
A Appendix
A.1 Pseudocode and an Example
First, we provide pseudocode for the bilevel planning strat-
egy described in the main text.

Algorithm BILEVEL PLANNING WITH NSRTS
Input: NSRT set {hO,P,E, h,⇡i}
Input: Task hs0, g,Hi
Input: ntrials: # of imagined trajectory tries
// A⇤ with symbolic components of

NSRTs and classical heuristics.

s"0  ABSTRACT(s0)

for p 2 A⇤(s"0, g,H, {hO,P,E, ·, ·i}) do
for ntrials tries do

Initialize plan as empty list
// Imagine rollout with neural

components of ground NSRTs.
s s0
for ground NSRT h·, ·, ·,⇡, hi 2 p do

a ⇠ ⇡(· | s) // stochastic
Append a to plan
s h(s, a)

if g ✓ ABSTRACT(s) then
return plan

Algorithm 1: Pseudocode for bilevel planning with NSRTs.
Inputs are a set of NSRTs and a task (initial state s0, goal g,
and horizon H). The outer loop conducts A⇤ search over the
symbolic components of the NSRTs, from the symbolic ini-
tial state s

"
0 = ABSTRACT(s0) to the symbolic goal g. This

A⇤ search produces candidate symbolic plans p, which are se-
quences of ground NSRTs. The neural components of these
ground NSRTs are used in the inner loop, which tries ntrials

times to refine a symbolic plan into a sequence of continu-
ous actions from the environment action space A. If the goal
g holds in the final state, we are done. In practice, we per-
form an extra optimization (not shown): we terminate the inner
loop early whenever ABSTRACT(s) deviates from the expected
states under p.

Next, we provide pseudocode and an example for the data
partitioning algorithm described in the main text. Afterward,
we give an example to show how the symbolic learning al-
gorithm would produce NSRT parameters, symbolic precon-
ditions, and symbolic effects.

Algorithm PARTITION TRANSITION DATA
Input: Transition dataset D = {⌧} = {(s, a, s0)}
Initialize  as empty map
for ⌧ 2 D do

if any key in  unifies with EFF(⌧) then
Add ⌧ to partition  [key]

else
Initialize partition  [EFF(⌧)] = {⌧}

return  

Algorithm 2: Pseudocode for transition data partitioning.
Uses subroutine EFF from the main text.

Let us work through an example of the partitioning and
symbolic learning algorithms. For the sake of this example,

we will work purely with the abstract, predicate-based rep-
resentations of states, but remember that in practice, these
would be abstractions of states that are actually continuous
and object-oriented. Consider a dataset containing the fol-
lowing four transitions. where we will leave the continuous
actions unspecified (“·”) for simplicity. Each transition is a
tuple containing the abstract state and the abstract next state:
1. ({ON(o1, o2), ON(o2, o3)}, ·,

{HOLDING(o1), ON(o2, o3)})
2. ({ON(o6, o7), ON(o12, o13), ISCLEAN(o6)}, ·,

{HOLDING(o6), ON(o12, o13), ISCLEAN(o6)})
3. ({HOLDING(o7), ISCLEAN(o3), ISWET(o7)}, ·,

{ONTABLE(o7), ISCLEAN(o3), ISWET(o7)})
4. ({HOLDING(o4), ISDIRTY(o1), ISDRY(o4)}, ·,

{ONTABLE(o4), ISDIRTY(o1), ISDRY(o4)})
We begin by computing partitions. Recall that EFF(⌧) is

the change in abstract state between s and s0. So, for the first
transition, EFF(⌧) = {HOLDING(o1),¬ON(o1, o2)}. Since
there are no partitions yet, this forms the key to a new parti-
tion, containing just the first transition. For the second transi-
tion, EFF(⌧) = {HOLDING(o6),¬ON(o6, o7)}. Attempting
to unify this with the key we added previously is successful:
there is a mapping between the two effect sets (o1 $ o6,
o2 $ o7). So, the second transition is included in the same
partition as the first. The ISCLEAN(o6) atom does not play
a role in this operation since it is not part of the effects (it
does not change).

Following a similar process, the third transi-
tion is placed into a new partition whose key is
{ONTABLE(o7),¬HOLDING(o7)}, and the fourth transi-
tion is placed into this same partition due to the mapping
o7 $ o4. The ISCLEAN(o3), ISWET(o7), ISDIRTY(o1),
and ISDRY(o4) atoms do not play a role in this operation
since they are not part of the effects (they do not change).

Now, we are ready to learn the NSRT parameters, pre-
conditions, and effects for this example dataset. Since there
are two partitions, we will create two NSRTs, one per parti-
tion. Recall that REF(⌧), in our implementation, is the set
of objects appearing in the effects. So, for the first tran-
sition we have REF(⌧) = {o1, o2}, for the second tran-
sition we have REF(⌧) = {o6, o7}, for the third transi-
tion we have REF(⌧) = {o7}, and for the fourth transi-
tion we have REF(⌧) = {o4}. Since every partition’s tran-
sitions all have equivalent effects up to object remapping
(i.e., we can unify them all), we can simply pick an arbi-
trary transition from each partition and replace its objects in
REF(⌧) by arbitrary variables to produce the NSRT param-
eters and effects. For the first partition, the NSRT effects are
{HOLDING(?x),¬ON(?x, ?y)}, and the NSRT parameters
are ?x and ?y. For the second partition, the NSRT effects
are {ONTABLE(?z),¬HOLDING(?z)}, and the only NSRT
parameter is ?z. Here, ?x, ?y, and ?z are variables that can
stand in for any possible object; in practice, we also check
object types (not included in this example) within the imple-
mentation of unification, so that these variables can them-
selves be typed for added efficiency.

To calculate NSRT preconditions, we must first com-
pute the projected abstract state for each transition.



(Note that the abstract next state in each transition
does not play a role in precondition computation.)
The PROJECT operation removes any atoms from a
state that contain an object not mentioned in REF(⌧).
For the first transition’s abstract state, PROJECT pro-
duces {ON(o1, o2)}. For the second transition’s abstract
state, PROJECT produces {ON(o6, o7), ISCLEAN(o6)}.
For the third transition’s abstract state, PROJECT
produces {HOLDING(o7), ISWET(o7)}. For the
fourth transition’s abstract state, PROJECT produces
{HOLDING(o4), ISDRY(o4)}.

We produce the NSRT preconditions for the first par-
tition (first and second transitions) by substituting in
the parameters and taking an intersection: {ON(x, y)} \
{ON(x, y), ISCLEAN(x)} = {ON(x, y)}. Similarly
for the second partition (third and fourth transitions):
{HOLDING(z), ISWET(z)}\{HOLDING(z), ISDRY(z)} =
{HOLDING(z)}. Notice that for the first NSRT, because
o6 was clean in the second transition but o1 was not clean
in the first transition, ISCLEAN is not included in the
preconditions. Similarly, for the second NSRT, because o7
was wet in only the third transition, and o4 was dry in only
the fourth transition, neither ISWET nor ISDRY is included
in the preconditions.

A.2 Handling Failures
Handling Failures in Planning. Here we describe how
a failure prediction model can be used to optimize the
planning method outlined in Section 5. In the paragraph
below, we describe how to learn this model. The reason
that this planning procedure is external to the rest of plan-
ning with NSRTs is that it uniquely involves propagating
information from continuous planning back to symbolic
planning. The procedure is a simplified domain-independent
version of the domain-dependent error propagation method
used in the popular TAMP system of Srivastava et al.
(2014). Following Srivastava et al. (2014), we begin by
making a crucial assumption: whenever fail is reached,
the environment reports a set of objects {o1, . . . , oj}
that were involved in the failure (e.g., two objects that
are in collision, or an object that broke irreparably). We
introduce special predicates NOTCAUSESFAILURE for
every object type in the environment, and for each NSRT,
we add a symbolic effect NOTCAUSESFAILURE(oi) for
each oi in the parameters O. This says that every action
affecting a set of objects absolves all those objects from
being responsible for a failure; we found this simple
technique to be sufficient for our experimental domains, but
other, more domain-specific information can be leveraged
instead. Finally, during refinement of a symbolic plan,
if a failure is predicted at any timestep (see next para-
graph), we immediately terminate the inner loop, update the
preconditions of the ground NSRT at that timestep to include
{NOTCAUSESFAILURE(o1), . . . , NOTCAUSESFAILURE(oj)}
(where {o1, . . . , oj} are the set of objects predicted to be
involved in the failure, under the learned model described
in the next paragraph), and restart A⇤ from the initial state.
Effectively, this change forces the planner to either consider
actions which change the states of these objects before using

the same ground NSRT, or just avoid using this ground
NSRT entirely.

Learning to Predict Failures. Here we address the prob-
lem of learning to anticipate failures during planning. Note
that unlike NSRT learning (Section 6), which is “locally
scoped” to a fixed number of objects defined by the NSRT
parameters, failure prediction can require reasoning about
all objects in the full state. Recall our assumption that the
environment reports a set of objects {o1, . . . , oj} that were
involved in failures; so, using the transitions that resulted
in fail, we can create a dataset of the form {(s, a,Ofail)},
where Ofail is the set of objects involved in each failure. On
this data, we train a graph neural network that takes as in-
put s, ABSTRACT(s), and a, and outputs a score between
0 and 1 for each object, representing the predicted proba-
bility that it is included in Ofail. Graph neural networks are
well-suited to this type of reasoning, because they are re-
lational and can reason about continuous-valued dependen-
cies. We create one node in the graph for each object in the
task; the feature vector of each node includes the object’s
attribute values and arity-1 ground atoms in ABSTRACT(s).
Edges between nodes correspond to arity-2 ground atoms
in ABSTRACT(s); higher-arity predicates can be converted
into arity-2 ones. For the output graph, each node has a sin-
gle feature corresponding to the score. Once trained, we use
this model to predict the failure set by including all objects
whose score is over 0.5.

A.3 Extended Environment Details
Environment 1: In “PickPlace1D,” a robot must pick blocks
and place them into designated target regions on a table.
All pick and place poses lie along a 1D axis. There are
three object types: blocks, targets, and obstructors. (The
robot is abstracted away for simplicity.) Blocks have one
attribute: a 1D pose. Targets have two: a start pose and
an end pose. Obstructors have three: a start pose and an
end pose, along with a third attribute indicating orthogo-
nal distance from the 1D axis. Actions are 2D, with the
first dimension representing a pose at which to execute
a pick, and the second dimension representing a pose at
which to place. Each action updates the state of at most
one block or obstructor according to whether the pick pose
is within a small tolerance of the object’s pose. Placing a
block within some tolerance of an obstructor results in a
collision. Picking and placing an obstructor always moves
the obstructor away from the 1D axis, preventing future col-
lisions. The behavior prior randomly chooses to pick ob-
structors or pick blocks that are not yet at their target re-
gion, and then place them away (for obstructors) or on a
random target region (for blocks). There are three predi-
cates: ON(?BLOCK, ?TARGET), INFREESPACE(?BLOCK),
and ISREMOVED(?OBSTRUCTION), with the semantics
suggested by the names. Across all tasks, blocks start in free
space, obstructors are each initially obstructing some target
region, and goals are to move each block to be ON a unique
target. Training tasks feature 2 or 5 blocks, 5 or 10 targets,
and 0 or 1 obstructors, and have horizon H = 10. Easy test
tasks feature 2 blocks, 5 targets, and 0 or 1 obstructors, and
have horizon H = 25. Hard test tasks feature 4 blocks, 12



PickPlace1D Kitchen Blocks Painting
Methods Easy Hard Easy Hard Easy Hard Easy Hard
Bilevel planning with NSRTs (Ours) 2.826 15.492 0.599 2.736 1.414 3.935 0.696 8.731
Bilevel planning with prior (B6) 3.140 8.425 9.778 10.295 5.510 10.735 15.882 0.331
Forward shooting with prior (B7) 4.106 0.000 0.000 1.323 4.807 2.736 3.276 0.000

Table 2: This table, referenced in Appendix A.5, is a companion to Table 1 in the main text, showing the numerical standard
deviations of the means. See Table 1 caption in Section 7 for details.

targets, and 2 obstructors, and have horizon H = 25.
Environment 2: In “Kitchen,” a robot waiter must pick

cups, fill them with water, wine, or coffee, and serve them
to customers. There are three object types: cups, customers,
and robots. Cup attributes include 6D pose, mass, what liq-
uid is in the cup (an integer indicating empty, water, wine, or
coffee), whether the cup has been served (true or false), and
whether or not the cup is currently held by a robot (true or
false). Customer attributes include an integer ID and current
drink. The singular robot attribute is a 1D gripper joint state.
Actions are 5D: the first three dimensions represent the xyz
pose of a cup to be picked, the fourth dimension represents
the ID of a customer to be served, and the fifth represents
a liquid to be poured. There are no robot trajectories in
this environment; we simply assume kinematic feasibility
for every action. Given an action, if the xyz pose is close
enough to an unserved cup, and that cup is not too heavy,
the cup is picked; otherwise, if the customer ID matches
that of some customer and a cup is currently held, the held
cup is delivered to the corresponding customer; otherwise,
if the liquid is close enough to water, wine, or coffee,
and if a cup is held, then the respective liquid is poured
into the cup. If the robot tries to pick up a cup that is too
heavy, no change occurs in the environment. The behav-
ior prior randomly picks cups, pours liquids, or serves
cups to unserved customers. The predicates are: CUS-
TOMERHASCOFFEE(?CUSTOMER), CUSTOMERHASWA-
TER(?CUSTOMER), CUSTOMERHASWINE(?CUSTOMER),
GRIPPEROPEN(?ROBOT), HOLDING(?CUP), CUPUN-
SERVED(?CUP), CUPHASCOFFEE(?CUP), CUPHASWA-
TER(?CUP), CUPHASWINE(?CUP). Across all tasks,
there is only one robot; customers are initially unserved
and cups are initially empty; and goals involve the
CUSTOMERHASCOFFEE, CUSTOMERHASWATER, and
CUSTOMERHASWINE predicates. Training tasks feature 2
or 3 cups and 1 customer, and have horizon H = 10. Easy
test tasks feature 2 cups and 1 customer, and have horizon
H = 3. Hard test tasks feature 3 cups and 2 customers,
and have horizon H = 6.

Environment 3: In “Blocks,” modeled after the classic AI
blocksworld domain, a robot must stack blocks on a table
to make towers. There are two object types: blocks and
robots. Block attributes include a 3D pose, whether or not
the block is held (true or false), and whether or not the block
has another block above it (true or false). Robot attributes
include a 1D gripper joint state. Actions are 4D, with the
dimensions representing target end effector xyz pose and
target gripper joint state. A position controller is used to
navigate the end effector to the target pose. When an ac-

tion is taken, if the target end effector pose is close enough
to a block, that block is clear from above, the target grip-
per state is open enough, and no other block is held, then
the block is picked. If a block is already held, and the tar-
get end effector pose is close enough to a clear location
on the table, then the block is placed on the table at that
location; if, instead, the target end effector pose is close
enough to a clear block, then the held block is stacked on
top of the clear block. The behavior prior randomly picks
a block, or attempts to place a block on the table or an-
other block. The predicates are: ON(?BLOCK1, ?BLOCK2),
ONTABLE(?BLOCK), GRIPPEROPEN(?ROBOT), HOLD-
ING(?BLOCK), CLEAR(?BLOCK). Across all tasks, there is
only one robot, and goals involve the ON predicate. Train-
ing tasks feature 3 or 4 blocks, and have horizon H = 20.
Easy test tasks feature 3 blocks, and have horizon H = 25.
Hard test tasks feature 5 or 6 blocks, and have horizon
H = 35.

Environment 4: In “Painting,” a robot must pick, wash,
dry, paint, and place widgets into a box or shelf. Placing
into the box requires picking with a top grasp; placing into
the shelf requires picking with a side grasp. The box has a
lid that may obstruct placements; whether the lid will ob-
struct a placement is not represented symbolically. This en-
vironment was introduced by Silver et al. (2021). There are
five object types: widgets, boxes, lids, shelves, and robots.
Widget attributes include 3D pose, 1D color, 1D wetness,
1D dirtiness, and whether or not the widget is held (true or
false). Box and shelf attributes include only a 1D color. Lid
attributes are 1D, indicating the degree to which the lid is
open. Robot attributes include a 1D end effector rotation
(modulating between top and side grasps) and a 1D grip-
per joint state. Actions are 8D: the first four dimensions
are target end effector pose and rotation, the fifth dimen-
sion is target gripper joint state, the sixth dimension is a
“water level,” the seventh dimension is a “heat level,” and
the final dimension is a color for painting. A position con-
troller is used to navigate the end effector to the target pose
and rotation. Actions with high enough water or heat lev-
els wash or dry a held widget, respectively; actions with
paint colors that are close enough to either the shelf or box
color result in painting the held object that color; other-
wise, the action results in a pick, a place, or no effect, de-
pending on whether an object is currently held, the target
gripper state is near enough to either “open” or “closed,”
and whether the current end effector rotation matches the
requirements of the desired placement (box placements re-
quire top grasps; shelf placements require side grasps). Pick-
ing a box lid has the effect of opening it. The behavior



prior randomly picks, washes, dries, paints, or places ob-
jects. The predicates are: ONTABLE, HOLDING, HOLD-
INGSIDE, HOLDINGTOP, INSHELF, INBOX, ISDIRTY, IS-
CLEAN, ISDRY, ISWET, ISBLANK, ISSHELFCOLOR, IS-
BOXCOLOR, all parameterized by a single ?WIDGET, and
GRIPPEROPEN(?ROBOT). Across all tasks, there is only one
robot, box, lid, and shelf, and the goal is to paint each wid-
get a certain color (each box or shelf color) and place it in
the corresponding receptacle. Training tasks feature 2 or 3
widgets, and have horizon H = 18. Easy test tasks feature
1 widget, and have horizon H = 6. Hard test tasks feature
10 widgets, and have horizon H = 60.

A.4 Extended Method Details
Here, we provide additional details about the methods.

The NSRT action samplers and low-level transition mod-
els are always fully connected neural networks with hidden
layer sizes [32, 32]. All neural networks are trained using
the Adam optimizer (Kingma and Ba 2014) for 35K (action
samplers), 10K (low-level transition models), or 50K (appli-
cability classifier) epochs with a learning rate of 1e-3.

In our robotic environments of interest, transitions are of-
ten sparse, changing only a subset of object attributes at any
given time. For learning the low-level transition model, we
exploit this by calculating the attributes that change in any
transition within a partition, and only predict next values for
those attributes, leaving the others unchanged.

For learning the action samplers, we restrict the covari-
ance matrix ⌃ to be diagonal and positive semi-definite
using an exponential linear unit (Clevert, Unterthiner, and
Hochreiter 2016). During evaluation only, we clip samples
from the action samplers to be at most 1 standard deviation
from the mean, for improved stability.

The applicability classifier is also a fully connected neural
network with hidden layer sizes [32, 32]. We train it with
negative examples collected from either other partitions, or
data from the same partition but with the objects re-mapped.
We subsample negative examples to ensure that the dataset
is balanced, in a 1:1 ratio, with the positive examples.

In all experiments, we use ntrials = 1, which we found to
be sufficient due to the accuracy of the action samplers and
low-level transition models.

For implementing the hadd heuristic, we use the Pyper-
plan (Alkhazraji et al. 2020) software package.

All GNNs (both the failure predictor, and the action-value
function of B4) are standard encode-process-decode archi-
tectures (Battaglia et al. 2018), where node and edge mod-
ules are fully connected neural networks with one hidden
layer of dimension 16, ReLU activations, and layer normal-
ization. Message passing is performed for K = 3 iterations.
Training uses the Adam optimizer (Kingma and Ba 2014)
for 500 epochs with learning rate 1e-3 and batch size 128.
For the action-value function, we train by running 5 itera-
tions of fitted Q-iteration, and during evaluation, we sam-
ple 100 candidate actions from the behavior prior ⇡0 at each
step, choosing the action with the best predicted value to ex-
ecute in the environment.

Methods that use shooting (B2 and B7) try up to 1000 it-
erations, or until the timeout (3 seconds for every method

across all experiments) is reached. Methods that perform re-
jection sampling from the behavior prior (B6 and B7) with
the learned applicability classifiers try up to 30 times before
giving up and returning a random action from the behavior
prior.

Figure 3 shows that B4 (the action-value function learn-
ing baseline) performs very poorly. In preliminary exper-
iments, we had verified that it works in much easier test
task instances than were used for any of our main results
in Figure 3. The main finding from those preliminary ex-
periments was that action-value function learning requires
a lot more data than we are working with in this paper; B4
began to perform at the level of our approach given about
2000 training episodes, on those very easy test task instances
(whereas our main results are only conducted up to 500
training episodes). This finding is consistent with the gen-
eral principle that model-free learning strategies are known
to be data-hungry (Moerland, Broekens, and Jonker 2020).

A.5 Ablation Standard Deviation Results
Table 2 reports the standard deviations for the ablation ex-
periments, accompanying the means shown in Table 1. They
were omitted from Table 1 due to space reasons. See Section
7 for details.



Thank you all for your time and helpful comments!
R1 asks about “the exact relation to methods in robotics

planning.” In this work, we do not innovate on methods for
robotic TAMP; instead, we commit to a particular class of
TAMP (search-then-sample), then illustrate how NSRTs can
be learned and used for planning within this class. R1 also
asks about “the influence of the quality of the learned mod-
els on planning.” We agree that robustness studies would be
informative; see also our response to R3. Finally, as R1 sug-
gests, we will definitely emphasize novelty in the writing. To
our knowledge, we are the first to learn operator structure,
samplers, and transition models in one system. Learning all
three represents a significant advance toward scaling TAMP
with minimal reliance on expert input. Moreover, designing
a representation where each of these pieces can be learned,
and where the fundamental leverage available in TAMP can
be exploited during planning, is nontrivial; prior works on
learning-for-TAMP often have discordant assumptions and
perspectives, which prevents a straightforward integration.

R2: Goals are specified in the symbolic language defined
by the provided predicates, e.g. if given a predicate On, a
goal might be On(block1, block2). This type of goal
enables symbolic planning. We did not use an off-the-shelf
planner here because we need to continue searching if the
first symbolic plan found is unable to be refined; it is not
easy to continue in this way with planners like Fast Down-
ward. Regarding Blocks: our approach does not make the
downward refinability assumption, but can certainly work
when the assumption does hold. We included Blocks to val-
idate our hypothesis that the advantage of our approach over
baseline B1 is due to not assuming downward refinability.
Regarding the “dependency of the proposed method on the
given priors,” the priors must produce data sufficient for
symbolic learning, which requires receiving enough “coun-
terexamples” (transitions where an action failed to achieve
an effect due to failing preconditions, e.g. picking up an ob-
ject while the gripper is already holding something else).

R3’s major concerns revolve around the unrealistic as-
sumptions in the simulator. We are indeed not attempting
to model contact dynamics, which would be very challeng-
ing for a NN transition model to capture (especially in a
data-efficient manner). So, our environments involve toler-
ances such as the “close enough” condition (with a very
small ϵ) for grasping objects, to avoid the zero-measure sam-
pling problem which often afflicts learning-for-TAMP sys-
tems. Nevertheless, we disagree with R3 that “the contin-
uous part is not relevant for most actions”: it is extremely
important that the sampler network learns to output actions
within this tolerance, otherwise planning will often fail. One
of the major ideas of this paper is that learning a separate
sampler network per NSRT, which is specific to that NSRT’s
symbolic preconditions and effects, makes learning data-
efficient and decreases the complexity of the true function
each NN is attempting to approximate. R3 also suggests that
our work cannot be “adapted to a physically accurate simu-
lation and even less so to its usage in real-life.” Although
NN transition models typically have difficulty with realis-
tic contacts, this does not make them unadaptable to such
settings. In real-life problems, we expect that NSRTs can

be used in settings where either (1) zero-measure manipula-
tion is not required (for instance, grasping need not be per-
fect, and placing need not be precisely aligned with the ta-
ble top), or (2) the neural samplers’ and dynamics’ outputs
can be used in conjunction with a local optimizer to make
fine adjustments. R3 also asks about B6 on Easy tasks. In
Easy tasks, rejection sampling from the behavior prior will
sometimes succeed within the sampling budget. For exam-
ple, if the behavior prior randomly grasps objects, then re-
jection sampling towards grasping a specific object will be
more likely to succeed when there are fewer objects over-
all. This naive sampling can be made arbitrarily bad by de-
creasing the sampling budget or introducing more objects, as
seen in the Hard tasks. In contrast, the learned NSRTs gener-
ate values conditioned on the NSRT effects — for example,
grasps for a specific object based on its geometry. R3 is also
concerned about handling failures with a large number of
objects. Note that even in problems where several objects
must be removed to clear a path, the planner will typically
encounter a collision, plan to remove that collision, and re-
peat; at each stage, there will be only one additional object
in the NSRT. This part of planning can be understood as a
generalization of Stilman’s NAMO algorithm (“Manipula-
tion Planning Among Movable Obstacles”, ICRA 2007).

R4 comments that “replacing the motion planner (with
a learning-based approach) within prior frameworks for
TAMP is often a superficial change.” This comment suggests
a possible misunderstanding; from a TAMP perspective, we
are learning operators, samplers, and transition models. Un-
like a motion planner, these components are domain-specific
and must be hand-specified for every new TAMP domain,
which motivates our learning-based approach. R4 asks why
A∗ was used for symbolic planning. We also experimented
with GBFS, but found in preliminary work that A∗ per-
forms better. See the R2 response for more details on off-the-
shelf symbolic planners, and note that state-of-the-art plan-
ners such as Fast Downward similarly use A∗ or GBFS. R4
asks about dimensionality; see Appendix A.3. R4 asks about
learning and planning time in the experiments. Here are to-
tal learning times (in seconds) for our main method after 100
training episodes, with (mean, stdev) over 5 seeds:
• PickPlace1D: (148.7, 4.4)
• Kitchen: (331.6, 26.1)
• Blocks: (225.8, 12.0)
• Painting: (684.2, 18.8)

Planning times averaged over all test problems:
• PickPlace1D: Easy: (2.0, 0.3); Hard: (22.5, 2.3)
• Kitchen: Easy: (61.7, 0.7); Hard: (95.0, 14.4)
• Blocks: Easy: (1.3, 0.1); Hard: (22.4, 3.3)
• Painting: Easy: (9.6, 5.0); Hard: (181.0, 41.7)

We will include these results in the next version of the paper.
R4 asks about conditions under which an NSRT can be

reused. This is a very interesting question, and has connec-
tions to transfer in deep model-based RL. In our setting, two
conditions must hold for NSRTs to be reusable: (1) the sym-
bolic preconditions and operators must continue to describe
the abstract transition model of this new task, and (2) the
NNs must make predictions on data from the same distribu-
tion they were trained on.


