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Abstract1

Few-shot node classification is tasked to provide accurate predictions for nodes2

from novel classes with only few representative labeled nodes. This problem has3

drawn tremendous attention for its projection to prevailing real-world applica-4

tions, such as product categorization for newly added commodity categories on5

an E-commerce platform with scarce records or diagnosis for rare diseases on a6

patient similarity graph. To tackle such challenging label scarcity issues in the non-7

Euclidean graph domain, meta-learning has become a successful and predominant8

paradigm. More recently, inspired by the development of few-shot learning in the9

image domain, transferring pretrained node embeddings for few-shot node classifi-10

cation could be a promising alternative to meta-learning but remains unexposed. In11

this work, we empirically demonstrate the potential of an alternative framework,12

Transductive Linear Probing, that transfers pretrained node embeddings, which13

are learned from graph contrastive learning methods. We further extend the setting14

of few-shot node classification from standard fully supervised to a more realistic15

self-supervised setting, where meta-learning methods cannot be easily deployed16

due to the shortage of supervision from training classes. Surprisingly, even without17

any ground-truth labels, transductive linear probing with self-supervised graph18

contrastive pretraining can outperform the state-of-the-art fully supervised meta-19

learning based methods under the same protocol. We hope this work can shed20

new light on few-shot node classification problems and foster future research on21

learning from scarcely labeled instances on graphs.22

1 Introduction23

Graph Neural Networks (GNNs) [1–4] are a family of neural network models designed for graph-24

structured data. In this work, we concentrate on GNNs for the node classification task, where GNNs25

recurrently aggregate neighborhoods to simultaneously preserve graph structure information and26

learn node representations. However, most GNN models focus on the (semi-)supervised learning27

setting, assuming access to abundant labels. This assumption could be practically infeasible due to28

the high cost of data collection and labeling, especially for large graphs. Moreover, recent works29

have manifested that directly training GNNs with limited nodes can result in severe performance30

degradation [5–7]. Such a challenge has led to a proliferation of studies [8–10] that try to learn31

fast-adaptable GNNs with extremely scarce known labels, i.e., Few-Shot Node Classification (FSNC)32

tasks. Particularly, in FSNC, there exist two disjoint label spaces: base classes are assumed to contain33

substantial labeled nodes while target novel classes only contain few available labeled nodes. If34

the target FSNC task contains N novel classes with K labeled nodes in each class, the problem is35

denoted as an N -way K-shot node classification task. Here the K labeled nodes are termed as a36

support set, and the unlabeled nodes are termed as a query set for evaluation.37

Currently, meta-learning has become a prevailing and successful paradigm to tackle such a shortage38

of labels on graphs. Inspired by the way humans learn unseen classes with few samples via utilizing39

previously learned prior knowledge, a typical meta-learning based framework will randomly sample40

a number of episodes, or meta-tasks, to emulate the target N -way K-shot setting [5]. Based on this41

principle, various models [5–10] have been proposed, which makes meta-learning a plausible default42
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choice for FSNC tasks. On the other hand, despite the remarkable breakthroughs that have been made,43

meta-learning based methods still have several limitations. First, relying on different arbitrarily44

sampled meta-tasks to extract transferable meta-knowledge, meta-learning based frameworks suffer45

from the piecemeal knowledge issue [11]. That being said, a small portion of the nodes and classes46

are selected per episode for training, which leads to an undesired loss of generalizability of the learned47

GNNs regarding nodes from unseen novel classes. Second, the feasibility for sampling meta-tasks48

is based on the assumption that there exist sufficient base classes where substantial labeled nodes49

are accessible. However, this assumption can be easily overturned for real-world graphs where the50

number of base classes can be limited, or the labels of nodes in base classes can be inaccessible. In51

a nutshell, these two concerns motivate us to design an alternative framework for meta-learning to52

cover more realistic scenarios.53

Inspired by [12, 13], we postulate that the key to solving FSNC is to learn a generalizable GNN54

encoder. We validate this postulation by a motivating example in Section 2.3. Then, without the55

episodic emulation, the proposed novel framework, Transductive Linear Probing (TLP), directly56

transfers pretrained node embeddings for nodes in novel classes learned from Graph Contrastive57

Learning (GCL) methods [14–19], and fine-tunes a separate linear classifier with the support set to58

predict labels for unlabeled nodes. GCL methods are proven to learn generalizable node embeddings59

by maximizing the representation consistency under different augmented views [14, 15, 20]. If the60

representations of nodes in novel classes are discriminative enough, probing them with a simple linear61

classifier should provide decent accuracy. Based on this intuition, we propose two instantiations of62

the TLP framework in this paper: TLP with the self-supervised form of GCL methods and TLP with63

the supervised GCL counterparts. We evaluate TLP by transferring node embeddings from various64

GCL methods to the linear classifier and compare TLP with meta-learning based methods under the65

same evaluation protocol. Moreover, we examine the effect of supervision during GCL pretraining66

for target FSNC tasks to further analyze what role labels from base classes play in TLP.67

Throughout this paper, we aim to shed new light on the few-shot node classification problem through68

the lens of empirical evaluations of both the "old" meta-learning paradigm and the "new" transductive69

linear probing framework. The summary of our contributions is as follows:70

New Framework We are the first to break with convention and precedent to propose a new framework,71

transductive linear probing, as a competitive alternative to meta-learning for FSNC tasks.72

Comprehensive Study We perform comprehensive reviews on current literature and the research73

community and conduct a large-scale study on six widely-used real-world datasets that cover different74

scenarios in FSNC: (1) a sufficient number of base classes with substantial labeled nodes in each75

class, (2) a sufficient number of base classes with no labeled nodes in each class, (3) a limited number76

of base classes with substantial labeled nodes in each class, and (4) a limited number of base classes77

with no labeled nodes in each class. We evaluate all the compared methods under the same protocol.78

Findings We demonstrate that despite the recent advances in few-shot node classification, meta-79

learning based methods struggle to outperform TLP methods. Moreover, the TLP-based methods80

with self-supervised GCL can outperform their supervised counterparts and those meta-learning81

based methods even if all the labels from base classes are inaccessible. This signifies that without82

label information, self-supervised GCL can focus more on node-level structural information, which83

results in better node representations. However, TLP also inherits its limitation for scalability due to84

the large memory consumption of GCL, which makes it hard to deploy on extremely large graphs.85

Based on those observations, we identify that improving adaptability and scalability are the promising86

directions for meta-learning based and TLP-based methods, respectively.87

Our implementations for experiments are released1. We hope to facilitate the sharing of insights and88

accelerate the progress on the goal of learning from scarcely labeled instances on graphs.89

2 Preliminaries90

2.1 Problem Statement91

Formally, given an attributed network G = (V, E ,X) = (A,X), where V denotes the set of nodes92

{v1, v2, ..., vn}, E denotes the set of edges {e1, e2, ..., em}, X = [x1;x2; ...;xn] ∈ Rn×d denotes93

1https://github.com/anonymous-LoG22/TLP-FSNC.git
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all the node features, and A = {0, 1}n×n is the adjacency matrix representing the network structure.94

Specifically, Aj,k = 1 indicates that there is an edge between node vj and node vk; otherwise,95

Aj,k = 0. The few-shot node classification problem assumes that there exist a series of target96

node classification tasks, T = {Ti}Ii=1, where Ti denotes the given dataset of a task, and I denotes97

the number of such tasks. We term the classes of nodes available during training as base classes98

(i.e., Cbase) and the classes of nodes during target test phase as novel classes (i.e., Cnovel) and99

Cbase ∩ Cnovel = ∅. Notably, under different settings, labels of nodes for training (i.e., Cbase) may100

or may not be available during training. Conventionally, there are few labeled nodes for novel classes101

Cnovel during the test phase. The problem of few-shot node classification is defined as follows:102

Definition 1. Few-shot Node Classification: Given an attributed graph G = (A,X) with a divided103

node label space C = {Cbase,Cnovel}, we only have few-shot labeled nodes (support set S) for104

Cnovel. The task T is to predict the labels for unlabeled nodes (query set Q) from Cnovel. If the105

support set in each target (test) task has N novel classes with K labeled nodes, then we term this106

task an N -way K-shot node classification task.107

The goal of few-shot node classification is to learn an encoder that can transfer the topological and108

semantic knowledge learned from substantial data in base classes (Cbase) and generate discriminative109

embeddings for nodes from novel classes (Cnovel) with limited labeled nodes.110

2.2 Episodic Meta-learning for Few-shot Node Classification.111

Episodic meta-learning is a proven effective paradigm for few-shot learning tasks [21–27]. The112

main idea is to train the neural networks in a way that emulates the evaluation conditions. This is113

hypothesized to be beneficial for the prediction performance on test tasks [21–23]. Based on this114

philosophy, many recent works in few-shot node classification [6, 8–10, 28–32] successfully transfer115

the idea to the graph domain. It works as follows: during the training phase, it generates a number116

of meta-train tasks (or episodes) Ttr from Cbase to emulate the test tasks, following their N -way117

K-shot node classification specifications:118

Ttr = {Tt}Tt=1 = {T1, T2, ..., TT },
Tt = {St,Qt},
St = {(v1, y1), (v2, y2), ..., (vN×K , yN×K)},
Qt = {(v1, y1), (v2, y2), ..., (vN×K , yN×K)}.

(1)

For a typical meta-learning based method, in each episode, K labeled nodes are randomly sampled119

from N base classes, forming a support set, to train the GNN model while emulating the N -way120

K-shot node classification in the test phase. Then GNN predicts labels for an emulated query set of121

nodes randomly sampled from the same classes as the support set. The Cross-Entropy Loss (LCE) is122

calculated to optimize the GNN encoder gθ and the classifier fψ in an end-to-end fashion:123

θ, ψ = argmin
θ,ψ

LCE(Tt; θ, ψ). (2)

Based on this, Meta-GNN [28] combines MAML [27] with GNNs to achieve optimization for different124

meta-tasks. GPN [6] applies ProtoNet [26] and computes node importance for a transferable metric125

function. G-Meta [8] aims to establish a local subgraph for each node to achieve fast adaptations to126

new meta-tasks. RALE [29] obtains relative and absolute node embeddings based on node positions127

on graphs to model node dependencies in each meta-task. An exhaustive survey is beyond the scope128

of this paper; see [33] for an overview. However, all those methods are evaluated on different datasets129

with each own evaluation protocol, which fragments the practical knowledge on how meta-learning130

performs with a few labeled nodes and makes it hard to explicitly compare their superiority or131

inferiority. To bridge this gap, in this paper, we conduct extensive experiments to compare new132

advances and prior works for FSNC tasks uniformly and comprehensively.133

2.3 A Motivating Example and Preliminary Analysis134

More recently, related works in the image domain demonstrate that the reason for the fast adaptation135

lies in feature reuse rather than those complicated mate-learning algorithms [12, 13]. In other words,136

with a carefully pretrained encoder, decent performance can be obtained through directly fine-tuning a137

simple classifier on the target task. However, few studies have been done on the graph domain due to138

its important difference from images that nodes in a graph are not i.i.d. Their interactive relationships139
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are reflected by both the topological and semantic information. To validate such hypothesis on graphs,140

based on [13], we construct an Intransigent GNN model, namely I-GNN, that simply does not adapt141

to new tasks. We decouple the training procedure to two separate phases. In the first phase, a GNN142

encoder gθ with a linear classifier fϕ as the classifier is simply pretrained on all base classes Cbase143

with vanilla supervision through LCE :144

T ′
tr = ∪{Tt}Tt=1 = ∪{T1, T2, ..., TT },

θ, ϕ = argmin
θ,ϕ

LCE(T ′
tr; θ, ϕ) +R(θ),

(3)

where R(θ) is a weight-decay regularization term: R(θ) = ∥θ∥2/2. Then, we freeze the parameter145

of the GNN encoder gθ and discard the classifier fϕ. When fine-tuning on a target few-shot node146

classification task Ti = {Si,Qi}, the embeddings of all nodes from Ti are directly transferred from147

the pretrained GNN encoder gθ. Then another linear classifier fψ is involved and tuned with few-shot148

labeled nodes from the support set Si to predict labels of nodes in the query set Qi:149

ψ = argmin
ψ
LCE(Si; θ, ψ). (4)

Results and Analysis of the Intransigent GNN model I-GNN. We demonstrate the performance150

of the intransigent model and compare it with those meta-learning based models in Table 1, 5. Under151

the same evaluation protocol (defined in Section 3.2), the simple intransigent model I-GNN has152

very competitive performance with meta-learning based methods. On datasets (e.g., CiteSeer)153

where the number of base classes |Cbase| is limited, I-GNN consistently outperforms meta-learning154

based methods in terms of accuracy. This motivating example concludes that transferring node155

embeddings from the vanilla supervised training method I-GNN could be an alternative to meta-156

learning. Moreover, we take one step further and postulate that if more transferable node embeddings157

are obtained during pretraining, the performance on target FSNC tasks could be improved even more.158

Figure 1: The framework of TLP with supervised GCL: (a) Supervised GCL framework. (b) Fine-
tuning on few-shot labeled nodes from novel classes with support and query sets. Colors indicate
different classes (e.g., Neural Networks, SVM, Fair ML, Explainable AI). Specially, white nodes
mean labels of those nodes are unavailable. Labels of all nodes in base classes are available. Different
types of nodes indicate if nodes are from base classes or novel classes. The counterpart of TLP with
self-supervised GCL is very simliar to this, and a figure is included in Appendix B.
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2.4 Transductive Linear Probing for Few-shot Node Classification.159

Inspired by the motivating example above, we generalize it to a new framework, Transductive Linear160

Probing (TLP), for few-shot node classification. The only difference between TLP and I-GNN is that161

the pretraining method can be an arbitrary strategy rather than the vanilla supervised learning. It can162

even be self-supervised training methods that do not have any requirement on base classes. In this163

way, the second line of Eq. (3) can be generalized to:164

θ = argmin
θ
Lpretrain(T ′

tr; θ), (5)

where Lpretrain is an arbitrary loss function to pretrain the GNN encoder gθ. Then following Eq. (4),165

we can exploit a linear classifier to probe the transferred embeddings of nodes from novel classes,166

and perform the final node classification.167

In this paper, we thoroughly investigate Graph Contrastive Learning (GCL) as the pretraining168

strategy for TLP due to two reasons: (1) GCL [14, 16, 17, 34, 35] is a proved effective way to learn169

generalizable node representations in either a supervised or self-supervised manner. By maximizing170

the consistency over differently transformed positive and negative examples (termed as views),171

GCL enforces the GNNs to be aware of the semantic and topological knowledge and injected172

perturbations on graphs. Trained on the global structures, GCL should be capable of addressing the173

piecemeal knowledge issue in meta-learning to increase the generalizability of the learned GNNs.174

Also, [36] summarizes the characteristics of GCL frameworks and empirically demonstrates the175

transferability of the learned representations. (2) GCL has no requirement for the base classes,176

which means GCL can be deployed even when the number of base classes is limited, or the nodes in177

base classes are unlabeled. The effectiveness of GCL highly relies on the contrastive loss function.178

There are two categories of contrastive loss function for graphs: (1) Supervised Contrastive Loss179

(LSupCon) [37, 38]. (2) Self-supervised Contrastive Loss: Information Noise Contrastive Estimation180

(LInfoNCE) [16, 17, 19] and Jensen-Shannon Divergence (LJSD) [14, 15]. We also consider181

a special GCL method, BGRL [18], which does not explicitly require negative examples. The182

framework for TLP with an iconic supervised GCL method is provided in Fig. 1. From another183

perspective, our work is the first to focus on the extrapolation ability of GCL methods, especially184

under extremer few-shot settings without labels for nodes in base classes.185

3 Experimental Study186

3.1 Experimental Settings187

We conduct systematic experiments to compare the performance of meta-learning and TLP methods188

(with self-supervised and supervised GCL) on the few-shot node classification task. For meta-189

learning, we evaluate ProtoNet [26], MAML [27], Meta-GNN [28], G-Meta [8], GPN [6], AMM-190

GNN [7], and TENT [10]. For TLP methods with both self-supervised and supervised forms, we191

evaluate MVGRL [14], GraphCL [15], GRACE [16], MERIT [17], and SUGRL [19]. Moreover,192

BGRL [39] and I-GNN [13] are exclusively used for TLP methods with self-supervised GCL or193

supervised GCL, respectively. The detailed descriptions of these models can be found in Appendix E.194

For comprehensive studies, we benchmark those methods on six prevalent real-world graph datasets:195

CoraFull [40], ogbn-arxiv [41], Coauthor-CS [42], Amazon-Computer [42], Cora [43], and196

CiteSeer [43]. Specifically, each dataset is a connected graph and consists of multiple node classes197

for training and evaluation. A more detailed description of those datasets is provided in Appendix G198

with their statistics and class split policies in Table 3 in Appendix F.199

3.2 Evaluation Protocol200

In this section, we specify the evaluation protocol used to compare both meta-learning based methods201

and TLP based methods. For an attributed graph dataset G = (A,X) with a divided node label202

space C = {Cbase,Cnovel (or Ctest)}, we split Cbase into Ctrain and Cdev (The split policy for each203

datasets are listed in Table 3). For evaluation, given a GNN encoder gθ, a classifier fψ , the validation204

epoch interval V , the number of sampled meta-tasks for evaluation I , the epoch patience P , the205

maximum epoch number E, the experiment repeated times R, and the N -way, K-shot, M -query206

setting specification, the final FSNC accuracy A and the confident interval I (two mainly-concerned207

metrics) are calculated according to Algorithm 1 in Appendix C. The default values of all those208

parameters are given in Table 2 in Appendix D.209
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Table 1: The overall few-shot node classification results of meta-learning methods and TLP with
various GCL methods under different settings. Accuracy (↑) and confident interval (↓) are in %. The
best and second best results are bold and underlined, respectively. OOM denotes out of memory.

Dataset CoraFull ogbn-arxiv CiteSeer

Setting 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 2-way 1-shot 2-way 5-shot

Meta-learning

MAML [27] 22.63 ± 1.19 27.21 ± 1.32 27.36 ± 1.48 29.09 ± 1.62 52.39 ± 2.20 54.13 ± 2.18

ProtoNet [26] 32.43 ± 1.61 51.54 ± 1.68 37.30 ± 2.00 53.31 ± 1.71 52.51 ± 2.44 55.69 ± 2.27

Meta-GNN [28] 55.33 ± 2.43 70.50 ± 2.02 27.14 ± 1.94 31.52 ± 1.71 56.14 ± 2.62 67.34 ± 2.10

GPN [6] 52.75 ± 2.32 72.82 ± 1.88 37.81 ± 2.34 50.50 ± 2.13 53.10 ± 2.39 63.09 ± 2.50

AMM-GNN [7] 58.77 ± 2.49 75.61 ± 1.78 33.92 ± 1.80 48.94 ± 1.87 54.53 ± 2.51 62.93 ± 2.42

G-Meta [8] 60.44 ± 2.48 75.84 ± 1.70 31.48 ± 1.70 47.16 ± 1.73 55.15 ± 2.68 64.53 ± 2.35

TENT [10] 55.44 ± 2.08 70.10 ± 1.73 48.26 ± 1.73 61.38 ± 1.72 62.75 ± 3.23 72.95 ± 2.13

TLP with Supervised GCL

I-GNN [13] 42.70 ± 1.92 51.46 ± 1.69 38.46 ± 1.77 51.46 ± 1.69 58.70 ± 3.17 65.60 ± 2.58

MVGRL [14] 44.98 ± 1.99 71.18 ± 1.75 OOM OOM 55.79 ± 1.39 66.72 ± 2.13

GraphCL [15] 47.00 ± 1.64 67.94 ± 1.71 OOM OOM 53.55 ± 1.68 69.50 ± 1.41

GRACE [16] 65.48 ± 2.45 85.08 ± 1.49 OOM OOM 61.20 ± 2.39 81.76 ± 1.74

MERIT [17] 52.80 ± 2.72 81.30 ± 1.53 OOM OOM 61.25 ± 2.59 81.45 ± 1.80

SUGRL [19] 54.26 ± 2.24 77.55 ± 1.95 52.13 ± 2.11 70.05 ± 1.56 65.34 ± 2.55 75.81 ± 1.43

TLP with Self-supervised GCL

MVGRL [14] 59.91 ± 2.39 76.76 ± 1.63 OOM OOM 64.45 ± 2.77 80.25 ± 1.82

GraphCL [15] 64.20 ± 2.56 83.74 ± 1.46 OOM OOM 73.55 ± 3.09 92.35 ± 1.24

BGRL [39] 43.83 ± 2.11 70.44 ± 1.62 36.76 ± 1.74 53.44 ± 0.36 54.32 ± 1.63 70.50 ± 2.11

GRACE [16] 72.42 ± 2.06 83.82 ± 1.67 OOM OOM 60.75 ± 2.54 78.42 ± 2.01

MERIT [17] 73.38 ± 2.25 87.66 ± 1.43 OOM OOM 64.53 ± 2.81 90.32 ± 1.66

SUGRL [19] 77.35 ± 2.20 83.96 ± 1.52 60.04 ± 2.11 77.52 ± 1.45 77.34 ± 2.83 86.32 ± 1.57

3.3 Comparison210

Table 1 presents the performance comparison of all methods on the few-shot node classification task.211

Specifically, we give results under four different few-shot settings to exhibit a more comprehensive212

comparison: 5-way 1-shot, 5-way 5-shot, 2-way 1-shot, and 2-way 5-shot. More results are given in213

Appendix I. We choose the average classification accuracy and the 95% confidence interval over R214

repetitions as the evaluation metrics. From Table 1, we discover the following observations:215

• TLP methods consistently outperforms meta-learning methods, which indicates the importance216

of transferring comprehensive node representations in FSNC tasks. In TLP methods, the model217

is forced to extract node-level structural information, while the meta-learning methods mainly218

focus on label information. As a result, TLP methods can transfer better node representations219

and exhibit superior performance on meta-test tasks.220

• Even without using any label information from base classes, TLP with self-supervised GCL221

methods can mostly outperform TLP with supervised GCL methods. This signifies that di-222

rectly injecting supervision can potentially hinder the generalizability for TLP, which is further223

investigated in the following sections.224

• Increasing the number of shots K (i.e., number of labeled nodes in the support set) has more225

significant effect on performance of both forms of TLP methods, compared with meta-learning226

methods. This is due to the fact that with the additional support nodes, TLP with GCL can227

provide more informative node representations to learn a more powerful classifier. Instead, the228

meta-learning methods are based on the extracted label information and thus cannot benefit from229

additional node-level information.230

• Most TLP methods encounter the OOM (out of memory) problem when applied to the231

ogbn-arxiv dataset. This is due to the fact that the contrastive strategy in TLP methods will232
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consume a larger memory compared with traditional supervised learning. Thus, the scalability233

problem is not negligible for TLP with GCL methods.234

• BGRL [39] exhibits less competitive performance compared with other TLP methods with235

self-supervised GCL. The result indicates that negative samples are important for self-supervised236

GCL in FSNC, which can help the model exploit node-level information. Nevertheless, without237

the requirement of negative samples, BGRL can parallel better to handle the OOM problem.238

3.4 Further Analysis239

To explicitly compare the results between meta-learning and TLP and between two forms of TLP, we240

provide further results of all methods on various N -way K-shot settings in Fig. 2 and Fig. 3. From241

the results, we can obtain the following observations:242

• When a larger values of N is presented, the performance drop is less significant on TLP based243

methods compared to meta-learning based methods. The performance of all methods degrades244

as N increases (i.e., more classes in each meta-task). With a larger N , the variety of classes in245

each meta-task can result in a more complex class distribution and thus increase the classification246

difficulties. Nevertheless, the performance drop is less significant on TLP with both forms of247

GCL methods. This is because the utilized GCL methods focus more on node-level structural248

patterns, which incorporate more potentially useful information for classification. As a result,249

TLP is more capable of alleviating the problem of difficult classification caused by a larger N .250

• As shown in Fig. 3, the performance improvement of TLP with self-supervised GCL methods251

over meta-learning methods on CiteSeer is generally more impressive than other datasets.252

The main reason is that CiteSeer bears a significantly smaller class set (2/2/2 classes for253

Ctrain/Cdev/Ctest). In consequence, the meta-learning methods cannot effectively leverage254

the supervision information during training. Nevertheless, TLP with self-supervised GCL can255

extract useful structural information for better generalization performance.256
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Figure 2: N -way K-shot results on CoraFull, meta-learning and TLP. TLP Methods with ∗ are
based on supervised GCL methods and I-GNN.
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(a) CiteSeer

1-shot 3-shot 5-shot50
60
70
80
90

100

Te
st

 A
cc

ur
ac

y 
(%

) MAML
ProtoNet
Meta-GNN
GPN

AMM-GNN
G-Meta
TENT
I-GNN*

MVGRL*
GraphCL*
GRACE*
MERIT*

SUGRL*
MVGRL
GraphCL
BGRL

GRACE
MERIT
SUGRL

(b) Amazon-Computer

Figure 3: 2-way K-shot results on CiteSeer and Amazon-Computer, meta-learning and two forms
of TLP. TLP Methods with ∗ are based on supervised GCL methods and I-GNN.

3.5 Effect of Supervision Information in Base Classes257

In this section, we further investigate the effectiveness of the supervised information in TLP with258

supervised GCL methods. Specifically, we leverage a combined loss LJointCon = λLSelfCon +259
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(1− λ)LSupCon, where LSelfCon indicates a self-supervised GCL loss, either LJSD or LInfoNCE260

according to the models, and LJointCon is a mixture of supervised GCL loss and self-supervised261

GCL loss. In this way, we can gradually adjust the value of λ to inject different levels of supervision262

signals into GCL and then observe the performance fluctuation. Note that due to the unstable training263

curve brought by the joint loss LJointCon, we increase the epoch patience number from P to 2P264

to ensure convergence. The results on Cora dataset (we observe similar results on other datasets)265

with different values of λ are provided in Fig. 4. From the results, we can obtain the following266

observations:267

• In general, the classification performance increases with a larger value of λ. In other words,268

directly injecting supervision information into GCL for TLP will usually reduce the performance269

on few-shot node classification tasks. Nevertheless, carefully injecting supervision information270

can slightly increase the accuracy by choosing a suitable value of λ. On the other hand, the271

results also verify that the TLP framework can still achieve considerable performance without272

any explicit restrictions for base classes.273

• Even with a relatively small value of λ (e.g., 0.1), the performance improvement over TLP with274

totally supervised GCL (i.e., λ = 0.0) is still significant. That being said, the contrastive strategy275

that leverages graph structures can provide better performance by providing comprehensive276

node representations.277
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Figure 4: Results on dataset Cora (2-way)

3.6 Evaluating Learned Node Representations on Novel Classes278

In this section, we further validate the quality of the learned node representations from different279

training strategies. Particularly, we leverage two prevalent clustering evaluation metrics: normalized280

mutual information (NMI) and adjusted random index (ARI), on learned node representations281

clustered based on K-Means. We evaluate the representations learned from two datasets CoraFull282

and CiteSeer for a fair comparison. The results are presented in Table 6 in Appendix I.3 . Based on283

the results, we can obtain the following observations:284

• The meta-learning methods typically exhibit inferior NMI and ARI scores compared with both285

forms of TLP. This is because meta-learning methods are dedicated for extracting supervision286

information from node samples and thus cannot fully utilize node-level structural information.287

• In general, TLP with self-supervised GCL methods can result in larger values of both NMI288

and ARI scores than TLP with supervised GCL. This is due to the fact that the self-supervised289

GCL model focuses more on extracting structural information without the interruption of label290

information. As a result, the learned node representations are more comprehensive and thus291

exhibit superior clustering performance.292

• The difference of NMI and ARI scores between meta-learning and TLP is more significant on293

CiteSeer than CoraFull. This phenomenon potentially results from the fact that CiteSeer294

consists of fundamentally fewer classes than CoraFull. In consequence, for CiteSeer, the295

meta-learning methods will largely rely on label information instead of node-level structural296

information for classification.297

3.7 Visualization298

To provide an explicit comparison of different baselines, we visualize the learned node representations299

from CoraFull and CiteSeer via the t-SNE algorithm, where colors denote different classes. It300

8



Transductive Linear Probing: A Novel Framework for Few-Shot Node Classification

is noteworthy that for clarity, we randomly select five classes from Ctest for the visualization. The301

results are provided in Fig. 5 (more results are included in Fig. 12). Specifically, we discover that:302

• TLP with self-supervised GCL generally outperforms TLP with supervised GCL. This is303

because without learning label information, TLP with self-supervised GCL can concentrate on304

node representation patterns, which are easier to transfer to target unseen novel classes.305

• The learned node representations are less discriminative for meta-learning on CiteSeer306

compared with CoraFull. This is because CiteSeer contains fewer classes, which means the307

node representations learned by meta-learning methods will be less informative, since they are308

only required to classify nodes from a small class set.309

(a) GraphCL∗ (b) GraphCL (c) SUGRL∗ (d) SUGRL

(e) Meta-GNN (f) TENT (g) Meta-GNN (h) TENT

Figure 5: The t-SNE visualization results. Fig. (a)-(f) are for dataset CoraFull (5-way). Fig. (g)-(h)
are for dataset CiteSeer (2-way). TLP methods with ∗ are based on supervised GCL methods.

4 Conclusion, Limitations, and Outlook310

In this paper, we propose TLP as an alternative framework to meta-learning for FSNC tasks. First, we311

provide a motivating example, a vanilla intransigent GNN model, to validate our postulation that a312

generalizable GNN encoder is the key to FSNC tasks. Then, we provide a formal definition for TLP,313

which transfers node embeddings from GCL pretraining to the prevailing meta-learning paradigm.314

We conduct comprehensive experiments and compare various meta-learning based and TLP-based315

methods under the same protocol. Our rigorous empirical study reveals several interesting findings316

on the strengths and weaknesses of the two approaches and identifies that adaptability and scalability317

are the promising directions for meta-learning based and TLP-based methods, respectively.318

However, due to limited space, several limitations of our work need to be acknowledged.319

• Limited design considerations. Even though an exhaustive survey on FSNC or GCL is out320

of the scope of this work, we do not provide a more fine-grained comparison on model details,321

such as different GNN encoders or various transformations during GCL pretraining. Also, we322

only consider methods applied on a single graph, which currently are the mainstream of research323

on FSNC. There are more recent works (e.g., [44]) studying FSNC across multiple graphs.324

• Lack of theoretical justifications. Our findings are based on empirical studies, which cannot325

disclose the underlying mathematical mechanisms of those methods, such as the performance326

guarantee by transferring node embeddings from different GCL methods.327

How to address these limitations is saved as future work. In broader terms, this work lies at the328

confluence of graph few-shot learning and graph contrastive learning. We hope this work can facilitate329

the sharing of insights for both communities. On the one hand, we hope our work provides a necessary330

yardstick to measure progress across the FSNC field. On the other hand, our work should have331

exhibited several practical guidelines for future research in both vigorous fields. For example, the332

meta-learning community can get inspired by GCL to learn more transferable graph patterns. Also,333

few-shot TLP can serve as a new metric to evaluate the extrapolation ability of GCL methods.334

9



Transductive Linear Probing: A Novel Framework for Few-Shot Node Classification

References335

[1] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional336

Networks. In ICLR, 2017. 1, 16337
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Veličković, and Michal Valko. Bootstrapped representation learning on graphs. In ICLR430

Workshop on Geometrical and Topological Representation Learning, 2021. 5, 6, 7, 15431

[40] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsu-432

pervised inductive learning via ranking. In ICLR, 2018. 5, 16433

[41] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele434

Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.435

In NeurIPS, 2020. 5, 16436

11



Transductive Linear Probing: A Novel Framework for Few-Shot Node Classification

[42] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.437

Pitfalls of graph neural network evaluation. Relational Representation Learning Workshop,438

NeurIPS 2018, 2018. 5, 16439

[43] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning440

with graph embeddings. In International conference on machine learning, pages 40–48. PMLR,441

2016. 5, 16442

[44] Song Wang, Chen Chen, and Jundong Li. Graph few-shot learning with task-specific structures.443

arXiv preprint arXiv:2210.12130, 2022. 9444

[45] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena445

Buchatskaya, Carl Doersch, Bernardo Pires, Zhaohan Guo, Mohammad Azar, et al. Bootstrap446

your own latent: A new approach to self-supervised learning. In NeurIPS, 2020. 15447

[46] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.448

In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019. 16449

[47] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,450

Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.451

Deep graph library: A graph-centric, highly-performant package for graph neural networks.452

arXiv preprint arXiv:1909.01315, 2019. 16453

[48] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul454

Kanakia. Microsoft academic graph: When experts are not enough. Quantitative Science455

Studies, 2020. 16456

[49] Julian McAuley, Rahul Pandey, and Jure Leskovec. Inferring networks of substitutable and457

complementary products. In SIGKDD, 2015. 16458

[50] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings459

of the 2015 International Conference on Learning Representations, 2015. 16460

[51] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-461

ward neural networks. In Proceedings of the thirteenth international conference on artificial462

intelligence and statistics, 2010. 16463

[52] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,464

Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in465

pytorch. In Proceedings of the 31st Conference on Neural Information Processing Systems,466

2017. 17467

12



Transductive Linear Probing: A Novel Framework for Few-Shot Node Classification

A Framework for Meta-learning Based FSNC Methods468

Figure 6: The framework for meta-learning methods. Colors indicate different classes (e.g., Neural
Networks, SVM, Fair ML, Explainable AI). Specifically, white nodes denotes that the labels of those
nodes are unavailable. Labels of all nodes in base classes are available. Different types of nodes
indicate if nodes are from base classes or novel classes.

B Framework for TLP with Self-Supervised GCL469

Figure 7: The framework for TLP with self-supervised methods. Labels of all nodes in base classes
are unavailable. Different types of nodes indicate if nodes are from base classes or novel classes.
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C Pseudo-Code Style Description of Evaluation Protocol470

Algorithm 1 UNIFIED EVALUATION PROTOCOL FOR FEW-SHOT NODE CLASSIFICATION

Input: Graph G, Ctrain, Cdev , Ctest; GNN gθ , classifier fψ; parameters V , I , P , E, R, N , K, M
Output: Trained models gθ and fψ , accuracy A, confident interval I.

// Repeat experiment for R times
1: for r = 1, 2, . . . , R do
2: p← 1, t← 1, sbest ← 0;
3: while t ≤ E do
4: Optimize gθ based on the specific training strategy (i.e., meta-learning and TLP); // Training
5: if t mod V = 0 then
6: Sample I meta-tasks from Cdev on G; // Validation
7: Calculate the obtained few-shot node classification accuracy s;
8: if s > sbest then
9: sbest ← s, p← 0;

10: else
11: p← p+ 1;
12: end if
13: end if
14: if p = P then
15: break; // Early Break
16: end if
17: end while
18: Sample I meta-tasks from Ctest on G; // Test
19: Calculate the obtained classification accuracy stest;
20: sr ← stest, r ← r + 1;
21: end for
22: Calculate averaged accuracy A and confident interval I based on {s1, s2, . . . , sr};

D Default Values of Parameters in Evaluation Protocol471

In this section, we provide the default values of parameters used in our experiments. The details are472

provided in Table 2. It is noteworthy that the parameters are consistent for all models in both meta-473

learning and TLP methods. For the experiments that utilize a joint loss of TLP with self-supervised474

GCL and supervised GCL, we increase the patience number from P to 2P to ensure convergence.475

Table 2: Default Values of Parameters in Evaluation Protocol for Experiments

Parameters Description Value

V validation epoch interval 10

I number of sampled meta-tasks for evaluation 100

P patience number 10

E maximum epoch number 10000

R number of repeated experiments 5

N number of classes in each meta-task 2,5

K number of nodes for each class in each meta-task 1,3,5

M number of queries for each class in each meta-task 10
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E Description of Baselines476

In this section, we provide further details about the baselines used in our experiments.477

Meta-learning based methods:478

• ProtoNet [26]: ProtoNet learns a prototype for each class in meta-tasks by averaging the479

embeddings of samples in this class. Then it conducts classification on query instances based on480

their distances to prototypes.481

• MAML [27]: MAML first optimizes model parameters according to the gradients calculated on482

the support instances for several steps. Then it meta-updates parameters based on the loss of483

query instances calculated with the parameters updated on support instances.484

• Meta-GNN [28]: Meta-GNN combines GNNs with the MAML strategy to apply meta-learning485

on graph-structured data. Specifically, Meta-GNN learns node embeddings with GNNs, while486

updating and meta-updating the GNN parameters based on the MAML strategy.487

• G-Meta [8]: G-Meta extracts a subgraph for each node to learn the node representation with488

GNNs. Then it conducts the classification on query nodes based on the MAML strategy to489

update and meta-update the parameters of GNNs.490

• GPN [6]: GPN proposes to learn node importance for each node in meta-tasks to select more491

beneficial nodes for classification. Then GPN utilizes ProtoNet to learn node prototypes via492

averaging node embeddings in a weighted manner.493

• AMM-GNN [7]: AMM-GNN proposes to extend MAML with an attribute matching mechanism.494

Specifically, the node embeddings will be adjusted according to the embeddings of nodes in the495

entire meta-task in an adaptive manner.496

• TENT [10]: TENT reduces the variance among different meta-tasks for better generalization497

performance. In particular, TENT learns node and class representations by conducting node-498

level and class-level adaptations. It also incorporates task-level adaptations that maximizes the499

mutual information between the support set and the query set.500

Transductive Linear Probing with different Pretraining methods:501

• I-GNN [13]: I-GNN learns a GNN encoder with a classifier that is trained on all base classes502

Cbase with the vanilla Cross-Entropy loss LCE . Then for each meta-test task, the GNN will be503

frozen and a new classifier is learned based on the support set for classification.504

• MVGRL [14]: MVGRL learns node and graph level representations by contrasting the repre-505

sentations of two structural views of graphs, which include first-order neighbors and a graph506

diffusion. It utilizes a Jensen-Shannon Divergence based contrastive loss LJSD.507

• GraphCL [15]: GraphCL proposes to leverage combinations of different transformations in GCL508

to facilitate GNNs with generalizability, transferrability, and robustness without sophisticated509

architectures. It also uses LJSD as the objective.510

• GRACE [16]: GRACE proposes a hybrid scheme for generating different graph views on both511

structure and attribute levels. GRACE further provides theoretical justifications behind the512

motivation. It proposes a variant of Information Noise Contrastive Estimation LInfoNCE as the513

contrastive loss.514

• MERIT [17]: MERIT employs two different objectives named cross-view and cross-network515

contrastiveness to further maximize the agreement between node representations across different516

views and networks. It uses LInfoNCE similar to that in GRACE as the loss function.517

• SUGRL [19]: SUGRL proposes to simultaneously enlarge inter-class variation and reduce518

intra-class variation. The experimental results show promising improvements of generalization519

error with SUGRL. It also uses LInfoNCE similar to that in GRACE as the loss function.520

• BGRL [39]: BGRL leverages the concept of BYOL [45] and applies it to graph-structured data521

by enforcing the agreement between positive views without any explicitly designs on negative522

views. Specially, it uses Mean Squared Error LMSE between positive views as the final loss.523
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F Statistics of Benchmark Datasets524

Table 3: Statistics of node classification datasets.

Dataset # Nodes # Edges # Features |C| |Ctrain| |Cdev| |Ctest|

CoraFull 19,793 63,421 8,710 70 40 15 15

ogbn-arxiv 169,343 1,166,243 128 40 20 10 10

Coauthor-CS 18,333 81,894 6,805 15 5 5 5

Amazon-Computer 13,752 245,861 767 10 4 3 3

Cora 2,708 5,278 1,433 7 3 2 2

CiteSeer 3,327 4,552 3,703 6 2 2 2

G Description of Benchmark Datasets525

In this section, we provide the detailed descriptions of the benchmark datasets used in our experiments.526

All the datasets are public and available on both PyTorch-Geometric [46] and DGL [47].527

• CoraFull [40] is a citation network that extends the prevalent small cora network. Specifically,528

it is achieved from the entire citation network, where nodes are papers, and edges denote the529

citation relations. The classes of nodes are obtained based on the paper topic. For this dataset,530

we use 40/15/15 node classes for Ctrain/Cdev/Ctest.531

• ogbn-arxiv [41] is a directed citation network that consists of CS papers from MAG [48]. Here532

nodes represent CS arXiv papers, and edges denote the citation relations. The classes of nodes533

are assigned based on the 40 subject areas of CS papers in arXiv. For this dataset, we use534

20/10/10 node classes for Ctrain/Cdev/Ctest.535

• Coauthor-CS [42] is a co-authorship graph based on the Microsoft Academic Graph from536

the KDD Cup 2016 challenge. Here, nodes are authors, and are connected by an edge if they537

co-authored a paper; node features represent paper keywords for each author’s papers, and class538

labels indicate most active fields of study for each author. For this dataset, we use 5/5/5 node539

classes for Ctrain/Cdev/Ctest.540

• Amazon-Computer [42] includes segments of the Amazon co-purchase graph [49], where541

nodes represent goods, edges indicate that two goods are frequently bought together, node542

features are bag-of-words encoded product reviews, and class labels are given by the product543

category. For this dataset, we use 4/3/3 node classes for Ctrain/Cdev/Ctest.544

• Cora [43] is a citation network dataset where nodes mean paper and edges mean citation545

relationships. Each node has a predefined feature with 1,433 dimensions. The dataset is546

designed for the node classification task. The task is to predict the category of certain paper. For547

this dataset, we use 3/2/2 node classes for Ctrain/Cdev/Ctest.548

• CiteSeer [43] is also a citation network dataset where nodes mean scientific publications and549

edges mean citation relationships. Each node has a predefined feature with 3,703 dimensions.550

The dataset is designed for the node classification task. The task is to predict the category of551

certain publication. For this dataset, we use 2/2/2 node classes for Ctrain/Cdev/Ctest.552

H Implementation Details553

In this section, we introduce the implementation details for all methods compared in our experiments.554

Specifically, for the encoders used in TLP methods, we follow the settings in the original papers of the555

corresponding models to ensure consistency, and we choose Logistic Regression as the linear classifier556

for the final classification. For encoders in meta-learning methods, we utilize the original designs for557

papers using GNNs. For papers without using GNNs (i.e., ProtoNet [26] and MAML [27]), we use a558

two-layer GCN [1] as the encoder with a hidden size of 16. We utilize the Adam optimizer [50] for559

all experiments with a learning rate of 0.001. To effectively initialize the GNNs in our experiments,560

we leverage the Xavier initialization [51]. For meta-learning methods using the MAML framework,561
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we set the number of meta-update steps as 20 with a meta-learning rate of 0.05. To ensure more stable562

convergence in meta-learning methods, we set the weight decay rate as 10−4. We set the dropout563

rate as 0.5 for better generalization performance. The evaluation protocol parameters are provided in564

Table 2. All experiments are implemented using PyTorch [52]. We run all experiments on a single565

80GB Nvidia A100 GPU.566

I More Results567

I.1 Main Results for the Other Three Datasets or Other Settings568

In this section, we further provide results for the other three datasets used in our experiments:569

Coauthor-CS, Amazon-Computer, and Cora, and 2-way classification results on CoraFull,570

ogbn-arxiv, and Coauthor-CS:

Table 4: The overall few-shot node classification results of meta-learning methods and TLP with
different GCL methods under different settings. Accuracy (↑) and confidence interval (↓) are in %.
The best and second best results are bold and underlined, respectively.

Dataset Coauthor-CS Amazon-Computer Cora

Setting 5-way 1-shot 5-way 5-shot 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot

Meta-learning

MAML 27.98 ± 1.42 42.12 ± 1.40 52.67 ± 2.11 58.23 ± 2.53 53.13 ± 2.26 57.39 ± 2.23

ProtoNet 32.13 ± 1.52 49.25 ± 1.50 61.98 ± 2.95 70.20 ± 2.64 53.04 ± 2.36 57.92 ± 2.34

Meta-GNN 52.86 ± 2.14 68.59 ± 1.49 65.19 ± 3.29 78.65 ± 3.12 65.27 ± 2.93 72.51 ± 1.91

GPN 60.66 ± 2.07 81.79 ± 1.18 57.26 ± 1.50 77.63 ± 2.91 62.61 ± 2.71 76.39 ± 2.33

AMM-GNN 62.04 ± 2.26 81.78 ± 1.24 71.04 ± 3.56 79.21 ± 3.38 65.23 ± 2.67 82.30 ± 2.07

G-Meta 59.68 ± 2.16 74.18 ± 1.29 63.68 ± 3.05 70.21 ± 3.16 67.03 ± 3.22 80.05 ± 1.98

TENT 63.70 ± 1.88 76.90 ± 1.19 71.15 ± 3.11 79.25 ± 2.61 53.05 ± 2.78 62.15 ± 2.13

TLP with Supervised GCL

I-GNN 43.89 ± 1.82 55.93 ± 1.46 62.32 ± 2.89 72.81 ± 2.93 54.45 ± 3.13 65.18 ± 2.21

MVGRL 62.16 ± 2.05 84.79 ± 1.13 64.69 ± 2.84 84.84 ± 2.10 57.24 ± 2.07 78.04 ± 2.08

GraphCL 54.72 ± 2.62 84.02 ± 1.23 75.65 ± 3.05 88.31 ± 1.86 57.10 ± 2.27 79.53 ± 1.98

GRACE 76.48 ± 1.95 90.22 ± 0.84 75.57 ± 3.01 87.69 ± 2.17 66.79 ± 2.96 89.77 ± 1.59

MERIT 71.70 ± 2.88 91.54 ± 0.75 72.10 ± 3.86 94.56 ± 1.19 65.29 ± 3.23 91.02 ± 2.00

SUGRL 84.78 ± 1.47 93.01 ± 0.62 71.42 ± 2.68 84.12 ± 0.75 53.21 ± 1.80 57.64 ± 1.79

TLP with Self-supervised GCL

MVGRL 67.51 ± 2.21 88.72 ± 1.04 66.49 ± 2.75 86.31 ± 2.09 71.17 ± 3.04 89.91 ± 1.45

GraphCL 70.26 ± 2.19 87.32 ± 1.19 77.26 ± 3.12 94.13 ± 1.34 73.51 ± 3.18 92.38 ± 1.30

BGRL 64.72 ± 2.35 90.10 ± 0.88 68.58 ± 3.06 89.15 ± 1.97 60.14 ± 2.33 79.86 ± 1.92

GRACE 79.38 ± 1.75 91.68 ± 0.72 75.23 ± 2.59 90.48 ± 1.24 71.21 ± 2.97 89.68 ± 1.65

MERIT 85.74 ± 1.70 95.78 ± 0.61 78.14 ± 3.82 95.98 ± 1.38 67.67 ± 2.99 95.42 ± 1.21

SUGRL 91.63 ± 1.22 96.30 ± 0.51 85.05 ± 2.23 97.15 ± 0.81 82.35 ± 2.21 92.22 ± 1.15

571
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Table 5: The overall few-shot node classification results of meta-learning methods and TLP with
different GCL methods under different settings. Accuracy (↑) and confidence interval (↓) are in %.
The best and second best results are bold and underlined, respectively.

Dataset CoraFull ogbn-arxiv Coauthor-CS

Setting 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot

Meta-learning

MAML 50.90 ± 2.30 56.19 ± 2.37 58.16 ± 2.35 65.10 ± 2.56 56.90 ± 2.41 66.78 ± 2.35

ProtoNet 57.10 ± 2.47 72.71 ± 2.55 62.56 ± 2.86 75.82 ± 2.79 59.92 ± 2.70 71.69 ± 2.51

Meta-GNN 75.28 ± 3.85 84.59 ± 2.89 62.52 ± 3.41 70.15 ± 2.68 85.90 ± 2.96 90.11 ± 2.17

GPN 74.29 ± 3.47 85.58 ± 2.53 64.00 ± 3.71 76.78 ± 3.50 84.31 ± 2.73 90.36 ± 1.90

AMM-GNN 77.29 ± 3.40 88.66 ± 2.06 64.68 ± 3.13 78.42 ± 2.71 84.38 ± 2.85 94.74 ± 1.20

G-Meta 78.23 ± 3.41 89.49 ± 2.04 63.03 ± 3.32 76.56 ± 2.89 84.19 ± 2.97 91.02 ± 1.61

TENT 77.75 ± 3.29 88.20 ± 2.61 70.30 ± 2.85 81.35 ± 2.77 87.85 ± 2.48 91.75 ± 1.60

Supervised GCL

I-GNN 68.43 ± 2.94 78.20 ± 2.83 65.21 ± 2.86 77.10 ± 2.46 65.35 ± 3.09 76.83 ± 2.48

MVGRL 65.62 ± 3.11 84.41 ± 2.35 OOM OOM 78.08 ± 3.59 91.78 ± 1.66

GraphCL 60.81 ± 2.23 81.25 ± 2.29 OOM OOM 74.16 ± 2.88 88.43 ± 1.73

GRACE 76.78 ± 3.49 93.62 ± 1.32 OOM OOM 86.22 ± 2.53 94.11 ± 1.27

MERIT 75.52 ± 6.53 88.03 ± 5.11 OOM OOM 77.52 ± 7.58 96.62 ± 2.12

SUGRL 75.98 ± 2.98 90.02 ± 1.53 73.48 ± 2.55 81.04 ± 1.68 88.45 ± 1.62 95.10 ± 0.56

Self-supervised GCL

MVGRL 78.81 ± 3.32 91.03 ± 1.80 OOM OOM 78.59 ± 2.92 93.54 ± 1.40

GraphCL 78.49 ± 3.26 91.32 ± 2.11 OOM OOM 78.51 ± 3.12 91.34 ± 1.57

BGRL 61.08 ± 2.65 85.03 ± 2.25 59.91 ± 2.36 76.75 ± 0.86 76.85 ± 3.23 94.69 ± 1.29

GRACE 82.80 ± 3.13 93.06 ± 2.17 OOM OOM 89.46 ± 2.26 95.53 ± 1.05

MERIT 77.46 ± 3.14 94.65 ± 1.31 OOM OOM 94.31 ± 1.73 98.35 ± 0.57

SUGRL 87.98 ± 2.72 95.81 ± 1.69 82.45 ± 2.94 91.68 ± 1.57 96.81 ± 1.31 98.90 ± 0.48
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Figure 8: N -way K-shot results on Coauthor-CS, meta-learning and TLP. TLP Methods with ∗ are
based on supervised GCL methods and I-GNN.
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Figure 9: N -way K-shot results on CoraFull, TLP with self-supervised and supervised GCL. TLP
Methods with ∗ are based on supervised GCL methods.
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Figure 10: N -way K-shot results on Coauthor-CS, TLP with self-supervised and supervised GCL.
TLP Methods with ∗ are based on supervised GCL methods.
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(a) Results on dataset Amazon-Computer
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(b) Results on dataset CiteSeer

Figure 11: 2-way K-shot results on Amazon-Computer and CiteSeer, TLP with self-supervised
and supervised GCL. TLP Methods with ∗ are based on supervised GCL methods.
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I.2 Visualization572

In this section, we provide additional visualization results for more meta-learning and TLP methods573

on CoraFull dataset in Fig. 12.

(a) GRACE∗ (b) GRACE (c) MERIT∗ (d) MERIT

(e) MVGRL∗ (f) MVGRL (g) ProtoNet (h) AMM-GNN

Figure 12: The t-SNE visualization results of meta-learning and TLP methods on CoraFull. TLP
methods with ∗ are based on supervised GCL methods.

.
574

I.3 Node Representation Evaluation575

In this section, we provide the detailed node representation evaluations on two datasets CoraFull576

and CiterSeer based on NMI and ARI scores in Table 6.577

Table 6: The overall NMI (↑) and ARI (↑) results of meta-learning and TLP methods on two datasets

Dataset CoraFull CiteSeer

Metrics NMI ARI NMI ARI

Meta-learning

MAML 0.1622 0.0597 0.0754 0.0602

ProtoNet 0.2669 0.1263 0.0915 0.0765

AMM-GNN 0.6247 0.5087 0.2090 0.1781

G-Meta 0.5003 0.3702 0.1913 0.1502

Meta-GNN 0.5534 0.4196 0.1317 0.1171

GPN 0.6001 0.4599 0.2119 0.2087

TENT 0.5760 0.4652 0.0930 0.0811

Supervised GCL

GRACE 0.7199 0.6239 0.4693 0.4769

MERIT 0.6119 0.4470 0.3471 0.3482

GraphCL 0.2474 0.0852 0.1321 0.0711

SUGRL 0.7298 0.6626 0.3927 0.4451

MVGRL 0.6412 0.5038 0.2445 0.2146

Self-supervised GCL

GRACE 0.6781 0.5856 0.2663 0.2778

MERIT 0.7419 0.6590 0.3923 0.4014

GraphCL 0.7023 0.5628 0.5579 0.5890

SUGRL 0.7680 0.7049 0.3952 0.4460

MVGRL 0.6227 0.4788 0.2554 0.2232
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