2
√
M(j|i)λa−b

∗

(ii) |h2(a, b)− πiM(j|i)(1−M(j|i))| ≤ 4
√

M(j|i)λa−b
∗ .

(iii) h3(a, b), h4(a, b) ≤ πiM(j|i)(1−M(j|i)) + 4
√
M(j|i)λa−b

∗ .

Proof. We apply Lemma 21 and time reversibility:

(i)

h1(a, b) = |P [Xa+1 = i,Xa = j|Xb = i]−M(j|i)P [Xa+1 = i|Xb = i]|
=
∣∣M(i|j)Ma−b(j|i)−M(j|i)Ma−b+1(i|i)

∣∣
≤ M(i|j)

∣∣Ma−b(j|i)− πj

∣∣+M(j|i)
∣∣Ma−b+1(i|i)− πi

∣∣
≤ λa−b

∗ M(i|j)
√

πj

πi
+M(j|i)λa−b+1

∗

= λa−b
∗
√
M(j|i)M(i|j) +M(j|i)λa−b+1

∗ ≤ 2
√

M(j|i)λa−b
∗ .
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(ii)

|h2(a, b)− πiM(j|i)(1−M(j|i))|

=
∣∣∣E [1{Xa+1=i,Xa=j}|Xb = i

]
− πiM(j|i) + (M(j|i))2 (E

[
1{Xa+1=i}|Xb = i

]
− πi)

− 2M(j|i)(E
[
1{Xa+1=i,Xa=j}|Xb = i

]
− πiM(j|i))

∣∣∣
≤ |P [Xa+1 = i,Xa = j|Xb = i]− πjM(i|j)|+ (M(j|i))2 |P [Xa+1 = i|Xb = i]− πi|

+ 2M(j|i) |P [Xa+1 = i,Xa = j|Xb = i]− πjM(i|j)|
=M(i|j)

∣∣Ma−b(j|i)− πj

∣∣+ (M(j|i))2
∣∣Ma−b+1(i|i)− πi

∣∣+ 2M(j|i)M(i|j)
∣∣Ma−b(j|i)− πj

∣∣
≤M(i|j)

√
πj

πi
λa−b
∗ + (M(j|i))2λa−b+1

∗ + 2M(j|i)M(i|j)
√

πj

πi
λa−b
∗

≤λa−b
∗

√M(i|j)

√
M(i|j)πj

πi
+ (M(j|i))2 + 2M(j|i)

√
M(i|j)

√
M(i|j)πj

πi


≤4
√
M(j|i)λa−b

∗ .

(iii) h3(a, b), h4(a, b) ≤ h2(a, b).

Proof of Lemma 15(i). For ease of notation we use c0 to denote an absolute constant whose value
may vary at each occurrence. Fix i, j ∈ [k]. Note that the empirical count defined in (4) can be
written as Ni =

∑n−1
a=1 1{Xn−a=i} and Nij =

∑n−1
a=1 1{Xn−a=i,Xn−a+1=j}. Then

E
[
(M(j|i)Ni −Nij)

2 |Xn = i
]

=E

(n−1∑
a=1

1{Xn−a=i}
(
1{Xn−a+1=j} −M(j|i)

))2
∣∣∣∣∣∣Xn = i


(a)
=E

(n−1∑
a=1

1{Xa+1=i}
(
1{Xa=j} −M(j|i)

))2
∣∣∣∣∣∣X1 = i


(b)
=

∣∣∣∣∣∣
∑
a,b

E [ηaηb|X1 = i]

∣∣∣∣∣∣ ≤ 2
∑
a≥b

|E [ηaηb|X1 = i]| ,

where (a) is due to time reversibility; in (b) we defined ηa ≜ 1{Xa+1=i}
(
1{Xa=j} −M(j|i)

)
. We

divide the summands into different cases and apply Lemma 22.

Case I: Two distinct indices. For any a > b, using Lemma 20 we get

|E [ηaηb|X1 = i]| = |E [ηa|Xb+1 = i]| |E [ηb|X1 = 1]| = h1(a, b+ 1)h1(b, 1) (95)

which implies∑∑
n−1≥a>b≥1

|E [ηaηb|X1 = i]| =
∑∑

n−1≥a>b≥1

h1(a, b+ 1)h1(b, 1) ≲ M(j|i)
∑∑

n−1≥a>b≥1

λa−2
∗ ≲

M(j|i)
γ2
∗

.

Here the last inequality (and similar sums in later deductions) can be explained as follows. Note
that for γ∗ ≥ 1

2 (i.e. λ∗ ≤ 1
2 ), the sum is clearly bounded by an absolute constant; for γ∗ < 1

2

(i.e. λ∗ > 1
2 ), we compare the sum with the mean (or higher moments in other calculations) of a

geometric random variable.

Case II: Single index.
n−1∑
a=1

E
[
η2a|X1 = i

]
=

n−1∑
a=1

h2(a, 1) ≲ nπiM(j|i)(1−M(j|i)) +
√
M(j|i)
γ∗

. (96)
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Combining the above we get

E
[
(Nij −M(j|i)Ni)

2 |Xn = i
]
≲ nπiM(j|i)(1−M(j|i)) +

√
M(j|i)
γ∗

+
M(j|i)
γ2
∗

as required.

Proof of Lemma 15(ii). We first note that due to reversibility we can write (similar as in proof of
Lemma 15(i)) with ηa = 1{Xa+1=i}

(
1{Xa=j} −M(j|i)

)
E
[
(M(j|i)Ni −Nij)

4 |Xn = i
]

= E

(n−1∑
a=1

1{Xa+1=i}
(
1{Xa=j} −M(j|i)

))4
∣∣∣∣∣∣X1 = i


=

∣∣∣∣∣∣
∑

a,b,d,e

E [ηaηbηdηe|X1 = i]

∣∣∣∣∣∣ ≤
∑

a,b,d,e

|E [ηaηbηdηe|X1 = i]| ≲
∑

a≥b≥d≥e

|E [ηaηbηdηe|X1 = i]| .

(97)

We bound the sum over different combinations of a ≥ b ≥ d ≥ e to come up with a bound on
the required fourth moment. We first divide the η’s into groups depending on how many distinct
indices of η there are. We use the following identities which follow from Lemma 20: for indices
a > b > d > e

• |E [ηaηbηdηe|X1 = i]| = h1(a, b+ 1)h1(b, d+ 1)h1(d, e+ 1)h1(e, 1)

• For s1, s2, s3 ∈ {1, 2}, |E [ηs1a ηs2b ηs3d |X1 = i]| = hs1(a, b+ 1)hs2(b, d+ 1)hs3(d, 1)

• For s1, s2 ∈ {1, 2, 3}, |E [ηs1a ηs2b |X1 = i]| = hs1(a, b+ 1)hs2(b, 1)

• E
[
η4a|X1 = 1

]
= h4(a, 1)

and then use Lemma 22 to bound the h functions.

Case I: Four distinct indices. Using Lemma 22 we have∑∑∑∑
n−1≥a>b>d>e≥1

|E [ηaηbηdηe|X1 = i]| =
∑∑∑∑
n−1≥a>b>d>e≥1

h1(a, b+ 1)h1(b, d+ 1)h1(d, e+ 1)h1(e, 1)

≤M(j|i)2
∑∑∑∑
n−1≥a>b>d>e≥1

λa−4
∗ ≲

M(j|i)2

γ4
∗

.

Case II: Three distinct indices. There are three cases, namely η2aηbηd, ηaη
2
bηd and ηaηbη

2
d.

1. Bounding
∑∑∑

n−1≥a>b>d≥1

∣∣E [η2aηbηd|X1 = i
]∣∣:∑∑∑

n−1≥a>b>d≥1

∣∣E [η2aηbηd|X1 = i
]∣∣ = ∑∑∑

n−1≥a>b>d≥1

h2(a, b+ 1)h1(b, d+ 1)h1(d, 1)

≲
∑∑∑

n−1≥a>b>d≥1

(
πiM(j|i)(1−M(j|i)) +

√
M(j|i)λa−b−1

∗

)
M(j|i)λb−2

∗

≲
M(j|i)
γ2
∗

nπiM(j|i)(1−M(j|i)) + M(j|i)
3
2

γ3
∗

≲ (nπiM(j|i)(1−M(j|i)))2 + M(j|i)
3
2

γ3
∗

+
M(j|i)2

γ4
∗

where the last inequality followed by using xy ≤ x2 + y2.
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2. Bounding
∑∑∑

n−2≥a>b>d≥1

∣∣E [ηaη2bηd|X1 = i
]∣∣:

∑∑∑
n−2≥a>b>d≥1

∣∣E [ηaη2bηd|X1 = i
]∣∣

=
∑∑∑

n−2≥a>b>d≥1

h1(a, b+ 1)h2(b, d+ 1)h1(d, 1)

≲
∑∑∑

n−2≥a>b>d≥1

(
πiM(j|i)(1−M(j|i)) +

√
M(j|i)λb−d−1

∗

)
M(j|i)λa−b+d−2

∗

≲
M(j|i)
γ2
∗

nπiM(j|i)(1−M(j|i)) + M(j|i) 3
2

γ3
∗

≲ nπiM(j|i)(1−M(j|i))2 + M(j|i) 3
2

γ3
∗

+
M(j|i)2

γ4
∗

.

3. Bounding
∑∑∑

n−2≥a>b>d≥1

∣∣E [ηaηbη2d|X1 = i
]∣∣:∑∑∑

n−2≥a>b>d≥1

∣∣E [ηaηbη2d|X1 = i
]∣∣

=
∑∑∑

n−2≥a>b>d≥1

h1(a, b+ 1)h1(b, d+ 1)h2(d, 1)

≲
∑∑∑

n−2≥a>b>d≥1

(
πiM(j|i)(1−M(j|i)) +

√
M(j|i)λd−1

∗

)
M(j|i)λa−d−2

∗

≲
M(j|i)
γ2
∗

nπiM(j|i)(1−M(j|i)) + M(j|i)
3
2

γ3
∗

≲ (nπiM(j|i)(1−M(j|i)))2 + M(j|i)
3
2

γ3
∗

+
M(j|i)2

γ4
∗

.

Case III: Two distinct indices. There are three different cases, namely η2aη
2
b , η

3
aηb and ηaη

3
b .

1. Bounding
∑∑

n−2≥a>b≥1

∣∣E [η2aη2b |X1 = i
]∣∣:∑∑

n−2≥a>b≥1

E
[
η2aη

2
b |X1 = i

]
=

∑∑
n−2≥a>b≥1

h2(a, b+ 1)h2(b, 1)

≲
∑∑

n−2≥a>b≥1

(
πiM(j|i)(1−M(j|i)) +

√
M(j|i)λa−b−1

∗

)(
πiM(j|i)(1−M(j|i)) +

√
M(j|i)λb−1

∗

)
≲

∑∑
n−2≥a>b≥1

{
πiM(j|i)(1−M(j|i))

√
M(j|i)(λa−b−1

∗ + λb−1
∗ )

+ (πiM(j|i)(1−M(j|i)))2 +M(j|i)λa−2
∗

}
≲ (nπiM(j|i)(1−M(j|i)))2 +

√
M(j|i)
γ∗

nπiM(j|i)(1−M(j|i)) + M(j|i)
γ2
∗

≲ (nπiM(j|i)(1−M(j|i)))2 + M(j|i)
γ2
∗

.

2. Bounding
∑∑

n−2≥a>b≥1

∣∣E [η3aηb|X1 = i
]∣∣:
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∑∑
n−2≥a>b≥1

∣∣E [η3aηb|X1 = i
]∣∣

=
∑∑

n−2≥a>b≥1

h3(a, b+ 1)h1(b, 1)

≲
∑∑

n−2≥a>b≥1

(
πiM(j|i)(1−M(j|i)) +

√
M(j|i)λa−b−1

∗

)√
M(j|i)λb−1

∗

≲

√
M(j|i)
γ∗

nπiM(j|i)(1−M(j|i)) + M(j|i)
γ2
∗

≲ (nπiM(j|i)(1−M(j|i)))2 + M(j|i)
γ2
∗

.

3. Bounding
∑∑

n−2≥a>b≥1

∣∣E [ηaη3b |X1 = i
]∣∣:

∑∑
n−2≥a>b≥1

∣∣E [ηaη3b |X1 = i
]∣∣

=
∑∑

n−2≥a>b≥1

h1(a, b+ 1)h3(b, 1)

≲
∑∑

n−2≥a>b≥1

(
πiM(j|i)(1−M(j|i)) +

√
M(j|i)λb−1

∗

)√
M(j|i)λa−b−1

∗

≲

√
M(j|i)
γ∗

nπiM(j|i)(1−M(j|i)) + M(j|i)
γ2
∗

≲ (nπiM(j|i)(1−M(j|i)))2 + M(j|i)
γ2
∗

.

Case IV: Single index. Bound on
∑n−1

a=1 E
[
η4a|X1 = i

]
:

n−1∑
a=1

E
[
η4a|X1 = i

]
=

n−1∑
a=1

h4(a, 1)≤nπiM(j|i)(1−M(j|i)) +
√
M(j|i)
γ∗

.

Combining all cases we get

E
[
(M(j|i)Ni −Nij)

4 |Xn = i
]
≲ (nπiM(j|i)(1−M(j|i)))2 +

√
M(j|i)
γ∗

+
M(j|i)
γ2
∗

+
M(j|i) 3

2

γ3
∗

+
M(j|i)2

γ4
∗

≲ (nπiM(j|i)(1−M(j|i)))2 +
√
M(j|i)
γ∗

+
M(j|i)2

γ4
∗

as required.

Proof of Lemma 15(iii). Throughout our proof we repeatedly use the spectral decomposition (94)
applied to the diagonal elements:

M t(i|i) = πi +
∑
v≥2

λt
vu

2
vi,

∑
v≥2

u2
vi ≤ 1.

Write Ni − (n− 1)πi =
∑n−1

a=1 ξa where ξa = 1{Xa=i} − πi. For a ≥ b ≥ d ≥ e,

E [ξaξbξdξe|X1 = i]

= E
[
ξaξb

(
1{Xd=i,Xe=i} − πi1{Xd=i} − πi1{Xe=i} + π2

i

)
|X1 = i

]
= E

[
ξaξb1{Xd=i,Xe=i}|X1 = i

]
− πiE

[
ξaξb1{Xd=i}|X1 = i

]
− πiE

[
ξaξb1{Xe=i}|X1 = i

]
+ π2

i E [ξaξb|X1 = i]

= E [ξaξb|Xd = i]P [Xd = i|Xe = i]P[Xe = i|X1 = i]− πiE [ξaξb|Xd = i]P[Xd = i|X1 = i]

− πiE [ξaξb|Xe = i]P[Xe = i|X1 = i] + π2
i E [ξaξb|X1 = i]

= E [ξaξb|Xd = i]
{
Md−e(i|i)Me−1(i|i)− πiM

d−1(i|i)
}

−
{
πiE [ξaξb|Xe = i]Me−1(i|i)− π2

i E [ξaξb|X1 = i]
}

(98)
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Using the Markov property for any d ≤ b ≤ a, we get

∣∣∣∣∣∣E[ξaξb|Xd = i]− πi

∑
v≥2

u2
viλ

a−b
v

∣∣∣∣∣∣
=

∣∣∣∣∣∣E [1{Xa=i,Xb=i} − πi1{Xa=i} − πi1{Xb=i} + π2
i |Xd = i

]
− πi

∑
v≥2

u2
viλ

a−b
v

∣∣∣∣∣∣
=

∣∣∣∣∣∣Ma−b(i|i)M b−d(i|i)− πiM
a−d(i|i)− πiM

b−d(i|i) + π2
i − πi

∑
v≥2

u2
viλ

a−b
v

∣∣∣∣∣∣
=

∣∣∣∣∣∣
πi +

∑
v≥2

u2
viλ

a−b
v

πi +
∑
v≥2

u2
viλ

b−d
v

 − πi

πi +
∑
v≥2

u2
viλ

a−d
v


−πi

πi +
∑
v≥2

u2
viλ

b−d
v

+ π2
i − πi

∑
v≥2

u2
viλ

a−b
v

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

v≥2

u2
viλ

a−b
v

∑
v≥2

u2
viλ

b−d
v

− πi

∑
v≥2

u2
viλ

a−d
v

∣∣∣∣∣∣
≤ λa−d

∗

∑
v≥2

u2
vi

∑
v≥2

u2
vi

+ λa−d
∗ πi

∑
v≥2

u2
vi ≤ 2λa−d

∗ . (99)

We also get for d ≥ e

∣∣Md−e(i|i)Me−1(i|i)− πiM
d−1(i|i)

∣∣
=

∣∣∣∣∣∣
πi +

∑
v≥2

u2
viλ

d−e
v

πi +
∑
v≥2

u2
viλ

e−1
v

− πi

πi +
∑
v≥2

u2
viλ

d−1
v

∣∣∣∣∣∣
=

∣∣∣∣∣∣πi

∑
v≥2

u2
viλ

e−1
v + πi

∑
v≥2

u2
viλ

d−e
v +

∑
v≥2

u2
viλ

e−1
v

∑
v≥2

u2
viλ

d−e
v

− πi

∑
v≥2

u2
viλ

d−1
v

∣∣∣∣∣∣
≤ 2λd−1

∗ + πiλ
e−1
∗ + πiλ

d−e
∗ . (100)

This implies

|E [ξaξb|Xd = i]|
∣∣Md−e(i|i)Me−1(i|i)− πiM

d−1(i|i)
∣∣

≤

πi

∑
v≥2

u2
viλ

a−b
v + 2λa−d

∗

(2λd−1
∗ + πiλ

e−1
∗ + πiλ

d−e
∗
)

≤
(
πiλ

a−b
∗ + 2λa−d

∗
) (

2λd−1
∗ + πiλ

e−1
∗ + πiλ

d−e
∗
)

≤ 4
[
π2
i λ

a−b+d−e
∗ + π2

i λ
a−b+e−1
∗ + πi

(
λa−b+d−1
∗ + λa−d+e−1

∗ + λa−e
∗
)
+ λa−1

∗
]

(101)
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Using (99) along with Lemma 21 for any e ≤ b ≤ a we get∣∣πiE [ξaξb|Xe = i]Me−1(i|i)− π2
i E [ξaξb|X1 = i]

∣∣
≤ πi |E [ξaξb|Xe = i]|

∣∣Me−1(i|i)− πi

∣∣+ π2
i

∣∣∣∣∣∣E [ξaξb|Xe = i]− πi

∑
v≥2

u2
viλ

a−b
v

∣∣∣∣∣∣ (102)

+ π2
i

∣∣∣∣∣∣E [ξaξb|X1 = i]− πi

∑
v≥2

u2
viλ

a−b
v

∣∣∣∣∣∣
≤ πi

πi

∑
v≥2

u2
viλ

a−b
v + 2λa−e

∗

 2λe−1
∗ + 2π2

i λ
a−e
∗ + 2π2

i λ
a−1
∗

≤ 2π2
i λ

a−b+e−1
∗ + 4π2

i λ
a−e
∗ + 4π2

i λ
a−1
∗ . (103)

This together with (101) and (98) implies

|E [ξaξbξdξe|X1 = i]| ≲ π2
i

(
λa−b+d−e
∗ + λa−b+e−1

∗
)
+ λa−1

∗

+ πi

(
λa−b+d−1
∗ + λa−d+e−1

∗ + λa−e
∗
) (104)

To bound the sum over n− 1 ≥ a ≥ b ≥ d ≥ e ≥ 1, we divide the analysis according to the number
of distinct ordered indices related variations in terms.

Case I: four distinct indices. We sum (104) over all possible a > b > d > e.

• For the first term,

π2
i

∑∑∑∑
n−1≥a>b>d>e≥1

λa−b+d−e
∗ ≲

nπ2
i

γ∗

∑∑
n−1≥a>b≥3

λa−b
∗ ≲

n2π2
i

γ2
∗

.

• For the second term,

π2
i

∑∑∑∑
n−1≥a>b>d>e≥1

λa−b+e−1
∗ ≲

nπ2
i

γ∗

∑∑
n−1≥a>b≥3

λa−b
∗ ≲

n2π2
i

γ2
∗

• For the third term, ∑∑∑∑
n−1≥a>b>d>e≥1

λa−1
∗ ≲

∑
n−1≥a≥4

a3λa−1
∗ ≲

1

γ4
∗
.

• For the fourth term,

πi

∑∑∑∑
n−1≥a>b>d>e≥1

λa−b+d−1
∗ ≤ πi

γ2
∗

∑∑
n−1≥a>b≥3

λa−b
∗ ≲

nπi

γ3
∗

• For the fifth term,

πi

∑∑∑∑
n−1≥a>b>d>e≥1

λa−d+e−1
∗ ≲

πi

γ∗

 ∑∑
n−1≥a>b≥3

λa−b
∗

b−1∑
d≥2

λb−d
∗

 ≲
nπi

γ3
∗
.

• For the sixth term,

πi

∑∑∑∑
n−1≥a>b>d>e≥1

λa−e
∗ ≲ πi

 ∑∑
n−1≥a>b≥3

λa−b
∗

b−1∑
d≥2

λb−d
∗

d−1∑
e≥1

λd−e
∗

 ≲
nπi

γ3
∗
.

Combining the above bounds and using the fact that ab ≤ a2 + b2, we obtain∑∑∑∑
n−1≥a>b>d>e≥1

|E [ξaξbξdξe|X1 = i]| ≲ n2π2
i

γ2
∗

+
nπi

γ3
∗

+
1

γ4
∗
≲

n2π2
i

γ2
∗

+
1

γ4
∗
. (105)
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Case II: three distinct indices. There are three cases, namely, ξaξ2b ξe, ξaξbξ2e , and ξ2aξbξe.

1. Bounding
∑∑∑

n−1≥a>b>e≥1

∣∣E [ξaξ2b ξe|X1 = i
]∣∣: We specialize (104) with b = d to

get ∣∣E [ξaξ2b ξe|X1 = i
]∣∣ ≲ πi

(
λa−b+e−1
∗ + λa−e

∗
)
+ λa−1

∗ .

Summing over a, b, e we have∑∑∑
n−1≥a>b>e≥1

∣∣E [ξaξ2b ξe|X1 = i
]∣∣

≲
∑∑∑

n−1≥a>b>e≥1

{
πi

(
λa−b+e−1
∗ + λa−e

∗
)
+ λa−1

∗
}

≲
πi

γ∗

∑∑
n−1≥a>b≥2

λa−b
∗ + πi

 ∑∑
n−1≥a>b≥2

λa−b
∗

b−1∑
e≥1

λb−e
∗

+
∑

n−1≥a≥3

a3λa−1
∗

≲
nπi

γ2
∗

+
1

γ3
∗
≲

n2π2
i

γ2
∗

+
1

γ3
∗

(106)

with last inequality following from xy ≤ x2 + y2.

2. Bounding
∑∑∑

n−1≥a>b>e≥1

∣∣E [ξaξbξ2e |X1 = i
]∣∣: We specialize (104) with e = d to

get ∣∣E [ξaξbξ2e |X1 = i
]∣∣ ≲ π2

i λ
a−b
∗ + πi

(
λa−b+e−1
∗ + λa−e

∗
)
+ λa−1

∗ .

Summing over a, b, e and applying (106), we get∑∑∑
n−1≥a>b>e≥1

∣∣E [ξaξbξ2e |X1 = i
]∣∣

≲
∑∑∑

n−1≥a>b>e≥1

{
π2
i λ

a−b
∗ + πi

(
λa−b+e−1
∗ + λa−e

∗
)
+ λa−1

∗
}

≲ nπ2
i

∑∑
n−1≥a>b≥2

λa−b
∗ +

nπi

γ2
∗

+
1

γ3
∗
≲

n2π2
i

γ∗
+

nπi

γ2
∗

+
1

γ3
∗
≲

n2π2
i

γ2
∗

+
1

γ3
∗
. (107)

3. Bounding
∑∑∑

n−1≥a>b>e≥1

∣∣E [ξ2aξbξe|X1 = i
]∣∣: Specializing (104) with a = b we

get∣∣E [ξ2b ξdξe|X1 = i
]∣∣ ≲ π2

i

(
λd−e
∗ + λe−1

∗
)
+ λb−1

∗ + πi

(
λd−1
∗ + λb−d+e−1

∗ + λb−e
∗
)
,

which is equivalent to∣∣E [ξ2aξbξe|X1 = i
]∣∣ ≲ π2

i

(
λb−e
∗ + λe−1

∗
)
+ λa−1

∗ + πi

(
λb−1
∗ + λa−b+e−1

∗ + λa−e
∗
)
.

For the first, second and fourth terms∑∑∑
n−1≥a>b>e≥1

{
π2
i

(
λb−e
∗ + λe−1

∗
)
+ πiλ

b−1
∗
}
≲

π2
i

γ∗

∑∑
n−1≥a>b≥2

1 +
nπi

γ2
∗
≲
n2π2

i

γ∗
+

nπi

γ2
∗
,

and for summing the remaining terms we use (106), which implies∑∑∑
n−1≥a>b>e≥1

∣∣E [ξ2aξbξe|X1 = i
]∣∣ ≲ n2π2

i

γ∗
+

nπi

γ2
∗

+
1

γ3
∗
≲

n2π2
i

γ2
∗

+
1

γ3
∗
. (108)

Case III: two distinct indices. There are three cases, namely, η2aη
2
e , ηaη

3
e and η3aηe.

1. Bounding
∑∑

n−1≥a>e≥1 E
[
ξ2aξ

2
e |X1 = i

]
: Specializing (104) for a = b and e = d we

get

E
[
ξ2aξ

2
e |X1 = i

]
≲ π2

i + πi

(
λe−1
∗ + λa−e

∗
)
+ λa−1

∗ .
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Summing up over a, e we have∑∑
n−1≥a>e≥1

E
[
ξ2aξ

2
e |X1 = i

]
≲

∑∑
n−1≥a>e≥1

{
π2
i + πi

(
λe−1
∗ + λa−e

∗
)
+ λa−1

∗
}
≲ n2π2

i +
nπi

γ∗
+

1

γ2
∗
.

(109)

2. Bounding
∑∑

n−1≥a>e≥1

∣∣E [ξaξ3e |X1 = i
]∣∣: Specializing (104) for e = b = d we get∣∣E [ξaξ3e |X1 = i
]∣∣ ≲ πiλ

a−e
∗ + λa−1

∗

which sums up to∑∑
n−1≥a>e≥1

∣∣E [ξaξ3e |X1 = i
]∣∣ ≲ πi

∑∑
n−1≥a>e≥1

λa−e
∗ +

∑∑
n−1≥a>e≥1

λa−1
∗ ≲

nπi

γ∗
+

1

γ2
∗
.

(110)

3. Bounding
∑∑

n−1≥a>e≥1

∣∣E [ξ3aξe|X1 = i
]∣∣: Specializing (104) for a = b = d we get∣∣E [ξ3aξe|X1 = i

]∣∣ ≲ πi

(
λa−e
∗ + λe−1

∗
)
+ λa−1

∗

which sums up to∑∑
n−1≥a>e≥1

∣∣E [ξ3aξe|X1 = i
]∣∣ ≲ ∑∑

n−1≥a>e≥1

{
πi

(
λa−e
∗ + λe−1

∗
)
+ λa−1

∗
}
≲

nπi

γ∗
+

1

γ2
∗
.

(111)

Case IV: single distinct index. We specialize (104) to a = b = d = e to get

E
[
ξ4a|X1 = i

]
≲ πi + λa−1

∗ .

Summing the above over a

n−1∑
a=1

E
[
ξ4a|X1 = i

]
≲ nπi +

1

γ∗
. (112)

Combining (105)–(112) and using nπi

γ∗
≲ n2π2

i

γ2
∗

+ 1
γ4
∗

, we get

E
[
(Ni − (n− 1)πi)

4 |X1 = i
]
≲

n2π2
i

γ2
∗

+
1

γ4
∗
.
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