
Published as a conference paper at ICLR 2023

A ASSUMPTIONS

In this part, we discuss and analyze the core assumptions that we have made in the derivation and
implementation of CBOP. First, recall that we view different h-step MVE returns R̂h for all h =
0, . . . , H as conditionally independent observations of the true underlying parameter Q̂⇡ . Second,
we have modeled the likelihood of the observations with the Gaussian distribution with mean µh and
standard deviation �h, which we estimate via sampling from the ensemble of dynamics and that of
Q function. Third, we use the improper prior, which still provides us a proper posterior distribution
that is also Gaussian. Below, we describe in more detail about each of these assumptions.

A.1 THE CONDITIONAL INDEPENDENCE ASSUMPTION

In order to meet the conditional independence assumption between R̂h, we need to estimate each
R̂h with samples that are independently sampled. One way of achieving this is to generate samples
per each h, resulting in an algorithm that requires O(NH

2) samples (and computation). However,
we have found that there is no specific benefit in this computational intensive sampling procedure

in terms of the final performance. Hence, our practical implementation only performs the forward
sampling once, reducing the computational cost down to O(NH).

A.2 THE BAYESIAN POSTERIOR ESTIMATION

The improper prior assumption We have used the improper (or uninformative) prior in deriving
CBOP in Section 3.1. Not to mention that the improper priors have been widely used in literature
(Wasserman, 2010; Berger, 1985; Christensen et al., 2011), we further argue that it is quite natural
(and sometimes necessary) not to assume any prior information if we are to apply our algorithm to
general environments/tasks that have different dynamics. When some prior information is available,
however, it is possible to incorporate it as long as we can use a conjugate prior that leads to a
closed-form posterior update. It is critical to keep the posterior in closed-form since otherwise we
have to resort to, e.g., posterior sampling, which will substantially (and unnecessarily) increase the
computational footprint.

Empirical evidence supporting the Gaussian assumption over P
⇣
R̂h | Q̂

⇡

⌘
First, note that the

true return distribution should have a single peak in the locomotion environments we consider due to
their deterministic nature, as long as the policy is deterministic. However, model-generated returns
can have bimodality in their distributions since different models in the dynamics ensemble can lead
to different trajectories, some of which can early terminate with low returns, while others continue
to receive larger returns. Hence, it is interesting to examine whether it is reasonable to assume the
Gaussian distribution over the h-step returns.

To answer this question, we have plotted the histograms of h-step returns for different h values in
three tasks: halfcheetah-mr, hopper-mr, and walker-mr. Figure 4 (a)-(c) show that it is reasonable
to assume R̂h are normally distributed. We have also observed that the empirical distribution of R̂h

sampled from certain states can have bimodality (Figure 4d). Notice that the histograms are more
spread out as h increases, which is due to compounded model errors. However, we note that the
Gaussian distribution can still capture the support of the return distribution reasonably well.

The Gaussian likelihood assumption As discussed above and shown in Figure 4, the Gaussian
assumption captures the actual return distributions reasonably well. Although it is possible to derive
a closed-form posterior update in Student t distribution by making an additional assumption in the
variance of R̂h likelihood (nb. we omit the actual derivation as it is not the contribution of this paper),
we have observed that this does not lead to meaningful performance improvements compared to the
much simpler Gaussian posterior that we derive in Section 3.1.

13

Published as a conference paper at ICLR 2023

(a) halfcheetah-mr (b) hopper-mr

(c) walker2d-mr (d) A state in walker2d showing the bimodal-
ity feature

Figure 4: The histogram of R̂h 8h 2 [0, 5] of a randomly selected state during training, evaluated
across three locomotion environments with the medium-replay-v2 configuration.

Algorithm 2 CBOP: Conservative Bayesian MVE for Offline Policy Optimization
1: Input: Data D, discount factor �, rollout horizon H , LCB coefficient
2: Initialize actor ⇡✓, Q ensemble Q� and target Q�0 , dynamics ensemble f̂k = (T̂k, r̂k)8k

3: Pretrain f̂⇠ on D till convergence
4: Pretrain ⇡✓ and Q� on D with BC and FQE respectively (Appendix B.3)
5: while ⇡✓ not converged do
6: Sample a batch of transitions B = {⌧i : ⌧i = (s,a, r, s0)i}

|B|
i=1 ⇢ D

7: for ⌧i 2 B do . this step happens in parallel for all ⌧i 2 B

8: ŝk0 s, ŝk1 s0, âk0 a, r̂k0 r, 8k 2 [1,K]
9: for h = 0 to H do

10: if h � 1 then
11: Sample an action âk

h
⇠ ⇡✓(ŝkh) 8k

12: Sample next state transition and reward (ŝk
h+1, r̂

k

h
) f̂k(ŝkh, â

k

h
) 8k

13: end if
14: R̂

k,m

h

P
h

t=0 �
t
r̂
k

t
+ �

h+1
Q̂

m

�0(ŝkh+1, â
k

h+1) 8m
15: end for
16: Compute µh and �h by (8) and (9), respectively
17: Estimate µ,�

2 of P
⇣
Q̂|R̂0, . . . , R̂H

⌘
⇠ N (µ,�2) by (7)

18: Compute target Q value: yi(s,a, s0) µ� �

19: end for
20: Update ⇡✓ and Q� following an off-policy actor-critic algorithm (e.g., SAC Haarnoja et al.

(2018))
21: Update the target network Q�0

22: end while

14

Published as a conference paper at ICLR 2023

Algorithm 3 FQE: Fitted Q-Evaluation (Le et al., 2019)

1: Input: Dataset D = {si,ai, ri, s0i}
n

i=1, policy ⇡ to be evaluated
2: Initialize the parameters of Q�(0) randomly
3: for t = 1, . . . , T do
4: Compute the targets yi = ri + �Q�(t�1)(s0i,⇡(s

0
i
)) 8i

5: Build the training set D(t) = {(si, ai), yi}ni=1
6: Solve a supervised learning problem:
7: �

(t) = argmin� E{(si,ai),yi}⇠D(t)

h
(Q�(si,ai)� yi)

2
i

8: end for
9: � �

(T)

10: return Q�

B ALGORITHM DETAILS

B.1 ALGORITHM SUMMARY

Algorithm 2 summarizes CBOP. In lines 20-21, we can use any off-policy actor-critic algorithm as
the backbone of our approach, since the only part that changes is the computation of the target value
y(s,a, s0). In this work, we follow EDAC (An et al., 2021) — which builds on SAC (Haarnoja et al.,
2018) — because it also employs Q ensembles. As discussed in Appendix B.3, a large discrepancy
in the scale of the terminal Q�0 predictions and that of the model-based rollout returns

P
�
t
r̂t in

the initial iterations greatly hampers policy learning. Hence, we pretrain the policy ⇡✓ and Q� with
with behavioral cloning (BC) and policy evaluation (PE) as elaborated in Appendix B.3.

B.2 DYNAMICS MODEL ARCHITECTURE

In this work, we approximate the true dynamics with a probabilistic ensemble model introduced by
PETS (Chua et al., 2018). We follow the common configurations used in the literature, e.g., MBPO
(Janner et al., 2019) and MOPO (Yu et al., 2020). Each model in the ensemble has 4 fully-connected
layers with 200 neurons. Specifically, we train the ensemble of 30 models, from which we select 20
models (often called ‘elite’) with smaller validation errors. For next state predictions, we train the
ensemble model to predict the delta states, or � = s0 � s for (s, s0) 2 D. We normalize the inputs
and outputs of the model for training and evaluation.

The approach for training the dynamics ensemble closely follows previous work on Bayesian en-
semble estimation (Chua et al., 2018; Janner et al., 2019). To reduce the effect of correlation, we
follow the existing work by using independent initialization for each ensemble member and by train-
ing each of them using different mini-batches sampled from the dataset. Although in practice some
correlation may be inevitable, there are several key advantages to estimating uncertainty in this way.
Firstly, bootstrapped uncertainty estimates have been shown to have strong theoretical properties
— see, e.g. Efron (1982) or Breiman (1996). Secondly, bootstrapping avoids the computational
challenges associated with estimating the uncertainty of model predictions directly, and our experi-
ments have shown that the uncertainty we obtained was indeed well-calibrated. For further details,
please see the expected horizon analysis shown in Figure 3 and Section 4.1, which demonstrates the
effectiveness of CBOP subject to different qualities of the learned dynamics ensemble.

B.3 PRETRAINING

In some environments, we notice that training Q� and ⇡✓ from scratch could be challenging, and
Figure 5 illustrates the reason. Remember that we pretrain the dynamics ensmeble with the offline
data D before starting the policy optimization. This means that the reward predictions made by
the learned model would have the proper scale. On the other hand, the Q�0 ensemble is initialized
with small random values. Hence, in the early iterations of policy learning, even though the Q�

ensemble has not been trained yet, its predictions have a very small variance compared to the model-
based rollout returns given by the learned dynamics ensemble (Figure 5(a)). This will then lead
to all weights being concentrated on R̂0, effectively MF; the MB rollouts would only slow down

15

Published as a conference paper at ICLR 2023

(a) Random initialization (b) Pretrained by BC+PE

Figure 5: The histogram of R̂h 8h 2 [0, 4] evaluated on halfcheetah-medium-v2

learning without contributing anything in this case. Besides, the variance of Q�0 ensemble would
be negligible, suggesting that taking the LCB would not introduce a sufficient level of conservatism
into learning, which can hurt the performance.

Therefore in the experiments, we pretrain Q� and ⇡✓ with the offline data. Specifically, we use
behavior cloning (BC) for the policy network ⇡✓. In BC, we minimize the mean squared loss
LBC(✓) = E(s,a)⇠D[(a � ⇡✓(s))2]. For the value network Q�, we perform policy evaluation
(PE) using Fitted Q-Evaluation (FQE) (Le et al., 2019), which is schematically explained in the
pseudocode in Algorithm 3. In line 4, when the policy to be evaluated is the behavior policy ⇡� , we
can take the recorded next action ai+1 from D in place of ⇡(s0

i
).

More concretely, at each iteration t of FQE, a supervised learning dataset D(t) = {(si,ai), yi}ni=1
is constructed by estimating the target value yi for each (si,ai) ⇠ D with the current Q approxima-
tion Q�(t�1) and the associated transition tuple (si,ai, ri, s0i) via yi = ri + �Q�(t�1)(s0i,⇡(s

0
i
)).

We then update the Q function parameters � by minimizing the MSE loss. That is, �(t)
argmin�

1
n

P
n

i=1[Q�(t�1)(si,ai) � yi]2. FQE repeats the two steps (i.e., constructing the dataset
and minimizing the MSE loss) to learn the Q� ensemble model.

C EXPERIMENT DETAILS

C.1 EXPERIMENTAL SETTINGS

D4RL MuJoCo Gym We use the v2 version for each dataset as provided by the D4RL library (Fu
et al., 2020). Following Algorithm 2, we pretrain ⇡✓ and Q� with BC and FQE, respectively. The
resulting policy and the Q ensemble are trained for 1, 000 more epochs using CBOP. Table 1 reports
the mean and standard deviation obtained from 5 random seeds.

Comparision of target Q values of MAP and CBOP (Figure 1(a)) In Figure 1(a), we compare
the MAP estimation with the LCB in the hopper-random dataset. We have plotted the mean and ±

one standard error over the course of training. The MAP estimation simply uses the mean µ in (7) as
the target y(s,a, s0), where as the LCB utilizes the variance of the posterior distribution to compute
y(s,a, s0) = µ� · �. Note that we can also use other conservative estimate of the target using the
posterior distribution; for example, we can use value-at-risk (VaR), conditional value-at-risk (CVaR)
or other quantiles.

Expected rollout horizon of CBOP (Figure 1(b) and Figure 3) In Figure 1 and 3, we report the
expected rollout horizon values. The expected rollout horizon can be computed per each sample
in the batch during policy training, and we have reported the average value across all samples in a
batch.

C.2 HYPERPARAMETERS

Table 3 summarizes the CBOP hyperparameters we use in the experiments presented in Section 4.
The only hyperparameter that we have tuned is the LCB coefficient through the grid search over

16

Published as a conference paper at ICLR 2023

Table 3: The LCB coefficient used in the D4RL MuJoCo Gym experiments.

Task Name halfcheetah hopper walker2d

random 3.0 5.0 5.0
medium 0.5 3.0 3.0
medium-replay 0.5 2.0 2.0
medium-expert 3.0 3.0 3.0
expert 5.0 3.0 3.0
full-replay 2.0 3.0 2.0

the set {0.5, 2.0, 3.0, 5.0}. We have used H = 10, K = 20, M = 20, and lr = 3 ⇥ 10�4 for all
experiments, except for the hopper environment where we used M = 50.2 The LCB parameters
reported in Table 3 are tuned based on the final online evaluation performance from corresponding
environments.

Offline Hyperparameter Selection via FQE (Paine et al., 2020) When strictly adhering to the
offline paradigm of policy learning, it is crucial to restrict access to online interactions at all stages of
learning including the hyperparameter selection.However, many existing works still use the online
evaluation for hyperparameter selection (An et al., 2021; Wang et al., 2021; Fujimoto & Gu, 2021;
Chen et al., 2021) and we followed the same evaluation protocol for tuning the hyperparameters of
our method. We believe there is a dire need for standardizing the evaluation protocol in the offline
RL, but this work should be addressed by the offline RL research community as a whole, which is
beyond the scope of our paper. One important way to reduce the amount of online interactions used
for hyperparameter selection is to minimize the number of hyperparameters to tune. In this regard,
CBOP is particularly advantageous since we need only to tune the LCB coefficient .

To further validate the choice of values in Table 3, we performed a post hoc analysis following
the hyperparameter selection work proposed in Paine et al. (2020). To this end, we considered three
data configurations (m, mr, fr) and two environments (halfcheetah, walker2d), and we retrieved the
model checkpoints of the learned policy networks for all seeds. Then, we evaluated each policy ⇡✓
with the following metric:

Es0⇠D[Q⇣(s0,⇡✓(s0)] (10)
Here, s0 are the initial states stored in the offline dataset and Q⇣ is the value function associated
with the policy ⇡✓, which is obtained by running FQE (Algorithm 3). This Q⇣ is different from the
learned value function Q�, and Paine et al. (2020) noted that using Q⇣ is better than using Q� for the
purpose of hyperparameter selection. The candidate values are sorted based on the scores from
(10), and we can use with the highest score.

Table 4 compares the rankings of the four values we considered in the experiments from FQE and
the online evaluation. The rightmost column shows the Spearman’s rank correlation coefficient (⇢)
which is the correlation coefficient between the two sets of rankings. Notably, the values selected
via FQE match the values we obtained from the online evaluation for 4 out of 6 tasks. In halfcheetah-

m, = 0.5 has the online performance of 74.3 (as reported in Table 1), while the performance from
 = 2 is 72.4 which is only slightly worse. For walker2d-fr, = 2 is at 107.8 (reported in Table
1) and = 3 gives 89.3 when evaluated in the true environment. Even if = 3 was chosen based
on FQE, we can easily see that this is still a substantial improvement compared to the data-logging
policy which has the average normalized score of 39.8.

2In the early stage of algorithm development, we selected the medium configuration from the three environ-
ments in the D4RL benchmark and used M = 20 for all experiments when testing the performance of CBOP.
It turned out that CBOP works well in the HalfCheetah and Walker2d environments without tuning, but we
found that we needed to have a larger value ensemble to get reasonable performance in the Hopper environ-
ment. We chose M = 50. since it worked well and this choice is also supported by previous work (An et al.,
2021). Accordingly during hyperparameter tuning, we used M = 50 for Hopper and M = 20 for the other
two environments.

17

Published as a conference paper at ICLR 2023

Table 4: Comparing the rankings of the LCB coefficient based on the online evaluation and FQE
(Paine et al., 2020)

 Rank correlation

Task Name Ranking 0.5 2.0 3.0 5.0 (⇢)

halfcheetah-m FQE 2 1 3 4
0.8

Online 1 2 3 4

halfcheetah-mr FQE 1 2 4 3
0.8

Online 1 2 3 4

halfcheetah-fr FQE 3 1 2 4
0.8

Online 2 1 3 4

walker2d-m FQE 4 2 1 3
1.0

Online 4 2 1 3

walker2d-mr FQE 4 1 2 3
1.0

Online 4 1 2 3

walker2d-fr FQE 3 2 1 4
0.8

Online 3 1 2 4

0.950 0.975 1.000 1.025
EDAC
CB2P

0HGiDQ

0.92 0.94 0.96 0.98

I40

0.84 0.86 0.88

0HDQ

0.17 0.18 0.19 0.20

2StiPDOity GDS

HuPDQ 1orPDOizHG 6corH

Figure 6: RLiable results across all 18 locomotion tasks. Shaded regions show 95% CIs. We refer
readers to (Agarwal et al., 2021) for detailed explanation of the metrics considered.

Overall, the Spearman’s rank correlation values are always greater than or equal to 0.8, suggesting
that the rankings from FQE align very well with those from the online evaluation. This suggests that
(1) CBOP can be reliably tuned solely with an offline dataset via FQE and that (2), with the benefit
of hindsight, our selection of values in Table 3 is a valid one.

Other considerations CBOP trades off the uncertainty of the learned dynamics model with that of
the learned Q ensemble. In practice, we use the ensemble models to implicitly capture the respective
epistemic uncertainty. Hence, it is critical that the models we use indeed exhibit well-calibrated
uncertainty in their predictions. In this regard, we found that it is useful to incorporate the gradient
diversification loss for the Q ensemble as introduced in An et al. (2021), which helps prevent the
uncertainty in predictions from collapsing. Instead of tuning the hyperparameter ⌘ that controls the
level of gradient diversification loss, we use a fixed number ⌘ = 1 across all experiments.

Please note that the use of the ensemble diversification trick is orthogonal to our contributions in
this work. Furthermore, we provide a reliable performance comparison between CBOP and EDAC
to validate that CBOP outperforms EDAC. To this end, we use RLiable (Agarwal et al., 2021)
which provides various metrics other than the simple average to more reliably determine the relative
performances of compared methods. Specifically, we have reproduced EDAC and compared its
performance against CBOP using the Median, IQM (interquartile mean), Mean, and Optimality
Gap (Figure 6). In all metrics considered, CBOP exhibits substantially better performance without
overlapping 95% confidence intervals (CI). In fact, another important performance metric, called
the probability of improvement, of CBOP against EDAC is 88.27%, which strongly indicates the
superiority of CBOP.

18

Published as a conference paper at ICLR 2023

Table 5: A full comparison across three environments showing the difference between the values
predicted by the learned Q functions and the true discounted returns from the environment.

CQL CBOP

Task name Mean Max Mean Max

hopper-m -61.84 -3.20 -55.83 -16.21
hopper-mr -142.89 -28.73 -172.45 -39.45
hopper-me -79.67 -5.16 -114.39 -11.24

halfcheetah-m -222.43 -180.97 -106.24 -66.97
halfcheetah-mr -363.00 -198.42 -84.42 -8.48
halfcheetah-me -310.95 -23.74 -210.51 -54.58

walker2d-m -167.36 -8.88 -84.70 -15.00
walker2d-mr -285.02 -25.44 -80.31 -14.06
walker2d-me -156.71 -64.64 -75.89 -42.30

(a) hopper-m (b) hopper-me (c) hopper-mr

Figure 7: The distribution of difference between policy values predicted by algorithms and Monte
Carlo policy evaluation results in the true environment. Here, s ⇠ D, a = ⇡(s).

D ADDITIONAL EXPERIMENTS

D.1 CONSERVATISM ANALYSIS

In Section 4.3, we have empirically verified that CBOP indeed learns a conservative value function.
Specifically, given the offline dataset D, we compute the following value difference:

Es⇠D
⇥
V̂
⇡(s)� E[V ⇡(s)]

⇤
(11)

where we compute the true value E[V ⇡] via the Monte Carlo estimation in the true environment.
We have provided the comparison of CQL and CBOP evaluated in the hopper environment in Table
2, and Figure 7 shows the full histograms of (11) for in this environment. Furthermore, Table
5 includes the results from all three MuJoCo locomotion environments. We can clearly see that
CBOP has learned a conservative value function in these tasks.

D.2 DECOMPOSITION OF h-STEP RETURN VARIANCE

In Section 3.2, we have shown that the variance of h-step returns can be decomposed into A and B

terms according to the law of total variance, which we restate here for ease of exposition:

�
2
h
= Var⇡✓

h
R̂h|⌧

i
= E

f̂k

h
Var⇡✓

h
R̂h|⌧, f̂k

ii

| {z }
A

+Var
f̂k

h
E⇡✓

h
R̂h

��� ⌧, f̂k
ii

| {z }
B

. (12)

Here, A reflects the epistemic uncertainty from the Q�0 ensemble, while B accounts for the uncer-
tainty derived from the learned dynamics ensemble. The beauty of CBOP is that it can capture both
uncertainties by sampling through the dynamics and value ensembles and subsequently compute the
value target in a conservative way through the Bayesian posterior formulation. A natural question
may be whether A would vanish and become unnecessary when the policy and value function have
converged?

19

Published as a conference paper at ICLR 2023

(a) hopper-expert (b) hopper-random

Figure 8: The distribution of the ratio, A

A+B
= E

f̂k

h
Var⇡✓

h
R̂h|⌧, f̂k

ii
/�

2
h

, from (12) when ⇡✓ and
Q� are trained with the hopper-r dataset. (a) evaluates ⇡✓ and Q� with (s,a) sampled from the
hopper-e dataset; (b) is the result from evaluating with the hopper-r dataset. The histogram shows
the empirical distribution based on a batch of samples. Probability density functions are the kernel
density estimation results corresponding to each histogram with the same color.

To answer this question, recall that in the offline setting, the logged data will typically only cover
a subset of the state-action space. Hence, when we use the learned dynamics ensemble to forward
sample rollout trajectories during the target value estimation procedure in CBOP, some of the tra-
jectories will inevitably visit unseen states. Even after the policy and the value have sufficiently
converged, the rolled out trajectories will still visit OOD states (in fact, as the learned policy has
shifted from the behavior policy, it is more likely that it visits more OOD states during the rollouts).
Thus, we can say that the A term will not (and should not) vanish at these OOD state/actions such
that CBOP can account for the epistemic uncertainty in the value and act conservatively against it.

We have further empirically verified the relative contributions of the A and B terms, respectively,
after the policy/value have converged. Firstly, we considered the case when a policy and value
ensemble learned with the hopper-r dataset is used for sampling the h-step returns R̂h starting from
a set of initial states randomly selected from the hopper-e dataset. Roughly speaking, this setup
would ensure that we evaluate the total variance at states and actions that the policy/value have not
been trained with. Thus, we expect a relatively large amount of epistemic uncertainty still left in the
A term. On the other hand, we also evaluated the learned policy/value from the states sampled from
the same dataset they were trained with (i.e., hopper-r). In this case, we would like to see relatively
little epistemic uncertainty left in A since the policy and value were repeatedly trained with those
states and actions.

To this end, we retrieved the policy and value ensemble checkpoints trained with the hopper-r

dataset. Then, we calculated the proportion of A with respect to the total variance, A

A+B
, per each

h-step return per each (s,a) sample, which was sampled randomly from either the hopper-e or
hopper-r dataset.

As expected, Figure 8(a) shows that there is a significant amount of variance left in the A term even
though we have evaluated the converged policy and value function since they were evaluated with
OOD states/actions. Especially when h is small, the A term contributes more to the total variance
than when h is large. As h increases, we can see that the weight shifts gradually towards B, which
indicates there is more uncertainty in the model-based estimates of the returns for longer horizon
rollouts. In contrast, Figure 8(b) shows much less contributions from A compared to B even for
smaller h.

We studied the trends from other tasks as well. Specifically, we picked the m and fr D4RL con-
figurations from the three MuJoCo environments and performed the same evaluations as discussed
above. This time, the policy/value function trained with a certain dataset were evaluated with the
same dataset to see if there is still a meaningful epistemic uncertainty left in A term after conver-
gence. Figure 9 clearly shows that, in most of the cases, the contribution from A to the total variance
is not negligible, despite the policy/value being already converged. Similar to the hopper-r case, A
generally contributes more than B does for small h values. As discussed, this is an intuitive result

20

Published as a conference paper at ICLR 2023

(a) hopper-medium (b) hopper-full-replay

(c) halfcheetah-medium (d) halfcheetah-full-replay

(e) walker2d-medium (f) walker2d-full-replay

Figure 9: The distribution of the ratio, A

A+B
= E

f̂k

h
Var⇡✓

h
R̂h|⌧, f̂k

ii
/�

2
h

, from (12). The his-
togram shows the empirical distribution based on a batch of samples. Probability density functions
are the kernel density estimation results corresponding to each histogram with the same color.

since the learned model would typically be quite accurate for single-step predictions, hence smaller
B compared to A.

It is also notable that in the fr tasks of the hopper and halfcheetah environments shown in Figure
9(d) and 9(b), much more contribution is coming from B even for small h (however, A still has
noticeable contribution). Note that (1) the fr (full-replay) dataset was curated such that it covers
all transition samples encountered by various policies, starting from a random policy all the way to
an expert policy. Now, also note that (2) since we pre-train the dynamics model and fix it during
policy training, the epistemic uncertainty baked in the dynamics ensemble is kept fixed, whereas the
uncertainty in the value ensemble can diminish as training continues. These two factors combined
can explain why we would see more contributions in the total variance from B rather than A in the
fr datasets.

D.3 ABLATIONS

In this part, we provide additional ablations that complement the results presented in the main text.

The effectiveness of conservatism via LCB compared to MAP STEVE (Buckman et al., 2018)
introduced an adaptive weighting scheme for MVE, which corresponds to the MAP estimation of

21

Published as a conference paper at ICLR 2023

(a) halfcheetah-v2 (b) hopper-v2

(c) walker2d-v2

Figure 10: Comparison of the MAP estimation and the LCB estimation in the D4RL MuJoCo bench-
mark tasks. Experiments are run with 3 random seeds.

the posterior we get in (7). In this part, we provide the complete ablations comparing CBOP and
STEVE in all tasks.

In Figure 10(a), we see that STEVE performs comparably to CBOP in 4 of the 6 tasks, where small
 have been used in CBOP (Table 3). However, for the medium-expert and expert tasks — where
we have used = 3 and 5, respectively — CBOP outperforms STEVE.

The differences in the performances are even more striking in the other two environments. Figure
10(b) and 10(c) show that CBOP significantly outperforms STEVE, suggesting that conservatism
plays a crucial role. It is worth reasserting that the original adaptive weighting scheme derived in
STEVE does not lend itself to a conservative value estimation as we can do with CBOP.

The effectiveness of the Bayesian weighting scheme In Section 4, we have presented a part of
the ablations comparing the adaptive weighting scheme of CBOP with the fixed weighting scheme,
i.e., uniform and � weighting. The weights in the uniform weighting correspond to wh = 1

H+1 ,
while those in the �-weighting are wh = 1��

1��H+1�
h. In the latter, the larger the � parameter, the

more weight is allocated to longer-horizon model-based rollouts; � = 1 corresponds to solely using
the H-step MVE target, whereas � = 0 bootstraps immediately at s0 as in the model-free case.

In order to better isolate the impact of the different weighting schemes, we have used the conser-
vative value estimation for these two fixed weighting schemes as well. More concretely, we have
sampled M ⇥K R̂h samples for h = 0, . . . , H and computed the weighted sums (

P
H

h=0 whR̂h) to
get MK samples of target values. With these samples, we have computed the empirical mean and
the variance, from which we have taken the LCB µ� · � as the target values.

22

Published as a conference paper at ICLR 2023

(a) halfcheetah-random (b) halfcheetah-medium

(c) halfcheetah-medium-replay (d) halfcheetah-medium-expert

Figure 11: Comparing the fixed weighting schemes and CBOP on the halfcheetah environment.
Experiments are run with 3 seeds.

(a) hopper-random (b) hopper-medium

(c) hopper-medium-replay (d) hopper-medium-expert

Figure 12: Comparing the fixed weighting schemes and CBOP on the hopper environment. Experi-
ments are run with 3 seeds.

Figure 11 - 13 show the results on the halfcheetah, hopper, and walker2d environments, respectively.
We have found that the fixed weighting does not work in the walker2d tasks, regardless of the �
values. Also, CBOP has significantly outperformed the fixed weighting schemes in narrow datasets
(i.e., medium-expert) across all environments.

23

Published as a conference paper at ICLR 2023

(a) walker2d-random (b) walker2d-medium

(c) walker2d-medium-replay (d) walker2d-medium-expert

Figure 13: Comparing the fixed weighting schemes and CBOP on the walker2d environment. Ex-
periments are run with 3 seeds.

In some tasks — such as medium and medium-replay tasks in hopper and halfcheetah environments,
there are some � values that can show similar performances as CBOP. However, large fluctuations
across different � values as exhibited in halfcheetah-medium and hopper-medium suggest that find-
ing � that works robustly across all tasks may be impossible. On the contrary, the adaptive Bayesian
weighting scheme of CBOP can work reliably across all tasks considered.

Additional Baseline: quantile-based conservative MVE We have seen that CBOP is able to
adaptively regulate the reliance on model-based and model-free value estimates while acting con-
servatively with respect to both. The uncertainties in the learned dynamics model and the value
function are captured through the sampling procedure we detailed in Section 3.2. The ablation
studies presented in Section 4.4 show the strong merits that the Bayesian interpretation provides us
through the adaptive control of the roll-out horizon and the conservative value estimates from the
Bayesian posterior. Here, we further strengthen the case and ablate the benefits of being Bayesian
by comparing CBOP against another baseline that we dub Distributional MVE (DiMVE).

Instead of forming a Bayesian posterior over Q̂⇡ , DiMVE simply aggregates all MKH return sam-
ples that we collect from a single pass of forward sampling. Then, it performs a quantile-based
conservative value estimation. Formally, let

R̂
m,k

h
(s,a, s0) :=

hX

t=0

�
t
r̂t(ŝ

(k)
t

, â(k)
t

) + �
h+1

Q
m

�0(ŝ
(k)
h+1, â

(k)
h+1)

be the roll-out collected using the kth particle from the model ensemble and the mth particle from
the value ensemble. The goal of DiMVE is to empirically estimate the left ↵-quantile of the posterior
return distribution induced by the model ensemble for ↵ 2 (0, 1]:

ŷDiMV E(↵) = inf {y 2 R : P(ŷ(s,a, s0) y) > ↵} . (13)

Let R̂1 R̂2 . . . R̂M⇥K⇥H be the ordering of the R̂
m,k

h
, in the case where the samples are

unique the DiMVE estimate can be written simply as

ŷDiMV E(↵) ⇡ R̂b↵⇥M⇥K⇥Hc.

24

Published as a conference paper at ICLR 2023

Table 6: Comparison of CBOP and DiMVE

Task name CBOP DiMVE (best ↵)

halfcheetah-m 74.3± 0.2 70.9± 0.6 (0.3085)
halfcheetah-mr 66.4± 0.3 65.0± 0.3 (0.3085)
halfcheetah-me 100.4± 0.9 84.4± 6.6 (0.3085)
halfcheetah-fr 85.5± 0.3 83.4± 0.8 (0.4)

walker2d-m 95.5± 0.4 65.1± 3.4 (0.3085)
walker2d-mr 92.7± 0.9 88.5± 0.2 (0.3085)
walker2d-me 117.2± 0.5 113.0± 9.8 (0.3085)
walker2d-fr 107.8± 0.2 104.6± 1.0 (0.3085)

Table 6 compares the performance of CBOP and DiMVE for the walker2d and halfcheetah

environments with the m, mr, me, and fr dataset configurations, where ↵ was tuned among
{0.4, 0.3085, 0.0228, 0.0013, 2.87 ⇥ 10�7

}. Here, the last four ↵ values correspond to =
0.5, 2.0, 3.0, 5.0, respectively, if assuming the R̂

m,k

h
samples are normally distributed. We noted

that ↵ value smaller than 0.3085 resulted in value divergence towards negative infinity, and so we
report the performance with the best ↵ values in Table 6. Clearly, CBOP outperforms the baseline
in all tasks, showing the effectiveness of our Bayesian formulation. Furthermore, we found DiMVE
to be more unstable during training and it consistently showed larger variances in the performance.

25

