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1 APPENDIX A
We adopt six benchmark datasets for evaluation:

1) Flickr30K Entities contains 224K phrases describing bound-
ing boxes in 31K images, each image includes 5 captions. We also
select 1000 images from the test split to evaluate in the same way
as MG.

2)MSCOCO 2014 contains 82783 train images and 40504 vali-
dation images. Each image is described by 5 captions. As with MG,
the train split of the dataset is used to train our method.

3) Visual Genome consists of 77398 training images, 5000 test
images, and 5000 validation images. Each image possesses a series
of annotations which are in a free-text format.

4) ReferIt has 20,000 images and 99,535 segmented regions in
the IAPR TC-12 and SAIAPR - 12 datasets, respectively. There are
approximately 130K entity captions. We use the same 9K training,
1K validation, and 10K test dataset construction strategy as MG.

5) Flickr-Split-S0 is a zero-shot subset based on Flickr30K. The
principal characteristic is that phrases in the test split do not appear
in the train split, but the possibility that the captions belong to the
same category cannot be avoided. For example, while “man" is in
the train split, “woman" can also appear in the test split, so this
split is zero-shot for phrases. We construct the dataset according to
Case 0 in ZSGNet.

6) Flickr-Split-S1 is a zero-shot subset based on Flickr30K. In
the dataset, the phrases in the test split do not appear in the train
split and no phrases in the train split belong to the same category as
any text phrase. Flickr30K has several common categories (such as
“people" and “animal") and an “other" category. Case 1 in ZSGNet
uses the samples in “other" as the validation and test splits, and the
samples in the other categories are used for the train split, so it is
zero-shot for phrase categories.

7) VG-Split includes VG-Split-S2 and VG-Split-S3. In VG-Split-
S2, phrases in the training and test sets are from different synsets,
and no test images contain phrase categories in the training synsets.
This split corresponds to Case 2 in ZSGNet; In VG-Split-S3, each
test image contains, a category belonging to the training synsets,
in addition to the category to which the phrase refers. This split
corresponds to Case 3 in ZSGNet.

2 APPENDIX B
In this section, we first show the visualization results of several
unseen image-object instances, including fine-grained classes, such
as classical car and kayak (Figure 1, the 1st, 2nd, 5th, 6th rows);
novel concepts, such as celebrity names, anime names (Figure 1, the
3rd, 4th, 7th, 8th rows). Compared with CLIP-based heatmaps, our
grounding heatmaps cover the image object more comprehensively
and accurately, in agreement with the quantitative results. More
results are shown in Figure 2.

We further compare the qualitative results with ground truths.
In Figure 3, we visualize some examples of our framework on the

Grounding HeatmapInput CLIP-based Heatmap
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Figure 1: Phrase grounding regions of some unseen object
phrases. a) Input image. b) CLIP-based Heatmap. c) Ground-
ing Heatmap.

Flickr30K Entities, which are shown by predicted bounding boxes.
We observe that our method performs well on common and uncom-
mon phrases.

3 APPENDIX C
In this section, We give more experimental results comparing our
proposed framework with other methods. Firstly, our framework
has more satisfactory results compared with zero-shot transfer
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the Discus Thrower The Thinker Self Portrait Mona Lisa
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Figure 2: Heatmaps of unseen object categories from our method. The categories from top to bottom are: CElebrity names(CE),
ANime names(AN), GAme character names(GA), ARtwork names(AR), RAre plant & animal phrases(RA), SMall object
phrases(SM), EXclusive category phrases(EX) and SEntence-level phrases(SE).
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Method Inference Time Overall People Animals Vehicles Instruments Bodyparts Clothing Scene Other
MaskCLIP 61 ms 34.26 37.46 40.93 52.25 36.42 9.56 29.36 48.4 25.87
AdaptingCLIP 1360 ms 29.47 29.23 40.15 45.00 24.69 13.19 27.23 41.86 24.92
GAE 137 ms 25.56 26.76 39.72 38.12 36.76 9.14 19.56 33.72 22.22
CH 188 ms 43.75 56.33 62.31 58.60 39.39 11.03 24.61 52.78 32.26
Ours w/ GAE 114 ms 36.35 43.58 48.22 52.72 14.69 9.09 24.85 55.94 26.44
Ours w/ CH 114 ms 45.46 56.44 59.95 57.68 26.94 7.16 25.53 70.04 32.53

Table 1: Category-wise bounding box accuracy on Flickr30K Entities. In bold black: best results; Underline: suboptimal results.
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Figure 3: Qualitative results from our method. We visualize ground-truth bounding boxes in white and our predicted boxes in
red.
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Figure 4: Comparison of the bounding box accuracy in dif-
ferent models with unseen object categories.

SoTA method [2] and the WWbl method [1] in Figure 4. Secondly,
we also show a comparison of the methods’ performance over all
categories of Flickr30K Entities and evaluate their inference speeds
in Table 1. Our framework guarantees great inference speeds with
competitive accuracy.

4 APPENDIX D
In this section, We further ablate each component of our framework
to determine their performance impact on their respective schemes.
Firstly, we analyze the effect of 𝛼 , 𝛽 , 𝑙𝑛 on CLIP-based heatmap
generation. In fact, the number level of 𝛼 and 𝛽 has a great impact
on the quality of the CLIP-based heatmap. As is shown in Figure 5,
the points surrounded by red circles represent the optimal solutions
in our settings. We also compare some qualitative results about our
designs in Figure 6. The initial method represents the last layer’s

(a) (b)

Figure 5: Comparison with CLIP-based heatmaps’ qualities
in different values of 𝛼 , 𝛽, 𝑙𝑛 . Visualization of the quadratic
relationship among (a) 𝛼 , 𝛽, the first n transformer layers
and bbox accuracy; (b) 𝛼 , 𝛽 , the 11-th transformer layer and
bbox accuracy.

image embedding from VIT-B/32. After aligning the region with
the text, the CLIP-based heatmap becomes phrased relevant.
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Figure 6: Comparison between the proposed and post-
ablation methods. The complete CLIP-based heatmap suc-
cessfully discovers phrase-related entities such as pants and
glasses, while the others often fail to capture individual enti-
ties of specific descriptions.
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