
Under review as a conference paper at ICLR 2021

SUPPLEMENTARY MATERIAL

A STAM NOTATION AND HYPERPARAMETERS

All STAM notation and parameters are listed in Tables 1-5.

Table 1: STAM Notation

Symbol Description

x input vector.
n dimensionality of input data
Ml number of patches at layer l (index: m = 1 . . .Ml)
xl,m m’th input patch at layer l
Cl set of centroids at layer l
cl,j centroid j at layer l
d(x, c) distance between an input vector x and a centroid c
ĉ(x) index of nearest centroid for input x
d̃l novelty detection distance threshold at layer l
U(t) the set of classes seen in the unlabeled data stream up to time t
L(t) the set of classes seen in the labeled data up to time t
k index for representing a class
gl,j(k) association between centroid j at layer l and class k.
D̄l average distance between a patch and its nearest neighbor centroid at

layer l.
vl,m(k) vote of patch m at layer l for class k
vl(k) vote of layer l for class k
k(x) true class label of input x
k̂(x) inferred class label of input x
Φ(x) embedding vector of input x

Table 2: STAM Hyperparameters

Symbol Default Description

Λ 3 number of layers (index: l = 1 . . .Λ)
α 0.1 centroid learning rate
β 0.95 percentile for novelty detection distance threshold
γ 0.15 used in definition of class informative centroids
∆ see below STM capacity
θ 30 number of updates for memory consolidation
ρl see below patch dimension

Table 3: MNIST/EMNIST Architecture

Layer ρl
∆

(incremental)
∆

(uniform)

1 8 400 2000
2 13 400 2000
3 20 400 2000

Table 4: SVHN Architecture

Layer ρl
∆

(incremental)
∆

(uniform)

1 10 2000 10000
2 14 2000 10000
3 18 2000 10000

Table 5: CIFAR Architecture

Layer ρl
∆

(incremental)
∆

(uniform)

1 12 2500 12500
2 18 2500 12500
3 22 2500 12500

16

Under review as a conference paper at ICLR 2021

B BASELINE MODELS

The first baseline is based on the Gradient Episodic Memories (GEM) model (Lopez-Paz & Ranzato,
2017) for continual learning. We adapt GEM in the UPL context using the rotation-prediction
self-supervised loss (Gidaris et al., 2018). We also adopt the Network-In-Network architecture of
(Gidaris et al., 2018). The model is trained with the Adam optimizer with a learning rate of 10−4,
batch size of 4 (the four rotations from each example image), and only one epoch (to be consistent
with the streaming requirement of UPL). GEM requires knowledge of task boundaries: at the end
of each phase (time period with stationary data distribution), the model stores the Mn most recent
examples from the training data – see (Lopez-Paz & Ranzato, 2017) for more details. We set the size
Mn of the “episodic memories buffer” to the same size with STAM’s STM, as described in SM-C.

The second baseline is based on the Memory Aware Synapse (MAS) model (Aljundi et al., 2018)
for continual learning. As in the case of GEM, we adapt MAS in the UPL context using a rotation-
prediction self-supervised loss (Gidaris et al., 2018), and the Network-In-Network architecture. At
the end of each Phase, MAS calculates the importance of each parameter on the last task. These
values are used in a regularization term for future tasks so that important parameters are not forgotten.
Importantly, this calculation requires additional data. To make sure that MAS utilizes the same data
with STAM and GEM, we train MAS on the first 90% of the examples during each Phase, and then
calculate the importance values on the last 10% of the data.

C MEMORY CALCULATIONS

The memory requirement of the STAM model can be calculated as:

M =

Λ∑
l=1

ρ2
l ·∆ +

Λ∑
l=1

ρ2
l · |Cl| (8)

where the first sum term is equivalent to the STM size and the second sum term is the LTM size.

We compare the LTM size of STAM with the learnable parameters of the deep learning baselines.
STAM’s STM, on the other hand, is similar GEM’s a temporary buffer, and so we set the episodic
memory storage of GEM to have the same size with STM.

Learnable Parameters and LTM: For the 3-layer SVHN architecture with |Cl| ≈ 3000 LTM
centroids, the LTM memory size is ≈ 1860000 pixels. This is equivalent to ≈ 1800 gray-scale
SVHN images. In contrast, the Network-In-Network architecture has 1401540 trainable parameters,
which would also be stored at floating-point precision. Again, with four bytes per weight, the
STAM model would require 1860000

1401540×4 ≈ 33% of both GEM’s and MAS’s memory footprint in
terms of learnable parameters. Future work can decrease the STAM memory requirement further by
merging similar LTM centroids. Figure 9(f) shows that the accuracy remains almost the same when
∆ = 500 and |Cl| ≈ 1000. Using these values we get an LTM memory size of 620000, resulting in

620000
1401540×4 ≈ 11% of GEM’s and MAS’s memory footprint.

Temporary Storage and STM: We provide GEM with the same amount of memory as STAM’s
STM. We set ∆ = 400 for MNIST, that is equivalent to 82 ∗ 400 + 132 ∗ 400 + 182 ∗ 400 = 222800
floating point values. Since the memory in GEM does not store patches but entire images, we need
to convert this number into images. The size of an MNIST image is 282 = 784, so the memory for
GEM on MNIST contains 222800/784 ≈ 285 images. We divide this number over the total number
of Phases – 5 in the case of MNIST – resulting in Mt = 285/5 = 57 images per task. Similarly for
SVHN and CIFAR the ∆ values are 2000 and 2500 respectively, resulting in Mt ≈ 1210/5 = 242,
1515/5 = 303, and 285/23 ≈ 13 images for SVHN, CIFAR-10, and EMNIST respectively.

D GENERALIZATION ABILITY OF LTM CENTROIDS

To analyze the quality of the LTM centroids learned by STAM, we assess the discriminative and
generalization capability of these features. For centroid c and for class k, the term gc(k) (defined in
Equation 4) is the association between centroid c and class-k, a number between 0 and 1. The closer
that metric is to 1, the better that centroid is in terms of its ability to generalize across examples of
class-k and to discriminate examples of that class from other classes.

17

Under review as a conference paper at ICLR 2021

For each STAM centroid, we calculate the maximum value of gc(k) across all classes. This gives
us a distribution of “max-g” values for the STAM centroids. We compare that distribution with a
null model in which we have the same number of LTM centroids, but those centroids are randomly
chosen patches from the training dataset. These results are shown Figure 7. We also compare the two
distributions (STAM versus “random examples”) using the Kolmogorov-Smirnov test. We observe
that the distributions are significantly different and the STAM centroids have higher max-g values
than the random examples. While there is still room for improvement (particularly with CIFAR-10),
these results confirm that STAM learns better features than a model that simply remembers some
examples from each class.

Figure 7: Comparison between the distribution of max-g values with STAM and random patches extracted from
the training data.

E EFFECT OF UNLABELED AND LABELED DATA ON STAM

We next examine the effects of unlabeled and labeled data on the STAM architecture (Figure 8). As
we vary the length of the unlabeled data stream (left), we see that STAMs can actually perform well
even with much less unlabeled data. This suggests that the STAM architecture may be applicable
even where the datastream is much shorter than in the experiments of this paper. A longer stream
would be needed however if there are many classes and some of them are infrequent. The accuracy
“saturation" observed by increasing the unlabeled data from 20000 to 60000 can be explained based
on the memory mechanism, which does not update centroids after they move to LTM. As showed in
the ablation studies, this is necessary to avoid forgetting classes that no longer appear in the stream.
The effect of varying the number of labeled examples per class (right) is much more pronounced. We
see that the STAM architecture can perform well above chance even in the extreme case of only a
single (or small handful of) labeled examples per class.

Figure 8: The effect of varying the amount of unlabeled data in the entire stream (left) and labeled data per class
(right).

18

Under review as a conference paper at ICLR 2021

F STAM HYPERPARAMETER SWEEPS

We examine the effects of STAM hyperparameters in Figure 9. (a) As we decrease the rate of α,
we see a degradation in performance. This is likely due to the static nature of the LTM centroids
- with low α values, the LTM centroids will primarily represent the patch they were intialized as.
(b) As we vary the rates of γ, there is little difference in our final classification rates. This suggests
that the maximum gl,j(k) values are quite high, which may not be the case in other datasets besides
SVHN. (c) We observe that STAM is robust to changes in Θ. (d,e) The STM size ∆ has a major
effect on the number of learned LTM centroids and on classification accuracy. (e) The accuracy in
phase-5 for different numbers of layer-3 LTM centroids (and correspnding ∆ values). The accuracy
shows diminishing returns after we have about 1000 LTM centroids at layer-3. (g,h) As β increases
the number of LTM centroids increases (due to a lower rate of novelty detection); if β ≥ 0.9 the
classification accuracy is about the same.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9: Hyperparameter sweeps for α, γ, θ, β, and ∆.

19

Under review as a conference paper at ICLR 2021

G UNIFORM UPL

In order to examine if the STAM architecture can learn all classes simultaneously, but without
knowing how many classes exist, we also evaluate the STAM architecture in a uniform UPL scenario
(Figure 10). Note that LTM centroids converge to a constant value, at least at the top layer, Each
class is recognized at a different level of accuracy, depending on the similarity between that class and
others.

H IMAGE PREPROCESSING

Given that each STAM operates on individual image patches, we perform patch normalization rather
than image normalization. We chose a normalization operation that helps to identify similar patterns
despite variations in the brightness and contrast: every patch is transformed to zero-mean, unit
variance before clustering. At least for the datasets we consider in this paper, grayscale images result
in higher classification accuracy than color.

We have also experimented with ZCA whitening and Sobel filtering. ZCA whitening did not work
well because it requires estimating a transformation from an entire image dataset (and so it is not
compatible with the online nature of the UPL problem). Sobel filtering did not work well because
STAM clustering works better with filled shapes rather than the fine edges produced by Sobel filters.

20

Under review as a conference paper at ICLR 2021

Figure 10: Uniform UPL evaluation for MNIST (row-1) and SVHN (row-2). Per-class/average classification
accuracy is given at the left; the number of LTM centroids over time is given at the center; the fraction of CIN
centroids over time is given at the right.

21

