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1 Introduction1

It is well known that the graph classification performance of graph neural networks (GNNs) often2

improves by adding an artificial virtual node to the graphs, which is connected to all graph nodes3

[1–4]. While virtual nodes were originally thought as aggregated representations of the entire graph,4

they also provide shortcuts for message passing between nodes along the graph edges. Surprisingly,5

the advantages of virtual nodes have never been theoretically investigated, and their impact on other6

problems is still an open research question. We adapt and study the virtual node concept for problems7

over networks, which are usually larger, often very sparse or dense, and overall more heterogeneous.8

Many popular GNNs are based on message passing, which computes node embeddings by iteratively9

aggregating the features of (usually direct) neighbor nodes along the graph edges [1]. In this way, they10

are able to distinguish (non-)isomorphic nodes (to great extent) [5], but this does not transfer to links11

[6]; for links, extra procedures may be needed (e.g., modeling enclosing subgraphs [7]). Furthermore,12

on large graphs, GNNs may face the under-reaching problem if long-range dependencies beyond the13

model’s computing radius are important for the problem at hand (e.g., complex chains of protein-14

protein interactions). Over dense graphs, GNNs with many layers struggle with over-smoothing, node15

representations converging to similar values. There have been several proposals to overcome these16

problems. On the one hand, several works propose techniques that allow for larger numbers of GNN17

layers [8–14]. However, as shown in our later results, many of them do not perform well on link18

predictions tasks, especially on comparably dense graphs. On the other hand, there are approaches19

that adapt message passing to consider neighbors beyond the one-hop neighborhood: based on graph20

diffusion [15–20] and other theories [21, 22]. Yet, most of these models are relatively complex and,21

in fact, in our experiments over the challenging graphs from the Open Graph Benchmark (OGB) [23],22

several ran out of memory. In this paper, we show that virtual nodes may alleviate these typical issues23

of GNNs over larger graphs.24

We focus on link prediction,1 which is important in view of incomplete graph data in practice in25

various different domains [24–27]. Numerous models have been proposed to solve this problem in26

the past, ranging from knowledge-graph-specific predictors [27] to GNNs [7, 24]. We explore the27

application and effects of virtual nodes in link prediction both theoretically and empirically:28

• We propose to use multiple virtual nodes in the network graph scenario and describe a graph-based29

technique to connect them to the graph nodes. In a nutshell, we use a graph clustering algorithm30

to determine groups of nodes in the graph belonging together and then connect these nodes to a31

common virtual node (see Figure 1). In this way, we add expressiveness, and under-reaching is32

decreased because clustered nodes can share information easily; meanwhile, the nodes are spared33

of unnecessary information from unrelated nodes (i.e., in contrast to the single virtual node model).34

• We also investigate alternative methods to determine the virtual node connections (i.e., randomiza-35

tion) and compare to the original model with a single virtual node.36

• We provide the first theoretical analysis of the benefits of virtual nodes in terms of (I) expressiveness37

of the learned link representation and (II) potential impact on under-reaching and over-smoothing.38

• We conducted experiments over challenging datasets, provide ablation studies and a detailed39

analysis of important factors.40

1Most results can be easily extended to node classification.
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(a) Without virtual nodes. (b) With two virtual nodes.

Figure 1: Multiple virtual nodes increase expressiveness: a regular GNN computes the same repre-
sentation for isomorphic nodes v2 and v3, and hence cannot discriminate links {v1, v2} and {v1, v3}.
The embeddings of the nodes can be influenced by virtual nodes s1 and s2 and become different.

Altogether, we show that, also for link prediction, virtual nodes are simple but powerful extensions that41

may yield rather stable performance increases for various standard GNNs. Since the latter represent42

simple and proven models which are especially interesting for applications, our study provides43

practical guidance and explanations about where and how virtual nodes may provide benefits. In this44

abstract, we give an overview of our main findings; for details and additional results, see the appendix.45

2 Preliminaries46

Link Prediction. We consider a graph G = (V,E) with nodes V and undirected edges E ⊆ V × V .47

This basic choice is only for ease of presentation; our techniques work for directed graphs and (with48

simple adaptation) for graphs with labelled nodes (edges). We assume V to be ordered and may refer49

to a node by its index in V . For a node v ∈ V , Nv denotes the set of its neighbors. Given two nodes,50

the link prediction task is to predict if there is a link between them.51

Message-Passing Graph Neural Networks. In this paper, we usually use the term graph neural52

networks (GNNs) to denote GNNs that use message passing as described in [1]. These networks53

compute for every v ∈ V a node representation hℓ
v at layer ℓ, by aggregating its neighbor nodes54

based on a generic aggregation function and then combine the obtained vector with hℓ−1
v as below.55

hℓ
v = COMBℓ

(
hℓ−1
v , AGGℓ

(
{hℓ−1

u | u ∈ Nv}
))

(1)

Link prediction with GNNs is usually done by combining the final representations of nodes u, v under56

consideration and passing them through several feed-forward layers with a final sigmoid function for57

scoring. Our implementation follows this approach.58

3 Virtual Nodes in Graph Neural Networks for Link Prediction59

Multiple Virtual Nodes. The intuition of using virtual nodes is to provide a shortcut for sharing60

information between the graph nodes. However, the amount of information in a graph with possibly61

millions of nodes is enormous, and likely too much to be captured in a single virtual node embedding.62

Further, not all information is equally relevant to all nodes. Therefore we suggest to use multiple63

virtual nodes S = {s1, s2 . . . , sn}2 each being connected to a subset of graph nodes, as determined64

by an assignment σ : V → [1, n]; n is a hyperparameter. We consider two options to obtain σ:65

Randomness: GNN-RM. Most simply, we can determine a fixed σ randomly once with initialization.66

Clustering: GNN-CM. Many types of graph data incorporate some cluster structure that reflects67

which nodes belong closely together (e.g., collaboration or social networks). We propose to connect68

nodes in such a cluster to a common virtual node, such that the structure inherent to the given69

graph is reflected in our virtual node assignment σ. More precisely, during initialization, we use70

a generic clustering algorithm (e.g., METIS [28]) which, given a number m, creates a set C =71

{C1, C2 . . . , Cm} of clusters (i.e., sets of graph nodes) by computing an assignment ρ : V → [1,m],72

assigning each graph node to a cluster. We then set m = n and σ = ρ.73

The Model. We integrate the multiple virtual nodes into a generic message-passing GNN in a74

straightforward way extending the approach from [23] to include multiple virtual nodes, computing75

2Since notation V is standard for nodes, we use S for the set of virtual nodes. Think of “supernodes”.
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node representations hℓ
v for a node v ∈ V at layer ℓ as below. The highlighted adaptation of the76

standard GNN (Equation (1)) is only minor, but powerful. In our implementation, COMBℓ
VN is addition77

combined with linear layers and layer normalization, AGGℓ
VN is a sum.78

hℓ
si = COMBℓ

VN

(
hℓ−1
si ,AGGℓ

VN

(
{hℓ−1

u | u ∈ V, σ(u) = i}
))

hℓ
v = COMBℓ

(
hℓ−1
v +hℓ

sσ(v)
,AGGℓ

(
{hℓ−1

u | u ∈ Nv}
))

3.1 Analysis I: Virtual Nodes Increase Expressiveness79

Additional structure-related features such as distance encodings [6, 29] are known to make graph80

representation learning more powerful. Our multiple virtual notes have a similar effect. Figure 1 gives81

an intuition of how they can increase the expressiveness of the regular 1-WL-GNN; see also Thm. B.1.82

3.2 Analysis II: Virtual Nodes Impact Node Influence83

We assume we can learn useful embeddings for virtual nodes if the assignment is chosen appropriately.84

Based on the above analysis, we expect virtual nodes to positively impact learning and prediction85

performance. Following [8, 16], we measure the sensitivity of a node y on a node x by the influence86

score. For a k-layer GCN, this score is known to be proportional in expectation to the k-step random87

walk distribution Prw from x to y.3 We exploit this relationship and argument in terms of Prw.88

Impact of Virtual Nodes. For simplicity, we consider the influence score in an r-regular graph.89

Consider the message passing between two nodes x and y. For k = 1, all the nodes can be classified90

into two cases: if y is not connected to x, the influence changes from 0 to 1
(r+2) ; otherwise:91

P s
rw(x → y, 1) = Prw(x → y, k) + Prw(x → s, s → y) =

1

(r + 2)
+

1

(r + 2)|V |
.

For k >= 2, by adding a virtual node s in one GNN layer, the probability changes to:92

P s
rw(x → y, k) = Prw(x → y, k) + Prw(x → s, s → y)Prw(x → y, k − 1)

=
|Rk|

(r + 2)k
+

1

(r + 2)|V |
P s
rw(x → y, k − 1).

Multiple Virtual Nodes. We continue along these lines and assume there is a shortest path of length93

≤ k between x and y. If x and y connect to the same virtual node s, then the above changes to:94

P s
rw(x → y, k) =

|Rk|
(r + 2)k

+
1

(r + 2)|Cs|
P s
rw(x → y, k − 1). (2)

Since the set Cs of nodes connecting to s is much smaller than V , multiple virtual nodes can increase95

the impact of potentially important distant nodes more than a single virtual node.96

Impact on Over-Smoothing The idea is to show that multiple virtual nodes help preserve more local97

information. If we consider the influence of x onto itself, we can show that, with a single virtual98

node, a graph node can preserve less information for itself at each layer. However, this changes99

in view of multiple virtual nodes; in particular, when |Cs| ≤ r + 1. We encounter this scenario100

practically especially with dense graphs. This fits nicely since dense graphs are particularly prone101

to over-smoothing and, as shown in [8, 16], additional capability to preserve local information in102

message passing steps helps to reduce over-smoothing. More details are shown in Appendix B.2.103

4 Evaluation104

Datasets. We use two datasets from OGB: ddi, a drug-drug interaction network; and collab, an105

author collaboration network [23]. Data statistics are in Appendix (Table 2). ddi is dense with a low106

graph diameter; while collab is sparser with large diameter. Both have high clustering coefficients.107

Models. Standard GNNs: GCN [30] and SAGE [31], which we extend with virtual nodes; deep108

GNNs: SGC, APPNP, DeeperGCN, GCN-JKNet; message passing beyond the direct neighborhood:109

P-GNN [22], APPNP [16], GDC [20]; and an advanced GNN-based link predictor: SEAL [7].110

3See Theorem 1 in [8]; that theorem makes some simplifying assumptions (e.g., on the shape of GCN).
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Table 1: Comparison of virtual-node augmented GNNs
to models with similar goal; ∗: from OGB leaderboard.

ddi collab
Hits@20 Hits@50

SEAL∗ 30.56 ± 3.86 64.74 ± 00.43
DeeperGCN∗ n/a 52.73 ± 00.47
SGC 06.76 ± 05.86 46.35 ± 01.97
P-GNN 10.50 ± 00.00 mem.
APPNP 14.92 ± 02.98 31.85 ± 02.05

GCN 40.76 ± 10.73 49.55 ± 00.64
GCN-GDC 25.50 ± 12.42 mem.
GCN+JKNet∗ 60.56 ± 08.69 n/a
GCN+LRGA∗ 62.30 ± 09.12 52.21 ± 00.72
GCN-VN 62.17 ± 12.41 50.49 ± 00.88
GCN-RM 55.32 ± 12.62 50.83 ± 01.09
GCN-CM 61.05 ± 15.63 51.81 ± 00.76

SAGE 61.73 ± 10.68 55.16 ± 01.71
SAGE-GDC 31.41 ± 12.54 mem.
SAGE+edges∗ 74.95 ± 03.17 n/a
SAGE-VN 64.91 ± 13.60 58.75 ± 00.91
SAGE-RM 70.68 ± 11.74 58.30 ± 00.87
SAGE-CM 76.21 ± 11.57 60.17 ± 01.37
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Figure 2: Impact of virtual node num-
ber; ddi (top) and collab (bottom).

Results, Table 1. Overall Impact of Virtual Nodes. The common approach of using a single virtual111

node (GNN-VN) yields good improvements over ddi and slight improvements over collab. The112

numbers for GNN-RM reflect the randomness of their connections to the virtual nodes, there is no113

clear trend; but they clearly outperform the original models. The virtual node assignment based on114

the graph structure (GNN-CM) yields consistently good improvements over ddi and collab. We115

note that we obtained some ambiguous results with data that has less cluster structure, but overall can116

observe a positive impact.117

Model Comparison. The results of the best models from the OGB leaderboard vary strongly with118

the different datasets (e.g., SEAL), or have not been reported at all. Most deep GNNs and models that119

use complex message-passing techniques perform disappointing and, overall, much worse than the120

standard GNNs. We did thorough hyperparameter tuning for these models and it is hard to explain. A121

possible reason may be most of their original evaluations focus on node or graph classification and122

consider very different types of data. The model closest to our approach is the position-aware graph123

neural network (P-GNN) [22]. It assigns nodes to random subsets of nodes called “anchor-sets”,124

and then learns a non-linear aggregation scheme that combines node feature information from each125

anchor-set and weighs it by the distance between the node and the anchor-set. So, it creates a message126

for each node for every anchor-set, instead of for each direct neighbor. The fact that it ran out of127

memory on collab shows that practice may benefit from simpler or more efficient schemes.128

Impact of Virtual Node Number, Figure 2. The configurations of the best models provided in the129

appendix show that the chosen numbers of virtual nodes are indeed random for the “random” models,130

but GNN-CM consistently uses a high number of virtual nodes, which also suits it better according to131

our theoretical analysis. In line with this, the more detailed analysis varying the numbers of virtual132

nodes, yields best results (also in terms of standard deviations) for SAGE-CM at rather high values.133

For GCN, we do not see a clear trend, but (second) best performance with 64 virtual nodes.134

Using Virtual Nodes Only at the Last GNN Layer, Table 3 (Appendix C.2). [32] show that using135

a fully connected adjacency matrix at the last layer of a standard GNN helps to better capture infor-136

mation over long ranges. We therefore investigated if it is a better architectural choice to use virtual137

nodes only at the last layer. However, we observed that this can lead to extreme performance drops.138

Conclusions and Discussions. In a nutshell, our clustering-based virtual node assignment provides139

stable performance increases if the graph contains good cluster structure and is sufficiently large. In140

smaller graphs, the GNNs alone were usually sufficient. In line with our theoretical investigation, we141

expect virtual nodes to be especially beneficial over dense graphs.142
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A Appendix248

B Additional Theoretical Results249

B.1 Expressiveness of link representation250

Given multiple virtual nodes S = {s1, ..., sm}, we obtain a node labeling that includes the node251

representations hℓ
si of the virtual nodes. For every u ∈ V , we have additional features l(u|S) =252

(hℓ
s1 , ..., h

ℓ
sm)T(γ(u|s1), ..., γ(u|sm)), where γ(u|si) = 1 if u is connected to the virtual node si,253

and γ(u|vi) = 0 otherwise. We can initialize h0
si with the one-hot encoding of i to ensure the si have254

different labels. We can then show that this labeling increases the power of GNNs.255

Theorem B.1 Given an arbitrary non-attributed graph with n nodes, if the degree of each node in the256

graph is between 1 and O(log
1−ϵ
2k (n)), for any constant ϵ > 0, given m virtual nodes which evenly257

divide the node set into m clusters, there are ω
(
(m− 1)2(n

ϵ

m − 1)3
)

many pairs of non-isomorphic258

links (u,w), (v, w) such that a k-layer 1-WL-GNN gives u, v the same representation, while using m259

virtual nodes give (u,w), (v, w) different representations.260

The theorem says that 1-WL-GNN with virtual nodes can discriminate many links that 1-WL-261

GNN cannot discriminate. On the other hand, it is intuitive adding virtual nodes can be at least as262

powerful as 1-WL-GNNs since it keeps all other components. If there are links that 1-WL-GNN263

can discriminate we only need to assign the related nodes to the same virtual nodes, so that the264

virtual-nodes-based method can also discriminate them.265

B.1.1 Proof of Theorem B.1266

The proof can be separated into two steps. The first step is to prove that there exist n/o(n1−ϵ) =267

ω(nϵ) many nodes that are locally h-isomorphic (which means their h-hop enclosing subgraphs268

are isomorphic). This step is same as the proof of Theorem 2 in [6], so we omit the details here.269

The basic idea is to expand the h-hop enclosing subgraph Gh(v) of v to another subgraph G̃h(v)270

and then use the pigeon hole principle to count the possible isomorphic G̃h(v). After getting these271

locally isomorphic nodes, we denote the set of these nodes as Viso. The second step is to find the272

non-isomorphic links.273

Step 2. We partition Viso = ∪i=1Vi where Vi is the subset of nodes connected to virtual node si. To274

be simple, we call each Vi a cluster, and the sizes of different clusters are assumed to be the same275

|Vi| = |Viso|/m. Consider two nodes u ∈ Vi and v ∈ Vj from different clusters. Since both of them276

are in Viso, they have identical h-hop neighborhood structures, and h-layer 1-WL-GNN will give277

them the same representations. Then let us select another node w in Vi, h-layer 1-WL-GNN will also278

make (u,w) and (v, w) have the same representation.279

However, if we use virtual nodes to label nodes and give them additional features, because u,w are280

in the same cluster while v, w belong to different clusters, (u,w) will have different representation281

from (v, w). Now we count the number of such non-isomorphic link pairs Y , we obtain:282

Y ≥
m∏

i,j=1,j ̸=i

|Vi||Vi − 1||Vj |

=
1

2
m(m− 1)

((
|Viso|
m

− 1

)(
|Viso|
m

)2
)

Taking |Viso| = ω(nϵ) into the above in-equation, we get283

Y ≥ 1

2
m(m− 1)ω

(
(
nϵ

m
− 1)3

)
= ω

(
(m− 1)2(

nϵ

m
− 1)3

)
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B.2 Node Influence284

In the following, without loss of generality, we take a k-layer GCN [30] as the example, and hence285

consider layers described as follows:286

hl
v = ReLU(Wl

1

deg(v)

∑
u∈N(v)

hl−1
u ).

Influence Score . We measure the sensitivity of a node y on a node x by the influence score [8]287

I(x, y) = eT ∂hk
x

∂h0
y

; e is a vector of all ones and hk
x is the embedding of x at the kth layer. The influence288

score is known to be proportional in expectation to the k-step random walk distribution Prw from289

x to y:4290

E[I(x, y)] ∝ Prw(x → y, k) =
∑
r∈Rk

k∏
ℓ=1

1

deg(vℓr)
, (3)

(v0r , v
1
r , ..., v

k
r ) are the nodes in the path r from x := v0r to y := vkr , Rk is the set of paths of length

k. In what follows, we exploit the relationship between the influence score and the probability Prw

and argument in terms of the latter. In particular, we will show how Prw changes in view of virtual
nodes. Note that we assume all the paths of message passing have the same probability. We assume
a self-loop at each regular graph node, this is standard and supported by Equation (1). Hence, the
denominator in the above equation changes slightly:291

Prw(x → y, k) =
∑
r∈Rk

k∏
ℓ=1

1

deg(vℓr) + 1
. (4)

We neglect the self-loops with virtual nodes only for reasons of readability. But it can be readily
checked that the later equations hold similarly with an additional “+1” in denominators. For
simplicity, we further consider the graph to be r-regular; in the standard case without virtual nodes,
Equation (4) then simplifies to:292

Prw(x → y, k) =
|Rk|

(r + 1)k
. (5)

We hypothesize that we can come to similar conclusions in a general graph with average degree r.293

Impact of One Virtual Node. We focus on the message passing between two nodes x and y, in294

layer k and calculate P s
rw(x → y, k), the influence score in the setting with virtual nodes, here with295

one, s. In particular we assume x, y ∈ V and hence x, y /∈ {s}. We argument inductively, based on k296

and, for each GNN layer, separate the impact of the messages coming from the virtual node. For297

k = 1, all the nodes can be classified into two cases: if y is not connected to x, the influence changes298

from 0 to 1
(r+2) ; if y is connected to x, the influence score is:299

P s
rw(x → y, 1) = Prw(x → y, 1) + Prw(x → s, s → y)

=
1

(r + 2)
+

1

(r + 2)|V |
. (6)

Note that the probability for x → s is the same as from x to any other neighbor, 1
|V | for s → y

follows from the |V | connected nodes at s.300

For k ≥ 2, we obtain:301

P s
rw(x → y, k) = Prw(x → y, k) + Prw(x → s, s → y)P s

rw(x → y, k − 1)

=
|Rk|

(r + 2)k
+

1

(r + 2)|V |
P s
rw(x → y, k − 1). (7)

4See Theorem 1 in [8]. Note that the theorem makes some simplifying assumptions that all paths in the
computation graph of the model are activated with the same probability of success. Nevertheless, empirical
experiments presented in [8] confirm that the theory is close to what happens in practice. In addition, the GCN is
assumed to use a simple average as AGG function. However, the factor in the equation can be easily adapted to
other GNNs.
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Multiple Virtual Nodes. In view of multiple virtual nodes, the above analysis gets more appealing.302

We continue along the above lines and assume there is a shortest path of length ≤ k between x and y.303

If x and y connect to the same virtual node s, then Equation (7) changes as follows:304

Pms
rw (x → y, k) =

|Rk|
(r + 2)k

+
1

(r + 2)|Cs|
Pms
rw (x → y, k − 1). (8)

Since the set Cs of nodes connecting to s is much smaller than V , i.e., |Cs| << |V |, the impact of305

multiple virtual nodes on the influence score is greater than that of a single virtual node. In case306

that x and y do not connect to the same virtual node, the probability just slightly decreases. The307

maximum possible decrease occurs when no nodes in the path between x and y are connected to a308

common virtual node, including x and y: δwc =
|Rk|

(r+1)k
− |Rk|

(r+2)k
; here we subtract from the regular309

Prw our Pms
rw , in which the second (virtual node) component is 0.310

Impact on Over-Smoothing The idea is to show that multiple virtual nodes help to preserve local311

information at the graph nodes. To this end, we consider the influence of x onto itself. For the setting312

with a single virtual node and k = 1, the change in influence score is313

δs(x, k = 1) = P s
rw(x → x, 1)− Prw(x → x, 1)

=
1

(r + 2)
+

1

(r + 2)|V |
− 1

(r + 1)
(9)

=
(1 + 1

|V | )(r + 1)− (r + 2)

(r + 1)(r + 2)

=

1
|V | (r + 1)− 1

(r + 1)(r + 2)
< 0.

This means the node will preserve less information for itself at layer considering the message coming314

from the single virtual node. However, in view of multiple virtual nodes, we come to a different315

conclusion.316

δms(x, k = 1) =
1

(r + 2)
+

1

(r + 2)|V |
− 1

(r + 1)

=
(1 + 1

|Cs| )(r + 1)− (r + 2)

(r + 1)(r + 2)

=

1
|Cs| (r + 1)− 1

(r + 1)(r + 2)

Since |Cs| << |V |, we obtain δms(x, k = 1) >>
1

|V | (r+1)−1

(r+1)(r+2) , which means we can preserve much317

more local information than in the setting with a single virtual node. Especially, when |Cs| ≤ r + 1,318

the self-transition probability is even higher than in the original setting without virtual nodes. We319

encounter this scenario practically especially with dense graphs. This fits nicely since these graphs320

are particularly prone to over-smoothing and, as shown in [8, 16], additional capability to preserve321

local information in message passing steps helps to reduce over-smoothing.322

For k ≥ 2,323

δms(x, k) =
|Rk|

(r + 2)k
+

1

(r + 2)|Cs|
Pms
rw (x → x, k − 1)− |Rk|

(r + 1)k

Assume Pms
rw (x → x, k − 1) > P s

rw(x → x, k − 1), since |Cs| < |V |, then we get324

δms(x, k) <
|Rk|

(r + 2)k
+

1

(r + 2)|V |
P s
rw(x → x, k − 1)− |Rk|

(r + 1)k
= δs(x, k).

Adding the condition that δms(x, k = 1) > δs(x, k = 1), we know that for any k, multiple virtual325

nodes can preserve more local information than single nodes.326
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Table 2: Data. All graphs are undirected, have no edge features, and all but ddi have node features.

#Nodes #Edges Average Average MaxSCC Graph
Node Deg. Clust. Coeff. Ratio Diameter

ddi 4,267 1,334,889 500.5 0.514 1.000 5
collab 235,868 1,285,465 8.2 0.729 0.987 23

B.3 Relationship with Labeling Tricks327

Although the concept of link representation is from [6], we would like to clarify that our labeling328

strategy is not a valid labeling trick by the definition of [6].329

Consider an undirected graph G as described in Section 2. In addition, the tensor A ∈ Rn×n×k330

contains all node and edge features (if available). The diagonal components Av,v,: denote the node331

features, while the off-diagonal components Au,v,: denote the edge features of edge (u, v). The332

labeling trick uses a target node set S ⊆ V and a labeling function to label all nodes in the node set V333

and stack the labels with A. A valid labeling trick must meet two conditions: (1) the nodes in S have334

different labels from the rest of the nodes, (2) the labeling function must be permutation invariant.335

Using virtual nodes is not a valid labeling trick in the following two aspects: First, the virtual node336

set S is not a subset of graph nodes V , and we use addition instead of concatenation. Even if we337

extend V to V ∪ S, our labeling strategy still does not fit the permutation-invariant requirement.338

Nevertheless, it can achieve similar effects in learning structural link representations.339

C Additional Experimental Results340

C.1 Data Statistics341

Data Statistics of the ddi and collab are shown in Table 2. From the table, we can see both of342

the datasets have good clustering structure. ddi is extremely dense and collab is sparser. That is343

interesting to note that on the denser ddi, our virtual nodes approaches achieved better performance344

gain.345

C.2 Model Configurations and Training346

We trained all models for 80 runs using the Bayesian optimization provided by wandb5 and the347

following hyperparameters.348

hidden dimension 32, 64, 128, 256
learning rate 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001
dropout 0, 0.3, 0.6
# of layers 1-7
# of virtual nodes (random) 1-10
# of virtual nodes 1,2,4,8,16,32,64
SGC - K 2-7
APPNP - α 0.05, 0.1, 0.2, 0.3
GNN-GDC - k 64, 128
GNN-GDC - α 0.05, 0.1, 0.2, 0.3

349

Please note that we considered the wide ranges of values only in order to find a good general setting.350

For practical usage a hidden dimension of 256, learning rate of 0.0001, and dropout of 0.3 should351

work well; only on the small graphs a dropout of 0 might work better. As usual, the number of layers352

depends on the type of data; however, note that the virtual nodes make it possible to use more that353

then the usual 2-3 layers. Generally, higher numbers of virtual nodes work better, in line with our354

theoretical results.355

Also note that we used less virtual nodes in the selection for the models (-RM, -RMF ) since especially356

-RMF was very slow and preliminary results showed that larger numbers did not change the results357

5https://wandb.ai/site
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Figure 3: Performance depending on layers: Hits@k and time per epoch (sec.); ddi (left), collab.

greatly – probably due to the randomness. We used maximally 64 virtual nodes due to memory358

issues with larger numbers (e.g., 128), especially on the larger datasets. For the first clustering in359

GNN-CM+, we created 200 clusters on ddi and collab. We used 500 epochs with a patience of 30.360

Furthermore, for collab, we used the validation edges during testing (OGB contains both settings,361

with and without them).362

We tuned all models for 80 runs, and thereafter ran the models with the best 3 configurations for 3363

runs and chose the best of these model as the final model (configuration). We trained as suggested by364

the OGB (e.g., the splits, negative sampling) but used a batch size of 212.365

C.3 Additional Results366

Using Virtual Nodes Only at the Last GNN Layer, Table 3 As we discussed in Sec.4, we inves-367

tigated using virtual nodes only at the last layer and compared it with our proposed method. The368

results are shown in Table 3. VNOL and CMOL indicate the ablation models which use virtual nodes369

only at the last layer. It shows that these ablations models decrease the performance a lot. That means370

using virtual nodes only at the last layer is not enough.371

Table 3: Comparison of using the virtual nodes at every and only at the last layer; Hits@20, ddi.

GCN SAGE GIN

w/o virtual nodes 0.5062 ± 0.2186 0.6128 ± 0.2122 0.4829 ± 0.1608
- VN 0.5932 ± 0.2390 0.7160 ± 0.1457 0.6523 ± 0.0446
- VNOL 0.6180 ± 0.0088 0.5167 ± 0.1364 0.6472 ± 0.0542
- CM 0.6322 ± 0.1565 0.8819 ± 0.0341 0.6544 ± 0.0960
- CMOL 0.6338 ± 0.1188 0.6151 ± 0.1545 0.4420 ± 0.1694

Impact of Virtual Nodes on Number of GNN Layers and Efficiency, Figure 3. For the virtual372

nodes models, the scores increase with the number of layers for a longer time, GCN drops earlier. On373

ddi, GCN-VN and -CM reach their best scores at 6 and 8 layers, respectively, which is remarkable for374

that very dense dataset, being prone to over-smoothing. On collab it is the other way around. The375

figure also gives an idea about the runtime increase with using virtual nodes. It compares the 6-layer376

models, and shows the 4-layer GCN-CM which obtains performance similar to the 6-layer GCN-VN.377
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