
Under review as a conference paper at ICLR 2024

AN EFFICIENT SUBGRAPH GNN WITH PROVABLE SUB-
STRUCTURE COUNTING POWER
– SUPPLEMENTARY MATERIAL –

Anonymous authors
Paper under double-blind review

In the supplementary material, we provide:

1. the introduction of the Weisfeiler-Leman algorithm (WL) and Message Passing Neural
Network (MPNN);

2. the proof of Theorem 3.2 in the main paper (the upper bound of m-WL in terms of counting
substructures);

3. the proof of Theorem 3.4 in the main paper (the lower bound of subgraph GNN in terms of
counting connected substructures)

4. the proof of Theorem 4.4 in the main paper (ESC-GNN’s ability to differentiate non-
isomorphic graphs);

5. the proof of Theorem 4.2 and Theorem 4.3 in the main paper (ESC-GNN’s ability for
subgraph counting and induced subgraph counting);

6. the proof of Theorem 4.5 (ESC-GNN’s ability to differentiate regular graphs);

7. additional discussion on the expressive power of ESC-GNN;

8. experimental details;

9. additional experiments on real-world benchmarks and ablation study;

10. limitations and the assets we used.

1 THE WEISFEILER-LEMAN ALGORITHM AND MESSAGE PASSING NEURAL
NETWORK

1-WL. We first describe the classic Weisfeiler-Leman algorithm (1-WL). For a given graph G, 1-WL
aims to compute the coloring for each node in V . It computes the node coloring for each node by
aggregating the color information from its neighborhood iteratively. In the 0-th iteration, the color for
node v ∈ V is c0v , denoting its initial isomorphic type1. For labeled graphs, the isomorphic type of a
node is simply its node feature. For unlabeled graphs, we give the same 1 to all nodes. In the t-th
iteration, the coloring for v is computed as

ctv = HASH(ct−1
v , {{ct−1

u : u ∈ N(v)}})

, where HASH is a bijective hashing function that maps the input to a specific color. The process
ends when the colors for all nodes between two iterations are unchanged. If two graphs have different
coloring histograms in the end (e.g., different numbers of nodes with the same color), then 1-WL
detects them as non-isomorphic.

k-WL. For each k ≥ 2, k ∈ N, the k-dimensional WL algorithm (k-WL) colors k-tuples instead of
nodes. In the 0-th iteration, the isomorphic type of a k-tuple v⃗ is given by the hashing of 1) the tuple
of colors associated with the nodes of the v⃗, and 2) the adjacency matrix of the subgraph induced by
v⃗ ordered by the node ordering within v⃗. In the t-th iteration, its coloring is updated by:

ctv⃗ = HASH(ct−1
v⃗ , ctv⃗,(1), ..., c

t
v⃗,(k))

1The term ”isomorphic type” is based on previous work (Morris et al., 2019), which gives each k-tuple
of nodes an initial feature such that two k-tuples receive the same initial feature if and only if their induced
subgraphs (indexed by node order in the k-tuple) are isomorphic.

1

Under review as a conference paper at ICLR 2024

, where
ctv⃗,(i) = {{ct−1

u⃗ |u⃗ ∈ Ni(v⃗)}}, i ∈ [k]

. Here, Ni(v⃗) = {(v1, ..., vi−1, w, vi+1, ..., vk)|w ∈ V } is the i-th neighborhood of v⃗. Intuitively,
Ni(v⃗) is obtained by replacing the i-th component of v⃗ by each node from V . Besides the updating
function, other procedures of k-WL are analogous to 1-WL. In terms of distinguishing graphs, 2-WL
is as powerful as 1-WL, and for k ≥ 2, (k + 1)-WL is strictly more powerful than k-WL.

MPNNs. MPNNs are a class of GNNs that learns node representations by iteratively aggregating
messages from neighboring nodes. Let ht

v be the node representation for v ∈ V in the t-th iteration.
It is usually initialized with the node’s intrinsic attributes. In the (t+ 1)-th iteration, it is updated by

ht+1
v = W t

1(h
t
v,

∑
u∈N(v)

W t
2(h

t
u, h

t
v, euv))

, where W t
1 and W t

2 are two learnable functions. MPNN’s power in terms of distinguishing non-
isomorphic graphs is upper bounded by 2-WL (Xu et al., 2018).

2 THE PROOF OF THEOREM 3.2

We begin by introducing the graph isomorphism. For a pair of graphs G1 = (V1, E1) and G2 =
(V2, E2), if there exists a bijective mapping f : V1 → V2, so that for any edge (u1, v1) ∈ E1, it
satisfies that (f(u1), f(v1)) = (u2, v2) ∈ E2, then G1 is isomorphic to G2, otherwise they are not
isomorphic. Up to now, there is no polynomial algorithm for solving the graph isomorphism problem.
One popular method is to use the k-order Weisfeiler-Leman (Weisfeiler & Leman, 1968) algorithm
(k-WL). It is known that 1-WL is as powerful as 2-WL, and for k ≥ 2, (k + 1)-WL is more powerful
than k-WL.

We then prove that k-WL can’t count all connected substructures with (k + 1) nodes (specifically,
(k + 1)-cliques). We restate the result as follows:
Theorem 2.1. For any k ≥ 2, there exists a pair of graphs G and H , such that G contains a
(k + 1)-clique as its subgraph while H does not, and that k-WL can’t distinguish G from H .

Proof. The counter-example is inspired by the well-known Cai-Fürer-Immerman (CFI) graphs (Cai
et al., 1992). We define a sequence of graphs G(ℓ)

k , ℓ = 0, 1, . . . , k + 1 as following,

V
G

(ℓ)
k

=
{
ua,v⃗

∣∣∣a ∈ [k + 1], v⃗ ∈ {0, 1}k and

v⃗ contains an even number of 1’s, if a = 1, 2, . . . , k − ℓ+ 1,
v⃗ contains an odd number of 1’s, if a = k − ℓ+ 2, . . . , k + 1.

} (1)

Two nodes ua,v⃗ and ua′,v⃗′ of G(ℓ)
k are connected iff there exists m ∈ [k] such that a′ mod (k+1) =

(a+m) mod (k + 1) and vm = v′k−m+1. We have the following lemma.

Lemma 2.2. (a) For each ℓ = 0, 1, . . . , k + 1, G(ℓ)
k is an undirected graph with (k + 1)2k−1 nodes;

(b) The set of graphs G(ℓ)
k with an odd ℓ are mutually isomorphic; similarly, the set of graphs G(ℓ)

k
with an even ℓ are mutually isomorphic.

It’s easy to verify (a). To prove (b), it suffices to prove G
(ℓ)
k is isomorphic to G

(ℓ+2)
k for all ℓ =

0, 1, . . . , k − 1. We apply a renaming to the nodes of G(ℓ)
k : we flip the 1st bit of v⃗ in every node

named uk−ℓ,v⃗ , and flip the kth bit of v⃗ in every node named uk−ℓ+1,v⃗ . Since this is a mere renaming
of nodes, the resulting graph is isomorphic to G

(ℓ)
k . However, it’s also easy to see that the resulting

graph follows the construction of G(ℓ+2)
k . Therefore, we assert that G(ℓ)

k must be isomorphic to
G

(ℓ+2)
k .

Now, let’s ask G = G
(0)
k and H = G

(1)
k . Obviously there is a (k + 1)-clique in G: nodes uj,0k , j =

1, 2, . . . , k + 1 are mutually adjacent by definition of G(0)
k . On the contrary, we have

2

Under review as a conference paper at ICLR 2024

Lemma 2.3. There’s no (k + 1)-clique in H .

The proof is given below. Assume there is a (k + 1)-clique in H . Since there’s no edge between
nodes ua,v⃗ with an identical a, the (k + 1)-clique must contain exactly one node from every node set
{ua,v⃗} for each fixed a ∈ [k + 1]. We further assume that the (k + 1) nodes are ua,ba1ba2...bak

, a =
1, 2, . . . , k + 1. Using the condition for adjacency, we have

b2k = b11, (2)
b3k = b21, b3(k−1) = b12, (3)

b4k = b31, b4(k−1) = b22, b4(k−2) = b13, (4)

· · · · · · · · · · · ·
b(k+1)k = bk1, b(k+1)(k−1) = b(k−1)2, . . . , b(k+1)1 = b1k. (5)

Applying the above identities to the summation

k+1∑
a=1

k∑
j=1

baj = 2

k∑
j=1

(
b1j + b2j + · · ·+ b(k−j+1)j

)
, (6)

we see that it should be even. However, by definition of G(1)
k , there are an even number of 1’s in

ba1ba2 . . . bak when a ∈ [k], and an odd number of 1’s when a = k + 1. Therefore, the sum in
equation 6 should be odd. This leads to a contradiction.

Finally, to prove the k-WL equivalence of G and H , we have

Lemma 2.4. k-WL can’t distinguish G and H .

By virtue of the equivalence between k-WL and pebble games (Grohe & Otto, 2015), it suffices
to prove that Player II will win the Ck bijective pebble game on G and H . We state the winning
strategy for Player II as following. Since G and H are isomorphic with nodes {uk+1,∗} deleted,
Player II can always choose an isomorphism f : G−{uk+1,∗} → H −{uk+1,∗} to survive if Player
I never places a pebble on nodes uk+1,∗. Furthermore, since k pebbles can occupy nodes with at
most k different values of a (in ua,v⃗), there’s always a set of pebbleless nodes {ua0,v⃗} with some
a0 ∈ [k + 1]. Therefore, Player II only needs to do proper renaming on H between uk+1,∗ and ua0,∗
as stated above. This makes every v⃗ in ua0,v⃗ have an odd number of 1’s. Player II then chooses the
isomorphism on G− {ua0,∗} and Hrenamed − {ua0,∗}. This way, Player II never loses since there
are not enough pebbles for Player I to make use of the oddity at the currently pebbleless set of nodes.

Remark 2.5. Notice that if we take k = 2, then G is two 3-cycles while H is a 6-cycle, which 2-WL
cannot differentiate; if we take k = 3, then G is the 4*4 Rook’s graph while H is the Shrikhande
graph, which 3-WL cannot differentiate. In these special cases, the above construction complies with
our well-known examples.

3 THE PROOF OF THEOREM 3.4

We restate the theorem as follows:
Theorem 3.1. For any connected substructure with no more than k+m (m ≥ 2, k > 0) nodes, there
exists a subgraph GNN rooted at k-tuples with backbone GNN as powerful as m-WL that can count
it.

Proof. Based on Remark 3.3 in the main paper, there exists a type of connected k-tuple that satisfies
the decomposition of the connected substructure. Then the substructure can be separated into 2
subgraphs: the nodes that belong to the k-tuple (we call them rooted nodes) and the nodes that do
not belong to the k-tuple (we call them non-rooted nodes). Formally, for the given two substructures
G1 = (V1, E1) and G2 = (V2, E2), we define the subgraph that formed by the rooted nodes of G1

(G2, resp.) as G1,r = (V1,r, E1,r) (G2,r = (V2,r, E2,r), resp.). Similarly, define the subgraph that
formed by the non-rooted nodes of G1 (G2, resp.) as G1,n = (V1,n, E1,n) (G2,n = (V2,n, E2,n),

3

Under review as a conference paper at ICLR 2024

resp.). We can also define the subgraph formed between the rooted nodes and non-rooted nodes of
G1 (G2, resp.) as G1,c = (V1,c, E1,c) (G2,c = (V2,c, E2,c), resp.). Then it is easy to find that for G1,
V1 = (V1,r ∪ V1,n), V1,c ⊆ V1, E1 = E1,r ∪E1,n ∪E1,c. There is no intersection between V1,r and
V1,n, and there is no intersection between E1,r, E1,c, and E1,n. The same holds for G2.

If G1 and G2 are non-isomorphic, then there can be three potential situations: (1) G1,r and G2,r are
non-isomorphic; (2) G1,n and G2,n are non-isomorphic; (3) G1,c and G2,c are non-isomorphic. In
the following section, we will prove that in all these situations, the subgraph GNN can distinguish
between G1 and G2.

G1,r and G2,r are non-isomorphic. It denotes that for G1 and G2, the selected k-tuples are different.
Then of course the subgraph GNN can differentiate G1 and G2.

G1,n and G2,n are non-isomorphic. Recall that we use a backbone GNN as powerful as m-WL to
encode the information within the subgraph, and V1,n and V2,n contain nodes no more than m nodes.
Therefore if G1,n and G2,n are non-isomorphic, then they will have different isomorphic types, and
thus can be distinguished by the backbone GNN.

G1,c and G2,c are non-isomorphic. We define the label of all nodes in G1 (the same holds for G2)
as its distance to the nodes in the k-tuple. Formally, let V1,r = {v1,r,1, ..., v1,r,k}, then ∀u ∈ V1,
its label f1(u) = (d(u, v1,r,1), ..., d(u, v1,r,k), I(u)), where d(.) denotes the shortest path distance
between two nodes, and I(u) denotes the label that reflects the isomorphic type of u encoded by the
subgraph GNN within G1,n.

Since the substructures are connected, there exists at least a node u1 ∈ V1,n, whose label contains
at least an index with the value “1”. For f(u1), the indices with value “1” denotes that there exist
edges between u1 and the corresponding nodes in V1,r. While the indices with value larger than 1
denote that there is no edge between u1 and the corresponding nodes in V1,r. The same holds for u2

and V2,r. Therefore, if the subgraph formed by u1 and V1,r and the subgraph formed by u2 and V2,r

are non-isomorphic, then f1(u1) and f2(u2) are different, and the subgraph GNN can differentiate
the two substructures. Also, if the I(u1) and I(u2) are different, then the subgraph GNN can also
distinguish G1 and G2. We can then consider the next nodes, and continue the process inductively.

Therefore, if for all nodes in V1,n, we can find a unique node in V2,n that has the same label as
it. Then G1,c and G2,c are isomorphic. Reversely, if G1,c and G2,c are non-isomorphic, then there
exists at least a node in V1,n, that we cannot find a unique node in V2,n that has the same label as it.
Therefore the subgraph GNN can differentiate G1 and G2.

Then we can assign each substructure a unique color according to its isomorphic type, and use the
color histogram of the graph as the output function. If two graphs have different numbers of certain
substructures, then the color histogram will be different.

Based on the above results, the subgraph GNN can count the given type of connected substructure.

4 THE PROOF OF THEOREM 4.4

We state the result as follows.
Theorem 4.1. ESC-GNN is strictly more powerful than 2-WL, while not less expressive than 3-WL.

Proof. ESC-GNN is not less powerful than 3-WL. As shown in Theorem 5.1, ESC-GNN is able to
count 4-cliques. In the pair of graphs called the 4*4 Rook Graph and the Shrikhande Graph (shown
in Figure 1), there exist several 4-cliques in the 4*4 Rook Graph, while there is no 4-clique in the
Shrikhande Graph. Therefore ESC-GNN can differentiate the pair of graphs. Considering that 3-WL
cannot differentiate them (Arvind et al., 2020), ESC-GNN is not less powerful than 3-WL.

ESC-GNN is more powerful than 2-WL. Using the MPNN (Xu et al., 2018) as the backbone
network, it can be as powerful as 2-WL in terms of distinguishing non-isomorphic graphs. How-
ever, there exist pairs of graphs, e.g., the 4*4 Rook Graph and the Shrikhande Graph that can be
distinguished by ESC-GNN but not 2-WL. Therefore, ESC-GNN is strictly more powerful than the
2-WL.

4

Under review as a conference paper at ICLR 2024

(a) (b)

Figure 1: (a) the 4*4 Rook Graph and (b) the Shrikhande Graph

Figure 2: Examples of 4-cycles that pass the rooted edges. In these figures, the rooted 2-tuples are
colored blue.

5 THE PROOF OF THEOREM 4.2

Below we show the counting power of ESC-GNN in terms of subgraph counting.
Theorem 5.1. In terms of subgraph counting, ESC-GNN can count (1) up to 4-cycles; (2) up to
4-cliques; (3) stars with arbitrary sizes; (4) up to 3-paths.

Proof. Clique counting. The number of 3-cliques is the number of nodes with the shortest path
distance “1” to both rooted nodes; the number of 4-cliques is the number of edges labeled (1, 1, 1, 1)
(definition see the edge-level distance encoding in Section 4 in the main paper, and example see
Figure 2(d)). Therefore, ESC-GNN can count these types of cliques. In terms of 5-cliques, 4-WL
cannot count them according to Theorem 2.1, therefore subgraph GNNs rooted on edges with MPNN
as the backbone GNN cannot count 5-cliques according to Proposition 3.5 in the main paper. Then
according to Proposition 4.1 in the main paper, ESC-GNN also cannot count 5-cliques.

Cycle counting. the counting of 3-cycles is the same as 3-cliques. In terms of counting 4-cycles,
there are basically 4 different situations where 4-cycles exist, examples are shown in Figure 2. Note
that figures (a),(b), and (c) contain one 4-cycle, respectively, while figure (d) contains two 4-cycles
that pass the rooted edge. Therefore the number of 4-cycles is the weighted sum of the number of
edges with labels (1, 2, 2, 1), (1, 1, 2, 1), (1, 2, 1, 1), (1, 1, 1, 1).

In terms of 5-cycle subgraph-counting, we provide a counter-example in Figure 3. In Figure 3(a),
there is one 5-cycle ABEDC that passes AB, while there is no 5-cycle that passes AB in Figure 3(b).
Considering that the degree information and the distance information is the same for the pair of
graphs, ESC-GNN cannot differentiate them. Therefore, ESC-GNN cannot subgraph-count 5-cycles.

5

Under review as a conference paper at ICLR 2024

Figure 3: Examples where ESC-GNN cannot subgraph-count 5-cycles. In these figures, the rooted
2-tuples are colored blue.

Figure 4: Examples of stars that pass the rooted edges. In these figures, the rooted 2-tuples are
colored blue.

Path Counting. Note that the definition of paths here is different from other substructures. It denotes
the number of edges within the path instead of the number of nodes within the path. Here, we slightly
extend the use of 2-tuples in ESC-GNN by considering not only 2-tuples with edges but also 2-tuples
without edges.

In terms of counting 2-paths or 3-paths between 2 nodes, it is equal to counting 3-cycles or 4-cycles,
between edges, respectively. We have proven that ESC-GNN can count these cycles, therefore
ESC-GNN can count such edges.

Star counting. We can decompose the graph-level star counting problem to 2-tuples by considering
the first node of each 2-tuple as the root of stars. Examples are shown in Figure 4. We advocate that
the number of stars is easily encoded by the number of nodes whose shortest path distance is 1 to the
first rooted node. Denote the number of nodes with the shortest path distance 1 to the first rooted
node as N ′ (including the second node), then the number of p-stars is Cp−2

N ′−1. A similar proof is
provided by (Chen et al., 2020).

6

Under review as a conference paper at ICLR 2024

Figure 5: Examples where ESC-GNN cannot induced-subgraph-count 5-stars. In these figures, the
rooted 2-tuples are colored blue.

6 THE PROOF OF THEOREM 4.3

Below we show the counting power of ESC-GNN in terms of induced subgraph counting. We restate
the Theorem 4.3 as follows.
Theorem 6.1. In terms of induced subgraph counting, ESC-GNN can count (1) up to 4-cycles; (2) up
to 4-cliques; (3) up to 4-stars; (4) up to 3-paths.

Proof. Clieque counting. Since cliques are fully connected substructures, the proof of cliques is the
same as the proof of subgraph counting.

Cycle counting. For cycles, the number of 3-cycles is the same as 3-cliques. As for 4-cycles, we only
need to consider the situation shown in Figure 2(a), where the number of (1, 2, 2, 1) edges reflects the
number of 4-cycles. For induced-subgraph-counting 5-cycles, in Figure 6(a), there is no 5-cycle that
pass AB, while in Figure 6(b), there is one 5-cycle ABEDC that passes AB. However, ESC-GNN
cannot differentiate the two graphs since the degree information and the distance information is
the same. Therefore, ESC-GNN cannot induced-subgraph-count 5-cycles. It can serve as the same
example for not counting 4-paths.

Path counting. The proof of paths is actually the same as Theorem 5.1.

Star counting. In terms of 3-stars and 4-stars, we only need to consider the situation shown in
Figure 4(a), where the number of (1, 2) nodes encodes the number of stars, i.e., denote the number of
(1, 2) nodes as N ′, the number of p-stars (p ≤ 4) is Cp−2

N ′ .

For 5-stars, a pair of examples are shown in Figure 5. These two graphs will be assigned the same
structural embedding since the node degree information, and the distance information among these
two graphs are the same. Therefore, ESC-GNN cannot differentiate the two graphs. However,
Figure 5(a) contains no 5-star that passes the rooted 2-tuple AB, while Figure 5(b) contains one
5-star (BAFDG) that passes the rooted 2-tuple AB.

7 THE PROOF OF THEOREM 4.5

Here we restate Theorem 4.5 as follows:
Theorem 7.1. Consider all pairs of r-regular graphs with n nodes, let 3 ≤ r < (2log2n)1/2 and ϵ

be a fixed constant. With the hop parameter h set to ⌊(1/2 + ϵ) log2n
log(r−1)⌋, there exists an ESC-GNN

that can distinguish 1− o(n−1/2) such pairs of graphs.

Recall that we encode the distance information as augmented structural features for ESC-GNN. For
the input graph G, denote the node-level distance encoding on h-hop subgraphs on 2-tuple (u, v)

as Dh,node
(u,v),G. Note that we can naturally transfer the encoding on 2-tuples to node by: (Dh,node

v,G =

Dh,node
(v,v),G). We then introduce the following lemma.

7

Under review as a conference paper at ICLR 2024

Figure 6: Examples where ESC-GNN cannot induced-subgraph-count 5-cycles. In these figures, the
rooted 2-tuples are colored blue.

Lemma 7.2. For two graphs G1 = (V1, E1) and G2 = (V 2, E2) that are randomly and indepen-
dently sampled from r-regular graphs with n nodes (3 ≤ r < (2log2n)1/2). Select two nodes v1
and v2 from G1 and G2 respectively. Let h = ⌊(1/2 + ϵ) log2n

log(r−1)⌋ where ϵ is a fixed constant,

Dh,node
v1,G1

= Dh,node
v2,G2

with probability at most o(n−3/2).

Proof. The proof follows from (Bollobás, 1982; Feng et al., 2022). As Dh,node
v,G stores exactly the

same information as the node configuration used in (Feng et al., 2022), therefore the proof is exactly
the same as the proof of Lemma 1 in (Feng et al., 2022).

Based on Lemma 7.2, we can prove Theorem 7.1. Given node v1 ∈ V1, compare Dh,node
v1,G1

with
each Dh,node

v2,G2
where v2 ∈ V2. The probability that Dh,node

v1,G1
̸= Dh,node

v2,G2
for all possible v2 ∈ V2 is

1− o(n−3/2) ∗ n = 1− o(n−1/2). Therefore, ESC-GNN can distinguish 1− o(n−1/2) such pairs of
graphs.

8 ADDITIONAL DISCUSSION ON THE EXPRESSIVE POWER OF ESC-GNN

In previous sections, we mainly discuss the expressive power enhanced by the proposed structural
encoding. In this section, we shift to the integration of the global message passing layer and elucidate
its substantial contribution to the expressive power. This is exemplified below through a toy example:
consider graph G, composed of a 4-cycle and a 1-path (edge), and graph H , comprising a 5-path
(a path with 6 nodes). When extracting 1-hop subgraphs for each node, both G and H yield two
1-paths and four ”V graphs” (3 nodes and 2 edges). Consequently, the subgraph representation fails
to distinguish between these two graphs. However, the introduction of a global message passing
layer enables differentiation due to the distinct connections among these subgraphs. This distinction
is applicable to both subgraph GNNs and our framework. A more comprehensive analysis can be
found in (Rattan & Seppelt, 2023), which substantiates that the global message passing can enhance
expressiveness regardless of the choice of the hop parameter.

Additionally, We conduct an ablation study on the substructure counting dataset by removing the
global message passing layer from ESC-GNN. The resulting new model, denoted as ”(-MP)”, relies
solely on aggregating the structural encoding to derive the final prediction. Given the absence of
additional node attributes, the new model can be easily implemented as ESC-GNN with a single
message passing layer that aggregates the edge-level structural embedding to obtain the node-level
prediction. The result is presented in Table 1. As evident from the table, ESC-GNN consistently
outperforms the new model across all benchmarks, demonstrating that the global message passing
layer significantly boosts the representation power of ESC-GNN.

8

Under review as a conference paper at ICLR 2024

Table 1: Ablation study on the proposed structural embedding (norm MAE).
Dataset Tailed Triangle Chordal Cycle 4-Clique 4-Path Triangle-Rectangle 3-cycles 4-cycles 5-cycles 6-cycles

MPNN 0.3631 0.3114 0.1645 0.1592 0.2979 0.3515 0.2742 0.2088 0.1555

ESC-GNN 0.0052 0.0169 0.0064 0.0254 0.0178 0.0074 0.0044 0.0356 0.0337

(- MP) 0.062 1.9355 0.4124 0.0271 0.0563 0.1508 0.0050 0.0996 0.0443

Table 2: Statistics of the used datasets.
Dataset Graphs Avg Nodes Avg Edges Task Type Metric

MUTAG 188 17.9 19.8 Graph Classification ACC
PTC-MR 349 14.1 14.5 Graph Classification ACC
ENZYMES 600 32.6 62.1 Graph Classification ACC
PROTEINS 1113 39.1 72.8 Graph Classification ACC
IMDB-BINARY 1000 19.8 96.5 Graph Classification ACC
ZINC-12k 12000 23.2 24.9 Graph Regression MAE
ogbg-molhiv 41127 25.5 27.5 Graph Classification AUC-ROC
ogbg-molpcba 437929 26.0 28.1 Graph Classification AP
QM9 129433 18.0 18.6 Graph Regression MAE
Synthetic 5000 18.8 31.3 Node Regression MAE

9 EXPERIMENTAL DETAILS

Stastics of Datasets. The statistics of all used datasets are available in Table 2.

Experimental details. The baselines and data splittings of our experiments follow from existing
works (Zhang & Li, 2021; Huang et al., 2023) and the standard data split setting. For ESC-GNN,
we adopt GIN (Xu et al., 2018) as the backbone GNN. In the structural embedding, we use both
the shortest path distance and the resistance distance (Lü & Zhou, 2011) as the distance feature.
For the hop parameter h we search between 1 to 4, and report the best results. Following existing
works (Huang et al., 2023), we use Adam optimizer as the optimizer, and use plateau scheduler with
patience 10 and decay factor 0.9. On most datasets, the learning rate is set to 0.001, and the hidden
embedding dimension is set to 300. The training epoch is set to 2000 for counting substructures, 400
for QM9, 1000 for ZINC, and 150 for the OGB dataset. Most of the experiments are implemented with
two Intel Core i9-7960X processors and 2 NVIDIA 3090 graphics cards. Others (e.g., experiments on
the TU dataset) are implemented with two Intel Xeon Gold 5218 processors and 10 NVIDIA 2080TI
graphics cards.

10 EVALUATION ON REAL-WORLD DATASETS

Molecule Dataset. We evaluate ESC-GNN on various popular real-world molecule datasets, including
ZINC (Dwivedi et al., 2020) and the OGB dataset (Hu et al., 2020). ZINC is a dataset of chemical
compounds, and the task is graph regression. For the OGB dataset, we use ogbg-molhiv and ogbg-
molpcba for evaluation. ogbg-molhiv contains 41K molecules with 2 classes, and ogbg-molpcba
contains 438 molecules with 128 classes. The task is to predict to which these molecules belong. We
follow the standard evaluation metric and the dataset split, and report the result in Table 3.

TU datasets. We evaluate the performance of ESC-GNN on the TU datasets (Morris et al., 2020). The
experimental settings follow (Zhang & Li, 2021) for more consistent evaluation standards. Specifically,
we uniformly use the 10-fold cross validation framework, with the split ratio of training/validation/test
set 0.8/0.1/0.1. The results are available in Table 4. In the table, ESC-GNN (h2) and ESC-GNN (h3)
denote ESC-GNN with the hop parameters setting to 2 and 3.

9

Under review as a conference paper at ICLR 2024

Table 3: Evalation on ZINC and OGB datasets.
Dataset OGBG-HIV (AUCROC) OGBG-PCBA (AP) ZINC

GIN (Xu et al., 2018) 77.07±1.49 27.03±0.23 0.163
PNA (Corso et al., 2020) 79.05±1.32 28.38±0.35 0.188
GSN (Bouritsas et al., 2022) 77.99±0.01 - 0.115
DGN (Beaini et al., 2021) 79.70±0.97 28.85±0.30 0.168
CIN (Bodnar et al., 2021) 80.94±0.57 - 0.079
NGNN (Zhang & Li, 2021) 78.34±1.86 28.32±0.41 0.111
GIN-AK+ (Zhao et al., 2022) 79.61±1.19 29.30±0.44 0.080
OSAN (Qian et al., 2022) - - 0.126
SUN (Frasca et al., 2022) 80.03±0.55 - 0.083
DSS-GNN (Bevilacqua et al., 2022) 76.78±1.66 - 0.102
I2-GNN (Huang et al., 2023) 78.68±0.93 - 0.083
Graph Transformer (Rampášek et al., 2022) 77.40±1.77 27.51±0.28 0.113

ESC-GNN 78.62±1.06 28.16±0.31 0.086

10.1 RESULTS

Comparison with backbone models. On OGBG-MolHIV, OGBG-MolPCBA, and the TU dataset,
we use GIN (Xu et al., 2018) as the backbone model. While on ZINC, we use a plain graph transformer
without positional encodings from (Rampášek et al., 2022) as the backbone model. The experimental
results compared with these backbones demonstrate that the proposed structural information not only
enhances the theoretical representation power but also improves the empirical representation power.

Comparison with subgraph GNNs. When compared to subgraph GNNs rooted at 2-tuples, such
as I2-GNN, ESC-GNN performs slightly worse or comparably on these benchmark tasks. This
empirical observation provides evidence that the proposed structural embedding effectively captures
valuable information from subgraph GNNs, benefiting downstream tasks. It is worth noting that
I2-GNN generally outperforms node-based subgraph GNNs like NGNN and GIN-AK+, suggesting
that the theoretical advantages gained from subgraph selection and aggregation policies contribute
to the empirical representation power. Furthermore, among the subgraph GNNs, those that intro-
duce interactions between subgraphs, such as SUN, GIN-AK+, and OSAN, tend to perform better
compared to subgraph GNNs that do not incorporate such interactions, like NGNN and ID-GNN.
This observation indicates that subgraph interaction also plays a role in enhancing the representation
power of subgraph GNNs. Exploring additional techniques to incorporate this interaction can be
considered for future research.

Comparison with GNNs that incorporate the substructure information. GSN (Bouritsas et al.,
2022) incorporates the number of specific substructures as augmented features. In contrast to GSN,
our framework does not explicitly encode the number of substructures. Instead, we encode the more
general distance information of subgraphs, which enables plain GNNs to count many substructures
without the need to manually determine which substructures to include. Regarding the real-world
dataset, GSN achieves a MAE score of 0.115 on ZINC, whereas ESC-GNN attains a MAE score of
0.096. Similarly, utilizing the same backbone (GIN), GSN records an AUCROC score of 77.99 on
OGBG-HIV, whereas ESC-GNN demonstrates a higher AUCROC score of 78.62. These outcomes
underscore the superiority of our proposed model.

11 ABLATION STUDY

We evaluate the effectiveness of each part of the proposed structural embedding on the substructure
counting dataset. For the proposed three types of structural embedding (the degree encoding, the
node-level distance encoding, and the edge-level distance encoding), we delete one of them from
the original structural embedding every time and report the results in Table 5. We observe that
after removing the three types of embedding, ESC-GNN performs worse compared with its original
version, especially after removing the edge-level distance encoding. This is consistent with our
theoretical results: in Theorem 3.1, we show that the proposed structural embedding contains key
information for the counting power of subgraph GNNs; in Theorem 5.1 and Theorem 6.1, we show
that the edge-level distance information directly encodes the number of certain types of substructures.

10

Under review as a conference paper at ICLR 2024

Table 4: Experiments on TU, Accuracy as the evaluation metric.
Dataset MUTAG PTC-MR PROTEINS ENZYMES IMDB-B

GIN 84.5±8.9 51.2±9.2 70.6±4.3 38.3±6.4 73.3±4.7
PPGN 84.7±8.2 55.0±6.4 74.8±3.3 55.0±6.4 71.5±5.4
NGNN 87.9±8.2 54.1±7.7 73.9±5.1 29.0±8.0 73.1±5.7
GIN-AK+ 88.8±4.0 60.5±8.0 75.5±4.4 58.9±6.2 72.4±3.7
SUN 86.1±6.0 60.2±7.2 72.1±3.8 16.7±0.0 73.7±2.9
I2-GNN 87.9±4.3 61.4±8.7 74.8±2.9 40.3±6.7 73.6±4.0

ESC-GNN (h2) 86.2±7.9 52.9±6.4 73.3±4.1 53.2±8.1 72.0±6.0
ESC-GNN (h3) 85.6±7.9 56.4±6.9 76.0±4.5 43.3±6.0 73.7±4.8

Table 5: Ablation study on the proposed structural embedding (norm MAE).
Dataset Tailed Triangle Chordal Cycle 4-Clique 4-Path Triangle-Rectangle 3-cycles 4-cycles 5-cycles 6-cycles

MPNN 0.3631 0.3114 0.1645 0.1592 0.2979 0.3515 0.2742 0.2088 0.1555

ESC-GNN 0.0052 0.0169 0.0064 0.0254 0.0178 0.0074 0.0044 0.0356 0.0337

(- degree) 0.0121 0.0492 0.0106 0.0322 0.0349 0.0342 0.0144 0.0513 0.0652
(- node-level dist) 0.0382 0.0344 0.0222 0.0428 0.0256 0.0157 0.0261 0.0492 0.0608
(- edge-level dist) 0.0208 0.2811 0.0497 0.0584 0.185 0.2617 0.2244 0.1654 0.1364

12 EVALUATION ON THE SPACE COST

With regards to the preprocessing time, our approach’s preprocessing time is comparable to that of
I2-GNN as shown in Table 3 in the main paper since we use their code to extract subgraph information.
Although we require a small amount of extra time to extract and preprocess the structural embeddings,
we believe that this is a reasonable trade-off since the actual model running time is reduced by orders.
When compared to the total running time of subgraph GNNs, the preprocessing time is negligible.
Therefore, our ESC-GNN’s total running time is less than 1% of that of I2-GNN on ogbg-hiv.

As for the storage of structural embeddings, we only need to store a vector of integer indices for each
structural embedding, as illustrated in Figure 1 in the main paper, without really storing any dense
high-dimensional vectors. Therefore, the storage is still manageable. Specifically, when feeding the
indices to the backbone model, we use a learnable matrix (which is a model parameter) to transform
the integer index vector into dense embeddings. For example, to extract the degree information of the
first subgraph in Figure 1 in the main paper, we use a learnable matrix W ∈ R4×h and compute the
degree information with W ∗ [0; 0; 4; 0], where ∗ denotes sparse matrix multiplication (which is very
fast for sparse matrices), and the sparse vector [0; 0; 4; 0] is what we need to store. This approach
requires relatively small storage space.

We have also included the space cost of our approach in Table 6. In these datasets, ESC-GNN
requires much less storage space than I2-GNN while slightly more space than NGNN. These results
demonstrate that our approach for storing structural embeddings offers excellent storage performance.

Table 6: Evaluation on the space cost.
Dataset OGBG-HIV ZINC QM9

Original 159MB 16.2MB 281MB
NGNN 2.32GB 218MB 2.90GB
I2-GNN 5.95GB 627MB 8.25GB
ESC-GNN 2.57GB 427MB 4.46GB

11

Under review as a conference paper at ICLR 2024

Table 7: Evaluation on Counting Substructures on ZINC (norm MAE).
Tasks 3-cycle 4-cycle 5-cycle 6-cycle

GNN 0.0016 0.0030 0.0394 0.1442
GIN-AK+ 0.0009 0.0064 0.0036 0.0057
NGNN 0.0002 0.0001 0.0007 0.0012
I2-GNN 0.0003 0.0001 0.0003 0.0007
ESC-GNN 0.0008 0.0004 0.0058 0.0047

13 COUNTING SUBSTRUCTURES ON OTHER DATASETS

In order to evaluate the counting power of the proposed model, we conducted exper-
iments on the ZINC dataset by generating the cycle counting task and reporting the
MAE result in Table 7. To count cycles, we used the simple-cycle function from
https://networkx.org/documentation/stable/reference/algorithms/
generated/networkx.algorithms.cycles.simple_cycles.html. Surprisingly,
we found that all methods achieved much better MAE scores than those reported in Table 1 of the
main paper. This may be due to the fact that many graphs in ZINC contain few cycles, resulting in a
small MAE value.

In general, the reported results are consistent with Table 1 of the main paper. ESC-GNN performs
better in counting 3-cycles and 4-cycles, and performs worse on 5-cycles and 6-cycles. This observa-
tion is consistent with Theorem 5.1. Furthermore, it outperforms MPNN, performs comparably to
GIN-AK+, and is outperformed by I2-GNN, which is consistent with our theoretical results, showing
that the proposed structural embedding can extract valuable information from the subgraph GNNs.

14 LIMITATIONS AND THE ASSETS WE USED

Limitations of the paper. First, we have shown that the representation power of our model is
bounded by 4-WLs and subgraph GNNs rooted on 2-tuples in terms of distinguishing non-isomorphic
graphs and counting substructures.

Second, the proposed model may not reach a satisfying performance on benchmarks where the
encoded substructures are of no use. Also, the proposed model may not suit high-order graphs where
the neighbors of the nodes and edges are defined differently from the simple graphs.

The assets we used. Our model is experimented on benchmarks from (Dwivedi et al., 2020; Hu et al.,
2020; Zhao et al., 2022; Morris et al., 2020; Abboud et al., 2021; Balcilar et al., 2021; Murphy et al.,
2019; Ramakrishnan et al., 2014; Wu et al., 2018) under the MIT license.

REFERENCES

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. In Zhi-Hua Zhou (ed.), Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 2112–2118.
International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/
ijcai.2021/291. URL https://doi.org/10.24963/ijcai.2021/291. Main Track.

Vikraman Arvind, Frank Fuhlbrück, Johannes Köbler, and Oleg Verbitsky. On weisfeiler-leman
invariance: Subgraph counts and related graph properties. Journal of Computer and System
Sciences, 113:42–59, 2020.

Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and Paul
Honeine. Breaking the limits of message passing graph neural networks. In International
Conference on Machine Learning, pp. 599–608. PMLR, 2021.

Dominique Beaini, Saro Passaro, Vincent Létourneau, Will Hamilton, Gabriele Corso, and Pietro
Liò. Directional graph networks. In International Conference on Machine Learning, pp. 748–758.
PMLR, 2021.

12

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.cycles.simple_cycles.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.cycles.simple_cycles.html
https://doi.org/10.24963/ijcai.2021/291

Under review as a conference paper at ICLR 2024

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, Gopinath
Balamurugan, Michael M Bronstein, and Haggai Maron. Equivariant subgraph aggregation
networks. In International Conference on Learning Representations, 2022.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yuguang Wang, Pietro Lio, Guido F Montufar, and
Michael Bronstein. Weisfeiler and lehman go cellular: Cw networks. Advances in Neural
Information Processing Systems, 34:2625–2640, 2021.

Béla Bollobás. Distinguishing vertices of random graphs. In North-Holland Mathematics Studies,
volume 62, pp. 33–49. Elsevier, 1982.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos P Zafeiriou, and Michael Bronstein. Improving graph
neural network expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? Advances in neural information processing systems, 33:10383–10395, 2020.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
neighbourhood aggregation for graph nets. Advances in Neural Information Processing Systems,
33:13260–13271, 2020.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, and Muhan Zhang. How powerful are k-hop
message passing graph neural networks. arXiv preprint arXiv:2205.13328, 2022.

Fabrizio Frasca, Beatrice Bevilacqua, Michael M Bronstein, and Haggai Maron. Understanding
and extending subgraph gnns by rethinking their symmetries. In Advances in Neural Information
Processing Systems, 2022.

Martin Grohe and Martin Otto. Pebble games and linear equations. The Journal of Symbolic Logic,
80(3):797–844, 2015. doi: 10.1017/jsl.2015.28.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118–22133, 2020.

Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power of
graph neural networks with i$ˆ2$-GNNs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=kDSmxOspsXQ.

P. Langley. Crafting papers on machine learning. In Pat Langley (ed.), Proceedings of the 17th
International Conference on Machine Learning (ICML 2000), pp. 1207–1216, Stanford, CA, 2000.
Morgan Kaufmann.

Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey. Physica A: statistical
mechanics and its applications, 390(6):1150–1170, 2011.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, pp. 4602–4609, 2019.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling for
graph representations. In International Conference on Machine Learning, pp. 4663–4673. PMLR,
2019.

13

https://openreview.net/forum?id=kDSmxOspsXQ

Under review as a conference paper at ICLR 2024

Chendi Qian, Gaurav Rattan, Floris Geerts, Mathias Niepert, and Christopher Morris. Ordered
subgraph aggregation networks. In Advances in Neural Information Processing Systems, 2022.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Gaurav Rattan and Tim Seppelt. Weisfeiler-leman and graph spectra. In Proceedings of the 2023
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2268–2285. SIAM, 2023.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information Processing
Systems, 34:15734–15747, 2021.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any gnn
with local structure awareness. In International Conference on Learning Representations, 2022.

14

	The Weisfeiler-Leman algorithm and Message Passing Neural Network
	The Proof of Theorem 3.2
	The Proof of Theorem 3.4
	The Proof of Theorem 4.4
	The Proof of Theorem 4.2
	The Proof of Theorem 4.3
	The Proof of Theorem 4.5
	Additional Discussion on the Expressive Power of ESC-GNN
	Experimental Details
	Evaluation on Real-World Datasets
	Results

	Ablation Study
	Evaluation on the Space Cost
	Counting Substructures on Other Datasets
	Limitations and the Assets We Used

