
Appendices

A Further Related Works

Pairwise approaches. Closely related to RankNet, pairwise approaches such as Sortnet [36] and
SmoothRank [27] casts sorting of n elements as performing n

2 pairwise comparisons, and try to
approximate the pairwise comparison operator for sorting. We consider a more direct relaxation with
attractive properties for rankings that we describe in Section 3.

Listwise approaches. include ListNet [37] and ListMLE [38], which define surrogate losses that
take into consideration the full predicted rank ordering while being agnostic to the downstream
ranking metrics. ListNet for instance considers the predicted scores as parameters for the Plackett-
Luce distribution [39, 40] and learns these scores via maximum likelihood estimation.

B Proof of Convergence

Used in a PiRank surrogate loss of Section 3.1, the relaxation presented in Section 3.2 recovers the
downstream metric by lowering the temperature as formalized in the result below for NDCG.
Proposition 1. If we assume that the entries of ŷ are drawn independently from a distribution that is

absolutely continuous w.r.t. the Lebesgue measure in R, then the following convergence holds almost

surely:

lim
⌧!0+

ˆ̀
PiRank�NDCG(y, ŷ, ⌧) = 1�NDCG(y, ⇡̂) (18)

where ⇡̂ = sort(ŷ).

Proof. In the d > 1 case, the limit is interpreted as

lim
⌧!0+

= lim
⌧d!0+

lim
⌧d�1!0+

. . . lim
⌧1!0+

(19)

given the increasing ordering of the temperatures by height and the constraint ⌧d = ⌧ .

We first sketch a proof by induction on the height j that, under the same assumptions as the proposition,
for all ij+1, · · · , id, the k

0
j-dimensional vector

y(j)
ij+1,··· ,id ⌘ lim

⌧j!0+
Ŷ

(j)
:k0

j ,ij+1,··· ,id (20)

with k
0
j = min(k, kj) and : l the top-l rows extraction, contains the top-k0j scores in Ŷ

(0)
·,··· ,·,ij+1,··· ,id

in descending order and the k
0
j ⇥ Lj matrix

P
(j)
ij+1,··· ,id ⌘ lim

⌧j!0+
P̂

(j)
:k0

j ,ij+1,··· ,id (21)

with Lj = b1 · · · bj is the row-truncated permutation matrix realizing the ordering,

y(j)
ij+1,··· ,id = P

(j)
ij+1,··· ,id Ŷ

(0)
·,··· ,·,ij+1,··· ,id (22)

where reshaping as necessary is implicit in the above two equations.

For j = 0, this is trivial as P (0) = 1 and by convention b0 = k0 = 1.

Assuming the above is true for a height j � 1, the top-k0j scores in Ŷ
(0)
·,··· ,·,ij+1,··· ,id are included in

the concatenation of the vectors Ŷ
(j�1)
·,ij ,··· ,id for ij 2 {1, . . . , bj} in the ⌧j�1 ! 0+ limit from the

assumption (no limit for j = 1). Q̂(j)
·,·,·,ij+1,··· ,id is then the NeuralSort relaxed permutation matrix

for these concatened vector. From Theorem 1 of [1], we know that in the ⌧j ! 0+ limit, this matrix
will converge to the sorting permutation matrix. In this limit, Ŷ (j)

·,ij+1,··· ,id is then sorted version of
the concatened vector, so that in particular its top-k0j elements are the sorted top-k0j elements of the

12

Table 2: Shared parameter values for benchmark (Section 4.1) and ablation (Section 4.2) experiments.
Parameter Benchmark Ablation
Hidden layer sizes 1024,512,256 256,256,128,128,64,64
Hidden layer activations ReLu ReLu
Batch normalization Yes No
Dropout rate 0.3 0
Batch size 16 16
Learning rate 1.00E-03 1.00E-05
Optimizer Adam Adam
Iterations 100,000 steps 100 epochs
Training list size Ltrain 200 100 when fixed
Testing list size Ltest 200 100 when fixed
Temperature ⌧ (PiRank & NeuralSort) 1000 5 when fixed
Straight-through estimation (PiRank & NeuralSort) Yes Yes
NDCG cutoff k (PiRank & LambdaRank) 10 10
Depth d (PiRank) 1 1 when fixed

concatenated vector, proving the claim on y(j)
ij+1,··· ,id . Further, the claim on P

(j) directly derives from

the previous observation on the limit of Q̂(j)
·,·,·,ij+1,··· ,id and the fact that a product of permutation

matrices which is the matrix of the product of the permutations. This finishes the proof by induction.

Taking j = d, we obtain from Eq. 22 and the nature of permutation matrices that

lim
⌧!0+

bPsort(ŷ)(⌧):k =
⇥
Psort(ŷ)

⇤
:k
. (23)

From limit calculus, we know that the limit of finite sums is the sum of the limits and hence,
substituting the above result in Eq. 8 we have:

lim
⌧!0+

[DCG(y, ŷ, ⌧) = DCG(y, ⇡̂). (24)

Substituting the above in Eq. 9 and Eq. 10 proves the proposition.

Note that the assumption of independent draws is needed to ensure that the elements of ŷ are distinct
almost surely.

C Experimental Details

Datasets. We test PiRank on MSLR-WEB30K5 and the Yahoo! LTR dataset C146. MSLR-
WEB30K contains 30,000 queries from Bing with feature vectors of length 136, while Yahoo! C14
dataset comprises 36,000 queries, 883,000 items and feature vectors of length 700. In both datasets,
the number of items per query can exceed 100, or even 1,000 in the case of MSLR-WEB30K. Both
datasets have relevance scores on a 5-point scale of 0 to 4, with 0 denoting complete irrelevance
and 4 denoting perfect relevance. Note that when using binary classification-based metrics such as
mean-reciprocal rank, ordinal relevance score from 1 to 4 are mapped to ones. MSLR-WEB30K is
provided in folds of training / validation / test sets rotating on 5 subsets of data, and we choose to use
Fold1 for our experiments. For Yahoo! C14, we use “Set 1" which is the larger of the two provided
sets. For both datasets, we use the standard train/validation/test splits. We use the validation split for
both early stopping and hyperparameter selection for all approaches.

TFR Implementation. We provide a TensorFlow Ranking implementation of the PiRank NDCG
Loss as well as the original NeuralSort Permutation Loss which can be plugged in directly into
TensorFlow Ranking.7

5https://www.microsoft.com/en-us/research/project/mslr/
6https://webscope.sandbox.yahoo.com
7https://github.com/ermongroup/pirank

13

Table 3: Training list size effectiveness on ranking metrics
OPA Ltrain

Ltest 10 20 40 100
10 0.5830 0.5947 0.5939 0.5949

20 0.5852 0.5949 0.5961 0.5926
40 0.5816 0.5935 0.5942 0.5915

100 0.5755 0.5859 0.5867 0.5844
MRR Ltrain

Ltest 10 20 40 100
10 0.6691 0.6830 0.6912 0.6949

20 0.6835 0.7048 0.7087 0.7172

40 0.6732 0.7042 0.7230 0.7350

100 0.6628 0.6985 0.7301 0.7548

ARP Ltrain

Ltest 10 20 40 100
10 5.0164 4.9584 4.9662 4.9428

20 9.4277 9.3431 9.3334 9.3401
40 18.3042 18.0688 18.0493 18.0617

100 42.9107 42.4183 42.3972 42.4091
NDCG@1 Ltrain

Ltest 10 20 40 100
10 0.3850 0.4127 0.4140 0.4261

20 0.3320 0.3521 0.3670 0.3860

40 0.2829 0.3054 0.3403 0.3683

100 0.2569 0.2665 0.3401 0.3713

NDCG@3 Ltrain

Ltest 10 20 40 100
10 0.4610 0.4793 0.4826 0.4878

20 0.3757 0.3885 0.4017 0.4092

40 0.3188 0.3373 0.3572 0.3731

100 0.2780 0.2963 0.3349 0.3579

NDCG@5 Ltrain

Ltest 10 20 40 100
10 0.5358 0.5498 0.5531 0.5570

20 0.4181 0.4271 0.4388 0.4441

40 0.3447 0.3607 0.3780 0.3896

100 0.2971 0.3158 0.3461 0.3635

NDCG@10 Ltrain

Ltest 10 20 40 100
10 0.6994 0.7100 0.7115 0.7141

20 0.5090 0.5165 0.5257 0.5305

40 0.3989 0.4106 0.4243 0.4337

100 0.3330 0.3485 0.3720 0.3878

Straight-through Estimation. The PiRank surrogate learning objective can be optimized via two
gradient-based techniques in practice. The default mode of learning is to use the relaxed objective
during both forward pass for evaluating the loss and for computing gradients via backpropogation.
Alternatively, we can perform straight-through estimation [41], where we use the hard version for
evaluating the loss forward, but use the relaxed objective in Eq. 9 for gradient evaluation. We observe
improvements from the latter option and use it throughout. The hard version can be obtained via
exact sorting of the predicted scores. In the context of a unimodal relaxation (Sec 3.2), a hard version
can also be obtained via a row-wise arg max operation of the relaxed permutation matrix, which
recovers an actual permutation matrix usable in the downstream objective.

Architecture and Parameters. Experiment parameters that are shared across losses, such as the
scoring neural network architecture, batch size, training and test list sizes, are provided in Table 2,
along with loss-specific parameters if they differ from the default TensorFlow Ranking setting.

Experimental Workflow. We rely on TensorFlow Ranking for most of our work outside the
NeuralSort and PiRank loss implementations, which takes care of query grouping, document list
tensor construction, baseline implementation and metric computation among others.

Computing infrastructure. The experiments were run on a server with 4 8-core Intel Xeon E5-
2620v4 CPUs, 128 GB of RAM and 4 NVIDIA Telsa K80 GPUs.

14

Libraries and Software. This work extensively relied on GNU Parallel [42] and the Sacred library
8 for experiments.

Licenses. TensorFlow Ranking is licensed under the Apache License 2.0 9. GNU Parallel is licensed
under the GNU General Public License 10. Sacred is licensed under the MIT License 11. The dataset
MSLR-WEB30K is licensed under the Microsoft Research License Agreement (MSR-LA). The
license files for the dataset Yahoo! C14 are provided in the datasets at download time from their
homepages, and included in the supplemental material. Our released PiRank code is licensed under
the MIT license.

D Ablation Experiments

We provide all results for the temperature experiments described in Section 4.2, in Figures 8, 9, 10,
11, 12, 5. The smoothing parameter used in all plots is 0.9, the number of data points is 100 epochs
for all figures except the training loss (1,000 iterations). We provide additional plots with a basic
exponentially decreasing annealing schedule and a very high temperature value of 1e12 to show
limits of the relaxation on Figure 13. Full results for the ablation experiments on the training list size
described in Section 4.2 are provided in Table 3.

E Synthetic LTR Data

To the best of our knowledge, there is no public LTR dataset with very large numbers of documents
per query (L > 1000). We thus propose the following synthetic dataset for testing and development
at scale (see Section 4.2):

For each query qi, i 2 {1, · · · , n},

1. Generate L documents {xi,j}Lj=1 where xi,j is a vector of md �-distributed document
features.

2. Randomly pick a vector ci of mq  md column indices from {1, · · · ,md} without replace-
ment.

3. Generate -distributed query features {�i}
mq

k=1.
4. Compute labels capped between ` and h s.t.

yi,j = max(`,min(h,
Pmq

k=1 �kxi,j,ck)).

5. Concatenate the query features {�i}
mq

k=1 to each xi,j .

This process allows us to generate datasets of arbitrarily large size, where we control L, n, m, c and
the distributions � and . The process is easy to reuse, and made available in our TFR codebase.

8https://github.com/IDSIA/sacred
9https://github.com/tensorflow/ranking/blob/master/LICENSE

10https://www.gnu.org/licenses/gpl-3.0.html
11https://github.com/IDSIA/sacred/blob/master/LICENSE.txt

15

Iterations (thousands)

N
D

C
G

@
1

0.1

0.2

0.3

0.4

20 40 60 80 100

τ=0.1 τ=1 τ=5 τ=10

Figure 8: Validation NDCG@1 during PiRank training parametrized by temperature ⌧

Iterations (thousands)

N
D

C
G

@
3

0.1

0.2

0.3

0.4

20 40 60 80 100

τ=0.1 τ=1 τ=5 τ=10

Figure 9: Validation NDCG@3 during PiRank training parametrized by temperature ⌧

Iterations (thousands)

N
D

C
G

@
5

0.15

0.2

0.25

0.3

0.35

0.4

0.45

20 40 60 80 100

τ=0.1 τ=1 τ=5 τ=10

Figure 10: Validation NDCG@5 during PiRank training parametrized by temperature ⌧

16

Iterations (thousands)

N
D

C
G

@
15

0.2

0.25

0.3

0.35

0.4

20 40 60 80 100

τ=0.1 τ=1 τ=5 τ=10

Figure 11: Validation NDCG@15 during PiRank training parametrized by temperature ⌧

Iterations (thousands)

Tr
ai

ni
ng

 L
os

s

0.55

0.6

0.65

0.7

0.75

0.8

0.85

20 40 60 80 100

tau_0.1 tau_1 tau_5 tau_10

Figure 12: Training loss during PiRank training parametrized by temperature ⌧

17

Figure 13: Validation NDCG@10 for PiRank-NDCG@10 using the experimental settings of Section 4.2. This
figure shows the validation NDCG@10 from Figure 5 superimposed with an annealing schedule temperature
(blue) and a very high temperature of 1e12 (orange).

18

	Introduction
	Background and Related Work
	Surrogate Objectives for LTR
	Ranking Metrics

	Scalable and Differentiable Top-k Ranking via PiRank
	Relaxed Ranking Metrics
	Example: Differentiability via NeuralSort
	Scaling via Divide-And-Conquer

	Experiments
	Benchmark Evaluation via TF-Ranking
	Ablation Experiments

	Summary and Limitations
	Acknowledgements
	Further Related Works
	Proof of Convergence
	Experimental Details
	Ablation Experiments
	Synthetic LTR Data

