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APPENDIX

A PROOF FOR PROPOSITION 1

Since f t is �-robust, the prediction of f t(x) is invariant to the input perturbations smaller than the
certified robust radius by definition, i.e.,

argmax f t(x+ ✏) = argmax f t(x), 8x 2 D, 8✏ 2 (0, �)D, (12)
where D is the task-specific data set. Denote the student model distilled from the teacher model
using normal knowledge distillation as fKD(x) : RD ! RN . The loss of the normal knowledge
distillation can be formulated as
LKD(x, y) = �CELCE(f

KD(x), y) + �KLT
2LKL(f

KD(x)/T, f t(x)/T ), 8(x, y) 2 D, (13)
where LCE is the cross-entropy loss, LKL is the KL-divergence loss which is also called the soft
loss in knowledge distillation, T is the temperature factor, and �CE ,�KL are hyper-parameters to
balance the effects of the two losses. The loss of KDIGA is calculated by

LIGA(x, y) =�CELCE(f
IGA(x), y) + �KLT

2LKL(f
IGA(x)/T, f t(x)/T )

+ �IGAkrxLCE(f
IGA(x), y)�rxLCE(f

t(x), y)k2, 8(x, y) 2 D,
(14)

where f IGA is the student model, �CE ,�KL and �IGA are hyper-parameters.

Without loss of generality, we set the temperature factor T = 1 for both KD and KDIGA. According
to the perfect student assumption, f IGA satisfies the following equations:8

><

>:

rxLIGA(x, y)�rxLIGA(x, y) = 0 (15)
f IGA(x)� f t(x) = 0 (16)
f IGA(x) = y, 8(x, y) 2 D. (17)

The cross-entropy loss is defined as

LCE(f(x), y) = � log
� exp(f(x)y)P

j
exp(f(x)j)

�
= �f(x)y + log(

X

j

exp(f(x)j)), (18)

where f(·) is a classifier and f(x)j is the j-th prediction of the output. Then the gradient of the
cross-entropy loss with respect to the input is

rxLCE(f(x), y) = �rxf(x)y +rx log(
X

j

exp(f(x)j))

= �rxf(x)y +
rx(

P
i
exp(f(x)i))P

j
exp(f(x)j)

= �rxf(x)y +

P
i
rx exp(f(x)i)P
j
exp(f(x)j)

= �rxf(x)y +

P
i
exp(f(x)i)rxf(x)iP

j
exp(f(x)j)

(19)

Denote g = g(x) = rxf(x), ↵ = softmax(f(x)), then

rxLCE(f(x), y) = �g(x)y +

P
i
exp(f(x)i)g(x)iP
j
exp(fj(x))

= �g(x)y +↵ · g
= (↵� iy) · g.

(20)

where iy = (0, · · · , 0, 1, 0, · · · , 0) is an unit vector of which the y-th element equals one. According
to Eq. 16, ↵t = ↵IGA = ↵. The third term in Eq. 14 for input gradient alignment is

krxLCE(f
t(x), y)�rxLCE(f

IGA(x), y)k
=k(↵t � iy) · gt � (↵IGA � iy) · gIGAk
=k(↵� iy) · (gt � gIGA)k.

(21)
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Given ↵ � iy 6= 0, gt � gIGA must be 0 since ↵ � iy and gt � gIGA are not strictly orthogonal
unless gt � gIGA = 0. According to Eq. 15, we have gt � gIGA = 0.

According to the local linearity assumption,8x 2 D, 8✏ 2 [0, �)H⇥W⇥C ,

f IGA(x+ ✏) = f IGA(x) + ✏T · gIGA(x)

= f t(x) + ✏T · gt(x)
= f t(x+ ✏) = f t(x) = f IGA(x).

(22)

Therefore, the certified robust radius of f IGA is at least �, which proves Proposition 1.

However, the knowledge distillation without input gradient alignment cannot guarantee the adver-
sarial robustness preservation. Suppose fKD is a perfect student, we have

(
fKD(x)� f t(x) = 0 (23)
fKD(x) = y, 8(x, y) 2 D. (24)

We point out that fKD can have different predictions around x, for example, let x̃ = x + ✏ 2
B̊(x, �), denote h(x) = fKD(x) � f t(x), then h(x) = 0, 8(x, y) 2 D according to Eq. 23. But
9h(x), 9x 2 B̊(x, �) s.t.

argmax fKD(x) 6= argmax f t(x) (25)
since the first-order derivative of h(x) is not constrained to be 0 in the neighbourhood of x. This
means the predictions of the student model distilled using knowledge distillation without input gra-
dient alignment can be altered if we add perturbations to the input image.

B PROOF FOR PROPOSITION 2
��LCE(f

s(x+ ✏), y)� LCE(f
t(x+ ✏), y)

��

=
��LCE(f

s(x+ ✏), y)� LCE(f
s(x), y)� ✏TrxLCE(f

s(x), y)

�
�
LCE(f

t(x+ ✏), y)� LCE(f
t(x), y)� ✏TrxLCE(f

t(x), y)
�

+
�
LCE(f

s(x), y)� LCE(f
t(x), y)

�

+ ✏T
�
rxLCE(f

s(x), y)�rxLCE(f
t(x), y)

�
|

 max
✏2B(�)

��LCE(f
s(x+ ✏), y)� LCE(f

s(x), y)� ✏TrxLCE(f
s(x), y)

��

+ max
✏2B(�)

��LCE(f
t(x+ ✏), y)� LCE(f

t(x), y)� ✏TrxLCE(f
t(x), y)

��

+ LCE(f
s(x), y) + LCE(f

t(x), y) + �krxLCE(f
s(x), y)�rxLCE(f

t(x), y)k.

(26)
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