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In this Supplementary Material, we provide details omitted in the main paper.1

Section 1: brief introduction of datasets.2

Section 2: data format conversion (maybe include dataset[])3

Section 3: Details of training settings4

Section 4: 3D object detection using BEVDet5

Section 5: additional object detection results using DETR3D6

1 Datasets7

Argoverse2. The Argoverse2 dataset [1] is collected across six cities in the US, including Pittsburgh,8

Detroit, Austin, Palo Alto, Miami, and Washington D.C. It encompasses data captured in various9

weather conditions and at different times of the day. The dataset includes images from two grayscale10

stereo cameras and seven cameras that provide 360-degree coverage. It offers 3D annotations at11

a frame rate of 10Hz. To align with the frame rate in the nuScenes dataset, we sub-sample the12

Argoverse2 dataset, resulting in 21,982 frames for training and 4,705 frames for validation, with a13

frame rate of 2Hz. Yicheng: maybe we need to give a reason why?14

KITTI. The KITTI [2] object detection benchmark consists of 7,481 frames for training. These15

scenes were captured in clear weather and during daytime around Karlsruhe, Germany. The dataset16

provides images from two RGB cameras and two grayscale cameras, forming 2 stereo pairs. For our17

study, we solely utilize the left RGB camera. Following [3], we separate the data into 3,712 training18

frames and 3,769 validation frames.19

KITTI-360. The KITTI-360 dataset [4] is significantly larger than KITTI, comprising 61,569 valid20

frames with 3D annotations at a frame rate of 10Hz. The labeled data is obtained from nine video21

clips. To create a training and validation split, we utilize the first 80% of each video clip for training22

and the remaining 20% for validation. This results in a training set containing 49,253 frames and a23

validation set containing 12,316 frames. Unlike KITTI, the KITTI-360 dataset provides RGB images24

from two frontal perspective cameras and two side fish-eye cameras. Similar to the KITTI settings,25

we exclusively use the images from the left frontal camera in our study.26

nuScenes. The nuScenes datasets [5] contains 28130 training and 6019 validation key frames. The27

scenes are collected around Boston, USA and Singapore in multiple weathers and during different28

time frame. For each frame, the dataset provides six images that collectively cover a 360-degree view.29

Lyft. The Lyft Level 5 dataset [6] consists of 22,680 annotated frames captured around Palo Alto,30

USA, during clear weather conditions and daytime. Each frame within the dataset includes images31

from six surrounding view cameras as well as a long-focal-length frontal camera. It is important to32

mention that this dataset is collected using 20 independent vehicles, and the surrounding view images33
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have two different resolutions. Following the approach outlined in MMDetection3D[], we partition34

the dataset into 18,900 frames for training and 3,780 frames for validation.35

Waymo. The Waymo [7] dataset is collected across Phoenix, Mountain View, and San Francisco,36

encompassing various weather conditions and different times of the day. It includes images from five37

cameras and offers 3D annotations at a frame rate of 10Hz. The training set consists of 158,081 frames,38

while the validation set contains 39,990 frames. To align with a 2Hz frame rate, we sub-sample the39

dataset, resulting in 31,616 frames for training and 7,998 frames for validation.40

2 Converting Datasets into a Unified Format41

In this section, we provide a detailed explanation of how we convert Argoverse2, KITTI, KITTI-360,42

Lyft, nuScenes, and Waymo datasets into a unified format. We specifically focus on the issues related43

to coordinate systems and 3D annotations that arise when merging these datasets. We converting data44

under MMDetection3D v1.1.0.45

2.1 Coordinate systems46

Regarding sensor configuration, the datasets differ in terms of three types of coordinate systems: ego47

frame, LiDAR frame, and camera frame. The definition of camera is clear so we primarily focus48

on the former two. Each dataset typically includes at least one LiDAR mounted on the roof of the49

vehicle. The origin of the LiDAR frame is commonly located at the center of the top LiDAR if no50

specification.51

Ego frame is more confusing as the origin is defined differently across the datasets. In Argoverse2,52

nuScenes and Waymo, the ego origin is located at the center of the rear axle of the car. In Argoverse2,53

it is approximately 33cm above the ground, while in the latter two datasets, it is projected onto the54

ground plane. Lyft does not explicitly specify the location; however, based on the statistical analysis55

of 3D annotations, it is also considered to be on the ground. These four datasets have corrected their56

axes, ensuring that the z-axis consistently points upwards from the road surface. On the other hand,57

for KITTI and KITTI-360, the ego frame is defined by the Inertial Measurement Unit (IMU). Across58

all the datasets, the x-axis aligns with the car’s longitudinal direction, while the y-axis points to the59

left.60

Regarding LiDAR point clouds and 3D annotations, Argoverse2 and Waymo define them in the ego61

frame, while KITTI, KITTI-360, Lyft, and nuScenes define them in the LiDAR frame. Consequently,62

during training, we consider the LiDAR centers of the latter datasets as the ’ego centers’.63

In terms of ego frame alignment, for Argoverse2, KITTI, and KITTI-360, we simply lower their ego64

centers by 0.33m, 1.73m, and 1.73m, respectively, to align them with the road surface. For Lyft and65

nuScenes, we transform the entire coordinate system to their original ego frames, which are also66

pressed against the road.67

2.2 Object filtering68

To ensure consistency and data quality, we discard object annotations that fall outside the camera69

view. This is accomplished by projecting the eight corners of each object’s 3D bounding box onto the70

image plane. If all eight corners are outside the image boundary, the object annotation is removed.71

Additionally, we filter annotations based on a specific range in the x, y, and z coordinates, namely72

[−51.2, 51.2]× [−51.2, 51.2]× [−5.0, 4.0]. As every dataset includes LiDAR data, we also discard73

annotations that have no LiDAR points within the 3D bounding box since they may be occluded.74

2.3 Merging categories75

To unify the category labels across datasets, we merge the categories within each dataset into three76

classes: vehicle, pedestrian, and bicycle. This taxonomy closely resembles Waymo’s classification,77
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Table 1: Cross-dataset testing results of BEVDet[9] trained on single dataset.

Setting src/dst N A L K K360 W avg.

Direct

N 25.4 0.0 0.1 0.0 0.0 0.0 4.2
A 0.0 29.3 0.0 0.0 0.0 3.6 5.5
L 0.0 0.0 28.4 0.1 0.0 0.0 4.8
K 0.0 0.0 0.1 11.7 0.4 0.0 2.0
K360 0.0 0.0 0.1 0.6 18.4 0.0 3.2
W 0.0 2.2 0.0 0.0 0.0 39.0 6.9

Table 2: Multi-dataset training results by BEVDet

Setting src/dst N A L K K360 W avg.

Direct

N 25.4 0.0 0.1 0.0 0.0 0.0 4.2
+A 26.5 31.1 0.1 0.0 0.0 1.5 9.9
+L 27.1 32.4 31.5 0.2 0.1 2.8 15.7
+K 28.1 32.9 32.9 22.2 0.3 2.2 19.8
+K360 26.8 33.5 32.8 27.0 21.4 3.1 24.1
+W 29.2 36.7 33.9 28.8 22.0 44.5 32.5

but with a little difference in the bicycle category. Waymo excludes bicycles without a rider, whereas78

we include such objects when relabeling the other datasets. Table ?? shows the mapping of all79

categories to the three classes. Any types not listed in the table are discarded during the merging80

process.81

3 Training Details82

For DETR3D, we use the original training policy, while for BEVDet, we use adamW[8] with weight83

decay 1 × 10−7 as optimizer, and train it for 24 epochs with batch size 64 and inital learning rate84

2× 10−4, which will be decreased 10 times on 20th and 24th epoch.85

4 BEVDet Results86

We present object detection results using the BEVDet model, which leverages depth estimation to87

project 2D image features back to 3D space. In Table 1, we observe that BEVDet achieves favorable88

performance when trained and tested within the same dataset. We also see a clear performance drop89

when training a model on one dataset and evaluating it on others. Interestingly, this performance drop90

is more severe compared to the DETR3D detector in many cases. We surmise that the dense feature91

projection operation makes the model more prone to domain gaps across datasets. Consequently,92

BEVDet becomes highly reliant on data augmentation techniques. Table 2 demonstrates a similar93

trend when considering the results from a multi-dataset perspective.94

5 Additional Results from DETR3D95

In this section, we first provide additional results on monocular 3D detecton using DETR3D.96

5.1 Ablation studies by cropping the input images97

To investigate whether the model relies on other visual cues for object detection, we conduct an98

experiment where we crop the input images at different positions during testing. In Table 6, we find99

no performance drop in DETR3D, whereas BEVDet shows a substantial decrease. This indicates100

that DETR3D does not rely on objects’ position in the images. On the other hand, BEVDet, which101
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Table 3: Ablation study of synchronizing focal length to different values.

Train focal length N A L K K360 W

N

not synced 36.3 0.8 1.8 0.0 0.0 1.1
1260 35.7 21.9 13.8 27.1 16.9 19.2
2070 40.8 25.5 18.6 29.7 18.0 23.4
3100 41.7 26.2 18.7 28.5 17.7 25.8
4140 43.3 26.4 19.4 31.8 17.5 26.3

A

not synced 0.2 48.0 0.1 0.0 0.0 17.4
1780 11.8 46.8 7.2 6.4 5.4 38.4
2070 13.2 51.4 7.5 6.6 4.6 38.8
3100 12.1 51.1 8.9 7.5 5.1 40.7
4140 11.5 53.9 9.2 6.1 4.0 40.9

L

not synced 0.5 0.1 37.3 0.4 0.0 0.1
2070 1.0 1.3 44.0 8.1 5.7 1.5
3100 1.1 1.3 41.0 8.2 4.8 1.4
4140 1.0 1.6 42.9 10.5 3.2 1.6

K360

not synced 0.1 0.2 0.0 3.2 26.1 0.1
550 8.2 4.5 3.3 18.4 25.9 5.5
2070 14.6 14.7 7.3 34.6 34.7 8.2
3100 14.0 15.4 9.4 33.6 35.9 7.5

W

not synced 0.1 8.9 0.0 0.0 0.0 58.8
2070 14.5 37.8 14.3 9.4 5.6 57.7
3100 14.6 38.1 13.6 7.7 3.2 62.6
5170 10.1 38.7 10.7 8.8 2.0 62.1

incorporates a depth network in its architecture, is more reliant on this kind of pictorial cues, as102

suggested in prior work (Dijk et al., 2019) [reference].103

5.2 Synchronize focal length to different values104

To further investigate the intrinsic synchronization module, we perform an ablation study by increasing105

the synchronized focal length value during both training and testing. In Table 3, we observe that106

enlarging the images does improve mAP; however, the extent of improvement diminishes as the input107

image size increases. We argue that this phenomenon can be attributed to the fact that smaller objects108

become easier to detect in larger images.109

5.3 Ablation studies on sensor alignment approaches110

We evaluate the combinations of the modules on all datasets and report the results in Table 4. We111

observe that each component contributes to the overall performance; however, it is only after aligning112

the intrinsic parameters that the extrinsic and ego coordinate system start to impact the detection113

performance. While the Extrinsic Aware Module (EAM) may cause a drop in performance, we114

argue that this module provides robustness in real-world scenarios where the extrinsic parameters are115

subject to change.116

We evaluate various combinations of modules across all datasets and present the results in Table 4.117

We observe that each component contributes to the overall performance; however, it is only after118

aligning the intrinsic parameters that the extrinsic and ego coordinate system start to impact the119

detection performance. While the Extrinsic Aware Module (EAM) may cause a drop in performance,120

we argue that this module provides extrinsic robustness in real-world scenarios.121

5.4 Multi-dataset training beginning with Waymo122

Table 5, where we begin with Waymo as the first dataset. It is worth noting that the order of dataset123

addition does not affect the observations made in the main paper. Here, KITTI-360 drags down124
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Figure 1: Data volume of each dataset under monocular detection setting

Table 4: Ablation study on the effectiveness of each module in sensor alignment approaches. All models are
trained on the Waymo dataset.

Focal EAM Ego N A L K K360 W avg

0.1 8.9 0.0 0.0 0.0 58.8 11.3
✓ 0.0 8.4 0.0 0.0 0.0 58.3 11.1

✓ 0.0 5.0 0.0 0.0 0.0 59.4 10.7
✓ ✓ 0.0 3.5 0.0 0.0 0.0 59.4 10.5

✓ 14.5 37.8 14.3 9.4 5.6 57.7 23.2
✓ ✓ 24.7 39.4 33.0 21.2 13.6 57.7 31.6
✓ ✓ 14.1 37.7 17.0 9.3 5.8 57.6 23.6
✓ ✓ ✓ 25.4 38.2 33.6 21.2 11.7 57.6 31.3

the performance again. This decline can be attributed to a significant amount of discordant data, as125

illustrated in Figure 1, which provides statistics on the data volume across different datasets.126

5.5 Per-class and per-location evaluation results127

Table 8 and Table 7 are the extended version of Table 2 and Table 3 in the main paper, showing128

per-class mAP on each datasets. Furthermore, Table 9 shows the evaluation result of best model in129

Table 3 on each city in each dataset.130

5.6 Results from surrounding view detection131

We conduct extensive experiment under surrounding view settings to better understand the behavior132

of the detectors. All input images are of 1/4 resolution, and the perception range is bigger, including133

the area behind our ego car.134

Ablation studies on sensor alignment approaches. We examine our sensor alignment under the135

surrounding view settings. In Table 10, DETR3D is trained on Argoverse2, nuScenes and Waymo,136

and tested in six datasets.137

Data diversity vs. data volume We test if the model benefits more from data diversity more than data138

volume. Given that Waymo and nuScene are of similar data volume, we used different percentage of139

training data from the 2 datasets and test the model on 3 datasets. As shown in Table 11, mixing the140

data achieves better performance.141
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Table 5: Multi-dataset training results by DETR3D, beginning with Waymo.

Setting src/dst W N A L K K360 avg.

Direct

W 58.8 0.1 8.9 0.0 0.0 0.0 11.3
+N 60.4 38.4 11.2 0.2 0.0 0.0 18.4
+A 63.0 42.7 54.8 0.1 0.0 0.0 26.8
+L 60.2 44.4 53.1 47.3 0.0 0.0 34.2
+K 63.1 45.5 53.4 49.2 44.3 1.9 42.9
+K360 61.9 46.2 53.7 49.4 39.5 29.7 46.7

Table 6: Results of DETR3D and BEVDet, which are trained on Waymo, using images cropped at different
positions during testing.

Cropped height [192,992] [288,1088] [384,1184] [480,1280] Origin

DETR3D 56.9 59.3 59.3 59.7 57.7
BEVDet 20.8 30.5 36.4 31.5 39.0

Table 7: Multi-dataset training results by DETR3D, beginning with nuScenes (full version). The performance is
reported in terms of LET-3D-AP for all, vehicles, pedestrians, and bicycles, denoted as a(b/c/d).

Setting src/dst N A L K K360 W

Direct

N 36.3 (56.7/36.7/15.7) 0.8 (0.9/1.4/0.3) 1.8 (1.6/1.1/2.7) 0.0 (0.0/0.0/0.0) 0.0 (0.0/0.0/0.0) 1.1 (0.6/1.2/1.4)
+A 40.5 (60.4/38.9/22.1) 49.2 (76.0/42.3/29.4) 0.5 (0.7/0.5/0.3) 0.0 (0.0/0.0/0.0) 0.0 (0.0/0.0/0.0) 5.2 (4.5/4.2/6.9)
+L 41.6 (61.0/40.7/23.1) 50.5 (78.4/42.3/30.9) 43.7 (74.5/26.3/30.4) 0.0 (0.0/0.0/0.0) 0.0 (0.0/0.0/0.0) 3.8 (4.2/4.2/2.9)
+K 41.5 (62.7/39.6/22.1) 49.7 (78.5/42.4/28.3) 46.0 (75.8/28.1/34.2) 41.4 (62.1/38.7/23.5) 1.1 (1.2/1.2/1.0) 3.6 (4.3/4.2/2.2)
+K360 42.6 (64.2/40.8/22.8) 54.3 (78.6/43.8/40.6) 46.8 (76.7/26.5/37.1) 36.3 (51.3/35.0/22.7) 29.7 (60.6/8.6/20.0) 3.3 (4.2/3.8/1.8)
+W 46.2 (66.6/42.7/29.2) 53.7 (79.8/47.9/33.5) 49.4 (76.7/33.0/38.4) 39.5 (54.2/36.1/28.0) 29.7 (60.6/9.4/19.2) 61.9 (82.0/55.4/48.2)

Sync Intrinsic

N 40.8 (58.5/42.1/21.8) 25.5 (45.6/25.1/5.7) 18.6 (39.8/14.4/1.6) 29.7 (41.1/24.2/23.7) 18.0 (37.6/11.3/4.9) 23.4 (37.4/24.8/7.9)
+A 45.5 (64.5/45.0/27.0) 50.0 (77.9/44.0/28.1) 25.1 (49.2/18.0/8.1) 35.8 (48.1/26.2/33.1) 21.3 (42.5/15.0/6.5) 44.2 (67.9/35.8/28.7)
+L 46.8(64.3/47.1/28.9) 53.2(79.5/46.6/33.6) 55.1(82.6/36.4/46.2) 37.8(50.7/30.6/31.9) 23.1(44.6/16.9/7.8) 45.3(69.2/37.0/29.6)
+K 47.4 (64.5/48.0/29.8) 53.5 (79.3/45.6/35.6) 53.6 (82.5/34.3/43.9) 57.8 (77.7/48.7/46.9) 21.8 (36.4/17.2/11.6) 44.4 (69.4/37.2/26.7)
+K360 50.2 (68.0/47.5/34.9) 54.4 (80.7/48.3/34.3) 54.0 (83.7/36.4/42.0) 60.2 (81.9/47.2/51.4) 39.6 (72.7/16.9/29.3) 44.7 (71.6/38.2/24.2)
+W 51.8 (68.2/49.8/37.3) 55.3 (82.1/48.8/34.9) 56.6 (84.4/38.4/47.1) 61.9 (83.0/51.5/51.1) 40.7 (73.6/19.9/28.7) 63.7 (83.2/55.0/52.8)
N 43.1(63.0/45.0/21.4) 33.6(62.4/30.4/7.9) 32.8(60.8/19.3/18.4) 33.0(49.0/28.2/21.7) 18.4(37.0/12.8/5.5) 33.0(47.8/28.4/22.8)
+A 52.1(68.1/50.8/37.4) 52.7(77.9/47.3/32.9) 38.4(70.4/23.5/21.2) 42.2(54.9/33.6/37.9) 23.2(43.0/16.5/10.3) 40.7(64.1/35.6/22.5)

Sync Extrinsic +L 52.6(68.9/50.2/38.6) 53.2(79.1/47.4/33.2) 59.5(85.6/45.5/47.4) 46.1(61.6/37.8/38.9) 26.1(47.6/19.7/10.9) 43.6(67.1/35.6/28.0)
and Ego center +K 51.0(67.9/51.8/33.3) 54.7(79.8/47.7/36.5) 60.2(85.6/44.5/50.5) 63.9(83.2/58.0/50.6) 28.4(48.8/22.9/13.5) 44.6(67.1/35.4/31.4)

+K360 50.0(70.5/50.4/29.3) 55.0(81.4/47.4/36.2) 59.8(86.9/43.9/48.4) 65.0(85.4/54.5/55.1) 42.7(75.5/20.3/32.3) 45.2(68.6/36.2/30.9)
+W 54.8(72.7/52.5/39.1) 56.4(82.3/49.0/38.0) 60.5(87.4/45.7/48.4) 66.8(85.2/58.1/57.2) 43.4(76.3/22.3/31.5) 62.7(83.4/56.9/47.9)

Table 8: Cross-dataset testing results of DETR3D trained on single dataset (full version). The performance is
reported in terms of LET-3D-AP for all, vehicles, pedestrians, and bicycles, denoted as a(b/c/d).

Setting src/dst N A L K K360 W

Direct

N 36.3 (56.7/36.7/15.7) 0.8 (0.9/1.4/0.3) 1.8 (1.6/1.1/2.7) 0.0 (0.0/0.0/0.0) 0.0 (0.0/0.0/0.0) 1.1 (0.6/1.2/1.4)
A 0.2 (0.1/0.5/0.1) 48.0 (73.8/38.7/31.7) 0.1 (0.0/0.1/0.1) 0.0 (0.0/0.1/0.0) 0.0 (0.0/0.1/0.0) 17.4 (19.7/14.1/18.3)
L 0.5 (0.9/0.7/0.0) 0.1 (0.1/0.1/0.0) 37.3 (70.5/16.6/24.9) 0.4 (0.5/0.7/0.1) 0.0 (0.0/0.1/0.0) 0.1 (0.0/0.3/0.0)
K 2.8 (4.8/3.0/0.5) 1.2 (0.9/1.3/1.5) 0.0 (0.1/0.1/0.0) 24.5 (40.2/25.1/8.3) 1.1 (0.9/2.1/0.4) 0.7 (0.2/0.4/1.3)
K360 0.1(0.1/0.2/0.0) 0.2(0.0/0.2/0.4) 0.0(0.0/0.0/0.0) 3.2(0.9/6.7/2.2) 26.1(60.2/4.5/13.7) 0.1(0.0/0.1/0.2)
W 0.1 (0.0/0.1/0.0) 8.9 (14.5/9.2/3.1) 0.0 (0.0/0.0/0.0) 0.0 (0.0/0.0/0.0) 0.0 (0.0/0.0/0.0) 58.8 (78.1/50.3/47.9)

Sync Intrinsic

N 35.7(56.1/36.3/14.8) 21.9(40.9/19.3/5.3) 13.8(30.4/9.6/1.4) 27.1(41.7/24.6/14.9) 16.9(36.4/10.0/4.2) 19.2(32.0/18.9/6.7)
A 11.8(19.1/12.9/3.4) 46.8(73.4/38.2/28.8) 7.2(18.2/2.5/1.0) 6.4(10.1/2.1/6.9) 5.4(13.7/1.1/1.5) 38.4(59.2/29.5/26.4)
L 1.0 (1.8/1.2/0.1) 1.3 (3.3/0.4/0.1) 44.0 (76.4/20.9/34.6) 8.1 (17.3/4.7/2.3) 5.7 (12.7/2.0/2.4) 1.5 (3.2/1.0/0.2)
K 1.2 (0.9/1.9/0.7) 0.2 (0.4/0.0/0.1) 0.6 (0.8/0.8/0.1) 24.7 (40.0/26.1/8.0) 6.4 (13.8/3.5/1.9) 0.1 (0.3/0.0/0.1)
K360 14.6 (34.0/9.3/0.4) 14.7 (36.4/2.7/4.9) 7.3 (20.0/1.6/0.2) 34.6 (59.9/25.1/18.9) 34.7 (69.4/10.0/24.7) 8.2 (22.7/0.7/1.1)
W 14.5(25.9/13.3/4.4) 37.8(67.3/34.1/11.9) 14.3(25.5/8.5/8.8) 9.4(6.3/4.8/17.0) 5.6(13.1/1.1/2.6) 57.7(78.0/50.2/45.0)
N 43.1(63.0/45.0/21.4) 33.6(62.4/30.4/7.9) 32.8(60.8/19.3/18.4) 33.0(49.0/28.2/21.7) 18.4(37.0/12.8/5.5) 33.0(47.8/28.4/22.8)
A 24.4(42.0/23.0/8.3) 48.1(75.3/41.7/27.3) 34.1(61.5/22.4/18.3) 18.1(22.0/17.3/15.0) 8.7(16.1/3.1/6.8) 37.4(58.4/28.8/24.9)

Sync Extrinsic L 15.7(35.1/10.3/1.9) 19.6(42.6/13.1/3.0) 47.1(79.3/21.2/40.8) 20.0(38.7/11.5/9.9) 12.9(31.8/4.0/2.9) 18.9(30.2/11.2/15.2)
and Ego center K 7.1(12.6/7.9/0.8) 8.7(19.2/3.8/2.9) 10.2(20.7/4.2/5.6) 29.1(49.5/28.1/9.6) 9.3(20.2/4.9/2.7) 2.4(3.6/2.5/1.1)

K360 13.9(33.2/8.3/0.3) 17.7(41.7/5.6/5.8) 16.6(38.4/4.2/7.3) 39.1(67.6/26.5/23.2) 36.7(72.4/10.9/26.6) 8.4(18.2/2.8/4.3)
W 25.4(45.0/26.3/5.0) 38.2(68.3/34.6/11.7) 33.6(63.3/16.8/20.7) 21.2(13.5/25.3/24.7) 11.7(25.6/6.2/3.3) 57.6(77.9/50.9/44.2)
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Table 9: Evaluation results per location, using DETR3D with all sensor alignment approaches. The performance
is reported in terms of LET-3D-AP for all, vehicles, pedestrians, and bicycles, denoted as a(b/c/d).

Dataset Location LET-3D-AP

argoverse2

ATX 44.6 (69.7/64.3/0.0)
DTW 71.5 (79.3/60.3/75.1)
MIA 46.8 (84.0/41.1/15.2)
PAO 64.3 (91.6/51.4/49.7)
PIT 59.9 (82.0/53.2/44.4)
WDC 39.9 (80.1/39.7/0.0)

kitti Germany 66.8 (85.2/58.1/57.2)
kitti-360 Germany 43.3 (76.3/22.3/31.4)
lyft Palo Alto 60.5 (87.4/45.7/48.5)

nuscenes

boston-seaport 61.4 (75.4/51.7/57.1)
singapore-hollandvillage 30.3 (67.4/23.4/0.1)
singapore-onenorth 50.5 (66.8/53.0/31.8)
singapore-queenstown 51.6 (68.5/58.9/27.5)

waymo
other 44.9 (72.4/44.8/17.6)
phx 63.3 (87.0/55.7/47.1)
sf 65.1 (83.7/58.8/52.8)

Table 10: Surrounding view 3D detection results: ablation study on the effectiveness of each module in sensor
alignment approaches. All models are trained on AV2, nuScenes, Waymo.

Focal EAM Ego A N W L K K360 avg.

48.0 40.4 54.8 0.6 6.2 0.7 25.1
✓ 48.6 41.0 53.8 0.0 3.6 0.0 24.5

✓ 49.5 39.7 54.7 1.8 7.4 1.8 25.8
✓ ✓ 47.4 40.8 53.3 0.2 4.4 0.6 24.4

✓ 52.2 46.5 55.2 22.2 22.0 11.0 34.9
✓ ✓ 50.1 47.2 54.2 30.1 36.3 22.1 40.0
✓ ✓ 52.0 46.7 55.5 31.1 26.2 15.8 37.9
✓ ✓ ✓ 52.1 47.5 54.8 31.4 39.7 24.0 41.6

Table 11: Surrounding view 3D detection results: models are trained on different combinations of Waymo and
nuScenes.

test/ train(W+N) 0.00+1.00 0.01+0.99 0.10+0.90 0.33+0.67 0.5+0.5 0.67+0.33 1.00+0.00

A 1.0 6.4 9.1 13.0 14.5 16.0 4.3
N 32.5 32.5 32.3 32.1 31.5 30.4 0.2
W 0.3 23.4 36.7 45.8 45.6 47.0 46.2

Table 12: The original categories in each dataset that we include into the vehicle, pedestrain and bicycle
categories.

Dataset Vehicle Pedestrian Bicycle

argoverse2

REGULAR VEHICLE, LARGE VEHICLE,
BUS, BOX TRUCK, TRUCK,

MOTORCYCLE, VEHICULAR TRAILER,
TRUCK CAB, SCHOOL BUS

PEDESTRIAN,
WHEELED RIDER,

OFFICIAL SIGNALER

BYCYCLE,
BYCYCLIST

kitti Car, Van, Trunk, Tram Pedestrian, Person Sitting Cyclist

kitti-360 bus, car, caravan, motorcycle,
trailer, train, truck, unknown vehicle person bicycle, rider

lyft car, truck, bus, emergency vehicle,
other vehicle, motorcycle pedestrian bicycle

nuscenes car, truck, construction vehicle,
bus, trailer, motorcycle pedestrian bicycle

waymo Car Pedestrian Cyclist
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