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APPENDIX

A PROOF FOR PROPOSITION

Since f* is §-robust, the prediction of f*(x) is invariant to the input perturbations smaller than the
certified robust radius by definition, i.e.,

argmax f'(x + €) = argmax f'(x), Yz € D, Ve € (0,6)", (12)
where D is the task-specific data set. Denote the student model distilled from the teacher model

using normal knowledge distillation as f5P?(z) : RP — R, The loss of the normal knowledge
distillation can be formulated as

Lxp(®,y) =Acples(ffP(®),y) + Akt T* Lk (f*P(x)/T, f(x)/T), Y(x,y) €D, (13)
where Lo is the cross-entropy loss, L is the KL-divergence loss which is also called the soft
loss in knowledge distillation, 7" is the temperature factor, and A¢c g, A1, are hyper-parameters to
balance the effects of the two losses. The loss of KDIGA is calculated by

Lica(x,y) =AceLlep(f9% ), y) + Akt T* L (194 () /T, f'(z)/T)
+ McallVeLlop (9 @), y) — Valop(f' (@), )2, ¥(z,y) €D,
where f/G4 is the student model, A\cz, A7, and A\;q 4 are hyper-parameters.

(14)

Without loss of generality, we set the temperature factor 7' = 1 for both KD and KDIGA. According

to the perfect student assumption, f/¢4 satisfies the following equations:
Valica(®,y) — Valica(z,y) =0 (15)
F1e% @) = f'(x) =0 (16)
F1 (@) =y, V(z,y) € D. (17)

The cross-entropy loss is defined as

Lor(f(@).y) = —log (SRT8) = —f(o), +los(Lespl(F(=)). ay)

where f(-) is a classifier and f(x); is the j-th prediction of the output. Then the gradient of the
cross-entropy loss with respect to the input is

VaLlop(f(®),y) = —Vaf(@)y + Valog(Y | exp(f(x);))
Va (3, exp(f(@):))
> exp(f(w),;)
Zi Vz exp(f(x);)
>, exp(f(@);)
>, exp(f(@)i) Ve
>, exp(f(

19)

me(w)y +

= _vmf(w)y +

f(@)i
)

T)j

Denote g = g(x) = Vo f(x), a = softmax(f(x)), then

> exp(f(@)i)g ()i
Volop(f(x),y) = —g(x)y + =X
* ! >, exp(fi(x))
—g(x)yta-g
= (a—1y)-g.
where ¢, = (0,---,0,1,0,---,0) is an unit vector of which the y-th element equals one. According
to Eq. , ol = a!% = . The third term in Eq. for input gradient alignment is

IValer(f(),y) = Valop(f'94 (@), y)|
=l|(a’ — i) - g' — (&' —iy) - g"“A| 2D
=[|(a —iy) - (g" = g" )]

(20)
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Given a —i, #0,g' — g4 must be 0 since o — zy and g* — g’“4 are not strictly orthogonal
unless g* — g’%4 = 0. According to Eq. [15] we have g* — g’%4 = 0.

According to the local linearity assumption,Vx € D, Ve € [0, §)Z*W*C

fIGA(:B+6) — fIGA(LE) +€T 'gIGA(:B)

= f'(@)+ € g'(x) (22)
= [z +e) = f'(z) = [ ().
Therefore, the certified robust radius of /¢4 is at least §, which proves Proposition

However, the knowledge distillation without input gradient alignment cannot guarantee the adver-
sarial robustness preservation. Suppose fXP is a perfect student, we have

FP (@) = (@) =0 (23)

FP(@) =y, ¥(@,y) € D. (24)

We point out that fXP can have different predictions around x, for example, let £ = x + € €

B(x, ), denote h(z) = f*P(x) — f*(x), then h(z) = 0, ¥(z,y) € D according to Eq. But
Ih(x), Jz € B(x, ) s.t.

argmax f5P(x) # arg max f'(x) (25)

since the first-order derivative of h(x) is not constrained to be 0 in the neighbourhood of x. This

means the predictions of the student model distilled using knowledge distillation without input gra-
dient alignment can be altered if we add perturbations to the input image.

B PROOF FOR PROPOSITION [2]

|Lep(f*(x+e),y) — Lep(ff(x+€),y)]|
=|Lcp(f*(®+€),y) — Lop(f*(x),y) — € Valcop(f*(x),y)

— (Len(f(z+¢€),y) - L’CE(ft(iB)vy)—E Vaolor(f'(x),y))

+ (Loa(f*(x),y) — Lea(f (2),y))

" (VaLlop(f(z),y) - V Lop(f'(2),y)) | (26)

Sefengx |Lop(f5(x+€),y) — Lop(f*(x),y) — € Valon(f*(x),y)|

+Ereng(>§)|ECE (f'(z +€),y) = Lop(f'(®),y) — € VaLlop(f'(x),y)]

+ Lop(f*(@),y) + Lop(f'(@),y) + Vel (f*(®),y) — Valor(f (2),y)|.

13



