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Table 3: Datasets, models and neighborhoods used in experiments. RF— Random Forest, NN—
Neural Network, ResNet— Residual Network and NB— Naive Bayes.

Dataset Modality ~ Black-box model acc/R?,  Realistic neighborhood creation methods
IRIS tabular RF classifier, 93% KDEGen [8], RF [36]

MEPS tabular RF regressor, 0.325 [36]

FMNIST image NN classifier, 87% VAEGen [8]

CIFARI10 image ResNet18, 95% VAEGen [8]

Rotten Tomatoes  text NB classifier, 75% Word2VecGen [8]

A  Efficiency of LINEX

It is important to note that the query complexity (i.e. number of times we query the black box to
obtain an explanation) of LINEX is the same as that of LIME since the union of the environments is
the same as a LIME perturbation neighborhood. This is important in todays cloud-driven world where
models may exist on different cloud platforms and posthoc explanations are an independent service
where each call to the model has an associated cost. In terms of running time for two environments,
convergence was fast and running time was approximately 2.5 times that of LIME (LINEX took
2.5 seconds on IRIS for 30 examples as opposed to 1 second by LIME, LINEX took 47 seconds on
MEPS for 500 examples as opposed to 18 seconds by LIME), which is very similar to Smoothed
LIME (S-LIME) (took 2.3 seconds on IRIS and 40 seconds on MEPS) that we still outperform in
majority of the cases.

Realistic neighborhood generation can be time consuming especially for MeLIME since generators
have to be trained which may take up to an hour using a single GPU for datasets such as FMNIST.
After the generator is trained and neighborhood sampled MeLIME takes the same amount of time as
LIME since the model fitting procedure is the same. MAPLE took 1.5 seconds for the IRIS dataset
for 30 examples and 27 seconds for 500 MEPS examples.

A way to further speed up LINEX would be to implement it through embarrassing parallelism which
can easily be done across explanations. This will prevent scaling of the running time in the number of
examples when many explanations are needed. The setting with many explanations is anyway where
we would need efficiency because if only few explanations were desired the slightly higher running
time of LINEX would not be an issue.

B Proof of Theorem 1

Expanding on the proof sketch provided in the main paper we now provide a case wise analysis to
prove Theorem 1.

e w} = wj: If the optimal solutions to both environments in the convex set [—,y]? are the same,
then in the first iteration itself where we fit to the first environment we would have reached the optimal
solution to our problem where w; = wj. This is because in the second iteration where we fit the
second environment to the residual from the previous fit ws = 0 and the algorithm would terminate.
This would imply the output of algorithm 1 would be w = wj.

e w; # wj: When the optimal solutions for the two environments are not equal we consider the
following two cases:

* Opposite sign attributions: If the i*" component of w} and w3 have opposite signs, then
the it" components of the ensemble predictor, wy; and ws; are both at the boundary ~
and —+ respectively if w;; > 0. This is because both try to push the ensemble (i.e. their
sum) towards the sign they have where eventually they reach the boundary £+ and have no
incentive to deviate. Any deviation from these values will lead to a higher least squares error
in their environment, thus making this a NE.

+ Same sign attributions: If the i*" component of w7} and wj have same signs, then the
i*h component of ensemble predictor constructed from the NE is set to the least squares
attribution with a smaller absolute value, i.e., w; = wj;, where |wj;| < |w3;|. Without
loss of generality assume 0 < wj; < w3;, the attribution of the environments’ predictors
in NE, then wq; and w»; have opposite signs, i.e., wy; = v and wy; = w]; — v where the
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ensemble predictor for the ¢t component would be w; = W1; + We; = wi; — 7 + v = wi,,
since any deviation from this would lead to a worse least squares loss for the corresponding
environment. This shows that ensemble predictor is conservative and selects the smaller
least squares attribution.

C Behavior for More than Two Environments

Given Assumptions 1 and 2 we now discuss the behavior of our method for more than two environ-
ments. If the number of environments is odd, then using similar logic to that discussed in the proof
sketch one can see that the feature attribution would be equal to the median of the feature attributions
across all the environments. Essentially, all environments with optimal least squares attributions
above the median would be at 4+, while those below it would be at —~. The one at the median would
remain so with no incentive for any environment to alter its attribution making it a NE. This is a
stable choice that is also likely to be faithful as we have no more information to decide otherwise. On
the other hand if we have an even number of environments the final attribution in this case depends
on the middle two environments in the same manner as the two environment case proved in Theorem
1. Thus, if the optimal least squares attributions of the middle two environments have opposite sign,
then the final attribution is zero, else its the lower of the two attributions in terms of the numerical
value. This happens because the NE for the other environments is = depending on if their optimal
least squares attributions are above/below those of the middle two environments. This again is a
stable and likely to be faithful choice, where also unidirectionality is preferred.

D Experimental Details

D.1 Dataset Details and Hyperparameter Specifications

We describe the datasets and the hyperparameters used for each. We set perturbation neighborhood
sizes 10 (IRIS), 500 (MEPS), 100 (FMNIST-random), 500 (FMNIST-realistic), 100 (CIFAR10-
random), 500 (CIFAR10-realistic), 100 (Rotten tomatoes) for generating local explanations. We
also use 3, 10, 10, 10, 5 as exemplar neighborhood sizes to compute GI, CI and T metrics for the
five datasets respectively. We also use 5—sparse explanations for all cases except FMNIST and
CIFAR10 with realistic perturbations where we follow MeLIME and generate a dense explanation
using ridge penalty with penalty multiplier value of 0.001. The /., bound 7 in Algorithm 1 is set
as the maximum absolute value of linear coefficient computed by running LIME/MeLIME in the
two individual environments. Please look at IRIS dataset first since it contains some of the common
details used across others.

IRIS (Tabular): This dataset has 150 instances with four numerical features representing the sepal
and petal width and length in centimeters. The task is to classify instances of Iris flowers into three
species: setosa, versicolor, and virginica. A random forest classifier was trained with a train/test
split of 0.8/0.2 and yielded a test accuracy of 93%. We provide local explanations for the prediction
probabilities for class setosa. For both random and realistic perturbations, we use a perturbation
neighborhood size of n. For random perturbations, we used the same approach followed by LIME
and sample from a Gaussian around each data point. Realistic perturbations (with the same number
n) were generated using KDEGen [8], a kernel density estimator (KDE) with the Gaussian kernel
fitted on the training dataset to sample data around a sample point. For both random and realistic
perturbations, we weight the neighborhood using a Gaussian kernel of width 7v/d, where d is the
dimension of the feature vector and 7 = {0.05,0.1,0.25,0.5,0.75}, and this corresponded to kernel
widths {0.1,0.2,0.5,1.0,1.5}. We also perform a weighted version of realistic selection where we
use MAPLE [36] to assign weights to all the test examples and pick the top n weighted examples to
use as the perturbation neighborhood. For random/realistic perturbations and realistic selection, the
corresponding environments (of size n each) for LINEX are created by drawing k bootstrap samples
where k = {2, 3,4, 5} in our experiments. We test for n = {10, 20, 30, 40, 50} with this dataset.

Medical Expenditure Panel Survey (Tabular): The Medical Expenditure Panel Survey (MEPS)
dataset is produced by the US Department of Health and Human Services. It is a collection of surveys
of families of individuals, medical providers, and employers across the country. We choose Panel 19
of the survey which consists of a cohort that started in 2014 and consisted of data collected over 5
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rounds of interviews over 2014 — 2015. The outcome variable was a composite utilization feature that
quantified the total number of healthcare visits of a patient. The features used included demographic
features, perceived health status, various diagnosis, limitations, and socioeconomic factors. We filter
out records that had a utilization (outcome) of 0, and log-transformed the outcome for modeling.
These pre-processing steps resulted in a dataset with 11136 examples and 32 categorical features.
We train a random forest regressor that has a test R? of 0.325 in this dataset. We provide local
explanations of the predictions. With MEPS, we do not use realistic perturbations since KDE and
VAE generators do not work well with categorical data. Otherwise the setting is similar as IRIS
data, except that we use n = {50, 100, 200, 300,400,500}. The kernel widths in this case were
{0.28,0.57,1.41,2.83,4.24}. We use k = {2, 3,4, 5} for this dataset.

Fashion MNIST (Images): This dataset has 28 x 28 grayscale images of fashion articles with
60,000 train and 10,000 test samples. The task is to classify these into 10 classes correspond-
ing to coat, shoe, and so on. A neural network trained with test accuracy of 87%. Explanations
are generated for the prediction probabilities corresponding to the predicted class for each ex-
ample. We choose 1000 test examples to generate explanations. Realistic perturbations were
generated using VAEGen [8], a Variational Auto Encoder (VAE) fitted on the training dataset.
For random perturbations, we chose n from {50, 100, 200, 300,400,500} and kernel sizes were
{0.43,0.85,2.14,4.27,6.41}. For realistic perturbations we chose n from {250, 500, 750, 1000} and
the kernel widths were {1.4,2.8,7.0,14.0,21.0}. We use k = {2, 3,4,5} for this dataset.

CIFAR10 (Images): This dataset has 32 x 32 colored images belonging to 10 different classes.
The dataset has 50,000 train and 10,000 test samples. The task is to classify these into 10 classes
corresponding to dog, bird, and so on. A residual network with 18 units (ResNet18) was trained with
test accuracy of ~ 95%. Explanations are generated for the prediction probabilities corresponding
to the predicted class for each example. We choose 1000 test examples to generate explanations.
Realistic perturbations were generated using VAEGen [8], a Variational Auto Encoder (VAE) fitted
on the training dataset. For random perturbations, we chose n from {50, 100, 200, 300, 400, 500}
and kernel sizes were {0.43,0.85,2.14,4.27,6.41}. For realistic perturbations we chose n from
{250, 500, 750, 1000} and the kernel widths were {1.4,2.8,7.0,14.0,21.0}. Weuse k = {2, 3,4, 5}
for this dataset.

Rotten Tomatoes (Text): This dataset contains 10662 movie reviews from rotten tomatoes website
along with their sentiment polarity, i.e., positive or negative reviews and the task is to classify the
sentiment of the reviews into positive or negative. The review sentences were vectorized using
CountVectorizer and TfidfTransformer and a sklearn Naive Bayes classifier was fitted on training
dataset which yielded a test accuracy of 75%. Explanations are generated for the prediction probabili-
ties corresponding to the predicted class for each example. Realistic perturbations were generated
using Word2VecGen [8], wherein word2vec embeddings are first trained using the training corpus and
new sentences are generated by randomly replacing a sentence word whose distance in the embedding
space lies within the radius of the neighbourhood. For both random and realistic perturbations,
n was chosen from {25, 50, 75,100}. The kernel sizes were {0.42,1.06,2.12,3.18} for random
perturbations (kernel size 0.21 resulted in numerical issues), and {0.21,0.42,1.06,2.12, 3.18} for
realistic perturbations. We use k = {2,3,4, 5} for this dataset.

E Results with All Datasets and Hyperparameter Combinations for
Random and Realistic Perturbations

We present results with all hyperparameter combinations for random and realistic perturbations.
Results for LIME with random perturbations (LIME), smoothed LIME (S-LIME), LINEX with
random perturbations (LINEX/rand), MeLIME (MeLIME), LINEX with MeLIME-like realistic
neighborhoods (LINEX/real), MAPLE (MAPLE), LINEX with MAPLE-like realistic neighborhoods
(LINEX/mpl) are presented in figures 5-19. The legend for these figures are given in Figure 4.

For the five datasets, we perform ablations by varying one of perturbation neighborhood size (Figures
5-9), number of environments (Figures 10-14), and kernel width (Figures 15-19). Each point in
these figures are averaged over all possible values for the two parameters that are not ablated. For
example, each point in Figure 5 is averaged over all possible values for kernel widths and number of
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environments for a given perturbation neighborhood size. Standard errors of the mean are also plotted
in the same color with lesser opacity. Lower values of Infidelity (INFD), Generalized Infidelity (GI),
Coefficient Inconsistency (CI) are better whereas for Unidirectionality (1) and Class Attribution
Consistency (CAC) higher values are better.

Figures 5-9 show ablations with respect to perturbation neighborhood sizes. Considering all datasets,
the stability/recourse metrics (CI, T, CAC) are clearly better for LINEX compared to its counter-
parts. For LINEX methods (LINEX/rand, LINEX/real, LINEX/mpl), the metrics get better or stays
approximately the same generally as perturbation neighborhood size increases keeping with the
intuition that larger perturbation neighborhood sizes should produce explanations that are more stable
in the exemplar neighborhood. Y for FMNIST and CIFAR10 are already good for small perturbation
neighborhood sizes possibly because of the quality of MeLIME perturbations.

Turning to the fidelity metrics (INFD and GI) in tabular datasets, we see that the results still favor
LINEX, but less heavily compared to the stability/recourse metrics. This is in line with what we
observe in Table 2. In IRIS and MEPS, LINEX is close to or outperforms the corresponding baselines
in the GI measure (except for LINEX/mpl with MEPS). This gap closes a bit with INFD, but we note
that GI is a better measure since it estimates how faithful explanations are in a exemplar neighborhood.
With the text dataset, LINEX variants are slightly more favored, whereas with the image dataset, the
baselines have an edge.

Considering Figures 10-14, we see that variations are less stark with respect to number of environ-
ments overall for LINEX variants. Note that except for S-LIME, other baselines do not use multiple
environments, and hence stay constant. The slight variations in MAPLE are due to the effect of
random seeds. In the stability/recourse metrics, again LINEX variants emerge as the clear winner
across datssets. With the faithfulness metrics (GI and INFD), in the text dataset, LINEX variants
generally perform better, whereas the baselines have a better performance in the image dataset.

Finally, we study the variation of the performance measures with respect to kernel width in Figures
15-19. We see that the stability/recourse metrics flatten out in all cases with large kernel widths.
This behaviour holds true for faithfulness metrics (GI and INFD) as well except in some cases.
GI and INFD measures also increase before they flatten out since the fit becomes poorer at larger
kernel widths. The stability/recourse metrics become better or remain approximately the same since
explanations generally improve or preserve their stability properties as kernel widths increase. Note
that very small kernel widths can lead to unexpected behavior that does not fit the trend as seen with
the tabular datasets since explanations can become hyper-local. MAPLE and LINEX/mpl stay the
same at different kernel widths since they use a different weighting scheme. As with other ablations,
we see that LINEX variants are similar or better in stability/recourse metrics overall, while with the
faithfulness metrics the results are more mixed.

Note that we do not compute MeLIME perturbations with MEPS since KDE and VAE generators
do not work well with categorical data, and do not use compute CAC since the task is regression.
Further, the features used in explanations for different test examples are not comparable for random
perturbations with FMNIST, CIFAR10 and Rotten Tomatoes, hence we cannot compute CAC for
those cases as well. This explains the missing curves/plots.

LIME
S-LIME
LINEX/rand
MeLime
LINEX/real
MAPLE
LINEX/mpl

PRtthie

Figure 4: Legend for figures 5-19
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7 F Example Feature Attributions in Text Data: MeLIME vs LINEX

ess Below we see sample attributions by the two methods along with the magnitude of the attributions.
e69  Attribution magnitudes are printed with a precision of 10~2 and shown along with the corresponding
670 words in descending order.

671 F.1 Positive Sentiment

672 enticing and often funny documentary .
673 MeLIME: documentary funny and enticing often
674 LINEX : documentary funny often enticing and
675 MeLIME: 0.517 0.446 0.333 0.317 0.311
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a fast , funny , highly enjoyable movie
MeLIME: enjoyable highly funny fast movie
LINEX : enjoyable highly fast funny movie
MeLIME: 0.550 0.432 0.412 0.389 0.198
LINEX : 0.409 0.389 0.372 0.350 0.326

ferrara’s strongest and most touching movie of recent years
MeLIME: touching years most strongest and

LINEX : touching most recent strongest and

MeLIME: 0.735 0.490 0.450 0.443 0.427

LINEX : 0.490 0.488 0.450 0.444 0.407

saved from being merely way-cool by a basic , credible compassion .
MeLIME: cool basic credible merely from
LINEX: cool credible merely compassion from
MeLIME: 1.514 0.050 0.040 0.029 0.026

LINEX : 0.358 0.308 0.304 0.299 0.293

really quite funny .
MeLIME: funny quite really
LINEX : funny quite really
MeLIME: 0.559 0.417 0.233
LINEX : 0.462 0.368 0.275

spare yet audacious .
MeLIME: spare yet audacious
LINEX : audacious spare yet
MeLIME: 0.626 0.447 0.395
LINEX : 0.501 0.431 0.422

an engrossing and infectiously enthusiastic documentary .
MeLIME: engrossing documentary and enthusiastic an

LINEX : engrossing documentary an enthusiastic and
MeLIME: 0.593 0.455 0.358 0.354 0.333

LINEX : 0.461 0.407 0.374 0.357 0.350

a wildly funny prison caper .
MeLIME: funny caper wildly prison
LINEX : funny caper prison wildly
MeLIME: 0.541 0.364 0.214 0.193
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LINEX : 0.403 0.335 0.245 0.239

this charming but slight tale has warmth , wit

and interesting characters compassionately portrayed .
MeLIME: charming compassionately and interesting portrayed
LINEX : charming compassionately has tale portrayed
MeLIME: 0.690 0.507 0.456 0.444 0.424

LINEX : 0.464 0.435 0.431 0.430 0.429

thoughtful , provocative and entertaining .
MeLIME: thoughtful entertaining and provocative
LINEX : thoughtful entertaining and provocative
MeLIME: 0.612 0.517 0.402 0.395

LINEX : 0.505 0.461 0.415 0.404

the film is quiet , threatening and unforgettable
MeLIME: quiet unforgettable and film the

LINEX : unforgettable quiet film and is

MeLIME: 0.597 0.483 0.412 0.325 0.303

LINEX : 0.421 0.416 0.388 0.378 0.338

a moving tale of love and destruction in unexpected places , unexamined lives .
MeLIME: unexpected moving love tale lives
LINEX : moving unexpected places lives in
MeLIME: 0.692 0.662 0.577 0.538 0.499
LINEX : 0.538 0.530 0.521 0.513 0.501

though frodo’s quest remains unfulfilled , a hardy group of
determined new zealanders has proved its creative mettle .
MeLIME: creative group proved has new

LINEX : creative quest its proved determined

MeLIME: 0.602 0.441 0.424 0.402 0.393

LINEX : 0.410 0.392 0.390 0.385 0.381

F.2 Negative Sentiment

originality is sorely lacking .
MeLIME: lacking sorely is originality
LINEX : lacking sorely originality is
MeLIME: 0.543 0.381 0.296 0.278
LINEX : 0.430 0.356 0.314 0.271

an ugly , pointless , stupid movie
MeLIME: stupid pointless ugly movie an
LINEX : stupid pointless ugly movie an
MeLIME: 0.543 0.499 0.385 0.365 0.276
LINEX : 0.446 0.411 0.373 0.360 0.350

so devoid of pleasure or sensuality that it cannot even be dubbed hedonistic .
MeLIME: devoid even be dubbed of

LINEX : devoid so dubbed be cannot

MeLIME: 0.666 0.416 0.413 0.372 0.344

LINEX : 0.400 0.392 0.387 0.380 0.368

neither revelatory nor truly edgy--merely crassly flamboyant
and comedically labored .

MeLIME: edgy neither nor labored revelatory

LINEX : edgy neither nor labored truly

MeLIME: 1.256 0.338 0.277 0.204 0.021
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781 LINEX : 0.439 0.398 0.398 0.369 0.349

783 occasionally funny , sometimes inspiring , often boring .
784 MeLIME: boring occasionally inspiring sometimes often

7865 LINEX : boring occasionally sometimes often inspiring

786 MeLIME: 0.669 0.242 0.218 0.210 0.182

787 LINEX : 0.377 0.266 0.266 0.250 0.236

789 a cumbersome and cliche-ridden movie greased
790 with every emotional device known to man .

791 MeLIME: cliche every device movie with

792 LINEX : cliche every man cumbersome emotional
793 MeLIME: 0.695 0.449 0.327 0.280 0.268

794 LINEX : 0.385 0.361 0.354 0.349 0.309

796 ponderous , plodding soap opera disguised as a feature film .
797 MeLIME: plodding soap ponderous opera disguised
798 LINEX : plodding soap film ponderous feature

799 MeLIME: 0.579 0.522 0.421 0.408 0.382

soo LINEX : 0.442 0.440 0.418 0.406 0.377

g2 kitschy , flashy , overlong soap opera .
803 MeLIME: soap flashy opera overlong kitschy
so4 LINEX : soap flashy opera overlong kitschy
80s MeLIME: 0.499 0.397 0.391 0.358 0.230

sos LINEX : 0.389 0.362 0.360 0.346 0.300

gos [a] poorly executed comedy .
809 MeLIME: poorly comedy executed
gto0 LINEX : poorly comedy executed
811 MeLIME: 0.653 0.348 0.257

sti2 LINEX : 0.502 0.335 0.309

814 a bad movie that happened to good actors .
815 MeLIME: bad happened movie to that

st LINEX : bad happened to movie actors

817 MeLIME: 0.692 0.396 0.371 0.367 0.242

sts LINEX : 0.442 0.384 0.367 0.361 0.344

820 a complete waste of time .

821 MeLIME: waste complete time of
g2 LINEX : waste complete time of
823 MeLIME: 0.614 0.425 0.313 0.247
s24 LINEX : 0.480 0.381 0.348 0.278

s26 don’t waste your money .

827 MeLIME: waste money don your

s2s LINEX : waste money don your

820 MeLIME: 0.592 0.497 0.408 0.309
g0 LINEX : 0.483 0.450 0.411 0.337

832 witless and utterly pointless .
833 MeLIME: pointless witless and utterly
834 LINEX : pointless witless utterly and
835 MeLIME: 0.652 0.491 0.263 0.245
836 LINEX : 0.506 0.444 0.311 0.269
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Figure 20: Results using individual samples for realistic perturbations for FMNIST dataset for all
classes:1-10 (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag and Ankle boot).
(a) MeLIME feature attributions for an image. (b) LINEX feature attributions for an image. (c)
Original image in the class. The r values show Pearson’s correlation between feature attributions
and the original image from the respective class. We observe that LINEX attributions/explanations
exhibit significantly higher correlation with the original image belonging to a particular class (i.e.
high CAC).

g7 G Example Feature Attributions in Image Data: MeLIME vs LINEX

838 We show feature attributions for individual example images with MeLIME and LINEX with MeLIME
839 perturbations in Figure 20. In Figure 21 we show class-wise mean feature attributions along with
s40 mean images. In Figure 22, we see examples from CIFAR10. LINEX explanations seem to provide
g41  more meaningful feature attributions.

sz H Results for All Methods Including SHAP

843 In Table 4, we provide the results for SHAP along with all methods for easy comparison. Note
s44 that SHAP does not have standard errors since it is computed only once per test point. The INFD
845 values for SHAP are miniscule since SHAP values add up to the predictions by definition. In order to
s46 compute GI, CI, T, CAC, we convert the SHAP values to SHAP attributions [5] first and follow the
847 same approach used by other explanation methods.
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Figure 21: Results using realistic perturbations for FMNIST dataset with mean feature importances
for all classes:1-10 (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag and Ankle
boot). (a) Mean feature attributions of all images in the class using MeLIME. (b) Mean feature
attributions of all images in the class using LINEX. (c) Mean of all images in the class. The r values
show Pearson’s correlation between average feature attributions and mean of the original images
from the respective classes. We observe that LINEX explanations/attributions exhibit significantly
higher correlation with the original images belonging to a particular class (i.e. high CAC).

I Error Analysis of LINEX

We perform error analysis for LINEX to gain better understanding about the method. We choose
FMNIST dataset for doing this since, LINEX/real under performs MeLIME in terms of the INFD
measure here (see Table 2) more heavily compared to other datasets and so we wanted to investigate
the reasons for this. This also happens to be one of the higher dimensional datasets that is intuitive to
visualize and understand.

We start by observing that even though LINEX/real underperforms in the INFD metric, the gap is not
so great in the GI metric, which suggests that MeLIME may be overfitting explanations here. We
also note that in terms of CI, T, and CAC metrics, LINEX/real clearly outperforms MeLIME.

We now choose a sample of images from the dataset where LINEX/real has highest instance-
level infidelity numbers and display them in Figure 23. Just looking at the explanations and the
corresponding original images visually, it is evident that LINEX/real highlights the prominent features
like sleeves and collar in a shirt, handles of the bags, outlines of the boots/shoes, even though the
infidelity values are high. However, MeLIME misses out on some of these prominent features and
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Figure 22: Results using realistic perturbations for CIFAR10 dataset. We see above images of a dog,
a horse, a truck, a bird, a boat and a dog again randomly selected from CIFAR10. The original images
are greyed out here so that the (normalized) attributions are clearly visible. As can be seen LINEX
attributions seem to consistently focus on salient features as compared to MeLIME. For example for
the first dog image we highlight the head, ears and leg, while MeLIME focuses more on the neck and
some of the background. For horse too LINEX focuses on head and body, while MeLIME focuses
on the legs and neck. For truck both seem to focus on important features. For bird LINEX hones
in on the wings, while MeLIME although giving importance to wings also attributes some of the
background. The boat image LINEX focuses on the center of the boat, while Melime on the edges
and some of the water around the boat. For the dog face image LINEX focuses on the nose, eyes and
ears, while Melime focuses on the ears and neck.

focuses only on optimizing the local fit. The fact that LINEX zeroes in on important features also
provides additional evidence for the closeness of GI metrics between the two methods, and the better
performance of LINEX/real with CI, T, and CAC metrics.

This conclusion is also verified when we look at the performance of LINEX at a class level. In Figure
24, we see two classes one where the infidelity of LINEX is low (i.e. Trousers class) and the other
where its infidelity is high (i.e Shirt class). As can be seen since the Trousers class has examples with
less superfluous features (viz. varied designs) focusing on which might reduce infidelity but are not
critical for determination of the class, LINEX does better in terms of infidelity on the prior. However,
although infidelity is higher for the latter Shirt class it does much better on other metrics such as GI,
CAC, CI and 7T indicating that LINEX truly focuses on robust features.

J Ablation Analysis of Important Features for Various Explanation Methods

We wanted to analyze the most challenging case for us in the reported experiments which is on the
FMNIST dataset where we are more worse than MeLIME in terms of INFD than any of the other
setups. We thus assess if the features deemed important - those with the largest coefficients - by the
explanation methods are indeed important for the black box model to make their predictions. To
assess this, we set the we set a fraction of features (pixel values) corresponding to the top coefficients
of MeLIME and LINEX/realistic to a baseline value and run the modified images again through
the black box model - this is what we mean by ablation here. The baseline value here was chosen
to be -1 since that is the value of the background pixels. We then used two measures to assess the
quality of explanations - higher values being better for both. The first measure is mean absolute error
between the predicted scores before and after ablation, corresponding to the original predicted class.
The second measure is the fraction of images that changed their predicted class after ablation. We
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Table 4: Comparing the different methods (including SHAP) using metrics infidelity (INFD), gen-
eralized infidelity (GI), coefficient inconsistency (CI), class attribution consistency (CAC) and
unidirectionality (7).

| Dataset | Method |  INFD| | Gl | CI] | T 1 | CAC 1 |
LIME | 0.015 £ 0.011 | 0.132 £ 0.042 | 0.310 £ 0.132 | 0.646 £ 0.040 | 0.667 £ 0.167
S-LIME | 0.015 % 0.010 | 0.077 £ 0.011 | 0.143 % 0.045 | 0.704 + 0.037 | 0.878 + 0.034
LINEX/rand | 0.013 = 0.009 |0.052 + 0.008|0.044 + 0.013|0.802 + 0.043|0.921 + 0.042
ks | NBlrand | 0.040 £ 0.010 | 0.067 = 0.003 | 0.319 % 0.132 | 0.646 £ 0.040 | 0.667 = 0.167
MeLIME | 0.008 £ 0.003 | 0.049 £ 0.018 | 0.219 £ 0.108 | 0.629 £ 0.013 | 0.464 £ 0.100
LINEX/real | 0.009 - 0.003 [0.029 + 0.003|0.024 + 0.002|0.744 + 0.044|0.942 + 0.023
NB/real | 0.058 = 0.022 | 0.034 = 0.000 | 0.219 + 0.108 | 0.629 + 0.013 | 0.464 = 0.100
MAPLE [ 0.000 £ 0.001 | 0.038 £ 0.004 | 0.261 £0.033 | 0.458 £ 0.032 | 0.536 £ 0.035
LINEX/mpl | 0.013 + 0.000 |0.020 + 0.000|0.026 + 0.002|0.694 + 0.008|0.929 + 0.004
SHAP 0.007 0.107 0.243 0.664 0524
LIME | 0.158 £ 0.066 | 0.214 £ 0.041 | 0.005 £ 0.001 | 0.981 £ 0.006
S-LIME | 0.158 + 0.066 | 0.214 + 0.042 | 0.005 = 0.001 | 0.974 + 0.008 NA
ygps |LINEX/rand|0.130 = 0.052(0.164  0.021 | 0.003 £ 0.001 | 0.979  0.006
NB/rand | 0.275 + 0.062 | 0.311 % 0.079 | 0.005 - 0.001 | 0.981 + 0.006
MAPLE [0.063 £ 0.000[0.067 £ 0.000] 0007 £ 0.000 | 0.957 £ 0.000 A
LINEX/mpl | 0.098 + 0.001 | 0.094 + 0.001 | 0.007 + 0.000 | 0.950 - 0.000
SHAD 0.000 0,001 0.009 0.940 NA
LIME [ 0.162 £ 0.003
S-LIME | 0.142 + 0.003
FMNIST || INEX/rand| 0.149 % 0.002 NA NA NA NA
NB/rand | 0.207 + 0.000
McLIME [0.001 £ 0.000]0.277 £ 0.000] 0.007 £ 0.000 | 0.769 T 0.000 | 0.327 £ 0.000
LINEX/real | 0.100 + 0.002 | 0.304 + 0.001 | 0.002 + 0.000 |0.780 - 0.000|0.649 + 0.001
NB/real | 0.017 - 0.000 | 0.446 + 0.000 | 0.007 + 0.000 | 0.769 + 0.000 | 0.327 + 0.000
SHAP 0.000 1,062 0.589 0551 0.038
LIME | 0.101 £ 0.005
S-LIME | 0.185 + 0.002
CIFAR10 | LINEX/rand | 0.186 + 0.002 NA NA NA NA
NB/rand 0.208 + 0.001
MeLIME | 0.100 £ 0.003 | 0.412 £ 0,007 | 0.014 £ 0.000 | 0.546 T 0.003
LINEX/real | 0.090 - 0.005 |0.279 + 0.001|0.006 + 0.000|0.679 + 0.004 NA
NB/real | 0.103 = 0.002 | 0.398 = 0.004 | 0.014 + 0.000 | 0.546 - 0.003
SHAP 0.003 1376 0.398 0512 NA
LIME [ 0.079 £ 0.036
Rotten | S-LIME | 0.075 % 0.035
Tomatoes |LINEX/rand| 0.069 + 0.032 NA NA NA NA
NB/rand | 0.241 =+ 0.007
MeLIME [0.029 £ 0.001] 0.391 £ 0.000 | 0.000 &£ 0,000 | 0.999 £ 0.000 | 0.909 & 0.000
LINEX/real | 0.053 = 0.000 |0.361 = 0.000| 0.000 + 0.000 | 1.000 = 0.000 |0.953 + 0.001
NB/real | 0.035 £ 0.000 | 0.535 = 0.000 | 0.000 % 0.000 | 0.999 = 0.000 | 0.909 = 0.000
SHAP 0.000 0384 0.008 0.999 0.015

see from Figure 25 that LINEX/realistic substantially outperforms MeLIME in both these measures,
clearly demonstrating the relevance of features chosen by our method to the black box.

K Error Analysis of LINEX based on Ablation

Highlighting stable features for examples near non-linearities is a key strength of LINEX. However,
in some cases for examples near class boundaries it may ignore sensitive features as we show in this
demonstration.

In Figure 26, we show 6 examples that are appear to be close to class boundaries. We ablate pixels
corresponding to top 15% of important features chosen by MeLIME and LINEX/realistic using the
approach discussed in Section J. Ablation based on MeLIME importances meaningfully changes
classes, whereas ablation by LINEX importances does not. The changes in prediction for MeLIME
ablation for the six images are respectively from Dress to Trouser, Sneaker to Sandal, Pullover to
Dress, Sneaker to Sandal, Bag to Pullover, and Sneaker to Sandal. The new class assignment looks
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reasonable looking at the ablated images. We also see that the changes in class probabilities for the
original class (p) are much higher after MeLIME ablation compared to LINEX/realistic ablation.

MeLIME ablated images for the first example has structures that look like trouser legs, for the second,
fourth and sixth examples the area around the heel is more open making the original sneaker look like
a sandal, for the third example, there is a hole in the hooded part of the pullover making it resemble a
dress. The fifth example is classified as a pullover possibly because of the elongated structures on the
sides that look like hands.

Note that such cases of LINEX under performing are rare though as is confirmed by its superior
performance in Figure 25.

L. Understanding Behavior of LIME and LINEX with Synthetic Data

We consider explaining the behavior of a function of two variables x and y with Class 1 sandwiched
between Class 0 (see Figure 27). The third (or vertical) axis denotes the probability of being in Class
1. Clearly, z is the only important feature here that determines the class label.

From Figure 27 (left), we see that the LIME (here MeLIME would be the same as LIME since
the space is flat and all points are realistic) feature attributions at points a, b, and ¢ will provide
importance to x feature for small as well as large kernel width (1 and 2 respectively) neighborhoods.
For point ¢, in the interior of the Class 0, the attributions are stable across kernel widths. However
for points a and b close to the boundary of classes, the attributions for small kernel width and large
kernel width neighborhoods differ significantly along the x direction. This shows the instability of
LIME explanations near boundaries of classes for different kernel widths.

In contrast in Figure 27 (right), we see that the LINEX explanation constructed for the two kernel
widths provides stable feature attributions for all points a, b, c. For a and b, LINEX will conservatively
pick a smaller feature attribution along the = direction since the function changes rapidly in its
neighborhood. As such though LINEX will still pick the feature in the = direction in this scenario.

M Variation of feature attributions with ~

Based on the proof of Theorem 1, if for a feature the optimal attributions have opposite sign for each
of the two environments, then -y can be made arbitrarily small (except 0) or large and the output
of Algorithm 1 should still be the same which is 0 as the Nash Equilibrium is . If the optimal
attributions are the same sign then we should still get the same output from Algorithm 1 as long
as y > min(|wy;|, |we;|) since the attribution from our algorithm is the minimum of those values.
When v < min(Jwi|, |wa;|) then the feature attributions will smoothly reduce as 7y reduces.

We demonstrate this behavior in Figure 28 using an example from the IRIS dataset with random
perturbations using the same setting as in Section 5. In the experiments in Section 5, we set v = 0.329
which is the maximum absolute value based on a linear fit to each environment. As «y increases beyond
0.329, the attributions are unchanged demonstrating robustness. Same holds true while reducing ~y
up to 0.165 beyond which we see smooth reduction in the attribution values. Qualitatively, similar
behavior is seen for other examples too. Because we set -y pessimistically (ignoring constraints) to a
high value, we can expect our reported performances in the paper to be robust across many values of

Y.
N Convergence of LINEX procedure and comparisons

We demonstrate based on a synthetic example how Algorithm 1 and provides a unidirectional
explanation. We generate synthetic data using a function in R? (Figure 29(left)). The function gently
rises with increasing y values, and along z it is flat first, then rises abruptly and then falls gradually.
We want to obtain robust attributions of this function at the point x = 1.0, y = 0.0, which is close to
the end of the rising edge along x direction.

As we can imagine, since the slope changes abruptly along = direction near the point, it should be
ideally excluded from an explanation intended towards recourse based on a linear proxy. Otherwise,
the explanation will not generalize in the neighborhood of this point. On the other hand, the y
direction should be included since the function changes smoothly along y throughout.
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To generate explanations We first create two environments centered at the example to explain with
variances 0.5 and 2.0. Now independently fitting to these environments leads to feature attributions
that are {—0.033,0.098} and {0.084,0.102}. Appending the two environments the attributions
are {0.029,0.095}, whereas with LINEX, the attributions would be {0.0,0.093}. Thus, LINEX
effectively eliminates the feature with high variability or abrupt changes. The behavior of the
coefficients for each environment as LINEX converges is shown in Figure 29(right). As such, one
can also see the convergence is fast.

O Limitations

Like any other posthoc explainable AI method there is no way to surely say that LINEX exactly
reflects the true reasoning behind a black box classifier in arbitrary applications. It also is somewhat
slower than LIME as shown in section A given the game theoretic nature of the algorithm, where its
stability and unidirectionality hopefully offsets the additional time required. On the flip side, given
its favorable properties in terms of recovering explanations it could be used to violate privacy which
may be concerning from a social standpoint.
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Melime: r=0.121, INFD=0.001 LINEX/real: r=0.334, INFD=0.169

=

Melime: r=0.093, INFD=0.001 LINEX/real: r=0.338, INFD=0.216

INFD=0.201

MeLime: r=0.114, INFD=0.001 LINEX/real: r=0.412, INFD=0.189

MeLime: r=0.393, INFD=0.001 LINEX/real: r=0.713, INFD=0.180

MeLime: r=0.162, INFD=0.001 LINEX/real: r=0.528, INFD=0.161

Figure 23: Error analysis for a chosen set of examples in FMNIST using MeLIME and LINEX/real
methods. The three columns are the MeLIME feature attributions, LINEX/real feature attributions,
and the original images. The rows correspond to different examples. We show the Pearson’s
correlation coefficient between feature attributions and mean of the original images from the respective
classes (r) and instance-level infidelity (INFD) measures. LINEX seems to highlight important
features like stripes in the t-shirt, handles of the bags, outlines of the boots/shoes more prominently,
while MeLIME seems to overfit to the data while missing out on highlighting some key features

prominently.
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Trouser class — Iess |nf|deI|ty (INFD)

Figure 24: We see above that infidelity is lower for Trousers class for LINEX as compared with the
Shirts class. A reason for this is that the trousers are more plain with less superfluous features such
as the different designs in shirts. Since LINEX focuses on robust features focusing excessively on
the designs is not critical for it to determine a shirt, albeit focusing on these designs might reduce
infidelity. Advantage of it relying on robust features is however apparent when we look at other
metrics such GI, CAC, CI and T as seen in Table 2 where it is much closer to or superior to MeLIME.
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Figure 25: Ablation analysis to determine if the features deemed important by the explanation
methods are actually considered important for prediction by the black box model. We see that features
chosen by LINEX impact the prediction of the black box model much more than those chosen by
MeLIME. This is true with respect to both MAE measure (left) between the predicted probabilities
before and after ablation for winning (or argmax) class, and the change in predicted classes (right)
before and after ablation. Higher values here mean that the features chosen by the explanations are
more relevant for the black box to make its predictions. The maximum value of both measures is 1.0.
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Melime Coeffs.

LINEX/real Coeffs.

Original - p=0.9987, cls. 3 MeLIME ablate - p=0.1472, cls. 1 LINEX/real ablate - p=0.7400, cls. 3
=] "

MeLime Coeffs. LINEX/real Coeffs. Original - p=0.9509, cls. 7 MeLIME ablate - p=0.3041, cls. 5 LINEX/real ablate - p=0.5137, cls. 7

MeLime Coeffs. LINEX/real Coeffs Original - p=0.9105, cls. 2 MeLIME ablate - p=0.3437, cls. 3 LINEX/real ablate - p=0.8116, cls. 2

MelLime Coeffs LINEX/real Coeffs MeLIME ablate - p=0.4782, cls. 5 LINEX/real ablate - p=0.9862, cls. 7

Original - p=0.9228, cls. 8 MeLIME ablate - p=0.1243, cls. 2 LINEX/real ablate - p=0.2858, cls. 8

Original - p=0.5980, cls. 7 LINEX/real ablate - p=0.5855, cls. 7

Figure 26: Error analysis for a chosen set of examples in FMNIST using MeLIME and
LINEX/realistic methods, using ablation of important features. Each row shows results for a particular
image. The columns show the: (a) MeLIME coefficients, (b) LINEX/realistic coefficients, (c) the
original image along with its predicted class (cls.) and predicted probability for that class (p), (d) the
image after MeLIME ablation along with the predicted probability for the original class (p) and the
new class prediction (cls.), and (e) the image after LINEX/realistic ablation along with the predicted
probability for the original class (p) and the new class prediction (cls.). The changes in prediction
for MeLIME ablation for the six images are respectively from Dress to Trouser, Sneaker to Sandal,
Pullover to Dress, Sneaker to Sandal, Bag to Pullover, and Sneaker to Sandal. No changes in classes
are seen for LINEX ablation.

MeLime Coeffs. LINEX/real Coeffs.

MelLime Coeffs. LINEX/real Coeffs. MeLIME ablate - p=0.2787, cls. 5
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Figure 27: LIME (left) and LINEX (right) feature attributions for three points (a, b, c) for a synthetic
data where we have Class 1 sandwiched between Class 0. For LIME, the different colors pink and
blue correspond to feature attributions obtained with the small and large kernel width neighborhoods.
Note how explanations for LIME change significantly (in magnitude) by kernel widths near the class
boundaries, whereas the LINEX explanation remains stable, where it still picks up the important
feature.

0.2
c —_— W3
(=] i
g 0.1 —_—
2 — w3
e
£ 0.0
(1]
(]
1
2 —0.1-
©
(1]
[
—0.2-

01 02 03 04 05 0.6
14
Figure 28: Feature attributions for the four features for an example in the IRIS dataset are shown

above when varying . We used the same setting as in Section 5 for this experiment. The attributions
increase smoothly as v increases and stay constant after v > min(|wy|, |we;|)Vi.
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Figure 29: Left side: Explaining a scalar function in R? at the point indicated by the triangle. The
point is centered at x = 1.0,y = 0.0. The two environments are created by sampling multivariate
normals with variances 0.5 and 2.0 respectively (samples not shown) centered at this point. Right
side: Convergence of individual environment attributions. The attributions for first feature (), w1 o
and wy , converge to -y and — leading to the optimal attribution of 0. For the second feature (y) the
optimal attribution (w11 + ws, 1) converges to a positive value.
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