The Slingshot Mechanism: An Empirical Study of

Adaptive Optimizers and the Grokking Phenomenon -

Appendix

Anonymous Author(s)
Affiliation
Address

email

Contents

Appendix A Slingshot Effects across Architectures, Optimizers and Datasets

Al
A2
A3
A4
AS
A6

A7
A8

Vision Transformers on 1000 samples from CIFAR-10
CNN on 200 samples from CIFAR-10
MLPs on 200 samples from CIFAR-10
Shallowmodels L
Deep linearmodels L
Learning Subset Parities
A.6.1 Effective Step Size and Curvature Dynamics
Different Optimizers
Slingshot with MLP and Synthetic Dataset
A.8.1 AbalationStudy

Appendix B Slingshot and Grokking

B.1
B.2
B.3

Appendix C Controlling Instability Through Normalization and Norm Constraints

C.1
C2

Analysis of Parameter Dynamics
SGD Optimizationt
Slingshots with Additional Datasets

Weightdecay

Features and parameter normalization

0 0 N Lt Lt AR W W NN

24

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

21
22
23
24
25

26
27

28

29
30
31
32
33
34
35
36
37
38
39

A Slingshot Effects across Architectures, Optimizers and Datasets

This section provides further evidence of the prevalence of Slingshot across architectures and
optimizers on subsets of CIFAR-10, testing setups beyond the specific setup consider by Power
et al. [12]. In these experiments, we focus solely on characterizing the optimization properties of
various setups described below. The small sample sizes are used in order to more easily find regimes
where different architectures can converge to fit the training data fairly quickly.

We use cross-entropy loss to optimize the models with AdamW [9] in the following experiments. The
following experiments are implemented in PyTorch [10].

—— train loss —— last layer norm .
train acc —— last layer norm

°
N
1S

, 100.00 0.20
107
99.75

o
=
©

0.18

104 99.50

o
-
o

99.25

loss
accuracy
o
s
o

10-6 99.00

ast layer norm
last layer norm

o
-
'S
I
=)
=
'S

98.75

1078 0.12 98.50

=)
o
)

98.25
1000 1200 1400 1600 1800 2000 1000 1200 1400 1600 1800 2000
epoch epoch

(a) (b)

Figure 1: Vision Transformer on 1000 samples from CIFAR-10: Norm growth versus a) loss on training data b)
accuracy on training data for a ViT trained on 1000 samples.

A.1 Vision Transformers on 1000 samples from CIFAR-10

For further validation, we train a Vision Transformer (ViT) [5] with 12 layers that has 10 million
parameters on a small sample of the CIFAR-10 dataset [8]. In this setup, we use a learning rate to
0.001, no weight decay, 51 = 0.9, B2 = 0.95, ¢ = 10~8 and minibatch size of 128. We choose
a sample size of 1000 training samples for computational reasons, as we wish to observe multiple
cycles of the Slingshot Mechanism extremely late in training. The input images are standardized to
be in the range [0, 1]. No data augmentation is used in our training pipeline. Due to the extremely
small sample size, we focus our attention on the training metrics since no generalization is expected.
Figure 1a (respectively Figure 1b) shows a plot of training loss (respectively training accuracy) and
last layer norm evolution during the latter stages of training. Multiple Slingshot stages are observed
in these plots (5 clear cycles), which can be seen by the sharp transition of the weight norm from
high growth to plateau.

—— trainloss —— last layer norm trainacc —— last layer norm
10? / 9 100 9
10° K«‘ t — 1 — 8 80 8
L E
-2 | | £ 7€
" \ \ ot I | o< 2 60 c
8104 Jr)\/r/v\ ! “ | |62 3 62
U | & S &
WER (| o ® ot
10-6 \ \ \ ‘ ‘ ‘w SE 40 SE
\ [\ \
\ Vo Vo \ \
- \ \ 4 4
1078 ¥ \ \4 v w Yy 20
| 3 3
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
epoch epoch
(a) (b)

Figure 2: CNN on CIFAR-10 dataset: Norm growth versus a) loss on training data b) accuracy on training data
for a VGG11-like model without batch normalization trained on 200 samples.

40

41
42
43
44
45
46
47

48
49
50
51
52
53
54

55

56
57
58

A.2 CNN on 200 samples from CIFAR-10

We consider a VGG-like architecture [3] that has been adapted for CIFAR-10 dataset.! The model
is trained with 200 randomly chosen samples from CIFAR-10 training split and with full-batch
AdamW [9]. The hyperparameters used for the optimizer include a learning rate of 0.001, weight
decay= 0, 51 = 0.9, B = 0.95, and € = 10~8. As with ViT, no data augmentation is used in these
experiments other than standardizing the input to be in the range [0, 1]. We observe the presence of
multiple Slingshot stages with CNN from Figure 2a and Figure 2b. These experiments suggest that
Slingshot effect is not restricted to Transformers architecture alone.

—— train loss —— last layer norm train acc —— last layer norm

100
100 1200 1200
1000 1000
1072 80
oo £ 8oo £
2 o 2
9107 u g 60 5
8 600 % g 600 B
= ® 3
10-6 400 & 40 400 8
1078 200 20 200
0 0
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
epoch epoch
(a) (b)

Figure 3: CNN on 200 samples from CIFAR-10: Norm growth versus a) loss on training data b) accuracy on
training data for a VGG1 1-like model without batch normalization trained on 200 samples.

With BatchNorm We repeat the CNN-based described above but with a VGG-like model that
includes batch normalization [6].> The training setup is identical to the one described for CNN
wihtout batch normalization. We observe the presence of multiple Slingshot stages with CNN from
Figure 3a and Figure 3b. The weight norm does not decrease during training as opposed to the weight
norm dynamics for CNN wihtout batch normalization seen in Figure 2. These experiments suggest
that Slingshot Effects can be seen with standard neural network training components including batch
normalization.

— trainloss —— last layer norm trainacc —— last layer norm

100 100.0
0.0785 97.5 0.0785
1072
£ 95.0 £
0.0780 3 - 0.0780 5
2
@107 5 g 925 s
£ g3 &
0.0775 S 900 0.07753
107 3 8
87.5
N 0.0770 0.0770
10 '-‘ 85.0
J
il l __10.0765 0.0765
1000 1200 1400 1600 1800 2000 1000 1200 1400 1600 1800 2000
epoch epoch
(a) (b)

Figure 4: MLP on 200 samples from CIFAR-10: Norm growth versus a) loss on training data b) accuracy on
training data for a model trained on 200 samples.

A.3 MLPs on 200 samples from CIFAR-10

The next architecture we consider is a deep (6 layers) fully connected network trained on a small
sample of 200 samples belonging to the CIFAR-10 dataset [8] with full-batch AdamW [9] optimizer.
The optimizer’s hyperparameters are set as following: learning rate = 0.001, weight decay = 0,

'We use the VGG11 architecture without batch normalization [6] from https://github. com/kuangliu/
pytorch-cifar in this experiment.

2We use the VGG11 architecture with batch normalization [6] from https://github.com/kuangliu/
pytorch-cifar in this experiment.

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar

59
60
61
62
63

64

65
66
67
68
69
70
71
72
73
74

75

76
77
78
79
80

—— trainloss —— last layer norm

o
100 T 1000

last layer norm

‘\ L \ L | 400

\W\‘J‘ NN \\ o
o

0 1000 2000 3000 4000 5000
epoch

trainacc — last layer norm
100 —— I
— 1000 !
/ ——
80 — 800 —
Y, £ L~
> 13 -
g 60 y 600 [
; £ / g
g / H ‘\
2 400 %
— 20 / E i
-
.] / 200 J
/ 20 A —
- (
3 1000 2000 3000 4000 5000
3 - = epoch 5 o EOR—D o

Figure 5: Training shallow models on 200 samples from CIFAR-10: (a) Training loss for 1 layer (linear) model
(b) Training accuracy for 1 layer (linear) model (c) Training loss for 2 layer MLP (d) Training accuracy for
RMSProp (e) Training loss for 3 layer MLP and (f) Training accuracy for 3 layer MLP . All models are trained
with full-batch Adam with learning rate 0.001 on 200 CIFAR-10 samples.

B1 =0.9, By = 0.95, and € = 1078, As with the ViT setup above we do no use data augmentation
for training this model. Figure 4a (respectively Figure 4b) shows a plot of training loss (respectively
training accuracy) and last layer norm evolution during the latter stages of training. Multiple
Slingshot stages are observed in this setup as well. These experiments further suggest that the
Slingshot mechanism is prevalent in simple models as well.

A.4 Shallow models

We consider the behavior of shallow models including linear, 2- and 3-layer MLPs with Adam opti-
mizer. As with the previous setup, we train these models on a small sample of 200 samples belonging
to the CIFAR-10 dataset [8] with full-batch Adam [7] optimizer. The optimizer’s hyperparameters
are set as following: learning rate = 0.001, weight decay = 0, 51 = 0.9, 82 = 0.95, and € = 108,
No data augmentation is used in these experiments as well. Figure 5a, Figure 5c, Figure Se show the
training loss and last layer norm evolution during training for the linear, 2-layer and 3-layer models
respectively while Figure 5b, Figure 5d, Figure 5f show the training accuracy and last layer norm
evolution. Slingshot Effects are observed in 2-layer and 3-layer MLPs whereas no Slingshot Effects
are seen with the linear model. These experiments suggest that depth appaers to be a necessary
condition to observe Slingshots.

A.5 Deep linear models

We train a 6 layer linear model with 200 samples belonging to CIFAR-10 [8] with full-batch
AdamW [9]. The optimizer’s hyperparameters are set as following: learning rate = 0.001, weight
decay = 0, 31 = 0.9, B2 = 0.95, and ¢ = 10~8. Figure 6a and Figure 6b show the training loss and
accuracy behavior observed during optimization. Multiple Slingshot stages are observed with this
architecture as well.

81

82
83
84
85
86
87
88
89
90
91
92

93

94
95
96
97
98

99
100
101
102
103
104
105
106
107
108
109

—— trainloss —— last layer norm

&

o

ES

3

0 2500 5000 7500 10000 12500 15000 17500 20000

last layer norm

—— trainloss —— last layer norm

0 2500 5000 7500 10000 12500 15000 17500 2000

last layer norm

—— trainloss —— last layer norm

J e

0 2500 5000 7500 10000 12500 15000 17500 2000

trainacc —— last layer norm trainacc —— last layer norm trainacc —— last layer norm
100 —— T s 100 S —] 100 e — e
I 12 T
,r’ﬂj | Va
80 7 80 1 10 80 7
£ / £ [
> 5 £ [
3 2 > g% > |
g 60 65 2 60 : 2 60 |
2 S 5 Jf_/ 8 g g |
g) g - = g |
B P s by ® |
40 S8 20 ﬁj«’j 6 & 4011
|
Pl |
4 /
20 20 J(4 20|/
0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000 0 2500 5000 7500 10000 12500 15000 17500 20000
epoch epoch epoch

Figure 6: Optimizer choice on deep linear models on 200 samples from CIFAR-10: (a) Training loss for AdamW
(b) Training accuracy for AdamW (c) Training loss for RMSProp (d) Training accuracy for RMSProp (e)
Training loss for Gradient Descent and (f) Training accuracy for Gradient Descent. All optimizers train a 6-layer
linear model full-batch on 200 CIFAR-10 samples.

A.6 Learning Subset Parities

In this section we use the k-sparse parities of n bits task as a test bed. Theoretically, this family of
tasks is notoriously challenging since it poses strict computational lower bounds on learning (see
for more details). For the (k,n) subset parity task, each input is a random n dimensional vector
such that each component is randomly sampled from ~ Unif{—1,1}. The label is then given by a
parity function over a predefined sparse set of k£ < n bits. For the following experiments, we use
k = 3,n = 50. For the model, we use a 3 layer MLP with relu activations, and the cross entropy loss.
We use a dataset of 1000 samples, and a test set of 8000 samples. We train each network with Adam
using a batch size of 32, a learning rate of 7 = {0.004,0.003,0.002} and € € {1078,10=7,1076}.
Our results are summarized in figures 7, 8 and 9. For ¢ = 108, multiple Slingshots appear past
the perfect fitting of the training set, with a bump in generalization post most Slingshots. For larger
values of €, no Slingshots are observed, while generalization remains poor.

A.6.1 Effective Step Size and Curvature Dynamics

A classical results pertaining to optimizing smooth functions with gradient descent states that a
sufficient condition for convergence requires that the learning rate does not exceed %, where L is the
Lipschitz constant of the gradient. Due to the sufficiency of the condition, we expect it to be violated
at the phase transitions of the slingshots, when the training loss spikes. We quantify the effective
step size of a parameter as \/%Jre where the terms are defined in Algorithm 1. To approximate L in
t
a local region, we use the maximum eigenvalue of the loss Hessian in this analysis as is done by a
series of recent works including Cohen et al. [4], Ahn et al. [1] and Arora et al. [2]. We use the same
setup described for training parity dataset to conduct this empirical analysis. The hyperparameters
used for the optimizer include = 0.004, ¢ = 1078 and 3; = 0.9 and 3> = 0.999. Figure 10a
shows the dynamics of the training and validation loss while Figures 10b, Figure 10c and Figure 10d
shows the evolution of the effective step size as well as the maximum allowable step size for a few
parameters chosen randomly from the three layers in the neural network. We observe from these
plots that the effective step size is smaller than the maximum allowed step size in the vicinity of
SlingShot Effects. however, at the phase transitions we clearly see that the effective step size is larger
than the maximum allowed, causing the loss to spike. After a few Slingshot cycles, we observe that
the maximum allowed step size increase dramatically, and no additional Slingshots follow.

last layer norm

last layer norm

110

111
112
113
114
115
116
17
118

train test

train test

accuracy

accuracy

0 2000 4000 6000 8000 10000 12000 14000

| bl [ul b
0 2000 4000 6000 8000 10000 12000 14000
epoch

(d)

0 2000 4000 6000 8000 10000 12000 14000

(b)

—— train —— test

0 2000 4000 6000 8000 10000 12000 14000
epoch

(©

accuracy

train test

0 2000 4000 6000 8000 10000 12000 14000

(©)

—— train —— test

0 2000 4000 6000 8000 10000 12600 14000
epoch

®

Figure 7: Learning a (3, 50) subset parity with Adam with e = 10™® and a learning rate of (a),(d) n = 0.004,
(b),(e) n = 0.003 and (c),(f) n = 0.002. Multiple Slingshots are visible, resulting in improved generalization.

train test

train test

90

80

accuracy

60

accuracy

0 2000 4000 6000 8000 10000 12000 14000

(a)

—— train —— test

0 2000 4000 6000 8000 10000 12000 14000

(d)

0 2000 4000 6000 8000 10000 12000 14000

(b)

—— train —— test

ot
1071

\

0 2000 4000 6000 8000 10000 12000 14000
epoch

(e)

train test

accuracy

0 2000 4000 6000 8000 10000 12000 14000

(©

—— train —— test

0 2000 4000 6000 8000 10000 12000 14000

®

Figure 8: Learning a (3, 50) subset parity with Adam with ¢ = 10~" and a learning rate of (a),(d) 7 = 0.004,
(b),(e) n = 0.003 and (c),(f) n = 0.002. No Slingshots are visible.

A.7 Different Optimizers

In this set of experiments, we study the training loss behavior of deep linear models optimized
full-batch with AdamW [9], RMSProp [14] and full-batch gradient descent (GD). The six layer
model is trained with 200 samples. The hyperparameters used for optimizing the model with various
optimizers are described in Table 1. Figure 6 shows the training loss and accuracy behavior of the
three optimizers considered in this experiment. We observe Slingshot behavior with AdamW and
RMSProp from Figure 6 while Slingshot behavior is absent with standard gradient descent. This
observation suggests that the normalization used in adaptive optimizers to calculate the update from
gradients may lead to Slingshot behavior.

train

test

train test

train test

0 2000 4000 6000 8000 10000 12000 14000

(©)

—— train —— test

100 100 100
90 20 £
> 80 > 80 > 80
e e e
5 5 5
S S S
% 70 5 70 ® 70
60 60 60
50 50 50
0 2000 4000 6000 8000 10000 12000 14000 0 2000 4000 6000 8000 10000 12000 14000
(a) (b)
—— train — test —— train — test
10!) 100 10t
107 ‘ 107 ‘(1071
I
01072 01073 01072
K | k| | K
1075 1075 10°°
|
1077 1077 1077
0 2000 4000 6000 8000 10000 12000 14000 0

(d)

2000 4000 6000 8000 10000 12000 14000
0

(©

0 2000 4000 6000 8000 10000 12000 14000

®

Figure 9: Learning a (3, 50) subset parity with Adam with e = 10~ and a learning rate of (a),(d) = 0.004,
(b),(e) n = 0.003 and (c),(f) n = 0.002. No Slingshots are visible.

—— train loss

validation loss

10! t

107!

107°

1077

maximum stepsize
—— effective step size (param 5100)

[l
0 2000 4000 6000 8000 10000 12000 14000

epoch

(a)

—— effective step size (param 10000)
effective step size (param 13000)

101®
10]2
10°
100

i

10%

10°

0 2000 4000 6000 8000 10000 12000 14000
epoch

(©)

Figure 10: Empirical analysis of the relationship between Slingshot Effects and loss surface sharpness. Above
plots include (a) training and validation loss; evolution of effective step size and curvature of parameters from
(b) first layer, (c) second layer and (d) classification layer in a 3-layer MLP trained with Adam. At the phase

transitions, effective step size is larger than % initiating the slingshots. After a few cycles, the Lipschitz constant
of the gradients decreases substantially, and the Slingshots cease.

maximum stepsize
—— effective step size (param 0)

—— effective step size (param 10)

effective step size (param 20)

1015

1012

10°

10°

10°

1004

0 2000 4000 6000 8000 10000 12000 14000

epo

(b)

maximum stepsize
—— effective step size (param 15200)

ch

—— effective step size (param 15230)

effective step size (param 15260)

1015

1012

10°

0 2000 4000 6000

(d)

8000 10000 12000 14000
och

119

120
121
122

123
124

125
126
127
128
129
130
131
132
133
134
135
136
137

138

139
140
141
142

Table 1: Optimizers hyperparameters. Learning rate is set to 0.001 and weight decay to O for all optimizers

Optimizer Other hyperparameters
Adam B1=0.9,8; =0.95
RMSProp a = 0.95, momentum=0.0
GD momentum=0.9
trainloss —— last layer norm trainacc —— last layer norm gradient sharpness —— last layer norm
20.0
- 200 1.0 S R E— 105 b
L 175 o 175 . L
08 I
10 150 ‘r 15.0 ¢ |
g > J 5 o 100 -
10 - 1252 206 p— 1252 ¢ —
g — [R T
- 1008 g 1008 S0
10 2 0.4 3 e
75 © 75 1076
10 5.0 0.2 5.0 10-°
2.5 25
0.0 0.5 1.0 15 2.0 2.5 0.5 1.0 15 2.0 25 0.0 05 1
epoch 1e6 epoch le6 epoch
(@) (©) (©
—— valloss —— last layer norm . valacc —— last layer norm update sharpnass — Tastiayer nom
20.0 . 20.0
/J 10*
17.5 0.7 P 17.5
10t /// [10 ,///
— 0.6
) 15.0 E | 15.0 E 1072 |
s 1258 Zos /,,,/«/ 1258 4 1/
e T p S/ Eope
- 1 1002 S04 10,02 5
% 80 % & 1078
75 ~ 03 75~
1071
5.0 0.2 5.0
1071
2.5 25
0.0 0.5 0 2.0 2.5 0.0 0.5 0 2.0 25 0.0 0.5 1. 2.0
epoch 1e6 epoch le6 epoch

Figure 11: Slingshot generalization on synthetic dataset: Norm growth versus a) loss on training data b) accuracy
on training data (c) loss on validation data d) accuracy on validation data. Note that the vertical line in green
shows location of maximum test accuracy. Adam hyperparameters are 51 = 0.9, 81 = 0.95, e = 1078

A.8 Slingshot with MLP and Synthetic Dataset

In this section, we provide empirical evidence that Slingshot Effects are observed with a synthetic
dataset in a fully-connected architecture. The small dimensional dataset, like the Grokking dataset of
Power et al. [12], allows us to easily measure of sharpness, given by WUI Hiup where uy is the

optimizer’s update vector and #; is the Hessian at step ¢, to examine the interplay between Slingshot
Effects and generalization.

Vision Transformers and Full CIFAR-10 In Appendix A, we have empirically shown that the
existence of the Slingshot phenomenon on a small subset of CIFAR-10 dataset [8] with Vision
Transformers (ViTs). We now study the impact that Slingshot has on the generalization ability of
ViTs by training a model on all 50000 samples in CIFAR-10 training dataset. The ViT used here
is a larger model than the one considered in A to account for larger dataset size. The ViT model
consists of 12 layers, width 384 and 12 attention heads and is optimized by AdamW [9]. For this
experiment, we set the learning rate to 0.0001, weight decay to 0, 51 = 0.9, 51 = 0.95and € = 10~8,
minibatch size of 512 and linear learning rate warmup for 1 epoch of optimization. Figure 12 shows
the results of experiment with full CIFAR-10 dataset. Multiple Slingshots can be observed in these
plots similar to the plots described in Appendix A. We observe from Figure 12d that the test accuracy
peaks in epochs following a Slingshot with the maximum recorded test accuracy occurring very
late in optimization. This observation suggests that the Slingshot can have a favorable effect on
generalization consistent with the behavior observed in the main paper with division dataset.

A.8.1 Abalation Study

In this section, we train a toy model on a synthetically generated dataset with the aim of analysing the
effect of different hyper parameters on the Slingshot Mechanism. We construct a 128-dimensional
dataset with Scikit-learn [1 1] that has 3 informative dimensions that represents a 8-class classification
problem. The class centers are the edges of a 3-dimensional hypercube around which clusters are

last layer norm

in

20.0

17.5

o
m

125

10.0

jast layer nor

o &
[

9

143
144
145
146

147
148
149
150
151

152
153
154

156
157
158

159
160
161
162

164
165
166
167
168
169
170
171

—— trainloss —— last layer norm train acc last layer norm

=
o
S

1.6

e

o
10 / 14

10-3 = 12
0 £

©
o

14

@
)

1.2
£

108 108

~
=)

accuracy

2 5 5
8 08% 0.8 >
B

o
=)

1077 0.6% 06
E] 50 |
109 0.4 0.4
0.2 40 0.2
101
0.0 30 0.0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
epoch epoch
(a) ©
—— testloss —— last layer norm testacc —— last layer norm
80
1.6 1.6
75
10 14 1.4
70 12
1.2 .
E 65 3
108 z 108
o = 260 5
8 082 3 0.8%
- & 55 &
s o
05§ i 063
0.4 0.4
45
100 0.2 0.2
0.0 40 0.0
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
epoch epoch

Figure 12: Slingshot generalization on full CIFAR-10 dataset: Norm growth versus a) loss on training data b)
accuracy on training data (c) loss on test data d) accuracy on test data.

data are sampled from a standard normal distribution. The other 125-dimensions are also filled at
random to create a high-dimensional dataset used in our experiments. We generate 256 training and
validation samples for this dataset and use a minibatch size of 128 in all the experiments described in
the following.

Architecture and Optimizer Figure 11 shows the training and validation metrics when we optimize
a 4-layer fully-connected network (FCN) with Adam using a learning rate of 0.001, 5, = 0.9,
B1 = 0.95, no weight decay and € = 10~8. Note that we use this value of € in our first experiment
as this is the default value proposed in Kingma and Ba [7]. These experiments are implemented in
JAX [3].

Tuning ¢ In the next set of experiments with synthetic data, we tune e value for Adam to understand
its impact on test accuracy. Figure 13 shows a plot of the maximum validation accuracy achieved by
models trained with Adam as a function of time (epoch). We observe that Adam reaches its best test
accuracy late in optimization with e = 10 yielding the highest validation accuracy. Furthermore,
the best accuracy is achieved with a model that experiences Slingshot during optimization. This
observation is consistent with our findings for ViT training with CIFAR-10 dataset described in the
main paper and Appendix A.8.

Influence of 5; and By In these experiments, we aim to study the impact of Adam/AdamW
optimizer’s 51 and /32 hyperparameters on Slingshot. We use the synthetic data described above and
set the learning rate of 0.001 and ¢ = 108 for this analysis. Figure 14 and Figure 15 shows the results
of this study. We observe from Figure 14 that the Slingshot Mechanism is fairly robust to the values of
(1 and Bs. Figure 14a-Figure 14c show that Slingshot is even observed with 51 and 35 set to O which
effectively disables exponential moving averaging of gradient moments in Adam [7]. Figure 14g-
Figure 14i provide an example of hyperparameters that fail to induce Slingshot. We observe from
Figure 14 that models that experience Slingshot tend to reach their best test accuracy during the later
stages of training. Specifically, we observe from Figure 14b, Figure 14e and Figure 14k that the
best validation accuracy occurs after 60000 epochs. These examples provide further evidence about
an interesting implicit bias of Adam. Figure 15 shows more examples of hyperparameters that do
not induce Slingshot Effects. Finally, we observe from Figure 15 that hyperparameters that provide
higher validation accuracy are from models that experience Slingshot Effects.

172

173
174
175

176
177
178

179
180
181
182
183

184
185
186

187

188

189

190

191

192

193

194

195

196

197

198

0.80 adam eps 1le-05

@adam eps le-04

©
N
©

dam eps 1e-06
@ P adam eps 1e-08

©
S
o

@dam eps 1e-02
adam eps 1e-07

validation accuracy
o [=}
~ ~
NS

©
S
o

o
o
©

@dam eps 1e-03

104 10° 106
epoch

Figure 13: Slingshot on syntehtic dataset. Note that the points marked in: (i) green correspond to Adam-trained
models that undergo Slingshot, (ii) red correspond to Adam-trained models that do not experience Slingshot;
Adam’s hyperparameters are given by 51 = 0.9, 52 = 0.95, no weight decay and e shown in parentheses.

B Slingshot and Grokking

We use the empirical setup described by Power et al. [12] to describe the Slingshot Mechanism. The
following section describes relevant details including datasets, architecture and optimizer used in our
experiments.

Architecture The model used a decoder-only Transformer [5] with causal attention masking. The
architecture used in all our experiments consists of 2 decoder layers with each layer of width 128 and
4 attention heads.

Optimization We train the architecture described above with Adam optimizer [7, 9] in most of
our experiments unless noted otherwise. The learning rate is set to 0.001 and with linear learning
rate warmup for the first 10 steps. We use 51 = 0.9, B2 = 0.98 for Adam’s hyperparameters. The
Transformers are optimized with cross-entropy (CE) loss that is calculated on the output tokens for a
given binary operation.

Algorithmic Datasets The Transformer is trained on small algorithmic datasets that consists
of sequences that represent a mathematical operation. The following operations are used in our
experiments:

c=a+b (mod p)for0<a,b<p

c=a—>b (modp)for0<ab<p

c=axb (mod p)for0 <a,b<p

c=a-+b (modp)for0<ab<p

c=a?+b (mod p)for0<a,b<p

c=a+b (mod p) for0 < a,b<p

c=a?+b? (mod p)for0 < a,b<p

c=a?+b?+ab (mod p) for0 < a,b <p

c=a?>+b?>+ab+b (mod p)for0<a,b<p

c=a®+ab (mod p) for0 < a,b<p

c=a®+ab?>+b (mod p) for0 < a,b < p

¢ =la+b (mod p) if bis odd, otherwise a — b (mod p)] for0 < a,b < p

10

199

201

202

203

loss
—— train val —— lastlayer norm
1 —T ha
10°
12
-2
10 c
105
g10-t 5
s 8 2
10°¢ 8
6 2
-8
10 4
[20000 40000 60000 80000 100000
epoch
—— train val — last layer norm
— — 16
10°
14
1072
12§
2
2104 -
g0 105
&
106 8 8
6
1078
4
[20000 40000 60000 80000 100000
epoch
train val —— last layer norm
55
100
5.0
1072
E
458
2104 c
g g
408
1076 B
35
10°°
3.0
20000 40000 60000 80000 100000
epoch
val —— lastlayer norm
ﬁ 16
— 14
12E
s
2
105
z
8%
8
6
4

o

20000 40000 60000 80000 100000
epoch

@

°

e
@

accuracy

e

accuracy

o

B1 = 0.5, B2 = 0.5. Observe multiple Slingshots

e
>

14

accuracy

val —— last layer norm

train

20000 40000 60000
epoch

(b)

80000

100000

last layer norm

= 0. Observe multiple Slingshots

train val —— last layer norm
0 —
S E— 16
s / 14
/ 12§
s
6 f c
[103
/ g
|)
| o
- 8%
!/ 6
2
(.
0 80000 100000

20000 40000 60000
epoch

O]

train val —— last layer norm

10 55

08 5.0
£
458
Zose g
3 3
S 402
3 Z
0.4 3

35

02
3.0
80000 100000

51 = 0.9, B2 = 0.8. Observe no Slingshot

accuracy

51 =0.9, B2 = 0.95. Observe multiple Slingshots

20000 40000 60000
epoch

train

(b

val —— last layer norm

e
®

e
>

14
S

e
N~

20000

40000 60000
epoch

(k)

80000

10000

=
S

last layer norm

P
3

—— gradient

sharpness

update

—— last layer norm

D —- 114
70000
60000 12
5000 10
] g
EHDDDD 5
5 8 &
£ 30000 -
/ k]
20000f | 6
10000 ﬂ | N
0
) 20000 40000 60000 80000 100000
epoch
gradient update —— last layer norm
120000 — 16
100000 /’—' 1
3
«» 80000 / 125
b €
J £
a 109
£ 60000 f E
£ | 2
5 | 8%
40000 ki
/ .
20000
4
o 1
o 20000 40000 60000 80000 100000
epoch
—— gradient update —— last layer norm
16 55
1.4
12 5.0
10 £
4 459
3 408
G06 et
2
0.4 35
02
3.0
0.0
0 20000 40000 60000 80000 100000
epoch
)
—— gradient update —— last layer norm
160000 T |
140000 —— = 14
120000 s
12E
2100000 5
] g
é 80000 f 1"%
% 60000{ | 8%
K3
40000] / 6
20000 K B
o
3 20000 40000 60000 80000 100000
epoch

®

Figure 14: Varying /31, 82 in Adam on synthetic dataset. FCN is trained with Adam using learning rate 0.001
and € = 1075, The validation accuracy of models that experience Slingshot reach their highest accuracy later in

training.

c=a-bfora,be Sx
c=a-b-afora,bc Sy

c=x-b-afora,be S;

c¢=la+b (mod p) if a is even, otherwise a * b (mod p)] for 0 < a,b < p
¢ =la+b (mod p) if a is even, otherwise a — b (mod p)] for 0 < a,b <p

11

204
205
206

207

209
210
211
212
213

214

215
216

oo HH BN EREEE
70
oos [HHNEHNENENER
o HEHENEEEEE B~
oo [HIHINBNENEEN B
os HIHNENENNEE
40
- HENENENNER
o HHNENENNER
o [HHNNNERNEN [~
o NN NEEEEN o
oo L

¥ ¥ ? 0N e? % S P

B1

Figure 15: Extended analysis of 31, 82 in Adam on synthetic dataset. Plot shows the highest validation accuracy
achieved with various values of 81, B2 with learning rate set to 0.001 and e = 10~%. Hyperparameters that do
not induce Slingshot Effects are marked with a diagonal line in black. Models trained with 81 > 0.2 and 82 = 0
diverged during training due to instability. These trials have their validation accuracy set to chance level.

B>

- 30

where p = 97 and with the dataset split in training and validation data. Each equation in the dataset
is of the form (a)(op)(b)(=)c where (x) represents the token used to represent x. We refer to Power
et al. [12] for a detailed description of the datasets

B.1 Analysis of Parameter Dynamics

A common observation is that intermediate representations tend to evolve beyond simple scale
increase during phase transitions from norm growth to plateau. In order to empirically quantify this
effect, we train the Transformer described in Appendix B with modular addition, multiplication
and division datasets using Adam with learning rate set to 0.001 and 5, = 0.9 and 52 = 0.98. We
calculate the cosine distance between the representation and classification parameters from their
initial values where the cosine distance is given by

WP WP
I =10 = T
Wy Wo
1 !
df —1.0— wtclj: 'Lz;
TN

where d"°P" (d°!') denotes cosine distance for representation (respectively classification) parameters,

wy " (resp. wy 17 denotes representation (resp. classification) parameters at time ¢ with wo P (wy 1

12

217
218

219
220
221
222
223
224

—— train —— validation —— last layer norm
2.5
10°
M 2.0
10-2
13
L 10l HiH ‘ ‘ ‘ 158
g | 1 g
= 101 | | =
10 [I H“ I H 1oy
1 :
107 ‘“ d H‘ ‘ i
l A0 ‘ | 0.5
\
1010 HU, Jw W i
[l _too
10000 20000 30000 40060 5000
poc!
— train — validation —— last layer norm
10t
14
107 12
3
10 108
3
2 0.8 5
<108 / =
/ 06%
f 8
1077 L"hj 0.4
109 r 02
0.0
3 10000 20000 30000 40000 5000
epoch
—— train —— validation —— last layer norm
10t — loas
10-1 014
0125
107 c
4 5
8 0107
107 ki
0.08
107 — 0.06
[10600 2000030000 40000 5000
poc
— train — validation —— last layer norm
———014
100
0.12
. 3
1072 5
“ 0.10 E
107 bt
0.08%
107 0.06
[10000 20000 30000 40000 50000
epoch

()

accuracy
train validation —— last layer norm
100 S — 25
=
sl || 20
| £
> 60 | 158
g | 5
2 | B
o 8
g 40 10y
/ 3
|
200 05
V
o 0.0
[10000 20000 30000 40000 50000
epoch
. _ —8
epsilon = 10
train validation —— last layer norm
100 B S
== e 14
80 / 12
/
/ 10E
o 60 f 2
£ / 08
¢ / :
® 40 1 06%
[8
20 / 0.4
/
r 02
0 0.0
G 10000 20000 30000 40000 5000
epoch
(©)
epsilon = 10
train validation —— last layer norm
wf—— 0.16
80 0.14
3
> 60 0125
¢ 5
g w© 0105
0.08"
20
0.06
o
3 10000 20000 30000 40000 5000
epoch
; — —5
epsilon = 10
train validation —— last layer norm
14
100 S —
=
80 0.12
13
g 60 0102
& 40 i
U.OBLV'H
20
0.06
o
o 0000 20000 30000 40000 5000
epoch

9]

epsilon = 1074

cosine distance

—— representation classification —— last layer norm
T 25
E——
08 i
20
|
3 £
£0.6 t E
k: | 158
i | <
5 B
o | L oy
A I B 103
g f L
02{ |/ 05
)y
oof F 0.0
o 10000 20000 30000 40000 5000¢
epoch

—— representation

(©)

classification —— last layer norm

08 — 14
/ 12
g / 3
206 10E
5 { 2
2 / <
@ / 083
2 /
204 / =
5 - 0.6%
g [I e £
0.2 I al 0.4
/
/ 02
Py 00
0 10000 20000 30000 40000 50000 -
epoch
—— representation classification —— last layer norm
— —— fo1s
04 014
g
3
g 03 0125
s g
o2 0107
0.08
01
0.06
0.0
0 10000 20000 30000 40000 5000¢
epoch
—— representation classification —— last layer norm
035 ——— -14
030~
012
3 0.25 €
£o.20 0102
s 5
20.15 5
3 0.08%
So.10 2
0.05 0.06
0.00
3 10000 20000 30000 40000 50001
epoch

®

Figure 16: Cosine distance evolution for Transformer described in Appendix B trained on modular addition.
Observe that the cosine distance from initialization increases with models that experience Slingshot Effects.

indicating the initial representation (resp. classification) parameters where the norm used above is the
Euclidean norm.

Figure 16 shows the dynamics of the loss, accuracy and cosine distance recorded during training.
We observe that the classification parameters move farther away from initialization faster than the
representation parameters. More interestingly, we observe from Figure 16c and Figure 16f that the
representation parameters travel farther from initialization for training runs that experience Slingshot.
These trials use ¢ = 1078 and ¢ = 10~ 7 and experience Slingshot Effects. In contrast, we see
from Figure 16i and Figure 161 that the representation distance remains low for models trained with

13

225
226
227
228

—— train —— validation —— last layer norm
2.0
15¢
s
2
]
107
K
05
0.0
[10000 20000 30000 40000 5000
epoch
—— train —— validation —— last layer norm
100 T s
— 1.50
1072 w
J | 125§
,. 2
y 10 I oo
K ‘ \ | Ll 5
10-¢ \ th 0.75%;
L/r‘JrJlJ ‘ “ ([£
107 I fl\ \H\"M‘ A‘u e A o0
VANV | fo2s
10-10
0.00
3 10000 20000 30000 40000 5000
epoch
—— train —— validation —— last layer norm
10"
0.14
107!
012
5
107 c
8 010$
B
-5 H
105 0088
\
107 — 0.06
[10000 20000 30000 40000 50000
epoch
— train — validation —— last layer norm
w00
0.12
102 E
0108
1074 o
DOBE
10-¢ 0.06
[10000 20000 30000 40000 50001
epoch

()

accuracy
train validation —— last layer norm
100 — S —
e — | 2.0
80 [‘
| 15¢
> 60| | 2
g 8
S 107
% a0 b
20 05
0 0.0
10000 20000 30000 40000 50000
epoch
epsilon = 10
train validation —— last layer norm
100 //'77 175
80 A 1.50
[
/ 125E
2 60 7 g
g / 1.005
3 40 1 075%
/ &
/ 0.50
20 /
¥ 0.25
o 0.00
10000 20000 30000 40000 5000
epoch
epsilon = 10
train validation —— last layer norm
100{
0.14
80
012
Z 60 2
g :
H 0105
® 40 p
0.08°
20
0.06
o
10000 20000 30000 40600 50000
epoch
epsilon = 10
train validation ~ —— last layer norm
100 S S
@ 0.12
3
> 60 0.102
5 g
S =
@ 40 0.08%
20
0.06
o
10000 20000 30000 40000 5000
epoch

9]

epsilon = 1074

—— representation

cosine distance

classification —— last layer norm

. ‘,777 2.0
g | 15¢
Yo 13
s g
3 5
204 ‘J — — 1107
g | l 4
2 -
g | 8
02f 05
|
ool [0.0
o 10000 20000 30000 40000 5000¢
epoch
—— representation classification —— last layer norm
[175
0.8 7
P 1.50
/
o6 / 125E
k] P g
° / 1.00 5
3 3
0.4 / 5
£ / [—| to75%
g / — K
0.2 0.50
, 0.25
0ol = 0.00
o 10000 20000 30000 40000 50000
epoch
—— representation classification —— last layer norm
o4t —
0.14
go3 012
s g
5]
02 0103
g]
© 0.08~
0.1
0.06
0.0
o 10000 20000 30000 40000 5000¢
epoch
—— representation classification —— last layer norm
035 ———
0.30- 012
9 0.25 €
g £
£0.20 0108
s 5}
2015 s
2 0.08%
3
So.10 =
0.05 0.06
0.00
0 10000 20000 30000 40000 5000
epoch

@

Figure 17: Cosine distance evolution for Transformer described in Appendix B trained on modular multiplication.
Observe that the cosine distance from initialization increases with models that experience Slingshot Effects.

€ = 1075 and ¢ = 10~*. The models trained with higher ¢ values do not experience Slingshot
Effects. These results suggest that Slingshot may have a beneficial effect in moving the representation
parameters away from initialization which eventually helps with model generalization. Figure 17 and
Figure 18 show a similar trend for multiplication and division datasets respectively.

14

229

230
231
232

234
235

loss accuracy cosine distance

—— train —— validation ~—— last layer norm train validation fast layer norm —— representation classification ~ —— last layer norm
10? = — — 125 100 —_— 125 s
e [T =
100 4’ = | 20 08 f
2.0 80 ‘\ | 2.0
107 ' } | £ [
3 E g £
E | 5 Sos | E
Lot \ 158 g 60 1 158 5 | 158
2 5 S g z 5
& | R — B Sod 1 — | 2
1075 104 ® 40 I 103 £ | — 103
\ 3 | s g | 8
i
1078 / ;
\ 05 2011 05 02|~ 05
10-10 f’ J
0.0 0 0.0 0o F 0.0
10000 20000 30000 40000 5000 [10000 20000 30000 40000 50000 [10000 20000 30000 40000 5000
epoch epoch epoch
— train —— validation — last layer norm train validation last layer nom —— representation classification —— last layer norm
10%
. S — 100
T - 2.0 / 2.0 20
10° / / 08 7
1N 80 A A
B 1. /
102 / \ |Lﬂ 15g € %06 / 15¢
\ g g g g [g
2 \ ‘ | 5 g / 5 i c
g10* T 2 3 = ° g
= / \ ‘H‘ i g8, / 105 Soa - ~fod
/ \ ‘ H\ | LT P ® / P H . . — s
10 | 5 o g / 8
JJ ‘ u \ I H‘H i / /o K
L//.J» \ AT R 05 20 // 05 02 / 05
10 rL 'v ‘r\“w f\?“ m MR J
U -
0.0 o 0.0 0.0 00
3 10000 20000 30000 40000 5000 [10000 20000 30000 40000 5000 0 10000 20000 30000 40000 5000
epoch epoch epoch
J— — J— t lidati — last I
train validation last layer norm rain validation last layer norm —— representation classification —— last layer norm
I 0.16 100 - 016 — loae
% —
0.4
101 014 80 014 014
£ £ w9
0125 > 60 01255 §°3 012%
2107 = g 5 B £
8 5 < 5 z 5
2 0107 g 4 0107 902 0107
1075 k] 2 2 %
| 0.08 0.08 ° 0.08"
\ 20 01
\
1077 _— 0.06 0.06 0.06
— B o 0.0{ !
0 10000 20000 30000 40000 5000¢
[10000 2oooo 3000040000 5000 0 10000 20000 30000 40000 50001
epoch epoch
— C aidation 1 -
train validation last layer norm frain validation fast layer norm —— representation classification —— last layer norm
—— —— 0.14 100 T [0.14 035 S — 0.14
10°1 -
012 80 012 030 o2
a .1
10~ 3 N 3 go2s e
2 Z 60 g s 5
a 0105 8 010C $o20 g
g 5 i 010¢
g 3 3) 3 g
10-4 bt % 40 b go1s 2
0.088 0.088 g g
8 8 010 0.08%
N 20
-6
10 T 0.06 0.06 0.05 0.06
T o 0.00{ !
[10000 20000 30000 40000 50000 0 10000 20000 30000 40000 5000 3 10000 20000 30000 40000 50001
epoch epoch

() k) I

epsilon = 1074

Figure 18: Cosine distance evolution for Transformer described in Appendix B trained on modular division.
Observe that the cosine distance from initialization increases with models that experience Slingshot Effects.

B.2 SGD Optimization

In this appendix, we show that Slingshot Effects are not seen during Transformer training with
stochastic gradient descent (SGD) with momentum to support our claim in the main paper. To this
end, we use train the Transformer described in in Appendix B on modular division dataset with a
50/50 train/validation split using SGD with momentum. We use a mini-batch size of 512 which
requires the optimizer to take 10 steps per epoch for dataset split described above. We set momentum
to 0.9 and use the following learning rates: 0.001, 0.01 and 0.1 and run the optimizer for 1500000

15

236
237

239
240

241

242
243
244
245
246

train validation

—— train —— validation =~ —— last layer norm —— last layer norm
1
10 0.11 100 0.11
0
10 0.10 80 0.10
-1 0.09 £ 0.09 £
1 g zeo g
2 5 < 0083
g 0,088 5 g
o, 3
10 g 2 40 r_:
0.07.8 0.07 8
10°3
20
0.06 0.06
1074 —
 toos o 0.05
0 20000 40000 60000 80000 100000120000140000 0 20000 40000 60000 80000 100000120000140000
epoch epoch
(a) (b)
—— train —— validation ~—— last layer norm train validation ~ —— last layer norm
0.12
10! 0.12 100
100 011 0.11
80
0.10 0.10
107! e IS
s > s
0.09 2 g 60 0.09 2
g~ s S 8
= 0.088 8 0 0088
10-3 4 ® g
0.07° 0.07%
1074 20
0.06 0.06
107° —_—
. jo.0s o 0.05
0 20000 40000 60000 80000 100000120000140000 0 20000 40000 60000 80000 100000120000140000
epoch epoch
(© (d)
—— train —— validation ~—— last layer norm train validation ~ —— last layer norm
10t — — 100
o K/
0.12 80 0.12
-1
10 . g
102 0102 g 60 0108
0 = @ c
3 [E g
=107 =z g a0 E)
®
10-4 0.08% 0.08%
1073 20
0.06 0.06
10°° —_— o
0 20000 40000 60000 80000 100000120000140000 0 20000 40000 60000 80000 100000120000140000
epoch epoch
(e) ®

Figure 19: Optimizing a Transformer with SGD on modular division dataset: Norm growth vs (a), (c), (e)
training and validation loss, (b), (d), (f) training and validation accuracy. Note the lack of Slingshot Effects,
Grokking and generalization seen with Adam/AdamW optimizer.

steps. The number of steps used here is 3 times larger than the steps used to run Adam/AdamW in
this work which is chosen to give SGD additional time to reach convergence. Figure 19 shows the
usual loss and accuracy metrics calculated on training and validation data as well as the weight norm
of the classifier layer. We observe that there is no evidence of Slingshot with SGD. Lastly, we do not
see any evidence of Grokking or generalization with this setup as well.

B.3 Slingshots with Additional Datasets

In this appendix, we provide evidence of Slingshot Effects on additional datasets from Power et
al [12] Grokking work. The datasets are created by a subset of mathematical operations defined in
Appendix B. Each operation can have multiple datasets that depends on the train/validation split
ratio. We use the training setup described in B on 18 separate datasets. Figure 20 - Figure 37 shows
the results the datasets described in this appendix. We observe Slingshot Effects and generalization

16

247 with all 18 datasets. These results suggest the prevalence of Slingshot Effects when large models are
248 trained with adaptive optimizers, specifically Adam [7].

10°

102

1074

loss

10-°

1078

10-10

Figure 20: Addition dataset with 50/50 train/validation split.

10°

1072

1074

loss

107

1078

10-10

Figure 21: Addition dataset with 60/40 train/validation split.

—— train —— validation —— last layer norm

||

i

=3

°

o

il M
‘“ rw V‘ ” ”“ N "H /VV”UY uh W
(a)

—— train —— validation —— last layer norm

N
S

=
wn

I
o
last layer norm

o
]

0 10000 20000 30000 40000

epoch

(a)

train —— validation —— last layer norm
100
1.75
80 1.50
£
1.25%
§ 60 2
.
g 1.00§
3 ©
S 40 o
© 0.754
5
0.50
20
0.25
0 0.00
0 10000 20000 30000 40000 50000
epoch

Training and validation (a) loss and (b) accuracy.

train —— validation —— last layer norm
100 e —
2.0
80
E
> 60 15 s
E =
g 5
& 40 1.0-
8
20 0.5
0 0.0
0 10000 20000 30000 40000
epoch

Training and validation (a) loss and (b) accuracy.

10°

1072

1074

loss

10-°

1078

10-10

Figure 22: Addition dataset with 70/30 train/validation split.

102

10°

1072

104

loss

107

1078

10-10

—— train —— validation =~ —— last layer norm

| W“” an MWV\

2.5

= N
w o
last layer norm

-
=}

I
wn

0.0

0 5000 10000 15000 20000 25000 30000 35000 40000

epoch

(a)

—— train —— validation —— last layer norm

2.5

2.0
E

158
@
>
o

1.0+
ko)

0.5

0.0

0 10000 20000 30000 40000 50000
epoch

()

80

60

accuracy

40

20

train —— validation —— last layer norm

0 5000 10000 15000 20000 25000 30000 35000 40000

epoch

(b)

Training and validation (a) loss and (b) accuracy.

100

80

60

accuracy

40

20

train —— validation —— last layer norm

0 10000 20000 30000

epoch

(b)

40000 50000

Figure 23: Cubepoly dataset with 50/50 train/validation split. Cubepoly operation is given by (a® 4+ b (mod p)
for 0 < a,b < p). Training and validation (a) loss and (b) accuracy.

10°

1072

1074

loss

107

1078

10-10

—— train —— validation —— last layer norm

|

A

Ml

I M

el o)
= ““Jf:if““li@ow s

(a)

60

accuracy

40

20

train —— validation — last layer norm

0 10000 20000

epoch

(b)

30000 40000

Figure 24: Cubepoly dataset with 60/40 train/validation split. Cubepoly operation is given by (a®> 4+ b (mod p)
for 0 < a,b < p). Training and validation (a) loss and (b) accuracy.

18

= N N
w o w
last layer norm

Iy
o

I
wn

0.0

= N N
w o w
last layer norm

g
=}

o
]

0.0

loss

1076

1078

10-10

—— train —— validation —— last layer norm

0
epoch

(a)

e =
~ [C]
o IS

AN
o N
o w

last layer norm

o
O
o

o
N
o

| 0.00
5000 10000 15000 20000 25000 30000 35000 40000

accuracy

-
o
o

®
o

o
o

N
o

N
o

train

—— validation

—— last layer norm

0

epoch

(b)

=
~
o

=
U
o

=} = =

~ o N

(%] o w
last layer norm

o
O
o

0.25

0.00
5000 10000 15000 20000 25000 30000 35000 40000

Figure 25: Cubepoly dataset with 70/30 train/validation split. Cubepoly operation is given by (a® + b (mod p)
for 0 < a,b < p). Training and validation (a) loss and (b) accuracy.

10°

1072

1074

loss

10-°

1078

10-10

—— train —— validation —— last layer norm

10000 15000 20000 25000 30000
epoch

(a)

0 5000

-
NN
a o wu

=)
~
w

._.
o
o

last layer norm

accuracy

-
o
o

®
o

o
o

N
o

20

train

—— validation

—— last layer norm

0

5000

10000 15000 20000 25000 30000

epoch

(b)

=
N
o

=
u
o

© o o = =
N w ~ o N
v o w o w

last layer norm

o
S

Figure 26: Cubepoly dataset with 80/20 train/validation split. Cubepoly operation is given by (a®> 4+ b (mod p)
for 0 < a,b < p). Training and validation (a) loss and (b) accuracy.

10?2

10°

1072

1074

loss

1076

1078

10-10

Figure 27: Division dataset with 50/50 train/validation split. Training and validation (a) loss and (b) accuracy.

—— train —— validation —— last layer norm

0 10000 20000 30000

epoch

(a)

40000

2.00
1.75
150 ¢
1.258
@
1.00 2
=
0.75%
0.50
0.25

.00
50000

19

accuracy

-
o
o

®
o

o
o

N
o

N
o

train

—— validation

—— last layer norm

10000

20000 30000
epoch

(b)

2.00

0.00
50000

—— train —— validation

10?2

—— last layer norm

10°

102

1074

loss

10-¢

1078

10-10

0 10000 20000

epoch

(a)

30000

Figure 28: Division dataset with 60/40 train/validation split. Training and validation (a) loss and (b) accuracy.

—— train —— validation

40000

—— last layer norm

e o K B oBoR

w ~ o N (%] ~

o w o w o w
last layer norm

o
N
o

o
o
S

10°

1072

1074

loss

10-°

1078

10-10

= N N
1% o w
last layer norm

g
=}

o
wn

0 5000 10000 15000 20000 25000 30000 35000 40000

epoch

(a)

Figure 29: Division dataset with 70/30 train/validation split. Training and validation (a) loss and (b) accuracy.

—— train —— validation

—— last layer norm

1072

1074

loss

1076

1078

I, Ll
| It R
I W‘vw”wM o vﬂ

10-10

A

epoch

(a)

o
J
w
last layer norm

0.50

=]

.25

0.00
0 5000 10000 15000 20000 25000 30000 35000 40000

accuracy

accuracy

accuracy

=
o
=

©
o

o
o

40

20

=
=3
o

o]
o

o
o

N
o

N
o

100

80

o
o

N
o

N
o

train —— validation — last layer norm

0 10000 20000

epoch

(b)

30000 40000

train —— validation

—— last layer norm

e © o v B = @

N w ~ o N w ~

w o w o w o w
last layer norm

=}
S

= N N
w o w
last layer norm

Iy
=)

o
w

0.0

0 5000 10000 15000 20000 25000 30000 35000 40000

epoch

(b)

train —— validation — last layer norm

1.75

1.50

1.25

g
o
S

last layer norm

0.75

o
%
1<}

0.25

0.00
0 5000 10000 15000 20000 25000 30000 35000 40000

epoch

(b)

Figure 30: Even-add-odd-subtraction dataset with 70/30 train/validation split. Even-add-odd-subtraction
operation is given by [a + b (mod p) if a is even, otherwise a — b (mod p)] for 0 < a,b < p. Training and

validation (a) loss and (b) accuracy.

20

train —— validation —— last layer norm

—— train —— validation —— last layer norm
100
100 2.0 2.0
80
-2
10 L5g 15¢
S 2 60 2
o 107 S g s
8 108 38 108
10-¢ - @ 40 =
3 3
1078 0.5 20 0.5
10—10
0.0 0 0.0
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
epoch epoch

(a)

(b)

Figure 31: Multiplication dataset with 50/50 train/validation split. Training and validation (a) loss and (b)

accuracy.
—— train —— validation =~ —— last layer norm train —— validation —— last layer norm
100
) 2.00
10
1.75 30
107 1.50
107 1.252 § 60
n c e
8 102 3
10°¢ 2 % 40
’ 0752
-8 -
10 / ’ \‘ 0.50 20
10-10 ! iy H‘\ \\ w“% | to2s
\4 ’ / 1| lo.0 0
0 10000 20000 30000 40000 0 10000 20000 30000 40000
epoch epoch

(@)

(b)

Figure 32: Multiplication dataset with 60/40 train/validation split. Training and validation (a) loss and (b)

accuracy.

—— train —— validation =~ —— last layer norm train —— validation — last layer norm
2.5 100 2.5
10°
2.0 80 2.0
-2
10 c €
4 152 g 60 152
o 10 c Y 5
8 > 3 z
© o -
10-° 1.0 © 40 1.0-
r | s .
10-8 ‘ -
‘ ‘\“ I ‘ 05 20 0.5
Lo 1 M
0.0 0 0.0

0 5000 10000 15000 20000 25000 30000 35000 40000

epoch

(a)

0 5000 10000 15000 20000 25000 30000 35000 40006

epoch

(b)

Figure 33: Squarepoly dataset with 70/30 train/validation split. Squarepoly operation is given by a*>+b (mod p)
for 0 < a, b < p. Training and validation (a) loss and (b) accuracy.

21

train —— validation —— last layer norm

—— train —— validation —— last layer norm
100 e
10°
2.0
20 80
-2
10 . E
155 26
" 10-4 g g 60 ;
8 g 3 >
106 108 % 40 Log
o 7
3 8
107
0.5 20 0.5
10710
‘ 0.0 0 0.0
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
epoch epoch
(@) (b)
Figure 34: Squarepoly dataset with 80/20 train/validation split. Squarepoly operation is given by a®4+b (mod p)
for 0 < a,b < p. Training and validation (a) loss and (b) accuracy.
—— train —— validation =~ —— last layer norm train —— validation — last layer norm
100
10° 2.0 2.0
A~~~ 80
1072
15E 1.5 g
g 10 e g® e
g g 3 g
~ 1078 108 S 40 108
% i
8 8
-8
10 \ 0.5 20 0.5
10_10 ‘b H “
|
Il T/V\ 0.0 0 0.0
0 10000 20000 30000 40000 0 10000 20000 30000 40000
epoch epoch
(a) (b)
Figure 35: Subtraction dataset with 60/40 train/validation split. Training and validation (a) loss and (b) accuracy.
—— train —— validation =~ —— last layer norm train — validation —— last layer norm
175 100 e ——— 175
10° \,
1.50
150 80
10-2 w\/\lww \[\/\’\,
‘ ﬂ 'H ‘ 125¢ 125¢
- s 2 60 2
. ‘ ’ M ﬁ 1.00 o g 100
£ 1o | 01 T S :
10 ‘ ‘ ‘ I M 0.757 & 40 075,
1070 « | th NW - Joso 0.50
\“ ‘ w I m\‘ 2
10-10 | ' \) f ‘| 0.25 0.25
00 0 0.00
35000 10600 15600 20000 25000 30000 35000 40000 0 5000 10000 15000 20000 25000 30000 35000 40000
epoch epoch

(@) (b)

Figure 36: Subtraction dataset with 70/30 train/validation split. Training and validation (a) loss and (b) accuracy.

22

10°

1072

1074

loss

107

1078

10-10

Figure 37: Subtraction dataset with 80/20 train/validation split. Training and validation (a) loss and (b) accuracy.

—— train —— validation —— last layer norm

} |
i WV V%WW

0 5000 10000 15000 20000 25000 30000
epoch

(a)

-
o

o
o

o
<]
last layer norm

23

accuracy

100

80

o
o

N
o

20

train —— validation —— last layer norm

0 5000 10000 15000 20000 25000 30000
epoch

(b)

Iy
o

o o
o ©
last layer norm

I
IS

<
N

249

250
251
252
253
254

255

257
258
259
260
261
262

264
265
266

267
268
269
270
271

C Controlling Instability Through Normalization and Norm Constraints

Training instability is the hallmark of the Slingshot Mechanism, yet as seen in previous sections, the
Slingshot Effect typically results in improved performance, and Grokking. In this section, we explore
whether it is possible to maintain stable training, without sacrificing performance. To this end, we
explore how constraining and regularizing the weights of the network affect the Slingshot behaviour,
and overall performance.

C.1 Weight decay

weight decay = 0 weight decay = 0.1 weight decay = 1.0
~ tain —— validation —— last layer norm —— train —— validation —— last layer norm —— train —— validation —— last layer norm
10? — 0.18
-~ " L0 100 \‘m
10° “\ oy 175) I 0.16
_ U~ I\ .
102 " 150 1o J{ 01ag 10
10-* ‘ ‘ \ , 1258 " I/ on% .
3 “ I l 1.00 % g . | r‘ B 8
- L | b 10~ ‘u t « 0103 .
N L \‘ e [o7sE “ \H“ ‘ % 10
10 U\ “I i Hif-toso 1oe “w I | \ | joos
W v\ﬁ‘J\\‘\’ "' NV fozs ” \
10710 ﬂ ! - rf | 0.06 o
J 10000 20000 30000 40000 50000 G S000 10600 1500020000 2500030000 G 5000 10000 15000 20000 25000 30000
epoch epoch
(a) (b) ()

train and validation loss vs epochs

train validation ~ —— last layer norm train validation ~ —— last layer norm train validation ~ —— last layer norm

— . 0.20
100 — 200 100 I 018 100
|) Wi 0.18
M, \ 016
50 I‘ 1.75 20 \/‘JWMWW ‘Vy,v,/ 80 ‘ J 016
150 V \ \ M 2
0.14 VWine, AR

| £ E \Mw/«%ﬁ«,\ﬂ»w M ey A |
2 60 | 1258 Z 60 g > 60 Wy Y 0148
8 5 g 0125 g 5
3 - 1003 3 B 3 0123
2 a0 / o 2 40 o 2 40 o
s f ° s 0.10% s °
[0.75% B 0103
| B B B

201/ 0.50 20 008 20 0.08

H 025 0.06 0.06

o 0.00 0 o
3 10000 20000 30000 40000 5000 G 5000 10000 15000 20000 25000 30000 G 5000 10000 15000 20000 25000 30000
epoch epoch epoc]
(d) (e) ®

train and validation accuracy vs epochs

Figure 38: Division dataset: Norm behavior with different weight decay values. Training and validation loss vs
epochs with weight decay (a) 0.0, (b) 0.1, (c) 1.0; Training and validation accuracy vs epochs shown in (d), (e)
and (f). The evolution of classifier weight norm shows instability as increase in weight decay strength.

Weight decay is a commonly used regularization approach to improve the generalization performance
of neural networks. Power et al. [12] show that weight decay has the largest positive effect on
alleviating Grokking. Weight decay naturally controls the size of the parameters and consequently
their norm growth. We study the effect of weight decay on stability of training Transformers with
Grokking datasets in this section. We use weight decay values from 0,0.1,0.2,0.4, 0.6, 0.8and1.0
with AdamW [9] optimizer. Figure 38 shows the results for division dataset. We observe from
Figure 38 that as weight decay strength increases, both Slingshot Effects and Grokking phenomenon
disappear with the model reaching high validation accuracy quickly as seen in Figure 38e and
Figure 38f. However, we observe that the model experiences instability as can been seen with the
loss plots in Figure 38b and Figure 38c or the accuracy plots in Figure 38e and Figure 38f. A similar
trend is observed for addition and multiplication datasets in Figure 39 and Figure 40 respectively.

The results shown above indicate that Slingshot may not be the only way to achieve good generaliza-
tion. Both Slingshot and weight decay prevent the norms from growing unbounded and achieve high
validation accuracy as seen in plots described above. While weight decay shows different weight
norm dynamics, this regularization does not decrease training instability. These results suggest the
need for alternative approaches to improve training stability.

24

weight decay =0

—— train —— validation ~—— last layer norm
2.5
ATV 20
£
58
\ :
g
3
‘ ‘ ‘ o0
A \ \ | E
ik \ H— H } M‘
,‘ W 0.5
T ‘M/(w‘“w‘ |
A I v Ar
0.0
o 5000 10000 15000 20000 25000 30000 35000
epoch
()
train —— validaton —— last layer norm
100 25
80 20
£
Z 60 152
8 c
3 g
S)
& 40 103
2
20 0.5
0

0.0
0 5000 10000 15000 20000 25000 30000 35000
epoch

(d)

weight decay = 0.1

—— train —— validation —— last layer norm

S & o
2 &

last layer norm

S

°
S

107°

G 5000 10000 15000 20000 25000 30000 35000
epoch

(b)

train and validation loss vs epochs

train —— validation —— last layer norm
0.18
100 — —
1T
0.16
80 i
0.14 ¢
> 60 g
] 0.12
g)
& 40 0.10%;
8
20 0.08
0.06
0
0

G 5000 10000 15000 20000 25000 30000 350
epoch

(e

train and validation accuracy vs epochs

accuracy

weight decay = 1.0

—— train —— validation —— last layer norm

G 5000 10000 15000 20000 25000 30000 35000
epoch

(©)

train —— validation —— last layer norm

r RIm

m

G 5000 10000 15000 20000 25000 30000 35000
epoch

®

Figure 39: Addition dataset: Norm behavior with different weight decay values. Training and validation loss vs
epochs with weight decay (a) 0.0, (b) 0.1, (c) 1.0; Training and validation accuracy vs epochs shown in (d), (e)
and (f). The evolution of classifier weight norm shows instability as increase in weight decay strength.

weight decay = 0

—— train —— validation —— last layer norm
10° 20
-2
10 15¢
g 10" :
8 g
= 10°¢)
K
10-¢ 05
‘H/IWMM“"]
i
[10600 20000 30600 40000
train —— validation —— last layer norm
100
2.0
80
15¢
2 60 2
8 :
5 [
g » 103
® b
8
20 05
0

[10000 20000

(d)

30000 40000

weight decay = 0.1

— train — validation —— last layer norm

100 016

0.14
10-2 E
0128
8 g
1074 0102
K

0.08

10-¢
0.06
0 5000 10000 15000 20000 25000
epoch

(b)

train and validation loss vs epochs

train —— validation —— last layer norm
00 0.16
80 0.14
E
2 60 0.128
£ 5
2 >
g
& 40 0102
K
0.08
20
0.06
0
[J 5000 10000 15000 20000 25000
epoch

(e)

train and validation accuracy vs epochs

accuracy

10°

1072

weight decay = 1.0

—— train —— validation —— last layer norm

0.20
0.18
0.16
E
0142
8
0 IZE‘
0108
0.08
0.06

0.20
0.18
0.16
0.142
I
0127
0.108
0.08

0.06

A i

018
0.16
014§
2
0128

010%

)

08

0.06

0 5000 10000 15000 20000 25000 30000 35000

(©)

train —— validation ~—— last layer norm

T T TR T

ill

6 5000 10000 15000 20000 25000 30000 35000
epoch

)

Figure 40: Multiplication dataset: Norm behavior with different weight decay values. Training and validation
loss vs epochs with weight decay (a) 0.0, (b) 0.1, (c) 1.0; Training and validation accuracy vs epochs shown in
(d), (e) and (f). The evolution of classifier weight norm shows instability as increase in weight decay strength.

25

272

273
274

275
276
277

278
279

280
281
282
283
284
285
286
287

288
289

291
292
293

294
295
296
297
298

C.2 Features and parameter normalization

A second approach that we use to explicitly control weights and feature norm is by normalizing
the features and weights via the following scheme: w = &, f (x) = %, where w and f(x)

are the weights and inputs to the classification layer respectively, the norm used above is the Lo
norm, and z is the input to the neural network. We take the cosine similarity of the normalized
weights and features and divide this value by a temperature value that we treat as a hyperparameter
in these experiments. The operation is given by: y = %(‘”) where T represents the temperature
hyperparameter. We use temperature values from 0.1, 0.25, 0.5, 0.75, 1.0 for these experiments.

Figure 41 shows the results of Transformer training on division dataset described in Appendix B that
is split evenly into train and validation sets. We observe that the model displays training instability
evidenced by norm behavior and also loss behavior in Figure 41a at lower temperature values. We
observe that 7 = 0.25 provides a good compromise between fitting training data while showing
no training instability as seen in Figure 41b. This hyperparameter value also results in Grokking
as validation accuracy improves late in training as can be seen from Figure 41e. These together
suggest that bounding weights and features norm helps stabilize training without sacrificing training
performance.

We validate the normalization scheme with two additional datasets namely multiplication and division
from Appendix B. Figure 42 shows the results for training Transformers with multiplication dataset
that is split evenly into train and validation sets. We observe from Figure 42 that a proper temperature
value can stabilize training and with some tuning can provide a compromise between training stability
and generalization. Specifically, 7 = 0.25 allows the model to fit the training data and reach almost
perfect validation accuracy as seen from Figure 42b and Figure 42e.

Finally, we repeat the above experiments with subtraction dataset and show the results in Figure 43.

This dataset shows that while a properly tuned temperature can help the model achieve almost perfect
generalization, training instability shows up very late in optimization. This observation can be seen
from Figure 43b and Figure 43d. This result suggests that more work remains to be done with
understanding and stabilizing the training behavior of large neural networks.

temperature = 0.1 temperature = 0.25 temperature = 1.0
—— train —— validation —— last layer norm
—— train —— validation —— last layer norm tin — validation —— last layer norm
o /7 08 6x 10 — 0.40
S SN N :)) T
‘ / 07 P i 035 5.4 x 10 L
10° f 4x10°) 5.2 x10° —
O.GE - 030E ’/»"
5 - £ L~
- 055 3x10° | /// 0258 5% 10° s
3 5 4 _ g .
<10 0458 k // 0208 fasx10
K] 2% 10° P P
| 038 ~ .] aex10°| | e
‘ N 012 17
|/l o2 d o /
0 S / 010 aax10
|1 toa X A ;
A —— Y 4.2x10 Tt S S—
0 2000 4000 6000 8000 10000 12000 14000 [5000 10000 15000 20000 25000 0 10000 20000 30000 40000 50000
epoch epocl
(a) (b) (©
train and validation loss vs epochs
train validation —— last layer norm train validation —— last layer norm train validation ~ —— last layer norm
100 Hos 100 ——j040 =
/ 7 oss st
~ 8 —
80 / 0.7 20 L Py
06 - 030 . //,
g 60 #/ 058 g 60 " 0.25¢8 g /
/ 0ad e g |
g a0 // H § a0 T 0208 84 ya
e 038 A 0152 /
20 T 02 20 2
/ 0.10
0.1 J
o~ of | 0.05 o
0 2000 4000 6000 8000 10000 12000 14000 0 5000 10000 15000 20000 25000 0 10000 20000 30000 40000 50000
epoch epoch
(d) (e) ®

train and validation accuracy vs epochs

Figure 41: Division dataset: Features and parameters normalization. Observe that a smaller temperature allows
the model to fit the data better but experiences training instability. Temperature = 0.25 allows the model to fit
and achieve high validation accuracy without suffering training instability.

26

)
o

last layer norm

temperature = 0.1

—— train —— validation —— last layer norm
100
S~ .
/ .
I .
2 /
10 }
/
,/\HJ
/
| Sl
LI
0 10000 20000 30000 40000
train validation —— last layer norm
100 —~
///
80 AT
PG,
3 60 /
£ /
3
& 40 /
/
)
20 —
oL
10000 20000 30000 40000

(d)

S o = =
& ® o N

last layer norm

o
Y

S 5 5 © ©
5 & ® o N
last layer norm

>
N

°

temperature = 0.25

—— train —— validation —— last layer norm
6x10
///
4x10° -
-

3x10°
2x10° //

ké/ '

10°
o 10000 20000 30000 40000
epoch

train and validation loss vs epochs

(b)

°
IS

°
w

last layer norm

train validation —— last layer norm
100 —
| — 0.6
80 -
- 05
£
g 60 o 4§
g z
& 40 03y
/ s
0.2
20
01
0
0 10000 20000 30000 40000
epoch

train and validation accuracy vs epochs

(e)

temperature = 1.0

— train —— validation —— last layer norm
o —
5.4 10 L — 0.30
_—
52x10° -
. 025
5% 100 - £
fasx100 /'/ 0205
. / <
46x10°) | | f0Is%
aax0e| [0.10
3
42x100) (e L 005
0 5000 10000 15000 20000 25000 30000 35000 4000

(©

train validation —— last layer norm
8 NP
o 0.30
T
6 025 _
> - £
2 - 2
g - 0205
3 yal &
° e 015%
y, K
2
/ 0.10
0 / 05

0

5000 10000 15000 20000 25000 30000 35000 40000

)

Figure 42: Multiplication dataset: Features and parameters normalization. Observe that a smaller temperature
allows the model to fit the data better but experiences training instability. Temperature = 0.25 allows the model
to fit and achieve high validation accuracy without suffering training instability.

10°

temperature = 0.1

—— train —— validation —— last layer norm

S S
> ®
last layer norm

°©
=

o
N

o
°

20000 30000 40000
epoch

(a)

train validation —— last layer norm

accuracy

40

N

prd \

S 5 5 £ &
5 o » o
last layer norm

S
o

S
°

0 10000

20000 30000 40000
epo

(d)

temperature = 0.25

— train —— validation —— last layer norm

6x10
]
/ ~
4%10° /
3x10° /
g

210" // |

/ /

1004 e == ——

train and validation loss vs epochs

accuracy

train and validation accuracy vs epochs

0 5000 10000 15000 20000 25000 30000 35000
epoch

(b)

train validation —— last layer norm

v o
g 8

N 2 g
5 5 3
\{

N\

°

0 5000 10000 15000 20000 25000 30000 35000
h

(e)

0.45
0.40
035
ozog
ozsg
0.20%
0.15
010

temperature = 1.0

— train — validation —— last layer norm
0250
5.4x 107 —
0225
T
52x10° — 0.200
5% 100 - 0175 §
Basx100 - 01508
= =
4.6 % 10° ey
0.100
4.4 10°
0.075
a2x10 | —e e ——————— lo.050
g 5000 10000 15000 20000 25000
epoch
train validation ~—— last layer norm
5 0.250
L 0.225
4 /
- 0.200
20 €
0.175 5
g3 e 2
£ - 0150 %
82 - 01253
/! %
A 8
0.100
1
0.075
o ! 0.050
[5000 10600 15600 20000 25600
epoch

®

Figure 43: Subtraction dataset: Features and parameters normalization. Observe that a smaller temperature
allows the model to fit the data better but experiences training instability. Temperature = 0.25 allows the model
to fit and achieve high validation accuracy. However, we observe training instability as can seen with weight
norm dynamics.

27

299

300
301

303

304
305
306

307
308
309

310
311
312
313

314
315
316

317
318

320
321

322
323
324
325
326
327
328

329
330

332

333
334
335

336
337

338
339

340
341
342

References

[1] Kwangjun Ahn, Jingzhao Zhang, and Suvrit Sra. Understanding the unstable convergence of
gradient descent. arXiv preprint arXiv:2204.01050, 2022.

[2] Sanjeev Arora, Zhiyuan Li, and Abhishek Panigrahi. Understanding gradient descent on edge
of stability in deep learning. arXiv preprint arXiv:2205.09745, 2022.

[3] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs. 2018.

[4] Jeremy M. Cohen, Simran Kaur, Yuanzhi Li, J. Zico Kolter, and Ameet Talwalkar. Gradient
descent on neural networks typically occurs at the edge of stability. arXiv preprint arXiv:
Arxiv-2103.00065, 2021.

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv: Arxiv-2010.11929, 2020.

[6] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448-456. PMLR, 2015.

[7] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv: Arxiv-1412.6980, 2014.

[8] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

[9] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[10] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024-8035. Curran Associates, Inc., 2019.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825-2830, 2011.

[12] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking:
Generalization beyond overfitting on small algorithmic datasets. In ICLR MATH-AI Workshop,
2021.

[13] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv: Arxiv-1409.1556, 2014.

[14] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop, coursera: Neural networks for
machine learning. University of Toronto, Technical Report, 6, 2012.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv preprint arXiv: Arxiv-
1706.03762, 2017.

28

	Appendix Slingshot Effects across Architectures, Optimizers and Datasets
	Vision Transformers on 1000 samples from CIFAR-10
	CNN on 200 samples from CIFAR-10
	MLPs on 200 samples from CIFAR-10
	Shallow models
	Deep linear models
	Learning Subset Parities
	Effective Step Size and Curvature Dynamics

	Different Optimizers
	Slingshot with MLP and Synthetic Dataset
	Abalation Study

	Appendix Slingshot and Grokking
	Analysis of Parameter Dynamics
	SGD Optimization
	Slingshots with Additional Datasets

	Appendix Controlling Instability Through Normalization and Norm Constraints
	Weight decay
	Features and parameter normalization

