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CONTINUOUS TRANSFER LEARNING

ABSTRACT

Transfer learning has been successfully applied across many high-impact applica-
tions. However, most existing work focuses on the static transfer learning setting,
and very little is devoted to modeling the time evolving target domain, such as the
online reviews for movies. To bridge this gap, in this paper, we focus on the con-
tinuous transfer learning setting with a time evolving target domain. One major
challenge associated with continuous transfer learning is the time evolving relat-
edness of the source domain and the current target domain as the target domain
evolves over time. To address this challenge, we first derive a generic generaliza-
tion error bound on the current target domain with flexible domain discrepancy
measures. Furthermore, a novel label-informed C-divergence is proposed to mea-
sure the shift of joint data distributions (over input features and output labels)
across domains. It could be utilized to instantiate a tighter error upper bound
in the continuous transfer learning setting, thus motivating us to develop an ad-
versarial Variational Auto-encoder algorithm named CONTE by minimizing the
C-divergence based error upper bound. Extensive experiments on various data sets
demonstrate the effectiveness of our CONTE algorithm.

1 INTRODUCTION
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Figure 1: Illustration of continuous transfer learn-
ing. It learns a predictive function in DTt us-
ing knowledge from both source domain DS and
historical target domain DTi(i = 1, · · · , t − 1).
Directly transferring from the source domain DS
to the target domain DTt might lead to negative
transfer with undesirable predictive performance.

Transfer learning has achieved significant suc-
cess across multiple high-impact application
domains (Pan & Yang, 2009). Compared to
conventional machine learning methods assum-
ing both training and test data have the same
data distribution, transfer learning allows us to
learn the target domain with limited label infor-
mation by leveraging a related source domain
with abundant label information (Ying et al.,
2018). However, in many real applications, the
target domain is constantly evolving over time.
For example, the online movie reviews are changing over the years: some famous movies were not
well received by the mainstream audience when they were first released, but became famous only
years later (e.g., Citizen Cane, Fight Club, and The Shawshank Redemption); whereas the online
book reviews typically do not have this type of dynamics. It is challenging to transfer knowledge
from the static source domain (e.g., the book reviews) to the time evolving target domain (e.g., the
movie reviews). Therefore, in this paper, we study the transfer learning setting with a static source
domain and a continuously time evolving target domain (see Figure 1), which has not attracted much
attention from the research community and yet is commonly seen across many real applications. The
unique challenge for continuous transfer learning lies in the time evolving nature of the task relat-
edness between the static source domain and the time evolving target domain. Although the change
in the target data distribution in consecutive time stamps might be small, over time, the cumulative
change in the target domain might even lead to negative transfer (Rosenstein et al., 2005).

Existing theoretical analysis on transfer learning (Ben-David et al., 2010; Mansour et al., 2009)
showed that the target error is typically bounded by the source error, the domain discrepancy of
marginal data distributions and the difference of labeling functions. However, it has been ob-
served (Zhao et al., 2019; Wu et al., 2019) that marginal feature distribution alignment might not
guarantee the minimization of the target error in real world scenarios. This indicates that in the
context of continuous transfer learning, marginal feature distribution alignment would lead to the
sub-optimal solution (or even negative transfer) with undesirable predictive performance when di-
rectly transferring fromDS to the target domainDTt at the tth time stamp. This paper aims to bridge
the gap in terms of both the theoretical analysis and the empirical solutions for the target domain
with a time evolving distribution, which lead to a novel continuous transfer learning algorithm as
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well as the characterization of negative transfer. The main contributions of this paper are summa-
rized as follows: (1) We derive a generic error bound for continuous transfer learning setting with
flexible domain divergence measures; (2) We propose a label-informed domain discrepancy measure
(C-divergence) with its empirical estimate, which instantiates a tighter error bound for continuous
transfer learning setting; (3) Based on the proposed C-divergence, we design a novel adversarial
Variational Auto-encoder algorithm (CONTE) for continuous transfer learning; (4) Extensive exper-
imental results on various data sets verify the effectiveness of the proposed CONTE algorithm.

The rest of the paper is organized as follows. Section 2 introduces the notation and our problem
definition. We derive a generic error bound for continuous transfer learning setting in Section 3.
Then we propose a novel C-divergence in Section 4, followed by a instantiated error bound and a
novel continuous transfer learning algorithm in Section 5. The experimental results are provided in
Section 6. We summarize the related work in Section 7, and conclude the paper in Section 8.

2 PRELIMINARIES

In this section, we introduce the notation and problem definition of continuous transfer learning.

2.1 NOTATION

We use X and Y to denote the input space and label space. Let DS and DT denote the source and
target domains with data distribution pS(x, y) and pT (x, y) over X × Y , respectively. Let H be a
hypothesis class on X , where a hypothesis is a function h : X → Y . The notation is summarized in
Table 3 in the appendices.

2.2 PROBLEM DEFINITION

Transfer learning (Pan & Yang, 2009) refers to the knowledge transfer from source domain to target
domain such that the prediction performance on the target domain could be significantly improved
as compared to learning from the target domain alone. However, in some applications, the target
domain is changing over time, hence the time evolving relatedness between the source and target
domains. This motivates us to consider the transfer learning setting with the time evolving target
domain, which is much less studied as compared to the static transfer learning setting. We formally
define the continuous transfer learning problem as follows.
Definition 2.1. (Continuous Transfer Learning) Given a source domainDS (available at time stamp
j = 1) and a time evolving target domain {DTj}nj=1 with time stamp j, continuous transfer learning
aims to improve the prediction function for target domain DTt+1

using the knowledge from source
domain DS and the historical target domain DTj (j = 1, · · · , t).

Notice that the source domain DS can be considered a special initial domain for the time-evolving
target domain. Therefore, for notation simplicity, we will use DT0

to represent the source domain
in this paper. It assumes that there are mT0

labeled source examples drawn independently from a
source domain DT0 and mTj labeled target examples drawn independently from a target domain
DTj at time stamp j.

3 A GENERIC ERROR BOUND

Given a static source domain and a time evolving target domain, continuous transfer learning aims
to improve the target predictive function over DTt+1 using the source domain and historical target
domain. We begin by considering the binary classification setting, i.e., Y = {0, 1}. The source error
of a hypothesis h can be defined as follows: εT0(h) = E(x,y)∼pT0 (x,y)

[
L(h(x), y)

]
where L(·, ·)

is the loss function. Its empirical estimate using source labeled examples is denoted as ε̂T0
(h).

Similarly, we define the target error εTj (h) and the empirical estimate of the target error ε̂Tj (h) over
the target distribution pTj (x, y) at time stamp j. A natural domain discrepancy measure over joint
distributions on X × Y between features and class labels can be defined as follows:

d1(DT0 ,DT ) = sup
Q∈Q

∣∣PrDT0 [Q]− PrDT [Q]
∣∣ (1)

where Q is the set of measurable subsets under pT0(x, y) and pT (x, y)1. Then, the error bound of
continuous transfer learning is given by the following theorem.
Theorem 3.1. Assume the loss function L is bounded with 0 ≤ L ≤ M . Given a source domain
DT0

and historical target domain {DTi}ti=1, for h ∈ H, the target domain error εTt+1
on Dt+1 is

1Note that it is slightly different from L1 or variation divergence in (Ben-David et al., 2010) with only
marginal distribution of features involved.
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bounded as follows.

εTt+1
(h) ≤ 1

µ̄

 t∑
j=0

µt−jεTj (h) +M

t∑
j=0

µt−jd1(DTj ,DTt+1
)


where µ ≥ 0 is the domain decay rate2 indicating the importance of source or historical target
domain over DTt+1

, and µ̄ =
∑t
j=0 µ

t−j .

Remark. In particular, we have the following arguments. (1) It is not tractable to accurately es-
timate d1 from finite examples in real scenarios (Ben-David et al., 2010); (2) This error bound
could be much tighter when considering other advanced domain discrepancy measures, e.g., A-
distance (Ben-David et al., 2007), discrepancy distance (Mansour et al., 2009), etc. (3) There are
two special cases: when µ = 0, the error bound of DTt+1 would be simply determined by the latest
historical target data DTt , and if µ goes to infinity, DTt+1 is just determined by the source data
DT0

because intuitively the coefficient µt−j/µ̄ of historical target domain data DTj (j = 1, · · · , t)
converges to zero.

Corollary 3.2. With the assumption in Theorem 3.1 and assume that the loss functionL is symmetric
(i.e., L(y1, y2) = L(y2, y1) for y1, y2 ∈ Y) and obeys the triangle inequality, Then

(1) ifA-distance (Ben-David et al., 2007) is adopted to measure the distribution shift, i.e., dH∆H =
suph,h′∈H

∣∣PrDT0 [h(x) 6= h′(x)]− PrDT [h(x) 6= h′(x)]
∣∣, we have:

εTt+1
(h) ≤ 1

µ̄

 t∑
j=0

µt−jεTj (h) +M

t∑
j=0

µt−j
(
dH∆H(DTj ,DTt+1

) +
λ∗j
M

)
where λ∗j = minh∈H εTj (h) + εTt+1

(h).
(2) if discrepancy distance (Mansour et al., 2009) is adopted to measure the distribution shift, i.e.,

ddisc(DT0 ,DT ) = maxh,h′∈H
∣∣EDT0 [L(h(x), h′(x))]− EDT [L(h(x), h′(x))]

∣∣, we have:

εTt+1
(h) ≤ 1

µ̄

 t∑
j=0

µt−jεTj (h) +

t∑
j=0

µt−j
(
ddisc(DTj ,DTt+1

) + Ωj
)

where Ωj = EDTj [L(h∗j (x), y)] + EDTt+1
[L(h∗j (x), h∗t+1(x))] + EDTt+1

[L(h∗t+1(x), y)], and
h∗j = arg minh∈H εTj (h) for j = 0, · · · , t, t+ 1.

The aforementioned domain discrepancy measures mainly focus on the marginal distribution over
input features and have inspired a line of practical transfer learning algorithms (Ganin et al., 2016;
Chen et al., 2019). However, recent work (Wu et al., 2019; Zhao et al., 2019) observed that the
minimization of marginal distributions cannot guarantee the success of transfer learning in real sce-
narios. We propose to address this problem by incorporating the label information in the domain
discrepancy measure (see next section).

4 LABEL-INFORMED DOMAIN DISCREPANCY

In this section, we introduce a novel label-informed domain discrepancy measure between the source
domain DT0 and target domain DT , its empirical estimate, and a transfer signature based on this
measure to identify potential negative transfer. The use of this discrepancy measure in continuous
transfer learning will be discussed in the next section.

4.1 C-DIVERGENCE

For a hypothesis h ∈ H, we denote I(h) to be the subset of X such that x ∈ I(h)⇔ h(x) = 1. In
order to estimate the label-informed domain discrepancy from finite samples in practice, instead of
Eq. (1), we propose the following C-divergence between DT0

and DT , taking into consideration the
joint distribution over features and class labels:
dC(DT0

,DT ) = sup
h∈H

∣∣∣PrDT0 [{I(h), y = 1}∪{I(h), y = 0}]−PrDT [{I(h), y = 1}∪{I(h), y = 0}]
∣∣∣

(2)
where I(h) is the complement of I(h).

2In this case, we assume µ0 = 1 for any µ ≥ 0.
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We show that some existing domain discrepancy methods (e.g., Ben-David et al. (2007)) can be seen
as special cases of this definition by using the following relaxed covariate shift assumption.
Definition 4.1. (Relaxed Covariate Shift Assumption) The source and target domains satisfy the
relaxed covariate shift assumption if for any h ∈ H,

PrDT0 [y | I(h)] = PrDT [y | I(h)] = Pr[y | I(h)] (3)

Notice that it would be equivalent to covariance shift assumption (Shimodaira, 2000; Johansson
et al., 2019) when I(h) consists of only one example for all h ∈ H (see Lemma A.6 for details).
Lemma 4.2. With the relaxed covariate shift assumption, for any h ∈ H, we have:

dC(DT0
,DT ) = sup

h∈H

∣∣∣(PrDT0 [I(h)]− PrDT [I(h)]
)
· Sh + PrDT [y = 1]− PrDT0 [y = 1]

∣∣∣
where Sh = Pr[y = 1|I(h)]− Pr[y = 0|I(h)].
Remark. From Lemma 4.2, we can see that in the special case where Sh is a constant for all h ∈ H
and PrDT [y = 1] = PrDT0 [y = 1], the proposed C-divergence is reduced to the A-distance (Ben-
David et al., 2007) defined on the marginal distribution of features. More generally speaking, C-
divergence can be considered as a weighted version of the A-distance where the hypothesis whose
characteristic function has a larger class-separability (i.e., |Sh|) receives a higher weight. Intu-
itively, compared to A-distance, C-divergence would pay less attention to class-inseparable regions
in the input feature space, which provide irrelevant information for learning the prediction function
in the target domain.

Moreover, the following theorem states that in conventional transfer learning scenario with a static
source domain and a static target domain, the target error is bounded in terms of C-divergence across
domains and the expected source error.
Theorem 4.3. Assume that loss function L is bounded, i.e., there exists a constant M > 0 such that
0 ≤ L ≤M . For a hypothesis h ∈ H, we have the following bound:

εT (h) ≤ εT0
(h) +M · dC(DT0

,DT )

4.2 EMPIRICAL ESTIMATE OF C-DIVERGENCE

In practice, it is difficult to calculate the proposed C-divergence based on Eq. (2) as it uses the
true underlying distributions. Therefore, we propose the following empirical estimate of the C-
divergence between DT0

and DT as follows. Assuming that the hypothesis class H is symmetric
(i.e., 1− h ∈ H if h ∈ H), the empirical C-divergence is:

dC(D̂T0
, D̂T ) = 1−min

h∈H

∣∣∣ 1

mT0

∑
(x,y):h(x)6=y

I[(x, y) ∈ D̂T0 ]+
1

mT

∑
(x,y):h(x)=y

I[(x, y) ∈ D̂T ]
∣∣∣ (4)

where D̂T0 and D̂T denote the source and target domains with finite samples, respectively. I[a] is
the binary indicator function which is 1 if a is true, and 0 otherwise.

The following lemma provides the upper bound of the true C-divergence using its empirical estimate.
Lemma 4.4. For any δ ∈ (0, 1), with probability at least 1 − δ over mT0

labeled source examples
BT0

and mT labeled target examples BT , we have:

dC(DT0
,DT ) ≤ dC(D̂T0

, D̂T ) +
(
<̂BT0 (LH) + <̂BT (LH)

)
+ 3

(√
log 4

δ

2mT0

+

√
log 4

δ

2mT

)
where <̂B(LH)(B ∈ {BT0

,BT }) denotes the Rademacher complexity (Mansour et al., 2009) over B
and LH = {(x, y)→ I[h(x) = y] : h ∈ H} is a class of functions mapping Z = X × Y to {0, 1}.

4.3 NEGATIVE TRANSFER CHARACTERIZATION

Informally, negative transfer is considered as the situation where transferring knowledge from the
source domain has a negative impact on the target learner (Wang et al., 2019): εT (A(DT0

,DT )) >
εT (A(∅,DT )) where A is the learning algorithm. εT is the target error induced by algorithm A. ∅
implies that it only considers the target data set for target learner. In this paper, we define a transfer
signature to measure the transferability from source domain to target domain as follows.

TS(DT ||DT0)) = inf
A∈G

(εT (A(DT0 ,DT ))− εT (A(∅,DT ))) (5)

where G is the set of all learning algorithms. We state that source domain knowledge is not trans-
ferable over target domain when TS(DT ||DT0)) > 0. Specially, since A(DT0 ,DT ) learns an
optimal classifier using both source and target data, we can define εT (A(DT0 ,DT )) = εT (h∗α)
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where h∗α = arg minh∈H(A) αεT (h) + (1 − α)εT0
(h) and H(A) is the hypothesis space induced

by A. When we only consider the target domain with α = 1, εT (A(∅,DT )) = εT (h∗T ) where
h∗T = arg minh∈H(A) εT (h). Then we have the following theorem regarding the transfer signature.
Theorem 4.5. Assuming the loss function L is bounded with 0 ≤ L ≤M , we have

εT (h∗α) ≤ εT (h∗T ) + 2(1− α)MdC(DT0
,DT )

Furthermore,
TS(DT ||DT0

)) ≤ 2(1− α)MdC(DT0
,DT )

Remark. We have the following observations: (1) Larger C-divergence between domains is often
associated with a higher transfer signature, which indicates that negative transfer can be charac-
terized using the proposed C-divergence; (2) Empirically, the larger amount of labeled target data
could increase the value of α, resulting in the learned classifier relying more on the target data,
which is consistent with the observation in (Wang et al., 2019). One extreme case is where α = 1,
implying we have adequate labeled target examples for standard supervised learning on the target
domain without transferring knowledge from the source domain.

5 PROPOSED ALGORITHM

In this section, we derive the continuous error bound based on our proposed C-divergence, followed
by a novel continuous transfer learning algorithm (CONTE) by minimizing the error upper bound.
Notice that in the context of continuous transfer learning, we also use the proposed C-divergence
between the target domain at adjacent time stamps to measure the change in distribution over time.

5.1 CONTINUOUS ERROR BOUND WITH EMPIRICAL C-DIVERGENCE

The following theorem states that for a bounded loss function L, the target error in continuous trans-
fer learning can be bounded in terms of the empirical classification error within source and histori-
cal target domains, the empirical C-divergence across domains as well as the empirical Rademacher
complexity of the class of functions LH = {(x, y)→ I[h(x) = y] : h ∈ H}.
Theorem 5.1. (Continuous Error Bound) Assume the loss function L is bounded with 0 ≤ L ≤M .
Given a source domain DT0

and historical target domain {DTi}ti=1, for h ∈ H and δ ∈ (0, 1), with
probability at least 1− δ, the target domain error εTt+1

on DTt+1
is bounded as follows.

εTt+1(h) ≤ 1

µ̄

 t∑
j=0

µt−j ε̂Tj (h) +M

t∑
j=0

µt−jdC(D̂Tj , D̂Tt+1) +MΛ


where Λ =

∑t
j=0

(
<̂BTj (LH) + <̂BTt+1

(LH) + 3

√
log 8

δ

2mTj
+ 3

√
log 8

δ

2mTt+1
+

√
M2 log 4

δ

2mTj

)
.

Remark. Compared to continuous error bounds in Corollary 3.2 using existing domain diver-
gence measures (Ben-David et al. (2007); Mansour et al. (2009)), our bound consists of only data-
dependent terms (e.g., empirical source error and C-divergence), whereas previous error bounds are
determined by the error terms involving the intractable labeling function or optimal target hypothe-
sis (see Corollary 3.2).

5.2 CONTE ALGORITHM

For continuous transfer learning, we leverage both the source domain and historical target domain
data to learn the predictive function for the current time stamp. To this end, we propose to minimize
the error bound in Theorem 5.1 for learning the predictive function on DTt+1 . Furthermore, we
aim to learn a domain-invariant and time-invariant latent feature space such that the C-divergence
across domains and across time stamps could be minimized. Therefore, we present an adversarial
Variational Auto-encoder (VAE) algorithm with the following overall objective function:

J (T0, T1, T2, · · · , Tt+1) =

t∑
j=0

µt−j
(
Lclc (Tj , Tt+1) + dC(D̂Tj , D̂Tt+1) + λLELBO (Tj , Tt+1)

)
(6)

where Lclc(Tj , Tt+1) represents the classification error over the labeled examples from DTj and
DTt+1

, dC(D̂Tj , D̂Tt+1
) is the empirical estimate of C-divergence across domain. Thus the first two

terms of Eq. (6) are associated with ε̂Tj (h)+dC(D̂Tj , D̂Tt+1
) in the error bound of Theorem 5.1. The

third term LELBO(Tj , Tt+1) is the variational bound in the VAE framework (see Figure 4) when
learning the latent feature space and λ > 0 is a hyper-parameter. In this case, we have µ ∈ [0, 1]
because we assume that the data distribution of a time-evolving target domain shifts smoothly over
time. Then we instantiate the terms of Eq. (6) as follows.
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Inspired by semi-supervised VAE (Kingma et al., 2014), we propose to learn the feature space by
maximizing the following likelihood across domains.

log pθ(x, y) = KL
(
qφ(z|x, y)||pθ(z|x, y)

)
+ Eqφ(z|x,y)[log pθ(x, y, z)− log qφ(z|x, y)]

where φ and θ are the learnable parameters in the encoder and decoder respectively, and z is the
latent feature representation of the input example (x, y). KL(·||·) is Kullback–Leibler divergence.
The evidence lower bound (ELBO), a lower bound on this log-likelihood, can be written as follows.

Eθ,φ(x, y) = Eqφ(z|x,y) [log pθ(x, y|z)] + KL (qφ(z|x, y)||p(z)) (7)
where Eθ,φ(x, y) ≤ log pθ(x, y). Similarly, we have the following ELBO to maximize the log-
likelihood of pθ(x) when the label is not available:

Uθ,φ(x) =
∑

y

(
qφ(y|x) · Eθ,φ(x, y)− Eqφ(y|x) [log qφ(y|x)]

)
(8)

where pθ(x, y, z) = pθ(x|y, z)pθ(y|z)p(z) with prior Gaussian distribution p(z) = N (0, I). There-
fore, the variational bound LELBO(Tj , Tt+1) is given below.

LELBO(Tj , Tt+1) = −
∑mTj+mTt+1

i=1
Eθ,φ(xi, yi)−

∑uTt+1

i=1
Uθ,φ(xi, yi) (9)

where uTt+1 is the number of unlabeled training examples from DTt+1 . Besides, the classification
error Lclc(Tj , Tt+1) can be expressed as follows.

Lclc(Tj , Tt+1) =
∑mTj+mTt+1

i=1
L (yi, qφ(·|xi)) (10)

where qφ(·) is the discriminative classifier formed by the distribution qφ(y|x) in Eq. (8), and L(·, ·)
is the cross-entropy loss function in our experiments. To estimate the C-divergence, we first define
h̃ to be a two-dimensional characteristic function with h̃(x, y) = 1⇔ h(x) = y ⇔ {h(x) = 1, y =
1} ∨ {h(x) = 0, y = 0} for h ∈ H. Then the empirical C-divergence in Eq. (4) can be rewritten as
follows.
dC(D̂Tj , D̂Tt+1

) = 1−min
h̃

∣∣∣ 1

mTj

∑
(x,y):h̃(x,y)=0

I[(x, y) ∈ D̂Tj ]+
1

mTt+1

∑
(x,y):h̃(x,y)=1

I[(x, y) ∈ D̂Tt+1
]
∣∣∣

Note that the latent feature representation z learned by qφ(z|x, y) could capture the label-informed
information of an example (x, y). Thus, the hypothesis h̃ can be considered as the composition of
a feature extraction qφ and a domain classifier Fj , i.e, h̃(x, y) = Fj(qφ(z|x, y)). Formally, the
empirical estimate of C-divergence is given below.

dC(D̂Tj , D̂Tt+1
) = 1−min

Fj

∣∣∣ 1

mTj

∑
z:Fj(z)=0

I[z ∈ D̂Tj ] +
1

mTt+1

∑
z:Fj(z)=1

I[z ∈ D̂Tt+1 ]
∣∣∣ (11)

The benefits of CONTE are twofold: first, it learns the latent feature space using both input x and
output y; second, it minimizes a tighter error upper bound based on C-divergence in Theorem 5.1.
This framework can also be interpreted as a minimax game: the VAE learns a domain-invariant and
time-invariant latent feature space, whereas the domain classifier Fj aims to distinguish the exam-
ples from different domains and different time stamps. In this paper, we adopt the gradient reversal
layer (Ganin et al., 2016) when updating the parameters of domain classifier Fj , and thus CONTE
can be optimized by back-propagation in an end-to-end manner (see Algorithm 1 in appendices).

However, we observe that (1) it is difficult to estimate the C-divergence with only limited labeled
target examples from DTt+1

; (2) when learning the latent features z, combining the data x (e.g.,
one image) and class-label y directly might lead to over-emphasizing the data itself due to its high
dimensionality compared to y. To address these problems, we propose the following Pseudo-label
Inference, i.e., we infer the pseudo labels of unlabeled examples using the classifier qφ(y|x) for each
training epoch. Using labeled source and target examples as well as unlabeled target examples with
inferred pseudo labels, the C-divergence could be estimated in a balanced setting. Furthermore, to
enforce the compatibility between features x and label y, we adopt a pre-encoder step to learn a
dense representation for the input x, and then learn the label-informed latent features z.

6 EXPERIMENTAL RESULTS

Synthetic Data: We generate a synthetic data set in which each domain has 1000 posi-
tive examples and 1000 negative examples randomly generated from Gaussian distributions
N ([1.5 cos θ, 1.5 sin θ]T , 0.5 · I2×2) and N ([1.5 cos (−θ), 1.5 sin (−θ)]T , 0.5 · I2×2), respectively.
We let θ = 0 for the source domain (denoted as S1), and θ = i·π

t (i = 1, · · · , t) for the time evolving
target domain with t = 8 time stamps (denoted as T1, · · · , T8).

Image Data: We consider the following two tasks: digital classification (MNIST, SVHN) and image
classification (Office-31 with three domains: Amazon, DSLR and Webcam; and Office-Home with
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four domains: Art, Product, Clipart and Real World). Since standard domains are static in these data
sets, we will simulate the time-evolving distribution shift on the target domain by adding noise (e.g.,
random salt&pepper noise, adversarial noise, rotation). Take SVHN→MNIST as an example, we
will use SVHN as the static source domain, and MNIST as the target domain at the first time stamp.
By adding adversarial noise to the MNIST images, we obtain a time-evolving target domain (denoted
as T1, · · · , T11 in Table 1). For Office-31 and Office-Home, we add the random salt&pepper noise
and rotation to generate the evolving target domain. More details can be found in the appendices.

Baselines: The baseline methods are as follows. (1) SourceOnly: training with only source data;
(2) TargetERM: empirical risk minimization (ERM) on only target domain; (3) DAN (Long et al.,
2015), CORAL (Sun & Saenko, 2016), DANN (Ganin et al., 2016), ADDA (Tzeng et al., 2017),
WDGRL (Shen et al., 2018), DIFA (Volpi et al., 2018) and MDD (Zhang et al., 2019): training with
feature distribution alignment. (4) CONTE: training with label-informed distribution alignment on
the evolving target domain while µ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. (5) CONTE∞: a one-time transfer
learning variant of CONTE that directly transfers from source domain to current target domain. We
fix λ = 0.1, and all the methods use the same neural network architecture for feature extraction.

6.1 EVALUATION OF C-DIVERGENCE

S1->T1 S1->T2 S1->T3 S1->T4 S1->T5 S1->T6 S1->T7 S1->T8

Target domain

0

0.2

0.4

0.6

0.8

1

Target accuracy
A-distance
C-divergence

Figure 2: Comparison of domain discrepancy and
target accuracy

We compare the proposed C-divergence with
conventional domain discrepancy measure A-
distance (Ben-David et al., 2007) on a synthetic
data set with an evolving target domain. We as-
sume that the hypothesis space H consists of
linear classifiers in the feature space. Figure 2
shows the domain discrepancy and target clas-
sification accuracy for each pair of source and
target domains. We have the following obser-
vations. (1) The classification accuracy on the target domain significantly decreases from target
domain T1 to T8. One explanation is that the joint distribution p(x, y) on the time evolving target
domain gradually shifted. (2) TheA-distance increases from S1→T1 to S1→T4, and then decreases
from S1→T4 to S1→T8. That is because it only estimates the difference of the marginal feature dis-
tribution p(x) between the source and target domains. (3) The C-divergence keeps increasing from
S1→T1 to S1→T8, which indicates the decreasing task relatedness between the source and the tar-
get domains. Therefore, compared withA-distance3, the proposed C-divergence better characterizes
the transferability from the source to the target domains.

6.2 EVALUATION OF ERROR BOUND

S1->T1 S1->T2 S1->T3 S1->T4 S1->T5 S1->T6 S1->T7 S1->T8

Target domain

0

0.5

1

Target error
Baseline bound
Our bound

Figure 3: Comparison of error bounds

When there is only one time stamp involved
in the target domain, Theorem 5.1 is reduced
to the standard error bound in the conventional
static transfer learning setting. We empiri-
cally compare this reduced error bound with the
existing Rademacher complexity based error
bound in (Mansour et al., 2009) (see Theorem
A.4 in appendices for being self-contained).
We use the 0-1 loss function as L and assume that the hypothesis space H consists of linear classi-
fiers in the feature space. Figure 3 shows the estimated error bounds and target error with the time
evolving target domain (i.e., S1→T1, · · · , S1→T8 in a new synthetic data set with a slower time
evolving target domain to ensure that the baseline bound is meaningful most of the time) where we
choose h = h∗T0

. It demonstrates that our C-divergence based error bound is much tighter than the
baseline. Notice that when transferring source domain S1 to target domain T8, our error bound is
largely determined by the C-divergence, whereas the baseline is determined by the difference be-
tween the optimal source and target hypothesizes. Furthermore, given any hypothesis h ∈ H, we
may not be able to estimate the baseline bound when the optimal hypothesis is not available.

6.3 EVALUATION OF CONTINUOUS TRANSFER LEARNING

Tables 1 and 2 provide the continuous transfer learning results on digital and office-31 data sets
where the classification accuracy on target domain is reported (the best results are highlighted in
bold). It is observed that (1) the classification accuracy using SourceOnly algorithm significantly

3The results for other existing discrepancy measures follow a similar pattern and thus omitted for brevity
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decreases on the evolving target domain due to the shift of joint data distribution p(x, y) on target
domain; (2) the performance of static baseline algorithms is largely affected by the distribution
shift in the evolving target domain, and even worse than TargetERM in some cases (e.g., on T6-
T11 from SVHN to evolving MNIST); (3) CONTE significantly outperforms CONTE∞ as well as
other competitors on target domain by a large margin (i.e., up to 30% improvement on the last time
stamp of target domain) because it effectively leverages the historical target domain information to
smoothly re-align the target distribution when the change of target domain distribution in consecutive
time stamps is small.

Table 1: Transfer learning accuracy from SVHN (source) to time evolving MNIST (target)
Target Domain T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
SourceOnly 0.6998 0.6738 0.6336 0.5692 0.4747 0.4110 0.3087 0.2220 0.1481 0.0828 0.0764
TargetERM 0.7451 0.6997 0.6618 0.6314 0.6368 0.6359 0.6695 0.7133 0.7214 0.7450 0.7512
CORAL 0.8349 0.8410 0.7633 0.7063 0.6496 0.5900 0.5031 0.5101 0.4337 0.4156 0.4502
DANN 0.8666 0.8356 0.8018 0.7529 0.7309 0.6641 0.6614 0.5618 0.5204 0.5082 0.4594
ADDA 0.8667 0.8487 0.7982 0.7187 0.6804 0.5397 0.4366 0.3473 0.2636 0.1659 0.1259
WDGRL 0.8990 0.8602 0.8247 0.8222 0.7452 0.6877 0.6481 0.5896 0.5145 0.4952 0.5196
DIFA 0.9164 0.8993 0.8713 0.8273 0.7935 0.6661 0.5956 0.4381 0.3479 0.2448 0.1332
CONTE∞ 0.9747 0.9552 0.9514 0.9279 0.8801 0.8833 0.8691 0.6979 0.7030 0.7415 0.7316
CONTE 0.9747 0.9740 0.9803 0.9864 0.9908 0.9940 0.9950 0.9965 0.9970 0.9967 0.9975

Table 2: Transfer learning accuracy on Office-31
Amazon→Webcam Webcam→ DSLR

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5
SourceOnly 0.7490 0.2255 0.2282 0.1275 0.1503 0.9651 0.4309 0.3329 0.1611 0.2027
TargetERM 0.5584 0.3933 0.4215 0.3396 0.3732 0.4966 0.4201 0.4188 0.3248 0.4067
DAN 0.8537 0.5007 0.4993 0.3638 0.4470 0.9772 0.7302 0.6161 0.4765 0.5302
CORAL 0.8711 0.5235 0.4819 0.3195 0.4054 0.9812 0.7289 0.6671 0.4846 0.5221
DANN 0.8389 0.4993 0.4121 0.3973 0.3382 0.9651 0.7356 0.6416 0.4510 0.5490
MDD 0.8940 0.6738 0.5490 0.5141 0.4295 0.9724 0.8738 0.7315 0.5047 0.5289
CONTE∞ 0.9154 0.6376 0.5758 0.4591 0.4846 0.9785 0.8591 0.7289 0.4926 0.5557
CONTE 0.9154 0.8134 0.8081 0.7611 0.7826 0.9785 0.9235 0.9208 0.8886 0.9154

7 RELATED WORK
Transfer Learning: Transfer learning (Ying et al., 2018; Jang et al., 2019) improves the perfor-
mance of a learning algorithm on the target domain by using the knowledge from the source domain.
It is theoretically proven that the target error is well bounded (Ben-David et al., 2010; Mansour et al.,
2009), followed by a line of practical algorithms (Shen et al., 2018; Long et al., 2017; 2018; Saito
et al., 2018; Chen et al., 2019) with covariate shift assumption. However, it is observed that this as-
sumption does not always hold in real-world scenarios (Rosenstein et al., 2005; Wang et al., 2019).

Multi-source Domain Adaptation: Multi-source domain adaptation improves the target prediction
function from multiple source domains (Zhao et al., 2018; Hoffman et al., 2018; Wen et al., 2020).
It is similar to our problem setting as source and historical target domains can be considered as
multiple “source” domains when modeling the target domain at the current time stamp. However,
only limited labeled target examples are provided in our problem setting, whereas multi-source
domain adaptation requires that all source domains have adequate labeled examples.

Continual Learning: Continual lifelong learning (Parisi et al., 2019; Rusu et al., 2016; Hoffman
et al., 2014; Bobu et al., 2018) involves the sequential learning tasks with the goal of learning a
predictive function on the new task using knowledge from historical tasks. Most of them focused on
mitigating catastrophic forgetting when learning new tasks from only one evolving domain, whereas
our work studied the transferability between a source domain and a time evolving target domain.

8 CONCLUSION
In this paper, we study continuous transfer learning with a time evolving target domain, which has
not been widely studied and yet is commonly seen in many real applications. We start by deriving
a generic error bound of continuous transfer learning with flexible domain discrepancy measures.
Then we propose a novel label-informed C-divergence to measure the domain discrepancy incorpo-
rating the label information, and study its application in continuous transfer learning, which leads to
an improved error bound. Based on this bound, we further propose a generic adversarial Variational
Auto-encoder algorithm named CONTE for continuous transfer learning. Extensive experiments on
both synthetic and real data sets demonstrate the effectiveness of our CONTE algorithm.
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A ADDITIONAL RESULTS

A.1 NOTATION

The main notation used in this paper is summarized in Table 3.

Table 3: Notation
Notation Definition
X ,Y , Z Input space, class space, latent feature space

DS , {DTt}nt=1 Source domain and evolving target domain
DT0

Source domain DS
εS , ε̂S Expected and estimated source error
εT , ε̂T Expected and estimated target error
pS , pT Probability density functions (pdf)

PrDS ,PrDT Probability mass functions (pmf)
mS , mT Number of labeled source and target samples

A.2 THEORETICAL ANALYSIS

We first introduce some useful existing lemmas and theorems for being self-contained, followed by
the details regarding the proof for lemmas and theorems involved in this paper.

A.2.1 EXISTING DEFINITIONS, LEMMAS AND THEOREMS

Definition A.1. (Rademacher Complexity (Mansour et al., 2009)) Given a set of real-valued func-
tions F over X and an example B = {x1, · · · ,xm} ∈ Xm, the empirical Rademacher complexity
of F is defined as follow:

<̂B(F) =
2

m
Eσ
[

sup
f∈F

∣∣ m∑
i=1

σif(xi)
∣∣∣∣∣B = {x1, · · · ,xm}

]
where σ = (σ1, · · · , σm) with each σi sampling from two values {−1,+1} according to an inde-
pendent and uniform distribution.

Lemma A.2. (McDiarmid’s inequality) Let X1, · · · , Xm be independently random variables tak-
ing values in the set X and f : Xm → R be a function over X1, · · · , Xm that satisfies
∀i,∀x1, · · · , xm, x′i ∈ X ,

|f(x1, · · · , xi, · · · , xm)− f(x1, · · · , x′i, · · · , xm)| ≤ ci
Then, for any ε > 0,

Pr [f − E[f ] ≥ ε] ≤ exp

(
−2ε2∑m
i=1 c

2
i

)
Lemma A.3. (Hoeffding’s inequality) If X1, · · · , Xm are independently random variables with
ai ≤ Xi ≤ bi, then for any ε > 0,

Pr[|X̄ − E[X̄]| ≥ ε] ≤ 2 exp

(
−2m2ε2∑m
i=1(bi − ai)2

)
where X̄ = (X1 + · · ·+Xm)/m and E[X̄] is the expectation over X̄ .

We restate the conventional error bound based on Rademacher complexity (see Theorem 8 in Man-
sour et al. (2009)) as follows.

Theorem A.4. (Error Bound in Mansour et al. (2009)) Assume that the loss function L is symmetric
and obeys the triangle inequality. Then, for any hypothesis h ∈ H, the following holds
εT (h) ≤ εT (h∗T ) + Ex∼pS(x)

[
L(h(x), h∗S(x))

]
+ Ex∼pS(x)

[
L(h∗T (x), h∗S(x))

]
+ dL(DS ,DT )

where dL(DS ,DT ) = maxh,h′∈H
∣∣Ex∼pS(x)

[
L(h(x), h′(x))

]
− Ex∼pT (x)

[
L(h(x), h′(x))

]∣∣, and
h∗S , h

∗
T denote the optimal hypothesises of εS(h) and εT (h), respectively.

A.2.2 OUR RESULTS

Then we provide the theoretical analysis and proof regarding our lemmas and theorems as follows.
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Lemma A.5. Assume that loss functionL is bounded, i.e., there existsM > 0 such that 0 ≤ L ≤M .
For h ∈ H and δ ∈ (0, 1), with probability at least 1 − δ over m samples BS drawn from DS , we
have:

Pr[|ε̂S(h)− εS(h)| ≥ ε] ≤ 2 exp (−2mε2/M2)

Proof. It simply follows the Hoeffding’s equality considering 0 ≤ L(h(x), y) ≤ M for each sam-
ple.

Lemma A.6. (Property of Relaxed Covariate Shift Assumption) If the covariate shift assumption
between source and target domains holds, and source and target examples follow the IID assump-
tion w.r.t. pS(x, y) and pT (x, y) respectively, then the relaxed covariate shift assumption holds.
Furthermore, it would be equivalent to covariance shift assumption when I(h) consists of only one
example for all h ∈ H.

Proof. For either source or target domain, if its examples follow the IID assumption, then we have
Pr(y|I(h))Pr(I(h)) = Pr(y, I(h)) = Pr(y,x1) · · · Pr(y,xn)

= Pr(y|x1)Pr(x1) · · · Pr(y|xn)Pr(xn)

= Pr(y|x1) · · · Pr(y|xn)Pr(I(h))
where we denote x1, . . . ,xn are the data points in the set I(h). Then if covariate shift assump-
tion holds, i.e., PrS(y|xi) = PrT (y|xi) for all examples x1, . . . ,xn, we have PrS(y|I(h)) =
PrT (y|I(h)) as shown in the relaxed covariance shift assumption (see Definition 4.1). It is easy
to show that when I(h) consists of only one example for all h ∈ H, it is equivalent to covariance
shift assumption.

Lemma A.7. (Triangle Inequality of C-divergence) Given domains D1, D2 and D3, the C-
divergence satisfies the following triangle property:

dC(D1,D2) ≤ dC(D1,D3) + dC(D2,D3) (12)

Proof. Following the definition of C-divergence in Eq. (2), it is easy to show the C-divergence is
symmetric with respect to its two arguments. Then we have
dC(D1,D2) = sup

h∈H

∣∣∣PrD1
[{I(h), y = 1} ∪ {I(h), y = 0}]− PrD2

[{I(h), y = 1} ∪ {I(h), y = 0}]
∣∣∣

= sup
h∈H

∣∣∣PrD1
[{I(h), y = 1} ∪ {I(h), y = 0}]− PrD3

[{I(h), y = 1} ∪ {I(h), y = 0}]

+ PrD3 [{I(h), y = 1} ∪ {I(h), y = 0}]− PrD2 [{I(h), y = 1} ∪ {I(h), y = 0}]
∣∣∣

≤ sup
h∈H

∣∣∣PrD1 [{I(h), y = 1} ∪ {I(h), y = 0}]− PrD3 [{I(h), y = 1} ∪ {I(h), y = 0}]
∣∣∣

+ sup
h∈H

∣∣∣PrD3
[{I(h), y = 1} ∪ {I(h), y = 0}]− PrD2

[{I(h), y = 1} ∪ {I(h), y = 0}]
∣∣∣

= dC(D1,D3) + dC(D2,D3)
which completes the proof.

Proof of Theorem 3.1. Theorem 3.1 states that assume the loss function L is bounded with 0 ≤
L ≤ M . Given a source domain DT0 and historical target domain {DTi}ti=1, for h ∈ H, the target
domain error εTt+1 on Dt+1 is bounded as follows.

εTt+1
(h) ≤ 1

µ̄

 t∑
j=0

µt−jεTj (h) +M

t∑
j=0

µt−jd1(DTj ,DTt+1
)


where µ ≥ 0 is the domain decay rate indicating the importance of source or historical target domain
over DTt+1 , and µ̄ =

∑t
j=0 µ

t−j .
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Proof.

εTt+1
(h) ≤ 1

µ̄

t∑
j=0

µt−jεTj (h) +

∣∣∣∣∣∣εTt+1
(h)− 1

µ̄

t∑
j=0

µt−jεTj (h)

∣∣∣∣∣∣
≤ 1

µ̄

t∑
j=0

µt−jεTj (h) +
1

µ̄

t∑
j=0

µt−j
∣∣εTt+1

(h)− εTj (h)
∣∣

≤ 1

µ̄

t∑
j=0

µt−jεTj (h) +
1

µ̄

t∑
j=0

µt−j

(∑
y

∫ ∣∣pTt+1
(x, y)− pTj (x, y)

∣∣ |L(h(x), y)| dx

)

≤ 1

µ̄

t∑
j=0

µt−jεTj (h) +
M

µ̄

t∑
j=0

µt−j

(∑
y

∫ ∣∣pTt+1
(x, y)− pTj (x, y)

∣∣ dx)

≤ 1

µ̄

t∑
j=0

µt−jεTj (h) +
M

µ̄

t∑
j=0

µt−jd1(DTj ,DTt+1)

which completes the proof.

Proof of Corollary 3.2. Corollary 3.2 states that with the assumption in Theorem 3.1 and assume
that the loss function L is symmetric (i.e., L(y1, y2) = L(y2, y1) for y1, y2 ∈ Y) and obeys the
triangle inequality, Then

(1) if A-distance (Ben-David et al., 2007) is adopted to measure the distribution shift across do-
mains, i.e., dH∆H = suph,h′∈H

∣∣PrDT0 [h(x) 6= h′(x)]− PrDT [h(x) 6= h′(x)]
∣∣, the following

holds:

εTt+1
(h) ≤ 1

µ̄

 t∑
j=0

µt−jεTj (h) +M

t∑
j=0

µt−j
(
dH∆H(DTj ,DTt+1) +

λ∗j
M

)
where λ∗j = minh∈H εTj (h) + εTt+1

(h).
(2) if discrepancy distance (Mansour et al., 2009) is adopted to measure the distribution shift across

domains, i.e., ddisc(DT0
,DT ) = maxh,h′∈H

∣∣EDT0 [L(h(x), h′(x))]− EDT [L(h(x), h′(x))]
∣∣,

the following holds:

εTt+1(h) ≤ 1

µ̄

 t∑
j=0

µt−jεTj (h) +

t∑
j=0

µt−j
(
ddisc(DTj ,DTt+1) + Ωj

)
where Ωj = EDTj [L(h∗j (x), y)] + EDTt+1

[L(h∗j (x), h∗t+1(x))] + EDTt+1
[L(h∗t+1(x), y)], and

h∗j = arg minh∈H εTj (h) for j = 0, · · · , t, t+ 1.

Proof. (2) Given h∗j = arg minh∈H εTj (h) for j = 0, · · · , t, t+ 1, we have

εTt+1
(h) ≤ 1

µ̄

t∑
j=0

µt−j
(
EDTt+1

[L(h(x), h∗j (x))] + EDTt+1
[L(h∗j (x), h∗t+1(x))] + EDTt+1

[L(h∗t+1(x), y)]
)

≤ 1

µ̄

t∑
j=0

µt−j
(
EDTj [L(h(x), h∗j (x))] + ddisc(DTj ,DTt+1

)

+ EDTt+1
[L(h∗j (x), h∗t+1(x))] + EDTt+1

[L(h∗t+1(x), y)]
)

=
1

µ̄

 t∑
j=0

µt−jεTj (h) +

t∑
j=0

µt−j
(
ddisc(DTj ,DTt+1) + Ωj

)
where Ωj = EDTj [L(h∗j (x), y)] + EDTt+1

[L(h∗j (x), h∗t+1(x))] + EDTt+1
[L(h∗t+1(x), y)].

13
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(1) Given h∗j = arg minh∈H εTj (h) + εTt+1
(h), we have

εTt+1
(h) ≤ 1

µ̄

t∑
j=0

µt−jεTj (h) +

∣∣∣∣∣∣εTt+1
(h)− 1

µ̄

t∑
j=0

µt−jεTj (h)

∣∣∣∣∣∣
≤ 1

µ̄

t∑
j=0

µt−jεTj (h) +
1

µ̄

t∑
j=0

µt−j
∣∣εTt+1

(h)− εTj (h)
∣∣

=
1

µ̄

t∑
j=0

µt−jεTj (h) +
1

µ̄

t∑
j=0

µt−j
(∣∣∣EDTt+1

[L(h(x), y)]− EDTj [L(h(x), y)]
∣∣∣)

≤ 1

µ̄

t∑
j=0

µt−jεTj (h) +
1

µ̄

t∑
j=0

µt−j
(∣∣∣EDTt+1

[L(h(x), y)]− EDTt+1
[L(h(x), h∗j (x))]

∣∣∣)

+
1

µ̄

t∑
j=0

µt−j
(∣∣∣EDTt+1

[L(h(x), h∗j (x))]− EDTj [L(h(x), h∗j (x))]
∣∣∣)

+
1

µ̄

t∑
j=0

µt−j
(∣∣∣EDTj [L(h(x), h∗j (x))]− EDTj [L(h(x), y)]

∣∣∣)

≤ 1

µ̄

t∑
j=0

µt−jεTj (h) +
1

µ̄

t∑
j=0

µt−j
(
EDTt+1

[L(h∗j (x), y)] +MdH∆H(DTj ,DTt+1) + EDTj [L(h∗j (x), y)]
)

≤ 1

µ̄

t∑
j=0

µt−jεTj (h) +
1

µ̄

t∑
j=0

µt−j
(
MdH∆H(DTj ,DTt+1) + λ∗j

)
which completes the proof.

Proof of Lemma 4.2. Lemma 4.2 states that with relaxed covariate shift assumption, for any h ∈ H,
we have

dC(DT0
,DT ) = sup

h∈H

∣∣∣(PrDT0 [I(h)]− PrDT [I(h)]
)
· Sh + PrDT [y = 1]− PrDT0 [y = 1]

∣∣∣
where

Sh = Pr[y = 1|I(h)]− Pr[y = 0|I(h)]

Proof. For any h ∈ H, we have
PrDT0 [{I(h), y = 1} ∪ {I(h), y = 0}]− PrDT [{I(h), y = 1} ∪ {I(h), y = 0}]
= PrDT0 [I(h), y = 1] + PrDT0 [y = 0]− PrDT0 [I(h), y = 0]

− PrDT [I(h), y = 1]− PrDT [y = 0] + PrDT [I(h), y = 0]

= 2PrDT0 [I(h), y = 1] + 1− PrDT0 [y = 1]− PrDT0 [I(h)]

− 2PrDT [I(h), y = 1]− (1− PrDT [y = 1]) + PrDT [I(h)]

=
(

PrDT0 [I(h)]− PrDT [I(h)]
)(

2PrDT0 [y = 1|I(h)]− 1
)

+
(

PrDT [y = 1]− PrDT0 [y = 1]
)

+ PrDT [I(h)]
(

PrDT0 [y = 1|I(h)]− PrDT [y = 1|I(h)]
)

With the relaxed covariate shift assumption PrDS [y | I(h)] = PrDT [y | I(h)] = Pr[y | I(h)], we
have
dC(DT0

,DT ) = sup
h∈H

∣∣∣PrDT0 [{I(h), y = 1} ∪ {I(h), y = 0}]− PrDT [{I(h), y = 1} ∪ {I(h), y = 0}]
∣∣∣

= sup
h∈H

∣∣∣(PrDT0 [I(h)]− PrDT [I(h)]
)(

2Pr[y = 1|I(h)]− 1
)

+
(

PrDT [y = 1]− PrDT0 [y = 1]
)∣∣∣

= sup
h∈H

∣∣∣(PrDT0 [I(h)]− PrDT [I(h)]
)
· Sh + PrDT [y = 1]− PrDT0 [y = 1]

∣∣∣
which completes the proof.

14
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Proof of Theorem 4.3. Theorem 4.3 states that if loss function L is bounded, i.e., there exists
M > 0 such that 0 ≤ L ≤ M , for a hypothesis h ∈ H, the target error can be bounded by the
source error and the C-divergence between the distributions DT0

and DT . Specifically, we have
εT (h) ≤ εT0

(h) +M · dC(DT0
,DT )

Proof. Given εT0
(h) = E(x,y)∼DT0

[
L(h(x), y)|

]
, we have

εT (h) = εT0
(h) + εT (h)− εT0

(h)

≤ εT0
(h) +

∣∣∣PrDT0 [L(h(x), y)]− PrDT [L(h(x), y)]
∣∣∣

≤ εT0
(h) +M ·

∣∣∣PrDT0 [h(x) 6= y]− PrDT [h(x) 6= y]
∣∣∣

= εT0
(h) +M ·

∣∣∣PrDT0 [h(x) = y]− PrDT [h(x) = y]
∣∣∣

= εT0
(h) +M ·

∣∣∣PrDT0 [{I(h), y = 1} ∪ {I(h), y = 0}]− PrDT [{I(h), y = 1} ∪ {I(h), y = 0}]
∣∣∣

≤ εT0
(h) +M · dC(DT0

,DT )
which completes the proof.

Proof of Lemma 4.4. Lemma 4.4 states that for any δ ∈ (0, 1), with probability at least 1− δ over
mT0

labeled source samples BT0
and mT labeled target samples BT , we have:

dC(DT0
,DT ) ≤ dC(D̂T0

, D̂T ) +
(
<̂BT0 (LH) + <̂BT (LH)

)
+ 3

(√
log 4

δ

2mT0

+

√
log 4

δ

2mT

)

Proof. Based on the Rademacher Bound (Mansour et al., 2009), with probability at least 1 − δ/2
over mS labeled source samples BS , we have

E(x,y)∼pT0 (x,y)[h(x) = y] ≤ E(x,y)∼p̂T0 (x,y)[h(x) = y] + <̂BT0 (LH) + 3

√
log 4

δ

2mT0

where p̂S(x, y) is the empirical estimated probability density function on source domain. Since
PrDS [h(x) = y] = E(x,y)∼pS(x,y)[h(x) = y] for any h ∈ H. Thus,

dC(DT0
, D̂T0

) ≤ <̂BT0 (LH) + 3

√
log 4

δ

2mT0

The same result holds for target domain. Based on the triangle inequality,
dC(DT0

,DT ) ≤ dC(DT0
, D̂T0

) + dC(D̂T0
, D̂T ) + dC(DT , D̂T )

≤ dC(D̂T0
, D̂T ) +

(
<̂BT0 (LH) + <̂BT (LH)

)
+ 3

(√
log 4

δ

2mT0

+

√
log 4

δ

2mT

)
which completes the proof.

Proof of Theorem 4.5. Theorem 4.5 states that if loss function L is bounded, let εα(h) = αεT (h)+
(1− α)εS(h), then we have

εT (h∗α) ≤ εT (h∗T ) + 2(1− α)MdC(DS ,DT )
Furthermore,

TS(DT ||DS)) ≤ 2(1− α)MdC(DS ,DT )

Proof. It is easy to show |εα(h) − εT (h)| = (1 − α)|εT (h) − εS(h)| ≤ (1 − α)M · dC(DS ,DT ).
Then

εT (h∗α) ≤ εα(h∗α) + (1− α)MdC(DS ,DT )

≤ εα(h∗T ) + (1− α)MdC(DS ,DT )

≤ εT (h∗T ) + 2(1− α)MdC(DS ,DT )
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Then, the transfer signature can be bounded as follows.
TS(DT ||DS)) = inf

A∈G

(
εT
(
A(DS ,DT )

)
− εT

(
A(∅,DT )

))
= inf
A∈G

(
εT (h∗α)− εT (h∗T )

)
≤ inf
A∈G

(
2(1− α)MdC(DS ,DT )

)
= 2(1− α)MdC(DS ,DT )

where both M and dC(DS ,DT ) are model-agnostic.

Proof of Theorem 5.1. Theorem 5.1 states that assume the loss functionL is bounded with 0 ≤ L ≤
M . Given a source domain DT0

and historical target domain {DTi}ti=1, for h ∈ H and δ ∈ (0, 1),
with probability at least 1− δ, the target domain error εTt+1

on Dt+1 is bounded as follows.

εTt+1(h) ≤ 1

µ̄

 t∑
j=0

µt−j ε̂Tj (h) +M

t∑
j=0

µt−jdC(D̂Tj , D̂Tt+1) +MΛ


where Λ =

∑t
j=0

(
<̂BTj (LH) + <̂BTt+1

(LH) + 3

√
log 8

δ

2mTj
+ 3

√
log 8

δ

2mTt+1
+

√
M2 log 4

δ

2mTj

)
.

Proof. Let DST =
∑t
j=0Dj be a decay rate guided mixture distribution of source and historical

target domains. Then for any h ∈ H we have εST (h) =
∑t
j=0 µ

t−jεTj (h).

Using Theorem 4.3, Lemma 4.4 and Lemma A.5, the following holds

εTt+1(h) ≤ 1

µ̄

t∑
j=0

µt−jεTj (h) +
1

µ̄

t∑
j=0

µt−j
(
εTt+1(h)− εTj (h)

)
≤ 1

µ̄

t∑
j=0

µt−jεTj (h) +
M

µ̄

t∑
j=0

µt−jdC(DTj ,DTt+1)

≤ 1

µ̄

t∑
j=0

µt−j ε̂Ti(h) +
M

µ̄

t∑
j=0

µt−jdC(D̂Ti , D̂Tt+1)

+
M

µ̄

t∑
j=0

(
<̂BTj (LH) + <̂BTt+1

(LH) + 3

√
log 8

δ

2mTj

+ 3

√
log 8

δ

2mTt+1

+

√
M2 log 4

δ

2mTj

)
which completes the proof.

A.3 PROPOSED FRAMEWORK

Algorithm 1 Continuous Transfer Learning (CONTE)
1: Input: Source domain DT0

, target domain {DTi}ti=1.
2: Output: Predictive function on DTt+1

3: for i in [0, 1, · · · , t] do
4: Minimize J (T0, T1, · · · , Ti+1) using Eq. (6)
5: Obtain predictive function qφ(y|x) on DTi
6: Generate pseudo-labels on the unlabeled data in DTi

using learned qφ(y|x)
7: end for

As illustrated in Algorithm 1, we
first learn the predictive function on
the first target domain using the
knowledge from source domain by
minimizing the objective function
J (T0, T1) (see Step 4). Then it pre-
dicts the labels for the target domain
DT1 , which would be used to learn
the predictive function for the target
domain at time stamp 2 (see Step 5-
6). In this case, both labeled training
examples and unlabeled training examples with pseudo-labels from historical target domain are
used to minimize the objective function J (T0, T1, · · · , Ti+1) for learning the predictive function on
DTi+1

. Repeat this procedure until the predictive function on the (t + 1)th target domain is opti-
mized. This allows us to optimize the predictive function at any time stamp using the knowledge
from source domain and historical target domain.
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Figure 4 provides an overview of our proposed transfer learning framework based on label-informed
C-divergence. It can be seen that key components to our frameworks are variational auto-encoder
and domain discrepancy measure. The intuition of variational auto-encoder used in our frame-
work is as follows: (1) it learns a label-informed latent representation using both data feature and
data label in order to estimate the C-divergence between source and target domains; (2) it could
learn the discriminative classifier q(·|x) in a semi-supervised manner using knowledge from both
labeled source examples and limited labeled target examples as well as adequate unlabeled target
examples. Then, the domain discrepancy dC could be estimated using the label-informed latent rep-
resentation from source and target domains such that the minimization of C-divergence dC enables
the better alignment of data distributions across domains. In addition, Figure 4(b)(c) provides the
probabilistic graphical model for our recognition (probabilistic encoder) and generation (probabilis-
tic decoder) modules in our framework. It assumes that for probabilistic encoder qφ(x, y, z) =
qφ(z|y,x)qφ(y|x)q(x), and for probabilistic decoder we have pθ(x, y, z) = pθ(x|y, z)pθ(y|z)p(z).
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Figure 4: Overview of our proposed transfer learning framework (best viewed in color). (a) Adver-
sarial variational auto-encoder learns domain-invariant hidden representation. (b) and (c) indicate
the probabilistic graphical model for our recognition and generation modules.

A.4 EXPERIMENTAL DETAILS

We provide the experimental details, including data simulation, model configuration and additional
results on digital image data sets. All our experiments are performed on a Windows machine with
four 3.80GHz Intel Cores and 64GB RAM.

A.4.1 DATA SETS

Synthetic Data: Figure 5 provides the synthetic data set with a set of source and target data points
where positive and negative samples are randomly sampled from two independent Gaussian distri-
butions N ([1.5 cos θ, 1.5 sin θ]T , 0.5 · I2×2) and N ([1.5 cos (−θ), 1.5 sin (−θ)]T , 0.5 · I2×2). We
let θ = 0 for source domain (denoted as S1), and then the data points are rotated by setting θ as
π
8 ,

π
4 ,

3π
8 ,

π
2 ,

5π
8 ,

3π
4 ,

7π
8 , π to generate the target domain with time-evolving nature. The data distri-

bution of target domain slightly shifts in each time stamp. Intuitively, it can be observed that source
domain S1 has the similar data distribution as the target domain T1, whereas it is significantly
different from the target domain T8 (specifically, they have the significantly different conditional
distribution p(y|x) but similar marginal distribution p(x)).

Image Data: In this paper, we use different methods to generate the time-evolving target domain,
e.g., adding adversarial noise to digital images, or adding random salt&pepper noise and rotation
to Office-31 and Office-Home, in order to simulate different situations which could lead to a time-
evolving target domain in real scenarios.

• Digital images: We used three publicly available data sets: MNIST4 (with 60,000/10,000
train/test examples), SVHN5 (with 531,131/26,032 train/test examples) and USPS6 (with
7,291 / 2,007 train/test examples). In our experiments, we generate the time-evolving tar-
get domain by adding the adversarial noise to the clean target image data (e.g. MNIST for

4http://yann.lecun.com/exdb/mnist/
5http://ufldl.stanford.edu/housenumbers/
6https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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Source domain #1
Positive
Negative

Target domain #1
Positive
Negative

Target domain #2
Positive
Negative

Target domain #3
Positive
Negative

Target domain #4
Positive
Negative

Target domain #5
Positive
Negative

Target domain #6
Positive
Negative

Target domain #7
Positive
Negative

Target domain #8
Positive
Negative

Figure 5: Synthetic source and target data (best viewed in color). For source domain (S1 at time
stamp 1), positive samples are red ones and negative samples are violet ones. For target domain (T1,
· · · , T8 at time stamp 1∼8), positive samples are in blue and negative samples are in green.

transfer learning on SVHN→MNIST). The reason why we add the adversarial noise is that
it could change the data distribution by adding the adversarial noise such that the generated
adversarial examples largely fool the classifier learned on the clean examples. More specif-
ically, we used the Fast Gradient Sign Method (FGSM) Goodfellow et al. (2015) to learn
the adversarial noise on the image data sets. The adversarial noise generated by FGSM is
defined as follows.

τ = ω∇xJbase(θ,x, y)
where ω ≥ 0 is the magnitude of adversarial noise and Jbase is the loss function of a neural
network model (parameterized by θ) to be attacked over example (x, y). Here we simply
use the pre-trained LeNet7 model as the base model Jbase. Due to the transferability of
adversarial examples, the adversarial examples generated by one model could easily fool
another model. Therefore, give one target domain (i.e., MNIST for transfer learning on
SVHN→MNIST), we can generate new target domain examples by adding the adversarial
noise. When the magnitude of adversarial noise ω linearly changes from 0.0 to 0.50 with
an interval of 0.05, it would generate the evolving target domain examples. Figure 6 shows
the image examples of a static source domain (SVHN) and a time evolving target domain
(MNIST) for continuous transfer learning. For each time stamp in the target domain, the
number of labeled target training examples is set as 100.
• Office-318 and Office-Home9: For Office-31 and Office-Home, we add the random

salt&pepper noise and rotation to create the evolving target domain. To be more specific,
given the target domain (e.g., Webcam), we rotate the target images with degree Od and
add the random salt&pepper noise with magnitude Om at every time stamp t by using the
following functions.

Od = 45 · t and Om = 0.1 · t where t = 0, 1, 2, 3, 4
Then we obtain a time-evolving target domain (denoted as T1 · · · , T5 in Table 2). In this
case, we choose the number of labeled target training examples at each time stamp to be
min(m̃T , 50) where m̃T here is the number of all examples in such a target domain.

7https://drive.google.com/drive/folders/1fn83DF14tWmit0RTKWRhPq5uVXt73e0h
8https://people.eecs.berkeley.edu/˜jhoffman/domainadapt/
9http://hemanthdv.org/OfficeHome-Dataset/
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S1 (SVHN) T1 (MNIST) T2 (MNIST) T3 (MNIST) T4 (MNIST) T5 (MNIST) T6 (MNIST) T7 (MNIST) T8 (MNIST) T9 (MNIST) T10 (MNIST) T11 (MNIST)

Figure 6: Examples of source domain (SVHN) and time-evolving target domain (MNIST). The first
column is the source image examples in SVHN data set. The other columns are the target image
examples from MNIST data set with different magnitude of adversarial noise.

A.4.2 MODEL CONFIGURATION

For digital image classification, the neural network architecture used in our experiments is shown
in Figure 7 where we used the gradient reversal layer (GRL) (Ganin et al., 2016) to implement our
proposed C-divergence in the latent space. All the model parameters will be optimized from the
scratch. We apply the Stochastic Gradient Descent (SGD) with the momentum of 0.9 to train our
model where all the hidden parameters are initialized with Xavier initialization. The cross-entropy
loss is adopted to measure the loss of label prediction and domain prediction. Following (Ganin
et al., 2016), the learning rate ηp is adjusted when training the model: ηp = η0

(1+αp)β
where p is an

epoch-dependent scalar linearly varying from 0 to 1, and η0 = 0.01, α = 10, β = 0.75. The total
number of training epochs is 10, 000 with batch size 32 in our experiments. The domain adaptation
parameter in gradient reversal layer is given by: λp = 2

1+exp (−γp) − 1 where γ = 10.
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Figure 7: Neural network architecture used in our experiments. If data point is labeled, its class y is
used, otherwise, it uses the class prediction as a pseudo-label for learning the latent representation in
the Variational Auto-encoder (VAE) framework. We applied the gradient reversal layer (GRL) Ganin
et al. (2016) to implement the adversarial domain discrepancy.

For Office-31 and Office-Home, we adopt ResNet-50 (He et al., 2016) pretrained on ImageNet as
base network for feature extraction. In this case, the initial learning rate η0 on fine-tuning the ResNet
parameters is 0.001 while other model parameters use the initial learning rate η0 = 0.1. The total
number of training epochs is 5, 000 with batch size 20 for Office-31 and Office-Home.

A.4.3 EXPERIMENTAL RESULTS

Evaluation of Continuous Transfer Learning: Table 4 shows the continuous transfer learning
results from MNIST to USPS when using adversarial attacks to generate the evolving target domain.
The results are consistent with our observations in Section 6.3. It is observed that (1) source and
historical target knowledge could largely improve the classification performance on the evolving
target domain; (2) static transfer learning baselines might produce worse classification performance
than TargetERM, thus leading to the occurrence of negative transfer when data distribution between
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source and current target tasks are largely shifted for T6-T11. Table 5 shows the continuous transfer
learning results on Office-Home. It confirms the effectiveness of our proposed CONTE algorithm.

Table 4: Transfer learning accuracy from MNIST (source) to continuously evolving USPS (target)
Target Domain T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
SourceOnly 0.8196 0.7778 0.6946 0.5745 0.3921 0.2272 0.1579 0.0907 0.0613 0.0429 0.0289
TargetERM 0.8012 0.7474 0.6951 0.6557 0.6253 0.6412 0.7205 0.7384 0.7693 0.7828 0.8381
CORAL 0.8570 0.8211 0.7897 0.7195 0.7240 0.6288 0.6323 0.6831 0.6313 0.6139 0.6632
DANN 0.9088 0.8774 0.8411 0.8037 0.7633 0.7389 0.7260 0.6413 0.6986 0.7688 0.7997
ADDA 0.9098 0.8859 0.8540 0.8012 0.7210 0.5835 0.4509 0.4434 0.4245 0.4410 0.4808
WDGRL 0.9133 0.8485 0.8510 0.8067 0.7793 0.7195 0.7559 0.7369 0.8127 0.8052 0.8062
DIFA 0.8680 0.8361 0.8122 0.7683 0.7140 0.6163 0.4295 0.3687 0.4559 0.3627 0.4425
CONTE∞ 0.9482 0.9382 0.9178 0.9048 0.8839 0.8739 0.8037 0.8640 0.8804 0.9093 0.8585
CONTE 0.9482 0.9367 0.9357 0.9502 0.9606 0.9586 0.9567 0.9636 0.9681 0.9711 0.9706

Table 5: Transfer learning accuracy on Office-Home
Art→ Real World Clipart→ Product

T1 T2 T3 T4 T5 T1 T2 T3 T4 T5
SourceOnly 0.7220 0.3947 0.3135 0.2650 0.3512 0.5944 0.1866 0.1342 0.1074 0.1550
TargetERM 0.5643 0.3297 0.3010 0.2582 0.3299 0.6033 0.3805 0.4232 0.3061 0.3791
DAN 0.7341 0.4901 0.4193 0.3686 0.4597 0.7186 0.4201 0.3921 0.3352 0.4113
CORAL 0.7321 0.5072 0.4215 0.3809 0.4577 0.7169 0.4350 0.3764 0.3189 0.3893
DANN 0.7359 0.5092 0.4155 0.3850 0.4686 0.7063 0.4440 0.3694 0.3343 0.4303
MDD 0.7435 0.5056 0.4331 0.3874 0.4686 0.7264 0.4765 0.3886 0.3514 0.4294
CONTE∞ 0.7560 0.5273 0.4575 0.4080 0.4850 0.7411 0.5017 0.4436 0.3634 0.4595
CONTE 0.7560 0.6046 0.5447 0.5097 0.5459 0.7411 0.5747 0.5318 0.5009 0.5422

Effect of limited label information in the target domain: We evaluate the effect of limited label
information in the target domain on mitigating the negative transfer in the static transfer learning
problem. When no label information is available in the target domain, it would be difficult to char-
acterize and avoid the negative transfer. Figure 8 shows the classification performance of transfer
learning algorithms from SVHN (source) to MNIST (target) where “w/” indicates “with limited label
information in the target domain” (semi-supervised transfer learning) and “w/o” indicates “without
any label information in the target domain” (unsupervised transfer learning). It can be seen that
without any target label information, negative transfer is more likely to occur for transfer learn-
ing algorithms. It demonstrates that limited label information in the target domain is necessary to
characterize the negative transfer.
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Figure 8: Transfer learning accuracy with or without limited label information in the target domain

Effect of C-divergence: We empirically compare the proposed C-divergence with unsupervised
domain divergence in (Ganin et al., 2016) on the synthetic data set (shown in Figure 5). To be more
specific, we implement a simple domain-adversarial neural network (Ganin et al., 2016) with either
unsupervised domain divergence or our C-divergence, and consider the following three algorithms.
DANN un: proposed in (Ganin et al., 2016) with unsupervised domain divergence (no labeled target
examples are available); DANN semi: a variant of DANN un with unsupervised domain divergence,
but with limited labeled target examples for minimizing the classification error; DANN C semi: a
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variant of DANN un with our proposed C-divergence and limited labeled target examples could help
both minimize the classification error and label-informed distribution alignment. Figure 9 shows
the transfer learning performance from the source (S1) to the target T4, T5 and T6, respectively.
With limited target examples, DANN semi could largely avoid the negative transfer compared to
DANN un. That confirms the effect of limited label target information for transfer learning. One
intuitive explanation is that T5 and T6 (see Figure 5 for Target domain #5 and #6) are more likely
to be aligned incorrectly with the source domain when no label information in the target domain is
available. Limited target label information helps mitigate the occurrence of negative transfer in this
case. Moreover, our proposed C-divergence could help improve the transfer learning performance
and avoid the negative transfer by encouraging the alignment of label-informed data distribution.
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Figure 9: Effect of C-divergence

Effect of hyperparameter µ: We empirically investigate the effect of hyperparameter µ in our
proposed framework. Figure 10 shows the classification results of our algorithm with different val-
ues of µ on digital (SVHN→MNIST), Office-31 (DSLR→Webcam) and Office-Home (Art→Real
World) data sets. We have the following observations: (1) Generally, the classification performance
on digital (SVHN→MNIST) becomes better over time, whereas it becomes worse over time on
Office-31 (DSLR→Webcam) and Office-Home (Art→Real World); (2) Our algorithm obtains the
best performance with µ = 0.0, µ = 1.0 and µ = 0.8 on digital, Office-31 and Office-Home data
sets, respectively. Furthermore, the optimal value µ = 0.0 on digital data implies that the target
classification performance of Dt+1 is more likely to rely on the most recent target data Dt. On the
other hand, large µ indicates that it largely requires all the source and historical target knowledge to
improve the target classification performance of Dt+1 on Office-31 and Office-Home. One explana-
tion is that when the target data distribution shifts smoothly, the closest (most recent) target domain
data could provide the most useful relevant information when learning the current target predictive
function, otherwise, it is more likely to gather all the source and historical target domain knowledge
to help improve the current target predictive function. In Figure 11, we visualize the estimated C-
divergence10 within two consecutive time stamps in the target domain on those data sets (e.g., the
’T3’ in the x-axis represents the C-divergence between T2 and T3). It confirms that the C-divergence
increases very smoothly from T1 to T11 on digital (SVHN→MNIST), but it increases significantly
from T1 to T2 on both Office-31 and Office-Home.

10In this case, (1) we show the label-informed domain classification accuracy (≥ 0.5) because higher domain
accuracy implies larger domain discrepancy across domains; (2) we use the ground truth of target examples to
estimate the C-divergence in order to accurately identify how the target distribution evolves.
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Figure 10: Effect of µ on digital, Office-31 and Office-Home
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Figure 11: Estimate of C-divergence on digital, Office-31 and Office-Home
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