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A Slingshot Effects across Architectures, Optimizers and Datasets

This section provides further evidence of the prevalence of Slingshot across architectures and
optimizers on subsets of CIFAR-10, testing setups beyond the specific setup consider by Power
et al. [12]. In these experiments, we focus solely on characterizing the optimization properties of
various setups described below. The small sample sizes are used in order to more easily find regimes
where different architectures can converge to fit the training data fairly quickly.

We use cross-entropy loss to optimize the models with AdamW [9] in the following experiments. The
following experiments are implemented in PyTorch [10].
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Figure 1: Vision Transformer on 1000 samples from CIFAR-10: Norm growth versus a) loss on training data b)
accuracy on training data for a ViT trained on 1000 samples.

A.1 Vision Transformers on 1000 samples from CIFAR-10

For further validation, we train a Vision Transformer (ViT) [5] with 12 layers that has 10 million
parameters on a small sample of the CIFAR-10 dataset [8]. In this setup, we use a learning rate to
0.001, no weight decay, 51 = 0.9, B2 = 0.95, ¢ = 10~8 and minibatch size of 128. We choose
a sample size of 1000 training samples for computational reasons, as we wish to observe multiple
cycles of the Slingshot Mechanism extremely late in training. The input images are standardized to
be in the range [0, 1]. No data augmentation is used in our training pipeline. Due to the extremely
small sample size, we focus our attention on the training metrics since no generalization is expected.
Figure 1a (respectively Figure 1b) shows a plot of training loss (respectively training accuracy) and
last layer norm evolution during the latter stages of training. Multiple Slingshot stages are observed
in these plots (5 clear cycles), which can be seen by the sharp transition of the weight norm from
high growth to plateau.
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Figure 2: CNN on CIFAR-10 dataset: Norm growth versus a) loss on training data b) accuracy on training data
for a VGG11-like model without batch normalization trained on 200 samples.
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A.2 CNN on 200 samples from CIFAR-10

We consider a VGG-like architecture [ 3] that has been adapted for CIFAR-10 dataset.! The model
is trained with 200 randomly chosen samples from CIFAR-10 training split and with full-batch
AdamW [9]. The hyperparameters used for the optimizer include a learning rate of 0.001, weight
decay= 0, 51 = 0.9, B = 0.95, and € = 10~8. As with ViT, no data augmentation is used in these
experiments other than standardizing the input to be in the range [0, 1]. We observe the presence of
multiple Slingshot stages with CNN from Figure 2a and Figure 2b. These experiments suggest that
Slingshot effect is not restricted to Transformers architecture alone.
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Figure 3: CNN on 200 samples from CIFAR-10: Norm growth versus a) loss on training data b) accuracy on
training data for a VGG1 1-like model without batch normalization trained on 200 samples.

With BatchNorm We repeat the CNN-based described above but with a VGG-like model that
includes batch normalization [6].> The training setup is identical to the one described for CNN
wihtout batch normalization. We observe the presence of multiple Slingshot stages with CNN from
Figure 3a and Figure 3b. The weight norm does not decrease during training as opposed to the weight
norm dynamics for CNN wihtout batch normalization seen in Figure 2. These experiments suggest
that Slingshot Effects can be seen with standard neural network training components including batch
normalization.
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Figure 4: MLP on 200 samples from CIFAR-10: Norm growth versus a) loss on training data b) accuracy on
training data for a model trained on 200 samples.

A.3 MLPs on 200 samples from CIFAR-10

The next architecture we consider is a deep (6 layers) fully connected network trained on a small
sample of 200 samples belonging to the CIFAR-10 dataset [8] with full-batch AdamW [9] optimizer.
The optimizer’s hyperparameters are set as following: learning rate = 0.001, weight decay = 0,

'We use the VGG11 architecture without batch normalization [6] from https://github. com/kuangliu/
pytorch-cifar in this experiment.

2We use the VGG11 architecture with batch normalization [6] from https://github.com/kuangliu/
pytorch-cifar in this experiment.


https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
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Figure 5: Training shallow models on 200 samples from CIFAR-10: (a) Training loss for 1 layer (linear) model
(b) Training accuracy for 1 layer (linear) model (c) Training loss for 2 layer MLP (d) Training accuracy for
RMSProp (e) Training loss for 3 layer MLP and (f) Training accuracy for 3 layer MLP . All models are trained
with full-batch Adam with learning rate 0.001 on 200 CIFAR-10 samples.

B1 =0.9, By = 0.95, and € = 1078, As with the ViT setup above we do no use data augmentation
for training this model. Figure 4a (respectively Figure 4b) shows a plot of training loss (respectively
training accuracy) and last layer norm evolution during the latter stages of training. Multiple
Slingshot stages are observed in this setup as well. These experiments further suggest that the
Slingshot mechanism is prevalent in simple models as well.

A.4 Shallow models

We consider the behavior of shallow models including linear, 2- and 3-layer MLPs with Adam opti-
mizer. As with the previous setup, we train these models on a small sample of 200 samples belonging
to the CIFAR-10 dataset [8] with full-batch Adam [7] optimizer. The optimizer’s hyperparameters
are set as following: learning rate = 0.001, weight decay = 0, 51 = 0.9, 82 = 0.95, and € = 108,
No data augmentation is used in these experiments as well. Figure 5a, Figure 5c, Figure Se show the
training loss and last layer norm evolution during training for the linear, 2-layer and 3-layer models
respectively while Figure 5b, Figure 5d, Figure 5f show the training accuracy and last layer norm
evolution. Slingshot Effects are observed in 2-layer and 3-layer MLPs whereas no Slingshot Effects
are seen with the linear model. These experiments suggest that depth appaers to be a necessary
condition to observe Slingshots.

A.5 Deep linear models

We train a 6 layer linear model with 200 samples belonging to CIFAR-10 [8] with full-batch
AdamW [9]. The optimizer’s hyperparameters are set as following: learning rate = 0.001, weight
decay = 0, 31 = 0.9, B2 = 0.95, and ¢ = 10~8. Figure 6a and Figure 6b show the training loss and
accuracy behavior observed during optimization. Multiple Slingshot stages are observed with this
architecture as well.
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Figure 6: Optimizer choice on deep linear models on 200 samples from CIFAR-10: (a) Training loss for AdamW
(b) Training accuracy for AdamW (c) Training loss for RMSProp (d) Training accuracy for RMSProp (e)
Training loss for Gradient Descent and (f) Training accuracy for Gradient Descent. All optimizers train a 6-layer
linear model full-batch on 200 CIFAR-10 samples.

A.6 Learning Subset Parities

In this section we use the k-sparse parities of n bits task as a test bed. Theoretically, this family of
tasks is notoriously challenging since it poses strict computational lower bounds on learning (see
for more details). For the (k,n) subset parity task, each input is a random n dimensional vector
such that each component is randomly sampled from ~ Unif{—1,1}. The label is then given by a
parity function over a predefined sparse set of k£ < n bits. For the following experiments, we use
k = 3,n = 50. For the model, we use a 3 layer MLP with relu activations, and the cross entropy loss.
We use a dataset of 1000 samples, and a test set of 8000 samples. We train each network with Adam
using a batch size of 32, a learning rate of 7 = {0.004,0.003,0.002} and € € {1078,10=7,1076}.
Our results are summarized in figures 7, 8 and 9. For ¢ = 108, multiple Slingshots appear past
the perfect fitting of the training set, with a bump in generalization post most Slingshots. For larger
values of €, no Slingshots are observed, while generalization remains poor.

A.6.1 Effective Step Size and Curvature Dynamics

A classical results pertaining to optimizing smooth functions with gradient descent states that a
sufficient condition for convergence requires that the learning rate does not exceed %, where L is the
Lipschitz constant of the gradient. Due to the sufficiency of the condition, we expect it to be violated
at the phase transitions of the slingshots, when the training loss spikes. We quantify the effective
step size of a parameter as \/%Jre where the terms are defined in Algorithm 1. To approximate L in
t
a local region, we use the maximum eigenvalue of the loss Hessian in this analysis as is done by a
series of recent works including Cohen et al. [4], Ahn et al. [1] and Arora et al. [2]. We use the same
setup described for training parity dataset to conduct this empirical analysis. The hyperparameters
used for the optimizer include = 0.004, ¢ = 1078 and 3; = 0.9 and 3> = 0.999. Figure 10a
shows the dynamics of the training and validation loss while Figures 10b, Figure 10c and Figure 10d
shows the evolution of the effective step size as well as the maximum allowable step size for a few
parameters chosen randomly from the three layers in the neural network. We observe from these
plots that the effective step size is smaller than the maximum allowed step size in the vicinity of
SlingShot Effects. however, at the phase transitions we clearly see that the effective step size is larger
than the maximum allowed, causing the loss to spike. After a few Slingshot cycles, we observe that
the maximum allowed step size increase dramatically, and no additional Slingshots follow.

last layer norm

last layer norm
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Figure 7: Learning a (3, 50) subset parity with Adam with e = 10™® and a learning rate of (a),(d) n = 0.004,
(b),(e) n = 0.003 and (c),(f) n = 0.002. Multiple Slingshots are visible, resulting in improved generalization.
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Figure 8: Learning a (3, 50) subset parity with Adam with ¢ = 10~" and a learning rate of (a),(d) 7 = 0.004,
(b),(e) n = 0.003 and (c),(f) n = 0.002. No Slingshots are visible.

A.7 Different Optimizers

In this set of experiments, we study the training loss behavior of deep linear models optimized
full-batch with AdamW [9], RMSProp [14] and full-batch gradient descent (GD). The six layer
model is trained with 200 samples. The hyperparameters used for optimizing the model with various
optimizers are described in Table 1. Figure 6 shows the training loss and accuracy behavior of the
three optimizers considered in this experiment. We observe Slingshot behavior with AdamW and
RMSProp from Figure 6 while Slingshot behavior is absent with standard gradient descent. This
observation suggests that the normalization used in adaptive optimizers to calculate the update from
gradients may lead to Slingshot behavior.
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Figure 9: Learning a (3, 50) subset parity with Adam with e = 10~ and a learning rate of (a),(d) = 0.004,
(b),(e) n = 0.003 and (c),(f) n = 0.002. No Slingshots are visible.
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Table 1: Optimizers hyperparameters. Learning rate is set to 0.001 and weight decay to O for all optimizers

Optimizer Other hyperparameters
Adam B1=0.9,8; =0.95
RMSProp a = 0.95, momentum=0.0
GD momentum=0.9
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Figure 11: Slingshot generalization on synthetic dataset: Norm growth versus a) loss on training data b) accuracy
on training data (c) loss on validation data d) accuracy on validation data. Note that the vertical line in green
shows location of maximum test accuracy. Adam hyperparameters are 51 = 0.9, 81 = 0.95, e = 1078

A.8 Slingshot with MLP and Synthetic Dataset

In this section, we provide empirical evidence that Slingshot Effects are observed with a synthetic
dataset in a fully-connected architecture. The small dimensional dataset, like the Grokking dataset of
Power et al. [12], allows us to easily measure of sharpness, given by WUI Hiup where uy is the

optimizer’s update vector and #; is the Hessian at step ¢, to examine the interplay between Slingshot
Effects and generalization.

Vision Transformers and Full CIFAR-10 In Appendix A, we have empirically shown that the
existence of the Slingshot phenomenon on a small subset of CIFAR-10 dataset [8] with Vision
Transformers (ViTs). We now study the impact that Slingshot has on the generalization ability of
ViTs by training a model on all 50000 samples in CIFAR-10 training dataset. The ViT used here
is a larger model than the one considered in A to account for larger dataset size. The ViT model
consists of 12 layers, width 384 and 12 attention heads and is optimized by AdamW [9]. For this
experiment, we set the learning rate to 0.0001, weight decay to 0, 51 = 0.9, 51 = 0.95and € = 10~8,
minibatch size of 512 and linear learning rate warmup for 1 epoch of optimization. Figure 12 shows
the results of experiment with full CIFAR-10 dataset. Multiple Slingshots can be observed in these
plots similar to the plots described in Appendix A. We observe from Figure 12d that the test accuracy
peaks in epochs following a Slingshot with the maximum recorded test accuracy occurring very
late in optimization. This observation suggests that the Slingshot can have a favorable effect on
generalization consistent with the behavior observed in the main paper with division dataset.

A.8.1 Abalation Study

In this section, we train a toy model on a synthetically generated dataset with the aim of analysing the
effect of different hyper parameters on the Slingshot Mechanism. We construct a 128-dimensional
dataset with Scikit-learn [1 1] that has 3 informative dimensions that represents a 8-class classification
problem. The class centers are the edges of a 3-dimensional hypercube around which clusters are
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Figure 12: Slingshot generalization on full CIFAR-10 dataset: Norm growth versus a) loss on training data b)
accuracy on training data (c) loss on test data d) accuracy on test data.

data are sampled from a standard normal distribution. The other 125-dimensions are also filled at
random to create a high-dimensional dataset used in our experiments. We generate 256 training and
validation samples for this dataset and use a minibatch size of 128 in all the experiments described in
the following.

Architecture and Optimizer Figure 11 shows the training and validation metrics when we optimize
a 4-layer fully-connected network (FCN) with Adam using a learning rate of 0.001, 5, = 0.9,
B1 = 0.95, no weight decay and € = 10~8. Note that we use this value of € in our first experiment
as this is the default value proposed in Kingma and Ba [7]. These experiments are implemented in
JAX [3].

Tuning ¢ In the next set of experiments with synthetic data, we tune e value for Adam to understand
its impact on test accuracy. Figure 13 shows a plot of the maximum validation accuracy achieved by
models trained with Adam as a function of time (epoch). We observe that Adam reaches its best test
accuracy late in optimization with e = 10 yielding the highest validation accuracy. Furthermore,
the best accuracy is achieved with a model that experiences Slingshot during optimization. This
observation is consistent with our findings for ViT training with CIFAR-10 dataset described in the
main paper and Appendix A.8.

Influence of 5; and By In these experiments, we aim to study the impact of Adam/AdamW
optimizer’s 51 and /32 hyperparameters on Slingshot. We use the synthetic data described above and
set the learning rate of 0.001 and ¢ = 108 for this analysis. Figure 14 and Figure 15 shows the results
of this study. We observe from Figure 14 that the Slingshot Mechanism is fairly robust to the values of
(1 and Bs. Figure 14a-Figure 14c show that Slingshot is even observed with 51 and 35 set to O which
effectively disables exponential moving averaging of gradient moments in Adam [7]. Figure 14g-
Figure 14i provide an example of hyperparameters that fail to induce Slingshot. We observe from
Figure 14 that models that experience Slingshot tend to reach their best test accuracy during the later
stages of training. Specifically, we observe from Figure 14b, Figure 14e and Figure 14k that the
best validation accuracy occurs after 60000 epochs. These examples provide further evidence about
an interesting implicit bias of Adam. Figure 15 shows more examples of hyperparameters that do
not induce Slingshot Effects. Finally, we observe from Figure 15 that hyperparameters that provide
higher validation accuracy are from models that experience Slingshot Effects.



172

173
174
175

176
177
178

179
180
181
182
183

184
185
186

187

188

189

190

191

192

193

194

195

196

197

198

0.80 adam eps 1le-05

@adam eps le-04

©
N
©

dam eps 1e-06
@ P adam eps 1e-08

©
S
o

@dam eps 1e-02
adam eps 1e-07

validation accuracy
o [=}
~ ~
NS

©
S
o

o
o
©

@dam eps 1e-03

104 10° 106
epoch
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B Slingshot and Grokking

We use the empirical setup described by Power et al. [12] to describe the Slingshot Mechanism. The
following section describes relevant details including datasets, architecture and optimizer used in our
experiments.

Architecture The model used a decoder-only Transformer [ 5] with causal attention masking. The
architecture used in all our experiments consists of 2 decoder layers with each layer of width 128 and
4 attention heads.

Optimization We train the architecture described above with Adam optimizer [7, 9] in most of
our experiments unless noted otherwise. The learning rate is set to 0.001 and with linear learning
rate warmup for the first 10 steps. We use 51 = 0.9, B2 = 0.98 for Adam’s hyperparameters. The
Transformers are optimized with cross-entropy (CE) loss that is calculated on the output tokens for a
given binary operation.

Algorithmic Datasets The Transformer is trained on small algorithmic datasets that consists
of sequences that represent a mathematical operation. The following operations are used in our
experiments:

c=a+b (mod p)for0<a,b<p

c=a—>b (modp)for0<ab<p

c=axb (mod p)for0 <a,b<p

c=a-+b (modp)for0<ab<p

c=a?+b (mod p)for0<a,b<p

c=a+b (mod p) for0 < a,b<p

c=a?+b? (mod p)for0 < a,b<p

c=a?+b?+ab (mod p) for0 < a,b <p

c=a?>+b?>+ab+b (mod p)for0<a,b<p

c=a®+ab (mod p) for0 < a,b<p

c=a®+ab?>+b (mod p) for0 < a,b < p

¢ =la+b (mod p) if bis odd, otherwise a — b (mod p)] for0 < a,b < p
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Figure 14: Varying /31, 82 in Adam on synthetic dataset. FCN is trained with Adam using learning rate 0.001
and € = 1075, The validation accuracy of models that experience Slingshot reach their highest accuracy later in

training.

c=a-bfora,be Sx
c=a-b-afora,bc Sy

c=x-b-afora,be S;

c¢=la+b (mod p) if a is even, otherwise a * b (mod p)] for 0 < a,b < p
¢ =la+b (mod p) if a is even, otherwise a — b (mod p)] for 0 < a,b <p
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B>

- 30

where p = 97 and with the dataset split in training and validation data. Each equation in the dataset
is of the form (a)(op)(b)(=)c where (x) represents the token used to represent x. We refer to Power
et al. [12] for a detailed description of the datasets

B.1 Analysis of Parameter Dynamics

A common observation is that intermediate representations tend to evolve beyond simple scale
increase during phase transitions from norm growth to plateau. In order to empirically quantify this
effect, we train the Transformer described in Appendix B with modular addition, multiplication
and division datasets using Adam with learning rate set to 0.001 and 5, = 0.9 and 52 = 0.98. We
calculate the cosine distance between the representation and classification parameters from their
initial values where the cosine distance is given by

WP WP
I =10 = T
Wy Wo
1 !
df —1.0— wtclj: 'Lz;
TN

where d"°P" (d°!') denotes cosine distance for representation (respectively classification) parameters,

wy " (resp. wy 17 denotes representation (resp. classification) parameters at time ¢ with wo P (wy 1
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Figure 16: Cosine distance evolution for Transformer described in Appendix B trained on modular addition.
Observe that the cosine distance from initialization increases with models that experience Slingshot Effects.

indicating the initial representation (resp. classification) parameters where the norm used above is the
Euclidean norm.

Figure 16 shows the dynamics of the loss, accuracy and cosine distance recorded during training.
We observe that the classification parameters move farther away from initialization faster than the
representation parameters. More interestingly, we observe from Figure 16c and Figure 16f that the
representation parameters travel farther from initialization for training runs that experience Slingshot.
These trials use ¢ = 1078 and ¢ = 10~ 7 and experience Slingshot Effects. In contrast, we see
from Figure 16i and Figure 161 that the representation distance remains low for models trained with
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Figure 17: Cosine distance evolution for Transformer described in Appendix B trained on modular multiplication.
Observe that the cosine distance from initialization increases with models that experience Slingshot Effects.

€ = 1075 and ¢ = 10~*. The models trained with higher ¢ values do not experience Slingshot
Effects. These results suggest that Slingshot may have a beneficial effect in moving the representation
parameters away from initialization which eventually helps with model generalization. Figure 17 and
Figure 18 show a similar trend for multiplication and division datasets respectively.
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Figure 18: Cosine distance evolution for Transformer described in Appendix B trained on modular division.
Observe that the cosine distance from initialization increases with models that experience Slingshot Effects.

B.2 SGD Optimization

In this appendix, we show that Slingshot Effects are not seen during Transformer training with
stochastic gradient descent (SGD) with momentum to support our claim in the main paper. To this
end, we use train the Transformer described in in Appendix B on modular division dataset with a
50/50 train/validation split using SGD with momentum. We use a mini-batch size of 512 which
requires the optimizer to take 10 steps per epoch for dataset split described above. We set momentum
to 0.9 and use the following learning rates: 0.001, 0.01 and 0.1 and run the optimizer for 1500000
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Figure 19: Optimizing a Transformer with SGD on modular division dataset: Norm growth vs (a), (c), (e)
training and validation loss, (b), (d), (f) training and validation accuracy. Note the lack of Slingshot Effects,
Grokking and generalization seen with Adam/AdamW optimizer.

steps. The number of steps used here is 3 times larger than the steps used to run Adam/AdamW in
this work which is chosen to give SGD additional time to reach convergence. Figure 19 shows the
usual loss and accuracy metrics calculated on training and validation data as well as the weight norm
of the classifier layer. We observe that there is no evidence of Slingshot with SGD. Lastly, we do not
see any evidence of Grokking or generalization with this setup as well.

B.3 Slingshots with Additional Datasets

In this appendix, we provide evidence of Slingshot Effects on additional datasets from Power et
al [12] Grokking work. The datasets are created by a subset of mathematical operations defined in
Appendix B. Each operation can have multiple datasets that depends on the train/validation split
ratio. We use the training setup described in B on 18 separate datasets. Figure 20 - Figure 37 shows
the results the datasets described in this appendix. We observe Slingshot Effects and generalization

16



247 with all 18 datasets. These results suggest the prevalence of Slingshot Effects when large models are
248 trained with adaptive optimizers, specifically Adam [7].
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Figure 20: Addition dataset with 50/50 train/validation split.
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Figure 21: Addition dataset with 60/40 train/validation split.
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Figure 22: Addition dataset with 70/30 train/validation split.
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Figure 23: Cubepoly dataset with 50/50 train/validation split. Cubepoly operation is given by (a® 4+ b (mod p)
for 0 < a,b < p). Training and validation (a) loss and (b) accuracy.
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Figure 24: Cubepoly dataset with 60/40 train/validation split. Cubepoly operation is given by (a®> 4+ b (mod p)
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Figure 25: Cubepoly dataset with 70/30 train/validation split. Cubepoly operation is given by (a® + b (mod p)
for 0 < a,b < p). Training and validation (a) loss and (b) accuracy.
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Figure 26: Cubepoly dataset with 80/20 train/validation split. Cubepoly operation is given by (a®> 4+ b (mod p)
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Figure 29: Division dataset with 70/30 train/validation split. Training and validation (a) loss and (b) accuracy.
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operation is given by [a + b (mod p) if a is even, otherwise a — b (mod p)] for 0 < a,b < p. Training and

validation (a) loss and (b) accuracy.

20



train —— validation —— last layer norm

—— train —— validation —— last layer norm
100
100 2.0 2.0
80
-2
10 L5g 15¢
S 2 60 2
o 107 S g s
8 108 38 108
10-¢ - @ 40 =
3 3
1078 0.5 20 0.5
10—10
0.0 0 0.0
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
epoch epoch

(a)

(b)
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Figure 32: Multiplication dataset with 60/40 train/validation split. Training and validation (a) loss and (b)

accuracy.

—— train  —— validation =~ —— last layer norm train —— validation — last layer norm
2.5 100 2.5
10°
2.0 80 2.0
-2
10 c €
4 152 g 60 152
o 10 c Y 5
8 > 3 z
© o -
10-° 1.0 © 40 1.0-
r | s .
10-8 ‘ -
‘ ‘\“ I ‘ 05 20 0.5
Lo 1 M
0.0 0 0.0

0 5000 10000 15000 20000 25000 30000 35000 40000

epoch

(a)

0 5000 10000 15000 20000 25000 30000 35000 40006

epoch

(b)
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Figure 36: Subtraction dataset with 70/30 train/validation split. Training and validation (a) loss and (b) accuracy.
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C Controlling Instability Through Normalization and Norm Constraints

Training instability is the hallmark of the Slingshot Mechanism, yet as seen in previous sections, the
Slingshot Effect typically results in improved performance, and Grokking. In this section, we explore
whether it is possible to maintain stable training, without sacrificing performance. To this end, we
explore how constraining and regularizing the weights of the network affect the Slingshot behaviour,
and overall performance.

C.1 Weight decay
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Figure 38: Division dataset: Norm behavior with different weight decay values. Training and validation loss vs
epochs with weight decay (a) 0.0, (b) 0.1, (c) 1.0; Training and validation accuracy vs epochs shown in (d), (e)
and (f). The evolution of classifier weight norm shows instability as increase in weight decay strength.

Weight decay is a commonly used regularization approach to improve the generalization performance
of neural networks. Power et al. [12] show that weight decay has the largest positive effect on
alleviating Grokking. Weight decay naturally controls the size of the parameters and consequently
their norm growth. We study the effect of weight decay on stability of training Transformers with
Grokking datasets in this section. We use weight decay values from 0,0.1,0.2,0.4, 0.6, 0.8and1.0
with AdamW [9] optimizer. Figure 38 shows the results for division dataset. We observe from
Figure 38 that as weight decay strength increases, both Slingshot Effects and Grokking phenomenon
disappear with the model reaching high validation accuracy quickly as seen in Figure 38e and
Figure 38f. However, we observe that the model experiences instability as can been seen with the
loss plots in Figure 38b and Figure 38c or the accuracy plots in Figure 38e and Figure 38f. A similar
trend is observed for addition and multiplication datasets in Figure 39 and Figure 40 respectively.

The results shown above indicate that Slingshot may not be the only way to achieve good generaliza-
tion. Both Slingshot and weight decay prevent the norms from growing unbounded and achieve high
validation accuracy as seen in plots described above. While weight decay shows different weight
norm dynamics, this regularization does not decrease training instability. These results suggest the
need for alternative approaches to improve training stability.

24



weight decay =0

—— train —— validation ~—— last layer norm
2.5
ATV 20
£
58
\ :
g
3
‘ ‘ ‘ o0
A \ \ | E
ik \ H— H } M‘
,‘ W 0.5
T ‘M/( w‘“w‘ |
A I v Ar
0.0
o 5000 10000 15000 20000 25000 30000 35000
epoch
()
train —— validaton —— last layer norm
100 25
80 20
£
Z 60 152
8 c
3 g
S )
& 40 103
2
20 0.5
0

0.0
0 5000 10000 15000 20000 25000 30000 35000
epoch

(d)

weight decay = 0.1

—— train  —— validation —— last layer norm

S & o
2 &

last layer norm

S

°
S

107°

G 5000 10000 15000 20000 25000 30000 35000
epoch

(b)

train and validation loss vs epochs

train  —— validation —— last layer norm
0.18
100 — —
1T
0.16
80 i
0.14 ¢
> 60 g
] 0.12
g )
& 40 0.10%;
8
20 0.08
0.06
0
0

G 5000 10000 15000 20000 25000 30000 350
epoch

(e

train and validation accuracy vs epochs

accuracy

weight decay = 1.0

—— train —— validation —— last layer norm

G 5000 10000 15000 20000 25000 30000 35000
epoch

(©)

train  —— validation —— last layer norm

r RIm

m

G 5000 10000 15000 20000 25000 30000 35000
epoch

®

Figure 39: Addition dataset: Norm behavior with different weight decay values. Training and validation loss vs
epochs with weight decay (a) 0.0, (b) 0.1, (c) 1.0; Training and validation accuracy vs epochs shown in (d), (e)
and (f). The evolution of classifier weight norm shows instability as increase in weight decay strength.
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C.2 Features and parameter normalization

A second approach that we use to explicitly control weights and feature norm is by normalizing
the features and weights via the following scheme: w = &, f (x) = %, where w and f(x)

are the weights and inputs to the classification layer respectively, the norm used above is the Lo
norm, and z is the input to the neural network. We take the cosine similarity of the normalized
weights and features and divide this value by a temperature value that we treat as a hyperparameter
in these experiments. The operation is given by: y = %(‘”) where T represents the temperature
hyperparameter. We use temperature values from 0.1, 0.25, 0.5, 0.75, 1.0 for these experiments.

Figure 41 shows the results of Transformer training on division dataset described in Appendix B that
is split evenly into train and validation sets. We observe that the model displays training instability
evidenced by norm behavior and also loss behavior in Figure 41a at lower temperature values. We
observe that 7 = 0.25 provides a good compromise between fitting training data while showing
no training instability as seen in Figure 41b. This hyperparameter value also results in Grokking
as validation accuracy improves late in training as can be seen from Figure 41e. These together
suggest that bounding weights and features norm helps stabilize training without sacrificing training
performance.

We validate the normalization scheme with two additional datasets namely multiplication and division
from Appendix B. Figure 42 shows the results for training Transformers with multiplication dataset
that is split evenly into train and validation sets. We observe from Figure 42 that a proper temperature
value can stabilize training and with some tuning can provide a compromise between training stability
and generalization. Specifically, 7 = 0.25 allows the model to fit the training data and reach almost
perfect validation accuracy as seen from Figure 42b and Figure 42e.

Finally, we repeat the above experiments with subtraction dataset and show the results in Figure 43.

This dataset shows that while a properly tuned temperature can help the model achieve almost perfect
generalization, training instability shows up very late in optimization. This observation can be seen
from Figure 43b and Figure 43d. This result suggests that more work remains to be done with
understanding and stabilizing the training behavior of large neural networks.
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Figure 41: Division dataset: Features and parameters normalization. Observe that a smaller temperature allows
the model to fit the data better but experiences training instability. Temperature = 0.25 allows the model to fit
and achieve high validation accuracy without suffering training instability.
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Figure 42: Multiplication dataset: Features and parameters normalization. Observe that a smaller temperature
allows the model to fit the data better but experiences training instability. Temperature = 0.25 allows the model
to fit and achieve high validation accuracy without suffering training instability.
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Figure 43: Subtraction dataset: Features and parameters normalization. Observe that a smaller temperature
allows the model to fit the data better but experiences training instability. Temperature = 0.25 allows the model
to fit and achieve high validation accuracy. However, we observe training instability as can seen with weight
norm dynamics.
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