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Abstract

Deep generative models can generate high-fidelity audio conditioned on various
types of representations (e.g., mel-spectrograms, Mel-frequency Cepstral Coef-
ficients (MFCC)). Recently, such models have been used to synthesize audio
waveforms conditioned on highly compressed representations. Although such
methods produce impressive results, they are prone to generate audible artifacts
when the conditioning is flawed or imperfect. An alternative modeling approach is
to use diffusion models. However, these have mainly been used as speech vocoders
(i.e., conditioned on mel-spectrograms) or generating relatively low sampling
rate signals. In this work, we propose a high-fidelity multi-band diffusion-based
framework that generates any type of audio modality (e.g., speech, music, envi-
ronmental sounds) from low-bitrate discrete representations. At equal bit rate,
the proposed approach outperforms state-of-the-art generative techniques in terms
of perceptual quality. Training and evaluation code are available on the face-
bookresearch/audiocraft github project. Samples are available on the following
link.

1 Introduction

Neural-based vocoders have become the dominant approach for speech synthesis due to their ability to
produce high-quality samples [Tan et al., 2021]. These models are built upon recent advancements in
neural network architectures such as WaveNet [Oord et al., 2016] and MelGAN [Kumar et al., 2019],
and have shown impressive results in generating speech with natural-sounding intonation and timbre.

In parallel, Self-Supervised Learning (SSL) applied to speech and audio data [Hsu et al., 2021, van den
Oord et al., 2019] have led to rich contextual representations that contain more than lexical content,
e.g., emotion and prosody information [Kharitonov et al., 2022, Kreuk et al., 2022a]. Generating
waveform audio from such representations is hence a new topic of interest [Liu et al., 2019, Polyak
et al., 2021, Huang et al., 2022]. This is often performed in a two stage training pipeline. First, learn
audio representations using SSL objectives, then, decode the speech using Generative Adversarial
Networks (GAN) approach such as the HiFi GAN model [Kong et al., 2020a]. Even though these
methods perform well, they are known to be unstable, difficult to train and prone to add audible
artifacts to the output waveform.

Compression models [Zeghidour et al., 2021, Défossez et al., 2022] can also be considered as SSL
models that use the reconstruction loss as a way to learn meaningful representations of the data. Unlike
models described before, compression models are trained in an end-to-end fashion, while learning
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Figure 1: MULTI-BAND DIFFUSION process (resp. reverse process). The first step consists of a
reversible operation (EQ Processor) that normalizes the energy within frequency bands to resemble
that of a standard Gaussian noise. The audio is then filtered into non-overlapping bands. Each band
has its own diffusion process using a specifically tuned version of the proposed power noise schedule.

both audio representation (often a discrete one) and synthesis, and can model a large variety of audio
domains. They are optimized using complex combinations of specifically engineered objectives
including spectrogram and feature matching, as well as multiple adversarial losses [Défossez et al.,
2022]. Even though they have impressive performance compared to standard audio codecs, e.g.,
Opus [Valin et al., 2012], they tend to add noticeable artefacts when used at very low bit rates (e.g.
metallic voices, distortion) that are often blatantly out of distribution.

After model optimization the learned representation can also be used for different audio modeling
tasks. Kreuk et al. [2022b] presented a textually guided general audio generation. Wang et al. [2023]
proposed a zero shot text to speech approach. Agostinelli et al. [2023] demonstrated how such
representation can be used for text-to-music generation, while Hsu et al. [2022] followed a similar
modeling approach for silent video to speech generation.

In this work, we present MULTI-BAND DIFFUSION (MBD), a novel diffusion-based method. The
proposed approach can generate high-fidelity samples in the waveform domain of general audio,
may it be speech, music, environmental sounds, etc. from discrete compressed representations.
We evaluate the proposed approach considering both objective metrics and human studies. As we
demonstrate empirically, such an approach can be applied to a wide variety of tasks and audio
domains to replace the traditional GAN based decoders. The results indicate that the proposed
method outperforms the evaluated baselines by a significant margin.

Our Contributions: We present a novel diffusion based model for general audio synthesis. The
proposed method is based on: (i) a band-specific diffusion model that independently processes
different frequency bands, allowing for less accumulative entangled errors; (ii) a frequency equalizer
(EQ) processor that reduces the discrepancy between the prior Gaussian distribution and the data
distribution in different frequency bands; and (iii) A novel power noise scheduler designed for
audio data with rich harmonic content. We conduct extensive evaluations considering both objective
metrics and human study, demonstrating the efficiency of the proposed approach over state-of-the-art
methods, considering both GAN and diffusion based approaches.

2 Related work

Neural audio synthesis has been originally performed with sample level autoregressive models such as
Wavenet [Oord et al., 2016]. This type of architecture is notoriously slow and difficult to train. Speech
synthesis is one of the dominant area of audio synthesis research. Vocoders are models designed to
generate waveform speech from low level phonetic or acoustic features. Different approaches, often
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conditioned on mel-spectrograms, have been explored for this task, including GAN-based methods
such as HiFi-GAN [Kong et al., 2020a, Kumar et al., 2019]. Polyak et al. [2021] used HiFi-GAN on
other types of conditioning. This method generate speech conditioned on low bit rate representations
learned from self-supervised methods such as HuBERT [Hsu et al., 2021] VQ-VAE [van Niekerk et al.,
2020] or CPC [van den Oord et al., 2019] together with the fundamental frequency f0 and a speaker
embedding. By using only a few centroids for clustering, the speech content representation becomes
largely disentangled from the speaker and the fundamental frequency (f0), enabling controllable
speech generation.

Diffusion-based vocoders are inspired by the recent success of diffusion for image generation [Ho
et al., 2020, Saharia et al., 2022, Dhariwal and Nichol, 2021, Ramesh et al., 2022]. Kong et al.
[2020b] introduced Diffwave, a diffusion-based vocoders, that applies the vanilla diffusion equations
to waveform audio. Compared with the adversarial approach, diffusion offers a simpler L2 Loss
objective, and stable training. PriorGrad [Lee et al., 2021] is an extension of Diffwave that uses non
standard Gaussian noise in the diffusion process. The authors extract the energy of the conditioning
mel-spectrogram and use it to adapt the prior noise distribution to the target speech. Wavegrad [Chen
et al., 2020] is similar but uses conditioning on continuous noise levels instead of discrete ones. This
allows the model to perform the sampling using any noise schedule with a single training. Takahashi
et al. [2023] look at singing voices, which is a more complex distribution than standard read speech
due to wider spectrum, and increased diversity. Inspired by super-resolution cascaded techniques
from image diffusion [Ho et al., 2022], they used hierarchical models. The first diffusion model
synthesises at a low sampling rate while later ones, conditioned on the output of their predecessor,
perform upsampling. This process can yield high-quality, high-resolution audio samples. Recent
work [Pascual et al., 2022] applies diffusion to generating full band audio at high sampling rate,
although the proposed methods allows for unconditional generation, and flexible style transfer, it
remains limited to a narrow range of audio modalities.

Most diffusion models that sample data from complex high dimensional distributions use upsampling
frameworks [Huang et al., 2023, Takahashi et al., 2023]. This type of cascaded models are achieving
good performance but they are based on series of diffusion processes conditioned on the output of
the previous and thus can not be performed in parallel. In vision, some efforts have been invested in
simplifying diffusion pipelines. SimpleDiffusion [Hoogeboom et al., 2023] presents a framework
that matches results of cascading diffusion models using a single model. The model architecture and
training objective are adapted to focus on low-frequency content while keeping high quality textures.
To the best of our knowledge, this type of idea has not been ported to audio processing as of yet.

Finally, our work offers an alternative to the decoder of adversarial neural audio codecs such
as SoundStream [Zeghidour et al., 2021] and EnCodec [Défossez et al., 2022], which consist
in an encoder, a quantizer, and a decoder, and are trained with combination of losses including
discriminators, spectrogram matching, feature matching, and waveform distances. Our diffusion based
decoder is compatible, but offers higher quality generation as measured by subjective evaluations.

3 Method

3.1 Background

Following Ho et al. [2020], we consider a diffusion process given by a Markov chain q where
Gaussian noise is gradually added to corrupt a clean data point x0 until a random variable xT close
to the standard Gaussian noise is obtained. The probability of the full process is given by

q(x0:T |x0) =

T∏
t=1

q(xt|xt−1), (1)

where q(xt|xt−1) ∼ N (
√
1− βtxt−1, βtI) and (βt)0≤t≤T is usually referred to as the noise sched-

ule. One can efficiently sample any step of the Markov chain t with

xt =
√
ᾱtx0 +

√
1− ᾱtε, (2)

where ᾱt =
∏t

s=0(1 − βs) is called the noise level and ε ∼ N (0, I). Denoising Diffusion Proba-
bilistic Models (DDPM) aims at going from prior noise xT to the clean data point x0 through the
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reverse process

p(xT :0) = p(xT )

T∏
t=1

pθ(xt−1|xt), (3)

where pθ(xt|xt+1) is a learned distribution that reverses the diffusion chain q(xt+1|xt) and p(xT ) is
the so-called prior distribution that is not learned. Under the ideal noise schedule, one can see from
eq. (2) that the prior distribution can be approximated by N (0, I).

Ho et al. [2020] show that the distribution pθ(xt−1|xt) can be expressed as N (µθ(xt, t), σtI) where
µθ can be reparameterized as follow:

µθ(xt, t) =
1√

1− βt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
. (4)

This reparametrization allows to train a neural network εθ to predict the noise in the corrupted data
point xt. To train this neural network, one can use the simple objective given by Ho et al. [2020] that
consists in sampling xt using eq. (2) and optimizing the following L2 loss:

L = Ex0∼d(x0),ε∼N (0,I),t∼U{1,.,T}
(
||ε− εθ(

√
ᾱtx0 +

√
1− ᾱtε, t)||2

)
. (5)

With such a model, one can reverse the diffusion process iteratively using the following equation:

xt−1 =
1√

1− βt

(
xt −

βt√
1− ᾱt

εθ(xt, t)

)
+

√
σtε, (6)

where σ is a parameter that should be chosen between β̃t = (1− ᾱt−1)/(1− ᾱt)βt and βt [Ho et al.,
2020]. In our experiments we always use σt = β̃t.

3.2 Multi-Band Diffusion

The MULTI-BAND DIFFUSION method is based on three main components: (i) Frequency EQ
processor; (ii) Scheduler tuning; and (iii) Band-specific training, which we now describe.

Frequency Eq. Processor The mathematical theory of diffusion processes allows them to sample
from any kind of distribution, regardless of its nature. However, in practice, training a diffusion
network for multiple audio modalities in the waveform domain is an open challenge. We make the as-
sumption that the balance of energy levels across different frequency bands in both the prior Gaussian
distribution and the target distribution is important to obtain an efficient sampling mechanism.

A white Gaussian noise signal has equal energy over all frequencies. However natural sounds such
as speech and music do not follow the same distribution Schnupp et al. [2011], i.e. music signals
tend to have similar energy level among frequency bands that are exponentially larger. For signals of
the same scale, white noise has overwhelmingly more energy in the high frequencies than common
audio signals, especially at higher sample rate (see Fig. 2). Thus during the diffusion process, high
frequency content will disappear sooner than the low frequency counterpart. Similarly, during the
reverse process, the addition of noise given by (6) will have more impact over the high frequencies.

To resolve this issue, we normalize the energy of the clean signal, denoted as x0, across multiple
frequency bands. We split x0 into B components bi, with a cascade of band pass filters equally
spaced in mel-scale. Given the filtered band bi of an audio signal, we normalize as follow,

b̂i = bi ·
(
σϵ
i

σd
i

)ρ

, (7)

where σϵ
i and σd

i denote the energies in the band i for standard Gaussian noise and for the signals
in the dataset, respectively. The parameter ρ controls to what extend we align the energy levels.
For ρ = 0 the processor does not do any rebalancing and ρ = 1 corresponds to matching exactly
the target energy. Given that speech signals often have no content in the high frequency bands, we
compute the parameters σd

i over the music domain to avoid instabilities in (7).
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Figure 2: Standard deviation in 8 mel scale frequency bands (from lows to highs). For data from our
dataset (Original), Equalized data (Processed) and for standard Gaussian Noise (Noise).

Figure 3: Left curves depict a comparison of the noise level ᾱ along the diffusion process for cosine
schedule and our power schedule. Right figure presents spectrograms along diffusion process. The
top row is our power schedule and the bottom row follows cosine schedule.

Scheduler Tuning. The noise schedule is known to entail an important set of hyperparameters in
diffusion models, and to play a critical role in the final quality of the generation [Karras et al., 2022].

A common approach when generating raw waveform is using either linear or cosine schedules [Nichol
and Dhariwal, 2021]. Such schedulers performs good for read speech where the frequency spectrum is
not wide or for low-sampling-rate generation followed by cascaded models that iteratively upsample
the signal. In preliminary experiments, we found such schedules performs poorly when generating
signals at high sampling rate. Hence, we argue that one should prefer a more drastic schedule. We
propose to use p-power schedules, defined as:

βt =

(
p
√
β0 +

t

T
( p
√
βT − p

√
β0)

)p

, (8)

where the variance of the injected noise at the first and last step (β0 and βT ) are hyperparameters.
One could assume that, since the noise schedule used at generation time can be chosen after training,
it is unnecessary to tune the training noise schedule and only focus on the choice of subset S. As
evoked by Chen et al. [2020], in practice, the training noise schedule is a crucial element of diffusion
models. Since the train-time steps are sampled uniformly, the training noise schedule parameterizes
the sampling distribution of the noise level

√
ᾱ. As seen in Fig. 3, using the proposed power schedule

will results in sampling most of the training examples very small amount of noise (i.e. very high ᾱ).

We noticed that for a time step t close to T , i.e. at the end of the diffusion process, the model estimate
ϵθ(xt) of the noise is often worse than simply using xt itself. We hypothesize this is due to the limited
precision when training the model. In that regime, the model can advantageously be replaced by the
identity function, which is equivalent to skipping those timesteps entirely. We thus choose the βt

values such that
√
1− αt is large enough to avoid this phenomenon.

Band-Specific Training. Similarly to the findings in image diffusion models [Song et al., 2020],
audio diffusion models first generate low frequencies and then address high frequencies during the
final stages of the reverse process. Unlike images where high frequencies are only locally connected,
audio data contains complex entanglements of spectrogram content across both time and frequency
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[Schnupp et al., 2011]. As a result, training a diffusion model on full-band audio data would always
provide the ground truth low frequencies when generating high frequencies. It ends up amplifying
the errors committed at the beginning of the generation when unrolling the reverse process.

Following that, we proposed training each frequency band independently, denoted as MULTI-BAND
DIFFUSION . Through preliminary experiments we found such an approach resulted in significant
improvements in the perceptual quality of the samples. Interestingly, dividing the frequency band
along model channels did not yield the same quality improvements. This observation supports our
intuition that, by not providing the model with previously generated content (lower frequencies)
during training, the model can avoid accumulating errors during sampling.

4 Experimental Setup

4.1 Model & Hyperparameters

Overview. Our approach serves as a replacement for EnCodec’s decoder. This approach offers the
advantage of flexibility and compatibility. It allows one to switch between the original decoder and
the proposed diffusion decoder depending on the required trade-off between quality and generation
time.

Architecture. Similarly to Chen et al. [2020], Kong et al. [2020b], Lee et al. [2021], we use a
fully convolutional symmetrical U-net network [Ronneberger et al., 2015] with an alternation of
two residual blocks [Défossez et al., 2021] and downsampling (resp. upsampling in the decoder)
convolutional blocks of stride 4. The input audio conditioning is incorporated in the bottleneck of
the network whereas the timestep t is embedded through a learned lookup table and added at every
layer. According to the recommendation of Hoogeboom et al. [2023], it is advisable to allocate
additional computational resources close to the bottleneck of the network when applying diffusion to
high-dimensional data. Hence, we opted for a growth rate of 4. The weight of one model is 1 GB. A
visual description of the model architecture can be seen in Fig. A.4 in the Appendix.

Input Conditioning. We use the latent representation of the publicly available EnCodec models
at 24kHz [Défossez et al., 2022] which are frozen during training. The embedding sequence
is upsampled using linear interpolation to match the dimension of the UNet bottleneck. In the
experiments we include reconstructions using 1, 2 and 4 for EnCodec code books which correspond
to bit rates of respectively 1.5kbps, 3kbps and 6kbps, when using multiple code books the embedding
used is simply the average of the different code books.

Schedule. We trained our diffusion models using our proposed power schedule with power p = 7.5,
β0 = 1.0e−5 and βT = 2.9e−2. Although we use very few diffusion steps (20) at generation time,
we observed that it is beneficial to use many steps at training time (1000). First, it increases the
versatility of the model since one can sample using any subset of steps S ⊆ {1, . . . 1000}. Second, it
allows the model to be trained on a more diverse range of noise levels

√
ᾱt. In the experiment section

we always use the simplest time steps sub sampling i.e. S = {i ∗ 1000
N , i ∈ {0, 1, ..., N}} where N is

the number of sampling steps (20 if not precised).

Frequency EQ processor. In the experiments we use a band processor that uses 8 mel scale frequency
bands with ρ = 0.4. We compute the values of the bands σd

i on an internal music dataset.

Band Splitting. As described in 3 we use separate diffusion processes. In this work we always use a
split of 4 frequency bands equally space in mel-scale using julius 1 Those bands are not related to
the processor bands. The 4 models share the same hyperparameters and schedule. All models take
the same ENCODEC tokens as conditioning input.

Training. We train our models using Adam optimizer with batch size 128 and a learning rate of 1e-4.
It takes around 2 days on 4 Nvidia V100 with 16 GB to train one of the 4 models.

Computational cost and model size. Diffusion model sampling has an intrinsic cost that is due to
the number of model passes that are required for generation. We provide in Table A.7 the details for
time consumption and number of parameters of MULTI-BAND DIFFUSION .

1https://github.com/adefossez/julius
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4.2 Datasets
We train on a diverse set of domains and data. We use speech from the train set of Common Voice 7.0
(9096 hours) [Ardila et al., 2019] together with the DNS challenge 4 (2425 hours) [Dubey et al., 2022].
For music, we use the MTG-Jamendo dataset (919h) [Bogdanov et al., 2019]. For the environmental
sound we use FSD50K (108 hours) [Fonseca et al., 2021] and AudioSet (4989 hours) [Gemmeke
et al., 2017]. We used AudioSet only for the research that is described in the publication and for the
benefit of replicability. For evaluation, we also use samples from an internal music dataset.

4.3 Evaluation Metrics

Human evaluation. For the human study we follow the MUSHRA protocol [Series, 2014], using a
hidden reference and a low anchor. Annotators were recruited using a crowd-sourcing platform, in
which they were asked to rate the perceptual quality of the provided samples in a range between 1 to
100. We randomly select 50 samples of 5 seconds from each category of the the test set and force
at least 10 annotations per samples. To filter noisy annotations and outliers we remove annotators
who rate the reference recordings less then 90 in at least 20% of the cases, or rate the low-anchor
recording above 80 more than 50% of the time.

Objective metrics. We use two automatic evaluation functions. The first one is the standard
ViSQOL [Chinen et al., 2020] metric. 2. The second one is a novel metric we introduce to measure
the fidelity of the mel-spectrogram of the reconstructed signal compared with the ground truth across
multiple frequency bands. Let us take a reference waveform signal x ∈ RT and a reconstructed signal
x̂ ∈ RT . We normalize x to have unit variance, and use the same scaling factor for x̂. We take the
mel-spectrogram of both, computed over the power spectrum with M mels, and a hop-length H , e.g.,

z = mel

[
x

ϵ+
√
⟨x2⟩

]
, and ẑ = mel

[
x̂

ϵ+
√

⟨x2⟩

]
, (9)

with z, ẑ ∈ RF×T/H . We compute the mel-spectrogram distortion δ = z − ẑ. Finally for each time
step t and frequency bin f , we can compute a Signal-To-Noise ratio. In order to avoid numerical
instabilities, and also not let the metric be overly impacted by near zero values in the ground truth
mel-spectrogram, we clamp the SNR value between −25dB,+25dB, considering that any distortion
lower than -25 dB would have a limited impact on perception, and that beyond +25 dB, all distortions
would be equally bad. Indeed, due to the limited precision used in the computation and training of
a neural network, it is virtually impossible to output a perfectly null level of energy in any given
frequency band, although such empty bands could happen in real signals. Finally we get,

s = clamp [10 · (log10(z)− log10(δ)).,−25dB,+25dB] . (10)

We then average over the time steps, and split the mel-scale bands into 3 equally spaced in mel-scale.
We report each band as Mel-SNR-L (low frequencies), Mel-SNR-M (mid frequencies), and Mel-
SNR-H (high frequencies). Finally we also report the average over all 3 bands as Mel-SNR-A. At 24
kHz, we use a STFT over frames of 512 samples, with a hop length H = 128 and N = 80 mel bands.

5 Results

5.1 Multi modalities model

We first evaluate the performance of our diffusion method compared with ENCODEC on a compression
task. Specifically we extract audio tokens from audio samples using the ENCODEC encoder and
decode them using MULTI-BAND DIFFUSION and the original decoder.

We perform subjective evaluation on four subsets: 50 samples of clean speech from DNS, 50 samples
of corrupted speech using DNS blended with samples from FSD50K, 50 music samples from Jamendo
and 50 music samples from an internal music dataset. All speech samples are reverberated with
probability 0.2 using room impulse responses provided in the DNS challenge. In Table 1, we present
3 subjective studies with different bit rate levels: 6kbps, 3kbps, and 1.5kbps. Note that scores should
not be compared across the studies since ratings are done relatively to the other samples of the study.
We include Opus [Valin et al., 2012] at 6kbps as a low anchor and the ground truth samples. Even

2We compute visqol with: https://github.com/google/visqol using the recommended recipes.
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Table 1: Human evaluations (MUSHRA) scores for 24kHz audio. The mean and CI95 results are
reported. The Opus low anchor and ground truth samples are consistent across all three studies,
delimited by horizontal lines. The other methods used a bit rate of 6kbps for the top study on top,
3kbps for the middle one, and 1.5kbps for the bottom one. Higher scores indicate superior quality.

Method Speech Music Average

Reference 93.86±0.014 92.93±0.021 93.40
Opus 61.14±0.094 34.24±0.147 47.69
ENCODEC 79.03±0.053 84.67±0.062 81.85
MBD (ours) 84.68±0.036 83.61±0.072 84.15
Reference 93.17±0.015 94.45±0.014 93.81
Opus 62.83±0.14 36.17±0.12 49.5
ENCODEC 78.51±0.078 85.55±0.045 82.03
MBD (ours) 84.42±0.042 87.31±0.041 85.87
Reference 94.65±0.012 94.71±0.012 94.78
Opus 44.65±0.057 38.33±0.081 41.49
ENCODEC 49.51±0.072 75.98±0.077 62.75
MBD (ours) 65.83±0.056 75.29±0.076 70.56

Table 2: Human evaluations (MUSHRA) scores for 24kHz audio. The mean and CI95 results are
reported. The first part of the table reports different methods of ENCODEC tokens at 6kbps decoding
while the second part adds other independent compression baselines at 6 kbps.

Method score

Ground Truth 90.32 ±1.39

MBD 85.16 ±0.93

Encodec 82.73±1.11

PriorGrad 65.16±2.2

HifiGan 82.5±1.25

DAC 84.44±1.14

OPUS 65±2.43

though the comparison with ENCODEC is done with different model sizes cf Table A.7, original
paper Défossez et al. [2022] makes it clear that the number of parameters of the model is not a
limiting factor of their method.

Multi-Band Diffusion outperform EnCodec on speech compression by a significant margin, up to
30% better, while being on part on music data. Averaging across modalities, our method outperforms
EnCodec for all bit rates. Qualitatively, we observed that GAN-based methods have a tendency
to introduce very sharp and straight harmonics that can lead to metallic artifacts. On the other
hand, our diffusion method produces more blurred high-frequency content. We provide a number of
spectrogram in the Supplementary Material, Section A.2.

In table 2, we compare our approach with other decoders baseline trained using the same condition
and data as our model. Specifically we compare to HifiGAN Kong et al. [2020a] and PriorGrad Lee
et al. [2021] using the hyper parameters proposed on their original papers.

The second part of table 2 adds comparisons to other end to end audio codecs that do not rely on
ENCODEC. Specifically it adds the pretrained model of DAC Kumar et al. [2023] at 6kpbs which is a
different audio codec at 24khz. We show ENCODEC + MULTI-BAND DIFFUSION is on part with
DAC that uses a different quantized space. It is likely that training our MULTI-BAND DIFFUSION on
the audio tokens of DAC would results in even higher audio quality.
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Table 3: Objective and subjective metrics comparing the reconstruction performances of our model
and ENCODEC across bit rates.

Setting ViSQOL (↑) Mel-SNR-L (↑) Mel-SNR-M (↑) Mel-SNR-H (↑) Mel-SNR-A (↑)

MBD @1.5kbps 3.20 ±0.02 10.09 8 .03 8.26 8.79
ENCODEC@1.5kbps 3.33±0.02 9.61 10.8 13.37 11.36

MBD 3.0 kbps 3.47±0.02 11.65 8.91 8.69 9.75
ENCODEC@3.0kbps 3.64±0.02 11.42 11.97 14.34 12.55

MBD @6.0 kbps 3.67±0.02 13.33 9.85 9.26 10.81
ENCODEC@6.0kbps 3.92±0.02 13.19 12.91 15.21 13.75

Table 4: Comparing the reconstruction performances of our model at 6kbps.
Setting ViSQOL (↑) Mel-SNR-L (↑) Mel-SNR-M (↑) Mel-SNR-H (↑) Mel-SNR-A (↑)

MBD @6.0 kbps 3.67±0.02 13.33 9.85 9.26 10.81
w-o Processor 3.38±0.02 13.16 9.68 8.46 10.43
Linear Schedule 2.93±0.03 10.65 7.10 7.73 8.49
Cosine Schedule 3.29±0.03 12.88 9.60 9.59 10.69
Single Band 3.32±0.02 12.76 9.82 8.58 10.39
‘

5.2 Ablations

In this section we use objective metrics to compare the reconstruction performances. We compute
for every experiments the ViQOL score and Mel-SNR on 3 mel spec bands. Objective metrics are
computed on the same 4 types of modalities as in section 5.1 using 150 samples per category. Even
though those metrics seem to not correlate well with human evaluation across different model families
(c.f. Tables 1 and 3) in our testing it was accurately measuring the improvements in quality resulting
from small design changes. In Table 3, we compare the reconstruction performances of Multi-Band
Diffusion and Encodec at different bit rates. It is notable that overall Encodec achieves better objective
reconstruction metrics while being outperformed in subjective evaluations. We argue that such models
are better in spectral distance metrics due to their specific training for content reconstruction. On the
other hand, diffusion based methods do not use feature or spectrogram matching and tend to create
samples that are more "in distribution" resulting in more natural audio. Diffusion based methods
have more freedom to generate something that will be different from the original audio. They are
optimized to keep maximize likelihood of their output with respect to the train dataset. The optimal
method might be different depending on the purpose. However we claim that our MULTI-BAND
DIFFUSION is preferable for most generative tasks based on generation in the codec space.

To evaluate the impact of our individual contributions we performed an ablation study that evaluates
models in the exact same setting when removing one element introduced in this article.

According to the findings of our study, increasing the number of steps to 20 results in improved
output quality. However, further increasing the number of steps shows diminishing returns (results
available in the Appendix Table 4). In comparison to our approach utilizing four models, a single
model performs less effectively. Despite employing a similar number of neural function estimations it
has worse audio quality and worse scores in every metrics. By leveraging our processor to rebalance
the frequency bands, we achieved a notable enhancement of 0.2 in ViSQOL scores. Additionally, our
proposed schedule demonstrates a performance increase of 0.4 and 0.2 when compared to standard
linear and cosine schedules Nichol and Dhariwal [2021]. Moreover, our proposed data processing
technique also leads to a 0.2 increase in ViSQOL scores. The figures displayed in table 3 indicate
that the high frequencies (Mel-SNR-H) are primarily affected by this processing technique.

5.3 Text to audio

Although our model alone cannot generate audio without conditioning, we show that when combined
with a generative language model on the audio tokens, it provides substantial quality enhancements.

Text to Speech. Using language models on audio codecs has recently gained interest for Text to
Speech. Methods such as VALL-E Wang et al. [2023] or SPEAR-TSS Kharitonov et al. [2023]
achieved convincing results on this task. We claim that one can improve the quality of the final
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Table 5: Human evaluations (MUSHRA) decoding token sequences from various methods.

Method Bark MusicGen
Speech Singing Voices Average Music

ENCODEC 64.34±3.6 61.85±4.2 63.10 70.99±1.19

MBD 76.04±2.9 73.67±3.4 73.86 74.97±1.94

audio by just switching to our MULTI-BAND DIFFUSION token decoder To test that claim we use the
implementation and pretrained models from Bark3 that are publicly available. Bark is composed of
three transformer models. The initial model converts text input into high-level self-supervised audio
tokens, while the second and third models sequentially process these tokens to produce Encodec
tokens with two and eight codebooks, respectively. We used our trained diffusion models to decode
the final token sequences. We generated 50 text prompts from Bark in all supported languages.
We also include 50 prompts using the music note emoji as suggested in the official Github page
to generate some singing voices. We removed from the subjective tests the samples for which the
language model failed to generate any voice, in our experiments using pretrained bark this append for
less than 5% of speech prompts and around30% singing voice prompts. Table5 presents the results,
and we include the Encodec generation used in the original code base as a baseline.

Text to Music. There has been a significant advancement in the field of music generation us-
ing language modeling of audio tokens. Recently, this progress has been exemplified by Musi-
cLM [Agostinelli et al., 2023] and MusicGen [Copet et al., 2023], which have greatly improved
text-to-music generation. In order to demonstrate the versatility of our decoding approach, we utilized
the open source version of MusicGen and trained a diffusion model conditioned with the tokens
produced by its compression model. Our model is trained on the same dataset as the EnCodec model
used by MusicGen, with a sampling rate of 32kHz. Additionally, we match the standard deviation of
16 mel scaled bands with the compression model output.

Notably, our method achieved a MUSHRA score improvement of +4 compared to standard MusicGen
(see Table 5). Overall, the artifacts generated by the diffusion decoder are less pronounced. We find
that in music containing complex elements, such as fast drum playing, the outputs from MULTI-BAND
DIFFUSION are much clearer than the original ones.

6 Discussion

In summary, our proposed diffusion-based method for decoding the latent space of compression
models offers significant improvements in audio quality compared to standard decoders. While it
does require more compute and is slower, our results demonstrate that the trade-off is well worth it.
Our approach generates audio that is more natural and in distribution, with fewer artefacts compared
to existing methods. However, it is worth noting that our method may not be suitable for all use cases.
For instance, if real-time performance is a critical factor, our approach may not be ideal.

Ethical concerns. Our approach, although not categorized as generative AI, can seamlessly integrate
with techniques like Wang et al. [2023] to enhance the authenticity of generated voices. This
advancement opens up potential missuses such as creating remarkably realistic deep fakes and voice
phishing. Similar to all deep learning algorithms, our method depends on the quality and quantity of
training data. We meticulously train our model on a substantial dataset to optimize its performance
across a wide range of scenarios. Nevertheless, we acknowledge that imbalances in the dataset can
potentially introduce biases that may impact minority groups.
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Figure A.4: The architecture of our diffusion model.

Table A.6: Comparing the reconstruction performances of our model across number of steps at 6kbps.

Setting ViSQOL (↑) Mel-SNR-L (↑) Mel-SNR-M (↑) Mel-SNR-H (↑) Mel-SNR-A (↑)

MBD @6.0 kbps 3.67±0.02 13.33 9.85 9.26 10.81
500 steps 3.70±0.03 13.37 9.74 9.55 10.89
100 steps 3.64±0.03 13.36 9.90 9.42 10.89
10 steps 3.61±0.02 13.40 8.82 8.57 10.26

A Supplementary Material

A.1 Model

See Figure A.4 for a detailed view of the model.

A.2 Additional Results

See Figures A.5 and A.6 for the spectrogram of the generated audio on a few examples. Finally,
Table A.6 studies the impact of the number of diffusion steps.

Table A.7: Table of computational time of MultiBand Diffusion and application for 30 seconds
generations.

Compute time (30s) #parameters

Encodec 0.1s 56M
MBD 21.2s 411M
MusicGen-large + Encodec 102s 3.3B
MusicGen-large + MBD 123s 3.7B
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(a) (b) (c)

Figure A.5: Example of mel spectrograms from speech samples. (a) are generated with Multi Band
diffusion, (b) are the ground truths and (c) are generated with Encodec.
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(a) (b) (c)

Figure A.6: Example of spectrograms from music sample. (a) are generated with Multi Band diffusion,
(b) are the ground truths and (c) are generated with Encodec. In the first two rows, one can see
examples of much sharper spectrograms, especially in the lower frequencies, from our reconstruction
method compared to Encodec. In the third row one can denote that some of the high frequency
spectral content can be less precise and sometimes blurred when using Multi Band diffusion. The last
row is a sample where pitch smoothly changes, compared to our method Encodec fails to properly
resynthesize it.
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