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In this supplementary document, we first discuss architectural and implementation details in Sec-
tion 1. Next, we provide additional ablation studies of our monocular geometric cues for four
different scene representations in Section 2 and report additional quantitative and qualitative results
in Section 3. Finally, we discuss potential negative impact of this work in Section 4.

1 Implementation Details

In this section, we first present an overview of 4 different architectures for neural implicit scene
representations and details of Multi-Res. Grids in Section 1.1 and provide details of the depth loss
computation in Section 1.2. Next, we describe additional details regarding our parameterizations and
optimization in Section 1.3 and discuss evaluation metrics in Section 1.4.

1.1 Architectures

In the main paper, we investigate four different architectures as our scene representation: Dense SDF
Grid, Single MLP, Single-Res. Grid, and Multi-Res. Grids . See Fig. 1 for an overview over the
architectures. In the following, we provide details for Multi-Res. Feature Grids.
Multi-Res. Grids. Following Instant-NGP [16], we use L levels of feature grids with resolutions
sampled in geometric space to combine features at different frequencies:

Rl := bRminb
lc b := exp

(
lnRmax − lnRmin

L− 1

)
, (1)

where Rmin, Rmax are the coarsest and finest resolutions, respectively. As the total number of grid
cells grows cubically, we use a fixed number of parameters to store the feature grids and use a spatial
hash function to index the feature vector at finer levels. More specifically, each grid contains up
to T feature vectors with dimensionality F . At the coarse level where R3

l ≤ T , the feature grid is
stored densely. At the finer level where R3

l > T , a spatial hash function [24] is used to index the
corresponding feature vector:

h(x) =

(
3⊕

i=1

xiπi

)
modT , (2)

where
⊕

is the bit-wise XOR operation and πi are unique, large prime numbers. We use the default
values Rmin = 16, Rmax = 2048, L = 16, F = 2, and T = 219 similar to [16] in all experiments.
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1.2 Depth Consistency Loss

We enforce consistency between our rendered expected depth D̂ and the monocular depth D̄ with a
scale invariant loss function:

Ldepth =
∑
r∈R
‖(wD̂(r) + q)− D̄(r)‖

2
, (3)

where w and q are the scale and shift used to align D̂ and D̄ since D̄ is given only up to scale.
Specifically, we solve w and q with a least-squares criterion [8, 20]:

(w, q) = arg min
w,q

∑
r∈R

(
wD̂(r) + q − D̄(r)

)2
. (4)

w and q can be efficiently computed as follows: Let h = (w, q)T and dr = (D̂(r), 1)T , then Eq. (4)
can be rewrite as:

hopt = arg min
h

∑
r∈R

(
dT
r h− D̄(r)

)2
. (5)

which has the closed-form solution:

h =

(∑
r

drd
T
r

)−1(∑
r

drD̄(r)

)
. (6)

Note that we estimate w and q individually at each iteration for a batch of randomly sampled rays
within a single image because depth maps predicted by the monocular depth predictor can differ in
scale and shift and the underlying scene geometry changes at each iteration.

1.3 Additional Details

For our single MLP architecture, we use an 8-layer MLP with hidden dimension 256. We use a
two-layer MLP with hidden dimension 256 for the SDF prediction for both, Single-Res. Grid and
Multi-Res. Grids. We implement the color network with a two-layer MLP with hidden dimension
256 and use it for all architectures. We use Softplus activation for geometric network and use ReLU
activation for the color network. We explicitly initialize the SDF grid with a sphere and use the
geometric initialization from [2] for other architectures. For obtaining monocular cues, we first resize
each image and center crop it to 384× 384, which we then feed as input to the pretrained Omnidata
model [7]. The output depth and normal maps have the same resolution of 384× 384. As a result,
we use the same resolution for RGB images, depth cues and normal cues and adjust camera intrinsics
accordingly for all experiments. We optimize our model for 200k iterations which takes about 6 hours
and 11 hours for our Multi-Res. Grids and MLP, respectively, on a single NVIDIA RTX3090 GPU.

1.4 Evaluation Metrics

For the DTU dataset [1], we follow the official evaluation protocol and report the reconstruction
quality with: Accuracy, Completeness and Chamfer Distance. Accuracy measures how close the
reconstructed points are to the ground truth and is defined as the mean distance of the reconstructed
points to the ground truth. Completeness measures to what extent the ground truth points are recovered
and is defined as the mean distance of the ground truth points to the reconstructed points. Chamfer
Distance is the mean of Accuracy and Completeness. It measures the overall reconstruction quality.
For efficiency, we use the Python script1 to compute these evaluation metrics.

For Replica [22] and ScanNet [4], we report Accuracy, Completeness, Chamfer Distance, Precision,
Recall, and F-score with a threshold of 5cm following [9, 23, 32]. We further report Normal
Consistency for the Replica dataset following [9, 13, 18, 19, 23, 32] as near-perfect ground truth is
available. These metrics are defined in Table 1.

For the Tanks and Temples dataset [11], we submit our reconstruction results to the official evaluation
server2 and report the provided F-score.

1https://github.com/jzhangbs/DTUeval-python
2https://www.tanksandtemples.org/
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Figure 1: Architectures. We show an overview over four different scene representations considered
in this paper.
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Figure 2: Ablation of Different Number of Input Views on the Replica Dataset. We show F-score
under each image. We observe that using more input views for training improves reconstruction
quality. Further, adding monocular geometric cues improves reconstruction quality. When using only
10 input views, the MLP fails to reconstruct reasonable results while using monocular geometric cues
significantly improves results.

2 Ablation

In this section, we first conduct several ablation studies to verify the effectiveness of our method,
including using geometric cues with different scene representations in Section 2.1, different archi-
tecture configurations in Section 2.2, different number of input views in Section 2.3, different cues
predictors in Section 2.4. Next, we analyze the optimization time of our framework in Section 2.5.
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Metric Definition

Acc mean
p∈P

(
min

p∗∈P∗
||p− p∗||1

)
Comp mean

p∗∈P∗

(
min
p∈P
||p− p∗||1

)
Chamfer Acc+Comp

2

Precision mean
p∈P

(
min

p∗∈P∗
||p− p∗||1 < 0.05

)
Recall mean

p∗∈P∗

(
min
p∈P
||p− p∗||1 < 0.05

)
F-score 2·Precision·Recall

Precision+Recall

Normal-Acc mean
p∈P

(
nT
pnp∗

)
s.t. p∗ = argmin

p∗∈P∗
||p− p∗||1

Normal-Comp mean
p∗∈P∗

(
nT
pnp∗

)
s.t. p = argmin

p∈P
||p− p∗||1

Normal-Consistency Normal-Acc+Normal-Comp
2

Table 1: Evaluation Metrics. We show the evaluation metrics with their definitions that we use to
measure reconstruction quality. P and P ∗ are the point clouds sampled from the predicted and the
ground truth mesh. np is the normal vector at point p.

Test Split Train Split
Normal C.↑ Chamfer-L1 ↓ F-score ↑ Normal C.↑ Chamfer-L1 ↓ F-score ↑

No Cues 57.30 26.68 15.50 60.86 17.34 26.34
Dense SDF Only Depth 71.81 12.60 30.09 73.15 13.09 30.30

Grid Only Normal 73.95 13.62 33.34 77.80 11.30 42.45
Both Cues 76.47 11.39 37.27 80.05 10.09 41.57

MLP

No Cues 86.48 6.75 66.88 86.69 7.48 63.24
Only Depth 90.56 4.26 76.42 91.80 3.59 85.67
Only Normal 91.35 3.19 85.84 92.85 4.23 85.58
Both Cues 92.11 2.94 86.18 93.86 2.63 92.12
No Cues 86.41 6.28 64.22 86.54 6.63 67.26

Single-Res. Only Depth 90.50 3.94 78.42 91.3 3.29 86.34
Grids Only Normal 89.60 4.07 76.47 91.87 3.13 85.96

Both Cues 90.59 3.56 83.34 91.87 2.98 88.23
No Cues 87.95 5.03 78.38 87.15 5.83 72.13

Multi-Res. Only Depth 90.87 3.75 80.32 91.25 3.41 87.04
Grids Only Normal 89.90 3.61 81.28 91.11 3.59 84.02

Both Cues 90.93 3.23 85.91 91.41 3.14 86.87

Table 2: Ablation of Monocular Geometric Cues on Replica. Our monocular geometric cues
significantly improve reconstruction quality across all architectures.

2.1 Ablation of Different Cues

To evaluate the effectiveness of our monocular geometric cues for different scene representations, we
conduct ablation studies on the Replica dataset with our four different scene representations. Note
that as the Replica dataset is part of the training set of Omnidata (making up 0.46% of the entire
training data) [7], we split the evaluation into the train/test split of Omnidata [7].

As shown in Table ?? and Fig. 4, our geometric cues improve reconstruction quality significantly
independent of the underlying scene representations. We observe that using both, depth cues and

4



5 20 40
Iterations (×103)

0.2

0.4

0.6

0.8

1

F-
sc

or
e

MLP 2 layer
MLP 4 layer
MLP 8 layer
MLP 12 layer
MLP 2 layer (w/ Cues)
MLP 4 layer (w/ Cues)
MLP 8 layer (w/ Cues)
MLP 12 layer (w/ Cues)
Grids 2^13
Grids 2^15
Grids 2^17
Grids 2^19
Grids 2^13 (w/ Cues)
Grids 2^15 (w/ Cues)
Grids 2^17 (w/ Cues)
Grids 2^19 (w/ Cues)

Figure 3: Optimization Processes Using Different Architecture Configurations. Using monocu-
lar geometric cues improves reconstruction quality and convergence speed independent of the network
configurations.

Model configuration Num. Params

MLP (2 layers) 0.15M
MLP (4 layers) 0.26M
MLP (8 layers) 0.53M

MLP (12 layers) 0.8M

Multi-res. Feature Grids (hash table size 213) 0.41M
Multi-res. Feature Grids (hash table size 215) 1.11M
Multi-res. Feature Grids (hash table size 217) 3.67M
Multi-res. Feature Grids (hash table size 219) 12.67M

Table 3: Number of Learnable Parameters Using Different Architecture Configurations.

normal cues, leads to the best results, indicating the complementary nature of the different cues. We
further observe that the reconstruction quality as well as the improvements from adding geometric
cues are similar for the train and test split of Omnidata, showing that the monocular predictor did not
overfit to the training data.

2.2 Ablation of Different Architecture Configurations

In order to evaluate the performance with different model capacities, we consider MLPs with a
different number of layers and Multi-res. Feature Grids with different sizes of the hash table. We list
the number of learnable parameters using different architecture configurations in the Table 3, and
show their performance over the optimization processes in Fig. 3. Our experiments show that using
monocular geometric cues improves reconstruction quality and convergence speed independent of
the network configuration.

2.3 Ablation of Different Numbers of Input Views

We ran experiments with a different number of input images and monocular geometric cues. As
shown in Fig. 2, adding the monocular geometric cues leads to consistent improvements across
different numbers of input views.
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Method F-score

MLP 64.2
w/ MiDaS [20] 68.6
w/ LeReS [29] 72.6

w/ Omnidata [7] 86.7

Method F-score

MLP 64.2
w/ Tilted [6] 45.6

w/ Omnidata [7] 92.2

Method F-score

MLP 64.2
w/ Self-supervised [12, 30] 45.6

w/ Omnidata [7] 86.7

(a) Different Depth (b) Different Normal (c) Self-supervised Depth
Table 4: Ablation of Different Monocular Cues Predictors. a.) Adding monocular depth improves
performance over a single MLP without cues. Unsurprisingly, better depth predictors lead to better
performance, with the state-of-the-art Omnidata model giving the best results. b.) Adding monocular
normal improve the results. Similarly, using normals predicted by the state-of-the-art Omnidata
model leads to the best performance. c.) Using self-supervised depth estimator degrades performance.
We hypothesize that this is due to the weaker performance of the self-supervised model which is
also trained with an RGB loss and hence suffers from the under-constrained problem of recovering
geometry from multi-view images.

2.4 Ablation of Different Monocular Cues Predictors

To further analyze the robustness of our approach to monocular geometric cues of different levels
of quality, we further tested our model with different supervised depth predictors [20, 29], normal
predictors [6], and self-supervised depth predictors [12, 30]. The result is shown in Table 4. We
found that using the state-of-the-art Omnidata model leads to the best results, indicating that the
development of better geometric cues will further improve the performance of our approach.

2.5 Optimization Time

Adding monocular geometric cues to the optimization introduces a small overhead to our overall
optimization pipeline. First, predicting these cues with a pretrained Omnidata model is very efficient
(36 FPS with an NVIDIA RTX3090 GPU). For example, it takes less than 26 seconds to predict both
depth maps and normal maps for 464 images for one of the ScanNet scene. Note that this only needs
to be done once and that we measure FPS with a batch size of one; using a larger batch size will result
in a speed up. Second, we volume render depth and normals during optimization in order to apply a
loss against these monocular cues. This overhead is also small and can be neglected since the most
expensive part wrt. compute is the inference of the network. For our MLP variant, the additional flops
for volume rendering depth and normal is only 0.0002% of the MLP inference time. While adding
monocular geometric cues introduce a small overhead, the improvements in terms of reconstruction
quality and converge speed are significant. As shown in Table 2 (b) in the main paper, with only 5k
iterations, our Multi-Res. Grids representation with cues performs better than the converged models
without geometric cues, which implies a 40× speed up (5k vs. 200k).

3 Additional Results

In this section, we provide more qualitative and quantitative results for three datasets: ScanNet
( Section 3.1), Tanks and Temples ( Section 3.2), and DTU ( Section 3.4).

3.1 ScanNet

We report quantitative results with all metrics for ScanNet in Table 5 and show more visualizations
in Fig. 5. Compared to state-of-the-art methods, our approach with MLP architecture produces
significantly better reconstructions both visually as well as quantitatively. It’s worth noting that we
perform better than concurrent work [25] even though they have some filtering mechanism.

3.2 Tanks and Temples

We show quantitative results for Tanks and Temples in Table 6. Qualitative comparisons of with or
without monocular cues of our MLP variant are shown in Fig. 6 and Fig. 7. Fig. 8 and Fig. 9 show
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Acc↓ Comp↓ Chamfer-L1 ↓ Prec↑ Recall↑ F-score↑
COLMAP [21] 0.047 0.235 0.141 0.711 0.441 0.537
UNISURF [17] 0.554 0.164 0.359 0.212 0.362 0.267
NeuS [26] 0.179 0.208 0.194 0.313 0.275 0.291
VolSDF [28] 0.414 0.120 0.267 0.321 0.394 0.346
Manhattan-SDF [9] 0.072 0.068 0.070 0.621 0.586 0.602
NeuRIS [25] 0.050 0.049 0.050 0.717 0.669 0.692

Ours (Multi-Res. Grids) 0.072 0.057 0.064 0.660 0.601 0.626
Ours (MLP) 0.035 0.048 0.042 0.799 0.681 0.733

Table 5: Scene-level 3D Reconstruction on ScanNet. We report reconstruction results for our
methods and baselines on ScanNet (baselines from [9]). We find that our approaches outperform
previous state-of-the-art, highlighting the effectiveness of the use of monocular geometric priors. As
ScanNet’s RGB images contain motion blur and the camera poses are partially noisy, we further
observe that the MLP architecture is more robust to this noise and achieves the best results. It’s
worth noting that we perform better than concurrent work [25] even though they have some filtering
mechanism.

Grid Grid w/ cues MLP [28] MLP w/ cues

Auditorium 1.36 3.17 1.60 3.09
Ballroom 2.67 3.70 2.04 2.47

Courtroom 7.84 13.75 8.03 10.00
Museum 4.12 5.68 2.96 5.10

mean 4.00 6.58 3.66 5.165

Table 6: Evaluation Results on the Tanks and Temples Dataset Advanced Set. We evaluate the
reconstructed meshes using the official server and report the F-score with 10mm. Our monocular
geometric cues improve the reconstruction quality for all scenes.

qualitative comparison of our Mulit-Res. Grids. Our monocular geometric cues significantly improve
the reconstruction quality.

We further show an additional comparison against state-of-the-art MVS methods in Fig. 10. We use a
pretrained Vis-MVSNet [31] to predict depth maps for the input images and fuse them to point clouds
follow the official code.3 Next, we use Meshlab’s screened Poisson reconstruction [10] to reconstruct
a mesh from point clouds with default parameters. We observe that our reconstructions are more
complete which is useful for many applications. Further, reconstructing a mesh from point clouds
involves lossy post-processing, leading to floating artifacts and bloated areas in less-observed areas.

3.3 Preliminary Results of Using High-resolution Monocular Cues

In the main paper, we center-crop each image and resize it to 384× 384. Then, we use a pretrained
Omnidata model to predict depth maps and normal maps which are also of size 384× 384. While
we have shown that training at a resolution of 384 × 384 produces impressive results, we believe
that exploring different ways to generate and integrate higher resolution cues could further improve
reconstruction quality. Here, we provide a proof-of-concept experiment for generating higher
resolution monocular cues and integrating them into our model. We use a divide-and-conquer
method for generating high-resolution cues. First, we partition a high-resolution image to multiple
overlapping sub-images, and we predict monocular depth and normal for each sub-image. Next, we
merge these predictions. We use Eq. 6 to align the depth maps and solve the rotation for the normal
maps. An example of the resulting high-resolution monocular cues is shown in Fig. 11. We found
that our high-resolution cues contain more fine details compared to low-resolution cues. Note that
using other methods for generating high-resolution depth maps is also possible, e.g., [14]. We then
use the high-resolution cues to train our model, and the results are shown in Fig. 12. We observe
significant improvements when using high-resolution monocular cues.

3Available at https://github.com/jzhangbs/Vis-MVSNet

7

https://github.com/jzhangbs/Vis-MVSNet


TSDF [3] COLMAP RealityCapture MLP [28] MLP Multi-Res. Multi-Res.
w/ cues Grids Grids w/ cues

scan24 5.01 4.45 4.19 5.24 3.47 6.46 5.24
scan37 5.28 4.67 3.85 5.09 3.61 8.30 6.37
scan40 5.09 2.51 2.26 3.99 2.10 7.03 2.52
scan55 4.63 1.90 2.49 1.42 1.05 5.87 1.95
scan63 5.03 2.81 3.49 5.10 2.37 6.92 6.64
scan65 4.50 2.92 3.97 4.33 1.38 3.09 2.05
scan69 4.55 2.12 1.91 5.36 1.41 5.34 4.25
scan83 4.88 2.05 2.49 3.15 1.85 6.03 1.81
scan97 6.22 2.93 2.37 5.78 1.74 6.93 5.27

scan105 3.89 2.05 2.27 2.07 1.10 6.01 2.54
scan106 5.67 2.01 2.90 2.79 1.46 6.14 3.85
scan110 3.80 N/A 4.60 5.73 2.28 7.62 3.89
scan114 4.67 1.10 1.38 1.20 1.25 6.27 1.90
scan118 4.51 2.72 2.57 5.64 1.44 7.59 3.12
scan122 4.35 1.64 1.76 6.20 1.45 6.47 3.84

mean 4.80 2.56 2.84 4.21 1.86 6.47 3.68

Table 7: Evaluation Results on the DTU Dataset with 3 Input Views. Note the COLMAP fails
on scan110 so we take the average over the remaining 14 scenes. We find that without geometric
cues, neither Grids nor MLP works well with only 3 input views. When incorporating the monocular
geometric cues, the results for both representations are significantly improved. Interestingly, the
grid-based representations perform inferior to a single MLP as they are updated only locally and do
not have an inductive smoothness bias compared to a monolithic MLP representation.

3.4 DTU

Geometry. We show per-scene quantitative results on the DTU dataset with 3 input-views in Table 7
and more qualitative results in Fig. 13. We find that without the monocular geometric cues, both
MLP and Multi-Res. Grids fail to produce satisfying reconstructions, while with our monocular cues,
both methods are improved and are able to reconstruct high-quality meshes. We further show more
visualizations on the DTU dataset using all input views in Fig. 15. Compared to state-of-the-art
methods, our approach with multi-resolution feature grids produces more accurate reconstructions.

PSNR

MLP [28] 17.65
MLP w/ cues 23.64

Table 8: Novel view
synthesis results on
DTU (3 Views).

Novel View Synthesis. We further compare our novel view synthesis
results on the DTU dataset with three input views. As shown in Table 8
and Fig. 14, using monocular geometric cues improves novel view synthesis
results significantly.
Weight Annealing. As the monocular depth and normal predictor is not
perfect, we exponentially anneal the loss weight for the monocular depth
consistency and normal consistency loss, λ2 and λ3, to 0 during the first
200 epochs of optimization. Qualitative comparison in Fig. 16 verifies the
importance of weight annealing.
Failure cases. We show a failure case on DTU with 3 input views in Fig. 17. The reconstructed
mesh duplicates the object in front of each camera frustum. One reason is that the monocular depth
cues that we use are only up to scale so they do not guarantee multi-view consistency. Therefore,
the optimization is still underconstrained since the input RGB images and monocular cues can
be explained by individual objects in front of the image plane. One possible solution would be
incorporating explicit multi-view constraints such as using sparse point clouds from COLMAP [21]
as an additional supervision [5].

4 Societal Impact

Our method can faithfully reconstruct a 3D scene which can be used for application ranging from
virtual reality to robotics. However, it can also have potential negative societal impact. First, our
method relies on a general purpose monocular geometric predictor that needs to be trained on large
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amounts of data and with large computational resources, which potentially has a negative impact
on global climate change. Second, accurate reconstruction of a scene may raise privacy concerns
that need to be addressed carefully. Finally, accurate geometry reconstructed by our method can
potentially be used for malicious purposes.
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Dense SDF Grid + Depth + Normal + Both

MLP + Depth + Normal + Both

Single-Res. Grid + Depth + Normal + Both

Multi-Res. Grids + Depth + Normal + Both

Figure 4: Ablation of Monocular Geometric Cues on the Replica Dataset. Monocular geometric
cues significantly improve reconstruction quality for all architectures. With monocular depth cues, the
recovered geometry contains more details and a better overall structure. Similarly, with our normal
cues, missing details are added and the results become smoother. Using both cues leads to the best
performance. Zoom in for details.
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COLMAP [21] VolSDF [15] Manhattan-SDF [9] Ours (MLP) Ground Truth

Figure 5: Qualitative Comparison on ScanNet. We show different views for each scene. Our
method leads to better results containing smooth surfaces and detailed reconstructions compared
against state-of-the-art neural implicit methods.
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MLP [28] MLP w/ cues GT view

Figure 6: Qualitative Comparison on Tanks & Temples. We use a single MLP as the scene
geometry representation [28] and compare the reconstruction when using monocular cues or not on
Auditorium and Ballroom.
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MLP [28] MLP w/ cues GT view

Figure 7: Qualitative Comparison on Tanks & Temples Dataset. We use a single MLP as the
scene geometry representation [28] and compare the reconstruction quality when using monocular
cues or not on Courtroom and Museum.
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Multi-Res. Grids Multi-Res. Grids w/ cues GT view

Figure 8: Qualitative Comparison on Tanks & Temples. We use Multi-Res. Grids as the scene
geometry representation and compare the reconstruction when using monocular cues or not on
Auditorium and Ballroom.
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Multi-Res. Grids Multi-Res. Grids w/ cues GT view

Figure 9: Qualitative Comparison on Tanks & Temples. We use Multi-Res. Grids as the scene
geometry representation and compare the reconstruction when using monocular cues or not on
Courtroom and Museum.
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VisMVSNet [31] Ours (MLP) Ours (Multi-Res. Grids) GT view

Figure 10: Qualitative Comparison on Tanks & Temples.
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(a) RGB Image.

(b) Low Resolution Depth Map. (c) High Resolution Depth Map.

(d) Low Resolution Normal Map. (e) High Resolution Normal Map.

Figure 11: Visual Comparison of Different Resolution Monocular Cues.
18



Low Resolution Cues High Resolution Cues GT view

Figure 12: Qualitative Comparison of Low Resolution Cues and High Resolution cues on Tanks
& Temples. We use Multi-Res. Grids as the scene geometry representation and compare the
reconstruction when using different resolution of monocular cues.
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TSDF-Fusion RealityCapture MLP [28] MLP Multi-Res. Multi-Res. GT View
w/ cues Grids Grids w/ cues

Figure 13: Qualitative Comparison on the DTU Dataset with 3 Input Views. Adding monocular
geometric cues improves 3D reconstruction quality for both MLP and Multi-Res. Grids. We show a
failure case on the last row.
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MLP [28] MLP w/cues GT View MLP [28] MLP w/cues GT View

Figure 14: Qualitative Comparison of Novel View Synthesis on the DTU Dataset with 3 Input
Views. Adding monocular geometric cues improves novel view synthesis quality.

21



NeuS [27] VolSDF [28] Ours (MLP) Ours (Grids) Ground Truth View

Figure 15: Qualitative Comparison on DTU Dataset with all input views. Our approach with
MLP achieves similar results with previous method, while our method with Multi-Res. Fea. Grids
reconstruct more detailed surface.
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Without Weight Annealing With Weight Annealing GT View

Figure 16: Ablation of Weight Annealing on the DTU Dataset with 3 Input Views. Using weight
schedule improves reconstruction quality.

Input View 1 Input View 2 Input View 3 Ours

Figure 17: Failure Case on DTU Dataset with 3 Input Views. The reconstructed mesh duplicate
the object in front of each camera frustum.
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