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A.1 STRONGER GENERALIZATION BOUNDS FOR POLYNOMIALS

In this section, we prove an explicit generalization bound for functions represented as a polynomial
sum. Note that the bounds in Araraef all (20194) for polynomials assume the monomials with
degree larger than one to have even powers, while here we do not impose this restriction. In addition,
note that despite Arora_ef all (Z01Ya), our bounds remain meaningful in the noisy case (recall our
Theorem D).

More specifically, we bound the ¢ norm of such functions. Consider the target function s with the
following power series formula:

y=s(z)=> ap(w)z), (26)
p=1
where a,, € R and w), € R?. We can write

d
s(x) = g1(z) + > _ wrgh (), 27)
k=1

where z;, denotes the kth entry of vector x here and
g1(z) = > ap(wy )7,
pEAi:={p=1 or p even}
and for all k£ € [d]:
g5 (x) = Z wpkap(ng)pil-
pEAy:={p>2, p odd}
Then, using the tailor series of z(+ + arcsin(e) y — > ypal for |z| < 1, the RKHS space H(H™)

2m
of NTK can be identified by square-summable sequences of reals (ap/)g?zl with dot product

((ap)pr=1s (b )pimy) = Z YA(p') @' bpr
p'=1

where A\(p') : Z>¢ — Z>¢ such that it maps zero to zero, the first d positive integers are mapped to
one, the next d? ones are mapped to 2, etc. Moreover, the RKHS mapping ¥ : R? — H(H>°) from
the Euclidean space is:

\IJ(.’E) = ||x|| (x/l, ...,.Z‘él, (x;cll‘;ez)kl,k&G[d]? ey (x;ﬁl‘;w .. 'x;cp)kl,...,kpdd], .. .),

where 2’ = z/||z|| and in the notation above we are presenting a sequence of sequences, by which
we mean the inner sequences simply unfold. Using this identification, one can see using the linear
representations of gy, g5 in H:

2
loil3re = > a2lw,ll3?, (28)
pEA
2(p—1
o513 = > pwpiafw, |37, (29)
pEA2

Summing above and noting the linear representation of g:

d oo

2 2 2

HQIH%{“J + Z ||g§||%100 = Z 717@;2)”“}17”21) + Z 7pa129||wp||2p = Z%ai\\wpﬂzp = ”9”%100
k=1 pEA; pEA, p=1

(30)
Now for {g} = {g;}¢1] = {91} U {g5}¢_,, we consider the kernel K ;. Expanding the tai-

lor series of F»(2F3)(x) = Z;O:o tpa?, we find the identification (hl;/)ke[d+1],p/:o,...,oo with dot

product
d+1

oo
= ) D hbay,
p'=0 k=1
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with RKHS map
\1’2(1‘) = (gi(-f), cee ag¢/i+1(x)7xllg/1($)a s 7xllgtli+1(m)7 LR 71':191(1:)? R

TyGa41 (), (T, Thoy 91 (2) ) by kel belas1]s - > (T, Ty -+ Th G (T) ) ky . kpld] k(a4 1] - - )

Now, we compute the norm of function s with respect to K}, combining the above representation
and dot product with Equation (Z4) and the fact that we work with unit norm z, so ' = x:

Isll,,, = o+ (d+ ). 31

Plugging the above and Equation (BI) into the definition of ||.||¢ in (??), we conclude

d

2
Isl1Z < lIsll%,,, (loallFr= + D g5 ]F<) < (o + (d + D) Y wpapllwpllz”  (32)
k=1 p=1

Note that if the odd exponents (except possibly one) in the definition of s in (Zf) are zero, then
we could consider only the function g; and kernel K,,, which would have implied a bound of

2
Ko Z;O:I ’Vpaz%llwpnzp'
A.2 THE DOUBLING TRICK

For the SGD optimization, we set the regularization coefficients in the loss L as
1/}1 :V/4a wZZV/(4C(f*aG))7 (33)

with v :== max{R,(f*)/2, B?/n}. This assumes we know the f* and G that minimize the adapta-
tion within the complexity measure (I2). Here, we explain how to use a simple doubling trick to get
over the fact that we might not know these optimal solutions f* and G.

Theorem 1 Without explicitly knowing the exact value of the complexity measure, i.e., the optimal
solution of Equation (I2), one can still achieve the generalization bound in Theorem [I.

Proof of Theorem 0

The proof is simply adding a doubling trick on top of the argument of Theorem B. In the
rest of the proofs, for simplicity, we refer to (Wpsgp, Vesgp) by (W', V'). Let f** G* be the
optimal solution to (I0). With a simple rescaling of G*, we can assume (H® ™' G*) = 1.
(Note that the complexity does not change by such rescaling). Now one can exploit the condition
lyillco < B, and consider the setting f* = 0 to get the following trivial upper bound on the
complexity measure:

S((22), (1)) < 2B

Therefore,

2nR, (f**) + f AT (dw) < 2nB2. (34)

Using Equation (B4) and the optimality of (f**, G*):

R (f7) <
¢=¢(f, 6 <

B2
2nB2. (35)

Combining the first equation above with the definition of v in Equation (El), we get
B?/n<v < B2 (36)

To initialize 1)1 and 19, we use Equations (B3) for any f* and G, and as a result we get a general-
ization bound as in Equation (83). However, to achieve the best possible rate characterized by our
complexity measure in Theorem [ without explicitly computing the answer of (I2), we use a simple
doubling trick; for every pair (¢’,7’) such that ¢’ is a power of 2 between B? and 2n B2, and v/’ is a
power of two between B?/n and B?, we initialize 1)1, 1> as in Equation (B3) and run the algorithm,
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then return the network that minimizes the upper bound of the risk given by Equation(B4)). Note that
we do not need to know R, (f**) to compute this upper bound. Now let 2/ be the power of 2 within
v(G*, f**)/2 <V <v(G*, f**). If we are in the case

f**TAflf** < BQ, (37)

then for ¢’ equal to the smallest power of two larger than B2, when we run PSGD with pair (v/, ('),
by Theorem B:

282 + B2 _ S((w)iy, (91 b
o + < S((i)i1, (Yi)izq) +c nw. %)

R(fwrvr) < 2R (f") +
Because we return the minimum upper bound on the risk (the tighter lower bound of Equa-
tion (B4))) among all such powers of two, we certainly achieve the above rate in (B¥). Otherwise,
if f*TA-1f** > B2 let ¢’ be the power of two within f*T A~1f* < ¢/ < 2f*TA=1f*  then
again it is easy to check that conditions of Theorem B are satisfied, hence we get the following
generalization bound:

n

! 2 Hx * 2

R(fW/7V/) < 2Rn(f**) + CHW(CLTLB) < 2Rn(f**) + c//w2<(f ,i ) + B (39)
2% A\n An 2

< \S((xt)i:;j (yz)izl) + C/ an, (40)

which proves the bound of Theorem [I.

A.3 AMOUNT OF OVERPARAMETERIZATION

In this section, to provide high-level insight, we indicate the right order of magnitude that our over-
parameterization should be in, with respect to one another. Note that the exact coefficients in these
inequalities would depend on the basic parameters B, 1/\g, n, which we have avoided here for sake
of simplicity. We refer the reader to our main proof (mostly Appendix parts BAT2, AT3) for more
details.

Kikomg << 1,

KoMy >> 1,

K1vVMmg >> Koy/my,

mi >> m§7

kiymy >>mi?,

Ko << 1/y/mg

Vimgka << 1/v/mg

\/RQ >> mg/Qﬁmg

mg(@mg) << K1mq

my,ma,m3, 1/k1,1/Kke = poly(n, BV 1/B,1/)\p).

In addition, we set the smoothing parameters as
B2 1= 0, ((m1v/my) " (Vimgka) ),
B = 0, (mav/imy/ (1 v/im,)).

where ©,, only shows polynomial dependencies on the overparameterization.

A.4 PSD PROPERTY OF K™
The Schur product theorem states that for PSD matrices A and B, A ® B is also PSD. Now given

an analytic function F' whose tailor series coefficients are all nonnegative, Suppose we apply F' on
some PSD matrix A entrywise, denoted by F'(A), under the condition that the entries of A are in
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the radius of convergence of F', then using Schur product theorem, it is straightforward that F'(A4) is
also PSD.

Using the above property, one can then check that the tailor series of the defined functions F5 and F3
are nonnegative, hence, the application of the function F»(2F3(x)) on the gram matrix of (z;)}, is

a PSD matrix, ( note that ‘(mi, x]>’ < 1 is in the convergence radius of F»(2F3(x)).) thus K is
indeed a kernel.

A.5 COMPLEXITY UPPER BOUND

First we mention a simple fact that hadamard product respects matrix orderings. Given PSD matrices
A, B,C such that A < B, the fact that A®C < B® C'is an easy consequence of the Schur Product
Theorem; indeed, B — A is PSD by definition, so (B — A) ©C =B ® C — A® C is also PSD.

Next, it is easy to check that the tailor series of arcsin(z) has all nonnegative coefficients. Therefore,
for a PSD matrix X, as we discussed in Appendix A, applying arcsin entrywise on X, namely
arcsin X, is also PSD. Setting X equal to the entrywise application of 2F3 to the gram matrix of

datapoints (z;)",, we realize the matrix arcsin (2F3 (((:cz, :c]>) )) is also PSD. Noting
1<4,5<n
the definition of K*° in Equation (B), we conclude that for the data kernel matrix K we have
K> >-117,
where 1 is the all ones n-dimensional vector.

Combining the two mentioned facts, we can lower bound the matrix K = K°° ©® G for any matrix
G as

1 1
K=K 060G > ZMT@Gz 16
Substituting the rank one matrix f* f** for the n-dimensional vector f* in Equation (I3):

— o) * px s 1
K} =K>o /7>

w pxT Fx (|2
(/1713 I 1)

= |

The inequality used in (I3) then follows from Equation ().

A.6 STRUCTURE OF THE PROOF, SETTING mg3, AND FURTHER DEFINITIONS

Almost all of our proofs in the rest are in the aim of proving Theorem B. Throughout the proof,
(W', V') represents the pair of matrices of the current iteration of PSGD, (W*, V*) are the “ideal”
matrices that we construct in Appendix B2, (W*, V) and refers to the gaussian smoothing matri-
ces. Importantly, we assume the loss function ¢( f, y) is zero at f = y for any label.

There are four main parts in our proof:

1. we construct a “good” underlying network, Appendix

2. we find a “good” random direction and study the landscape of the objective, Appendix B T3
3. we bound the Rademacher Complexity of the class G, ~,, Appendix BT

4. we prove the convergence, Appendix ATH

We have tried to make the lower level proofs into sub-lemmas and create a manageable hierarchy as
much as we could, to make the document more clear and readable.

Similar to the conditions in Theorem B, through out most of the proofs we assume that we are given
a pair (f*, G) with a slightly more general setting of Theorem B:

frA <G, for A=G O K™,
<Ga HOO> S C1~

18
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Particularly, (1, (2 appear in Appendix BT3. Because we are allowed to rescale GG, we do not really
gain much by assuming this more general setting, though we pick to work with the general setting
as the abstraction makes the proof more straightforward to understand.

We refer to the parameters B, 1/\g, n as the “basic parameters”, my, ms, ms, 1/K1, k2 as the “over-
parameterization”, and (31, B2 as the “smoothing parameters.” By the phrase “having enough overpa-
rameterization” we mean it suffices to pick the overparameterization mq,ms, ms, 1/k1,1/Kko only
polynomially large in the basic parameters.

Throughout the proof, we denote the change in the output of the first layer at W) + W’ + Wr
compared to the initialization value by ¢(?) (z;), i.e.

¢ (x;) = Wea(WO + W + WP)z;) — ¢ (),

my

while recall that ¢’ (z;) has a similar definition except without the smoothing matrix W7. Although
our model is a three layer network, throughout the proof, we refer to the parts W?* lea((W(O) +

W')x) and Ta((V(O) +V )()) as the “first layer” and “second layer,” respectively.

1
i
Also, we sometimes refer to the binary sign pattern of vector = multiplied to matrix W by Dy,
(Dw.o == Sgn(W=z)), i.e. the jth diagonal entry of Dy, is one if WTx > 0, and is zero otherwise.
To refer to the jth row of W as a vector, we sometimes drop the comma in W; and write it as W;.

For brevity, we denote the Frobenius norm |
a vector x by ||«|. For matrices W7, W5 we denote their natural dot product by (Wl, Ws) =
tr(W{Ws). We refer to the smallest eigenvalue of a matrix by Apmin(.). We write R(.) for the
Rademacher complexity of a function class. We refer to the smoothed version of the network by
fiv: v+ (), defined by

S v (@) = Ewe ve fwrywe vipve (2).
In the proof, we mainly work with the loss over the smoothed network f”, defined as
LW', V') = Ru(fiyry) + il [W]2 + o2V (42)
Our algorithm, P SGD can be regarded roughly as an SGD over L.

Similar to what we discussed in section B, let the functions {g; },*, be some feature representation
whose gram matrix is equal to G and (H*°,G) = >}, ||gk /%= In such setting, it is not hard
to check that we can assume each gy, is the minimum norm NTK function which maps (z;)_; to
(gx(x;))_;’s. Indeed, if this is not the case for some gy, we can project the RKHS representation of
gr. onto the span of the representations of (z;)_;, which can only decrease the complexity measure.
Hence we can represent g, € H - as a linear combination of basic functions H°(z;,.) on data
points:

Vk € [ma], Zwlx“) (43)

Here, the sum of squared-H °° norms of Vy is bounded as

S IWVkllz~ =D llgrlFre = (H®,G) < (1. (44)
k

k

For each i € [n], we refer to the feature representation vector (gy(x;));-%, on z; as Z;. Note that we
have the relationship
T, = (H Vi), 45

where H{° is the ith row of H*°. In the analy51s we work with a bound £ on the quantity maxy, ||Vk I
which should be bounded polynomially by other basic parameters; in particular, it is defined in
Lemma [ and is used to bound a cross term in Lemma [4. However, maxy ||Vi|| might not be
effectively bounded for an arbitrary feature representation. Fortunately, we can remedy this by a
simple trick; for every natural number s, one can substitute every gj, by s copies of g /+/s, without
changing the gram matrix G. Therefore, for any J, one can increase the multiset of functions (gy)
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to a bigger set (gx ), by adding at most O((; /) functions, making sure of the following for the new
functions:

Yk @ VEH®V), = ||g]| 3« < 6. (46)

(This is because Y, ||Gx||?/ < 1). Furthermore, observe that for each gram matrix G, we have an
n-dimensional feature representation (gx)7_, for G according to the Cholesky factorization. Com-
bining these facts, we conclude, to guarantee Equation (&), in the worst case, we need mg3 to be as
large as n 4+ O((1/9).

Finally, observing the following inequality
Vil < Vil Fr /A0 < 113k lFre /Ao- 47)

in order to guarantee maxy, ||Vi| < & we need to take ms as large as n + O((1/(£2\g)), which is
indeed bounded polynomially by the basic parameters because of the same condition for 1/£. This
computation also brings into sight an important point:

“Although each gram matrix G is representable by n features, in order for the algorithm to be able
to find a suitable network, m3 might need to be larger than n.”

Moreover, for every 1 < k, ¢ < n, we define the matrices Zf € R™4 ag

ma

; ) 0
Zi = 1)\/mr (W,g}jﬂ{wj )Tmi}xi)‘ g (48)
j=
where in the above notation, j is enumerating the columns of the matrix. We also define the following
matrices which we use in our construction later:

Wi =W =3 vz, (49)
=1

and W as
ms
Wt =3 "Wkt
k=1

Finally, to avoid unnecessary complication, we often argue high probability bounds without an
explicit representation of their dependency on the chance of failure (which is a negligible logarithmic
factor). We also ignore all constants and log factors, and mainly work with the notation < which
ignores constants; we write a S b & ¢ as a short form for b — O(c) < a < b+ O(c). As there
are several hierarchies of new parameters that are defined based on lower-level ones, we rename
the new parameters and continue viewing them as black-box. This makes the proofs more readable,
since we also do not care about the exact dependency of the underlying parameters most of the time,
rather we are interested in their orders of magnitude, for example that a given parameter goes to zero
polynomially fast with respect to the overparameterization, etc. Due to the large number of symbols
that we have to work with, we might use a symbol more than once, of course when it is clear from
the context which one we are refering to.

A.7 COMPLEXITY MEASURE AND THE (-NORM

This is a brief section regarding some basic properties of ¥ and |.||¢.

First, note that the two versions of the complexity measure in Equations (Il) and () are equivalent,
as for any finite set of functions {g}, we can define the gram matrix with respect to the feature
vectors of these functions on data, and for an arbitrary nonzero PSD G we can consider a Cholesky
factorization for G as G = XT X, then define the functions {gx} as the minimum-NTK norm
functions which map the input to the features corresponding to X. This observation further implies
we can suppose the factor matrix X is in R™*”, and there is a set of at most n functions {gx }7_,
which corresponds to this G.

Next, we show that for an arbitrary function f, its sup norm over the unit ball is bounded by its ¢
norm:

s 1) < Il 0

20
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Note that for a kernel K which satisfies K (z,x) < 1, using Cauchy Schwarz we simply obtain

f@) < flle v E(zx) < || fllx,

where recall that ||.|| x is the norm corresponding to the RKHS space of K. Hence, to show (B0), it
suffice to show that for all kernels K € K and unit norm 2 we have K (z,z) < 1. To see this fact,
note that the norm of each x € R? in the NTK-space is H>(x, z) = % Therefore, for each function
g with bounded-NTK norm, again using Cauchy Schwarz:

1
l9(@)] < S llgll =

As aresult, for a family of functions {g} with ) } llgll%- < 1, we have on every unit norm x:

9€{g =
> g <t
9€{g}

On the other hand, it is easy to check that for every unit norm z, we have K*°(x,z) < =, so for

every such {g}, we have by definition

1
2

K{g} (l‘) S 1,

which completes the proof of Equation (80).
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A.8 CORE GENERALIZATION RESULT

In this section, we prove our core generalization result for the trained network, Theorem B, which
underlies our generalization bounds in Theorems [l and D. Recall that in the rest of the proofs, we
refer to the solution (Wpsgp, Vpsap) returned by PSGD simply by (W', V7).

Theorem 3 Suppose we have a candidate pair (f*, Q) regarding our complexity measure in ()
that satisfies (H* 1, G) < 1, f*T A1 f* < ( (recall A = G © H*). Then, for

v =max{R,(f*)/4, B*/n}, (51)

ifwe are given v/2 < V' < v, and we set

I/,
Y=, (52)
V/
= — 53
,(/)2 444 ( )
then for the solution (W', V') returned by PSGD we have the following generalization bound:
5 + B?
R(fwr) < FRalfin) a2 9
5 B?
n

for constants ¢, ¢"" and log factor @ = log(n)® + log(1/\o).

Proof of Theorem B

To prove Theorem B, we use a generalization bound from Srebraef all (20I0). Crucially, in
order to apply this bound, we need to establish two big results:

1. We need to show that the final network has small training loss, and is within the class
G, -, for some suitable «y;,y2. This is handled by Theorem B in Appendix BT0. We
define the class G, -, roughly as the class of networks with norm bounds ||V — W ()| <

1, ||V = VO < ~, where the rows of V — V(©) are orthogonal to the subspace ®, plus
an additional structure defined in Appendix ATl

2. The Rademacher Complexity of the class G, -, needs to be suitably bounded. This is
handled by Theorem B in Appendix AT

With access to these results, we show how Theorem B follows. For fixed constants 21, z3 and every
integer ¢ > 0, we use Theorem 1 in Srebro_efall (2010) for the class G, ~,, Vi = 2% x B/z3 with
confidence probability 1 — 2733, which, with a union bound, implies that with probability at least
1 — &3 forevery i and fy' v/ € Ga, i

)
(56)

Bfwrv) < Bulfurvr) + K Rn(fwmv')(\/ log(n) SR(G )+ 2]

blog(1/(27'd3))

+ log(n)SR(g217’)’i)2 + n

), (57)

where £( fyy/ v/ (x),y) is a.s. bounded by b for function within the class G, ,,, and K is a universal
constant. In the following, we aim to further bound the Rademacher complexity R and parameter b.
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Applying the AM-GM inequality with respect to ratio z4 > 0 for the second term:
blog(l/(Z—iég))>2

n

R(fwrv) < (14 20) Ru(fiwr ) + K2/ 24 (10g(0) " R(Gr ) +

blog(1/(27'd3))

+ 1Og(n)3R(g21,’n)2 + n

1710g(1/(2’i53)))2

< (U 20) Ru(fwr ) + K24 (log(n) P R(G., ) + -

blog(1/(27'd3))

< (1 + z)Ro(fwrvr) + (2K? /24 + 1) 10g(n)>R(Gey ;)2 + (2K% /24 4+ 1)

+ 10g<n)3R<g21m )2 +

blog(1/(27"d3))

—
(58)

Now let * be the smallest number of the form 2¢ B /z3 (for some 7) which is not smaller than z3+/C.
This definition implies

7 < max{2221/C, B/z3}. (59)
Now Theorem B in Appendix AT bounds the Rademacher complexity:
221"
R(gzl,'y*) S \/ﬁ . (60)

On the other hand, from Theorem B by setting z1, 2o = V40, we get fy/ v/ € G, y=.
Moreover, from Lemma B4, for fy v+ € G, 4+, we have for every ||z < 1:
|fwr v ()] < 22177, (61)

so the loss £(fw v+ (z),y) can be bounded by (B + 2z17*)? using the 1 smoothness property.
Therefore, for the class G,, - we can set b = (B + 2z17*)%. Combining this with Equation (B0)
and plugging into Equation (B8):

422~*2 B+ 2217*)%log(1/(27% 6
R(fwrv) < 1+ z4)Ru(fwrv) + (2K? /24 + 1) 10g(")3% + (2K% )z + 1)( 2 ;g( . 3))'
Furthermore, by definition of v*, we have 28 < 22925 V< /B:
2 2 3 42%7*2
R(fwrvr) < (14 20)Ru(fwrvr) + (2K /24 + 1)427 (log(n)? + 2log(22023+/(/B)) ———
(62)
2
+ 2Kz +1) 28 log@fz?'\/Z/B). (63)
Now applying the upper bound on ~*:
422(22 +2B/z3)?
R(fwr ) < (14 20)Rafur ) + (2224 + 1422 (log(n)® + 2log(22525/C/B)) 212V 2B/ 25)
(64)
2B?log(2 B
b (2K? )z + 1) 2B108 222’3\[4/ ). (65)

If{>0B 2_in the third term above we substitute B by /C. Finally, similar to the bound we stated in
Equation (), note that we have the following trivial bound for (:

¢ <yTH* 'y <4nB?/), (66)

i.e. there is no point in considering larger (’s, which implies log(222231/C/B) = O(log(n) +
log(1/Xp)). Plugging this above and picking z4 = 1/3 show the proof of Equation (84). Further-
more, applying Equation () in Theorem 8 to the R, ( i+ v+) term in Equation (84) further gives
the second Equation (BS).
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Remark 1 In the same setting of Theorem B, if we have v/2 < V' but not generally upper bounded
by v, then PSGD leads to the following generalization bound:

2
R(fw:v) < Ru(f) +V/+cm/w(4+7nB),

using a similar argument as we did for Theorem B.

A.9 PROOF OF THEOREM [

In this section, we prove Theorem [, stated below.

Theorem 2 For any function f : R* — R, in the same setting as Theorem W, the population risk of
the trained network (W' V') can be bounded as

U+ 5y

R(fwv') < 2R(f) + O(aw )

(67)

Proof of Theorem 2

Theorem O is a simple consequence of Theorem [; for the given function f, we apply Theo-
rem [ with the smaller coefficient v = % for R, (f*), regarding the complexity upper bound, by

setting f* = (f(x;)):

*T 7-—1 px 2
K B
R, (f*) + (ew) min f f + aw
Kek n n

T 7-—1 px 2
A7)+ (o) min T2 To@

R(fwrv) <

Lol ol ks

On the other hand, because f*7 K ~!f* is the minimum-RKHS norm of a function with respect to
kernel K which maps x;’s to f*, and f is one such function, we have f*TK=1f* < ||| x. This
inequality implies

. *T —1 px*
<
min [ KT < e
SO we obtain

2 B2
R(fwrv) < SR + (o) I

Therefore, it remains to bound R, (f) by R(f).

(68)

As we showed in Appendix BT, for every input « we have f(z) < || f||¢, so for every data (z,y),
by the fact that |y| < B a.s. and a smoothness of the loss, we have ¢(f(z),y) < a(||f|c + B)>.
Moreover, note that the random variable £( f(x),y) has mean R(f). It is easy to check that in this
setting, the variance of ¢(f(z),y) is at most R(f)a(||f|lc + B)?*. Therefore, an application of the
Bernstein inequality, we have with high probability over the dataset

n n
Plugging this back to Equation (B8) completes the proof. As a result, the learned network can

compete with any function that has reasonably small || f||.:

2—|—32

n

R(fwy) < min {QR(f) +O(aw
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A.10 OPTIMIZATION
In this section, we glue together

* the existence of a good random direction that we prove in Appendix

* the convergence analysis of PSGD that we do based on the work Ge“ef-all (Z0I5H) in Ap-
pendix ATTA.

Theorem 4 In the same setting of Theorem B, assume the network (W', V") returned by PSGD, has
sufficient polynomially large “overparameterization”. Then, for the solution (W' V') returned by
PSGD we have

LW V") < R, (f*) +v, (69)

which further implies
Ro(fwrvr) < Ruo(f*) + 2v, (70)
W[ < 40, |[V'||* < 40C. (71)

Moreover, for every i € [n],j € [m1],j ¢ P for P defined inll, we have that sign((Wj(O) + Wi ;)

. T
and sign(W;™ x;) are the same.
Proof of Theorem &

Let T € R™2(ms—n)xmams pe a matrix whose rows are an orthonormal basis for the space
of matrices whose rows are orthogonal to span({¢(?) (x;)}7_,), i.e. ®*, as defined in (24). Then,
we consider a linear change of coordinates for the subspace ®, regarding the second layer weights,
as v’ = Tvec(V') where vec(.) splits out the vectorized version of a matrix. For consistent notation,
we also denote w’ = W, so we now have a new coordinate system (w’,v’) € Rm2(ms—n)xmid fop
pairs of weights (W', V') such that V'’ € ®*. We also define the loss function

L(w = (w',v')) = L(W', V"),
with respect to the change of coordinate.

Now it is easy to see that running PSGD on L in the normal coordinates is equivalent to running
stochastic gradient descent on L with respect to (w’,v’). Moreover, because multiplying to matrix
T is an orthonormal change of coordinates for 1 and because V" is already in ¢ at each step of
PSGD, then |[v'|| = ||V’]], so the conditions ||W'|| < C4,||[V’|| < Cq are equivalent to ||w'|| <
C1, |[v'|| € Cs. Furthermore, by our construction, the random matrix V55 is in the subspace ®, so
the norm bounds ||[W*|| < (3, ||V*|| < ¢z are equivalent to ||w*|| < (1, [|v*|| < (e for w* = W
and v* := Tvec(V*).

Now we apply the result of Theorem B on L with parameter v set as 1/, (3 := ¢ and (; := 1, and
A = R, (f*), as defined in Theorem B. More specifically, based on our arguments above regarding
the natural isometry in the change of coordinate, any pair (w’, v’) in the domain ||w’|| < Cy, ||v]] <
Co, L (w',v") > R, (f*) + v/ translates into a pair (W’, V") in the domain ||W'|| < Cy, ||[V'|| <
Co, LOW', V') > R, (f*) + v/, for which by Theorem B there exists (W55, V5¥) such that

EsL(W' —n/2W' + /nWs, V' —n/2V' +/nVs) < LW, V') — /' /4. (72)
Translating back to the change of coordinates:

Exs LM (w' —n/2w + /nw§, v —n/20" + /us) < L(w',v') — ' /4. (73)

Now we apply Lemma 4 to translate this into an argument about the landscape of L. As a result,
applying the bounds in Equations (I02) and (IX2), we obtain that for (w’,v") such that

LM (w',v') > R (f*) + ',
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we should either have

4
) [—
Ay/[[w![[2 + Jlv']]?
B v/4
AW+ (V7|2
o 14
16,/C2 + C3’
or
4
)\min <V2LH w/a vl ) S - N V/
) = g (o P + )
- v
2ming ([[Ws1* + V5 ?)
14
C16(G+ G)
___ v
16(1+¢)°
Next, we want to apply Theorem I by setting
o 14
TT (110
N@ = Rn(.f*) + V,7
and lipschitz parameters pi,p2,p3 = poly(B,C1,C2,m1,mae,mg) set as described in Ap-
pendix BT, Theorem B. Also, note that as prescribed by Theorem [, we set
N+ 4]
Cl = * s
(1
N+ 4]
Cy = + , (74)
(0>

where [ = O(1) depends on our desired chance of success for the algorithm, specified in Theorem [.
Finally, note that Theorem [ needs to work with a bounded noise on the gradient whose covariance
matrix is bounded between two multipliers of identity. The point of injecting extra noise to SGD
in PSGD is in fact because of this covariance condition that we need in Theorem [. On the other
hand, note that in general, because of the gaussian smoothing that we use, the noise vector is not
supported on a bounded domain, which makes it a bit harder to apply Hoeffding type concentration.
To remedy this, we introduce a coupling between our unbounded noise vector for L(W', V') and
another noise random variable whose support is bounded, which with high probability is equal to
the real noise, along all iterations. In Corollary, we further translate this coupling for the objective
L™ after change of cooridnates, and write down the exact dependencies of the parameters @, o and
09, which are all polynomial in the basic parameters and the overparameterization.

Hence, the conditions of Theorem [@ are satisfied, so we conclude that after at most

pOZy(p17p27p37QaN701702a1/’7710g(0—1/02)) = pozy<B>m17m27m37013027<13€2) -
poly(n, BV 1/B,1/70) number of iterations, PSGD reach a point w; in some iteration ¢ with
Ln(wt) S N[.

Translating back this w; = (w},v}) by multiplying the v} part to Y7, we get a pair (W/, V) with
objective value bounded as

LW, V) < Ru(f7) + v/

But note that we obviously have the condition ||W'|| < C4, ||[V’|| < C; through the whole iterations,
for the choice of C', Cy in Equation (Zd). Therefore, using Lemma B4, for every i € [n]:

|fiv: v (@) = O(Ch, Ca), (75)
| fw v (z:)] = O(Ch, Cy) (76)
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From Equations (Ifl), as also stated in Theorem B, we know that for all ¢ € [n], £(.,y;) is
O(C1C3) + B?-Lipschitz at points fy v (z;) and f{,V,’V,(xi), so we can bound the difference

(S v (@), yi) — L(fwe v (i), 9i)| by (O(C1C2) + B?)| fiys v (), i) — fwr v (2i)], which
in turn can become arbitrarily small having enough overparameterization using Lemma BY, in partic-
ular, we force it to be smaller than O(v//(B? + C1C3)) (recall v/ > v/2 > B?/(2n)). As a result,
we get [€(fiy: v (i), yi) — (fw v/ (zi),y:)| = O(v) for every i € [n], which in turn implies
|IL(W', V') — Ly (W', V')| < v by picking small constants, where recall that the objective L is the
same as L but without the smoothing. Now applying this bound to Equation (I73), we get

LW, V) < R,(f*)+ 2.

Therefore, as PSGD check the values of L; in the loop, it terminates at such pair (W, V;). From this
point onward, we refer to the returned (W}, V//) as just (W', V).

Opening the definition of Ly (W', V'), we clearly get
Ro(fwrv) < Li(W' V') < R (f*) + 20" < R, (f*) 4 2v. (77

Furthermore, noting the setting of 11, 15 in Theorem B and the fact that v/ > v/2 > R, (f*)/8, we
get

AC(R (f7) +2v)

l//

< 40, (78)

V') < < 40¢, (79)

which completes the proof. The fact that for every i € [n],j € [mi],j ¢ P we have that
T
sign((Wj(O) + W/)Tz;) and sign(Wj(O) x;) are the same follows from Lemma .
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A.11 RADEMACHER COMPLEXITY

In this section we show the proof for our Rademacher Complexity bound, which is used in Theo-
rem B.

Theorem 5 Let G, ., be the class of neural nets with weights (W, V') in our three layer setting,
such that ||W — WO < vy, |V = VO < ~y, where for every j € [mg],i € [n]: Vil
0 (), and for every i € [n],j € [mi1],j ¢ P for P C [my] defined in Lemma I, it satisfies
mgn((W( )+ Whx;) = sign(W O z;). Then, for large enough overparameterization, we have the
followmg bound on the Rademacher complexity:

2n72

NGh

R(g’n/}'z) S

Proof of Theorem B

Here, we do not have the smoothing matrices W* V? anymore. In this section, unlike the
optimization section that we used {z}}?_; to denote the output of the first layer by incorporating
also the smoothing matrices, here we deﬁne it without them:

zh = Wea (WO + W')x;).
\Fl

Now define the matrices

Z;= 1/\/"72(‘13']1{‘/1’(,0)%; Z O}x;) j 21’

7" =1y (a;(1Vsw, 2 0} = 1V, = 0pjay)

j=1
To bound the Z + part, note that substituting C by ~y; in lemma B and assuming conditions

my = Q(mé),

3/2
201/ n®m3 14 <
—F (=) =71,
\/El ml)\o

(we can use this result because we do not have the smoothing matrix W? here), we get with high
probability over the initialization for every ¢ € [n]:

9" ()| = [l — ¢ (i)l S - (80)
Therefore, we can write

|trace(V Z,1)| = Zaj]l{mgn (Vx)) # s1gn(V( ) z;)}V; x|
ZM@VM#@(”MW£
! 0,/ () ),/ ),/
< —= > Vx| < (v, = Vi )i 1V, = V)] + (V)]
Vi, 2 (1 )
1 0) ./ 0)y,.1 Oy,
SE%ZMV|<M,V>MMWVQMU
J

1 (0) (0) 2/3 1/3: ’ (R}
< E V. ‘/ ‘/ <~ min x 20V — V)
= Jma {| 7, | |( j )l’ | (m2) 1 ()17” 1”)}( |( Js 7, ) z|)

J

w—ZMJ,W%P”%)WMMMM@%—WMD
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Now using the fact that V; — Vj(o) is orthogonal to ¢(®) (x;)’s:

2/3/ 1y
27, (,,T K
pis < 22l g0, ) <937 () e}
J

_l’_
\/ 12 7
Next, using the upper bound on ||z — #(©) (x;)|]:

2573 (£2) 3y
LHSSTZ(H{\V(O) 7l <5 Pl
J

Znﬂm, Villlz %

K
2 VNI~ v

2/3

ry? (nz )1/371 ), s 2/3 K2 \1/3
ST > (1{[V;"ai] < o Al
J

gi! 0) 12 4/3 Ko )2 0) 9
+ {||V; —V > /3 (Vj, V
mﬁj: v, - v }\/§j|| )

vg/g(ﬂ)1/3v

< i

e

- K2
J

Zn{nvr,—vj@unx;—o: (@)l = 73 2 () B vy, — VIOl — ¢
- ma

1 - V3 m 5 1
(vl < BPCEPlaily) + 22 x (g

O )]l

2/3°

Y2

Then, applying the first argument of Lemma P9, we have with high probability over the randomness

of V(0.

< 73/3(%)1/371 @(2)1/372/3)_’_ BN % (@ s 1
T Ve mr omyt P Vg Re 20
4/3 4/3
< 72 71 + 72 ’Yl
T (Ravm)t3 o (kay/my)'?
4/3
< 72 Y1

™ (Ray/my) 1
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Therefore, we can write:

1
R(Grr e, =

n
E sup & fvw (T
St

:7E sup Zela o(1/y/maVWeo(1/\/miWz;))

n

n

2/\

n

IN

n

1
= —E. sup sup trace((V — y©

n

lIEIE sup sup trace(V(Z &Z))) +

VWES

1
~E. sup eia’o(1/ymaVi!
n VWGSZ 1/ )

—E sup sup Z extrace(V (Z, + Z7))

Wesves;
74/371
—E sup e;trace(V Z; z -
ersz v ) (52 ﬁm2)1/3

4/3
- ’72/ Y1

i=1 ’ (Kay/my)t/3
zel

wesves

WesveS

1
+ —E, sup trace(V

n

VvON ¢2z)) al
wes Z fizxﬁ (r2y/my)1/3”

(81)

For the first term, for every j € [my), define H; to be the set of i’s in [n] where the jth column of

Z! is non-zero, i.e.

Hy={ien]: v"z, >0}

Here, we use the crucial assumption that (V — V(9));

(/)(0)( ;) = 0, so we can drop the ¢ (x;)

term when  is multiplied to V' — V' (0), Using this trick and applying Cauchy Schwarz, we bound

the first term as:

n

l]E6 sup trace((V — V(O))(Z €Z))

n  wyves

1
< ZE |V = VO sup
n wes

Further using Jensen’s inequality:

i=1

Z 1D cd® ()2

]1 i€Hj

1
“E. sup trace((V — V©)( Zﬁl

n w,ves

n

1=1

wovey [ 18
<+ |E.— su €0 (z;)|)%.
< e 2 32 o]

icH;

(82)

Using Equation (ITT) of Lemma B (note that we do not have the smoothing matrix W* here, so we
are allowed to use this result), we obtain

KW —w©, zf)

where Zik’s are defined in Equation (BI8).

Plugging this back in (B2):
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Ee sup | > ad (@)l

i€H;
03/2 n3ms3 2
<E. su (W =W Zky |+ 3)1/4
v (%j M+ ==
3 3,,3
SEsup | Y W — WO, zy2 o Sy
wes o K1 M1Ao
= E. supZ(trace W—W“”)(Ze.Z?f)))2+Ci(M)l/2. (83)
wes icH, o K1 MiAg

Now for every fixed dataset, with high probability over the randomness of W*, for every ki # ks:

(S azi > azin| < Y |k 2k

’L-GHj 'L-GHj il,iQGHj

1 —
-— ¥ ‘ZW,ghjw,:z,j@h,xizm{wj,o)% > 0} {W Pz, > 0}

my . < —
i1,i2€H;  j=1

But note that because (x;,,z;,) < 1, the variables W,fth]jz,j(xil,xi2>]1{Wj(70)xi1 >

O}JI{VVjEO):ri2 > 0} are subgaussian with parameter one with respect to the randomness of WW*.
Hence, with high probability over the randomness of W*, we get

(T Y|t %

i€H; i€H; Ly iseH; VT

(84)

Therefore, with high probability over the randomness of W () and W’ and the dataset, we get
Equation (84)). In order to get rid of the high probability argument on the dataset, we use the stronger
Equation (319) in Lemma B8 which uniformly bounds (Z, (x), Zx, (z")) by log(m1)d/m; for any
x, 2, which in turn gives

‘<Z€iz’fl’zquz> < ¥ ‘<Zﬁ1,Zf§> <

~ b
vm
i€H, i€H, i1,i0€H; 1

n%dlog(m;)

with high probability, independent of the choice of dataset. This bounds is slightly worse comapred
to (B4), but still efficient for our purpose.

Furthermore, a similar bound to Equation (84)) can be obtained in a more adversarial situation when
we also take maximum against the choice of the dataset.

Note that the entries of Zie H, eiZik for 1 < k < mg can differ only in a sign. Therefore, their
norms are all equal. Now suppose that C; is the random variable of the norm of these variables:

=) ezl

i€H,

Then, by substituting 7y = & 3, c ;. €2} in Lemma H0, we get
; ,

> (trace<<W —w Ry eiZi’“)))2 <Ci(1+ m%O(W))lW -wOIE ®89)
k=1 i€H; mC;
— 2+ —”ngdlog(ml))uw — WO (86)
! vy "
Now recall from Equation (B0), we have
16" (z:)]| < 7. (87)

31



Under review as a conference paper at ICLR 2022

Hence, we can apply Corollary 51 with ¢(?)(z;) and C; substituted by ¢'(x;) and 7, respectively,
to argue with high probability over the initialization, there exists a set P; such that for every i € [n]

- T
and j ¢ P;, sign of V]Tx; is the same as Vj(o) ¢(O)(=’Ci>, and moreover,

~ C? |13
PlS ((m:;f%))

mao.

Now let
Hy={ien]: v;"¢" () 2 0}.

Note that for j ¢ P = |J, P;, we have H; = H;. Now note that the norm of each ZieHj € ZF is at
most one. for eachindex 1 < ¢ < m;d, as the random variables Zieﬁj €:(ZF), are Zieﬁj (ZF)? <

Zie[n] (Zf)f subgaussian, we have with probability at least 1 — % over the randomness of ¢;’s, for
every 1 </ <mpdandevery 1 <j < mag:

’ Z (2 ’ < Z (ZF)2 log(midman),

i€H; i€[n]

which implies for every j € [mo]:

[ Z Gz < Z Z (Zf)7 log(mad) < nlog(midman).

icH; £ i€[n]
Name this event 3, so

P(B) <

Sl

Note that although H; might depend on the randomness of ¢;’s, H ; does not, and if j ¢ P, we
obtain
Ci =11 > eizF|| < \/nlog(mydman).
’ieﬁj

Moreover, note that we also have the following worse case bound:

Ci=1 azfll< ) |z <n

i€H; i€H,;

Applying the last two inequalities into Equations (Z9R) and (B):

E. —Z sup I Z ¢’ ()]

i€ H;
c3 n? m3 1
< 24 E. su trace((W — W© & ZF))
TR (ml)\o ; Wep ; ( zgﬁ[: ¢ )
C3 ndm3 n?m3dlog(m;)
< LMz E]lB S OBUNL )y gy (0) 2
= K (ml)\O) { }JEZP \/ﬁl )” ||F
n2m dlog(mq
+ BB} Y (0 + IR o
i¢P !
= n2m2dlog(m1)
+-CEA{E} ) (C W WO
j=1 1
< g(n3m§)1/2 + ||W W(O)||2 [|P|< + n m3dlog(m1)> —|—2(TL—|— n deIOg(ml)>:|
T K ml)\o mo \/ml \/ﬁl
Cc3 nPmi C? |13 C? |1/3n*midlog(my) _n*midlog(m;)
<Y /2 1 .2[ 3 1 1 3 9 3 onl
T K1 <m1)\0) A [n ((mgn%)) " ((m3’<¢%)) vy * vmy i n}
(88)
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Next, we analyze the term L1E.supy g trace(V(O (37 | €2/)). Noting that [|¢ (z;)|| <
k14/m with high probability and using Equation (§7):

1> azille <D 1Zille <Y llzil < Yo' @)l + 1160 @)ll) S n(vmgky + 7). (89)
i=1 i=1 i=1 i

Hence

n

1
~E, sup trace(V(® (Z €7Z!))

—E sup Zeztrace v zh

n wes P no wes;;
L™, 10 g 10
= E sup el( a; Vi a1V ’>0>
n WESZ \/EQ z_: o { }
= E sup € VOzy < sup ala(VOgl).
n WGSZ 2 wes ( 2
But using Lemma B0:
LHS S kav/mg|i].
Applying a similar bound as we did in Equation (89) on ||«/||:
231l < 16 @)l + 16 ()| S r1v/ms + 1.
Substituting above, we get
1
—E. sup trace(V Z €:2))) < kov/ms(K1v/ms +71). (90)

n  wes

Finally, Substituting Equations (B8) into (82), then combining it with (80) into (K1), we obtain a
bound on Rademacher complexity which holds w.h.p over both the randomness of the initialization
and the dataset:

3 3,13
Gi mPmy .,

RGeS (7 o1
4 e n3 0122 )1/3 o 0122 >1/3n3m§dlog(m1) +2n2m§dlog(m1) +on
n (msk1) (mski) vmy vy
92)
74/371
2
+ Kavmy(kivms + 1) + Tray/im, )15

Having enough overparameterization, we have for every dataset (x, y) (i.e. worst-case Rademacher
complexity):

R(gwﬁz”mﬂ/ > 271’72/\F (93)

Note that for the bound (83) to hold, the overparameterization should be picked poly large in vy, 72,
as well as in other basic parameters. However, noting Equations (89) and (Bf) in the proof of
Theorem B, we set y1 = 1,73 > Q(B,n,1/70) in Theorem B, so v, is at most poly in the basic
parameters. Therefore, again the overparameterization can be picked polynomially large in the basic
only parameters (i.e. independent of v, v, or ().
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A.12 CONSTRUCTING W*, V*

This section consists of two subsections; First, we prove a structural result for the first layer weights
(W', V") that the algorithm visits, then construct a weight matrix W* for the first layer with some
good properties. Second, we do the same thing for the second layer (however, the structure of the
first and second layers are completely different). Through out this section, we assume we have the
norm bounds |W'|| < Cq, ||V'|| < Ca.

Notably, we rely on a number of basic Lemmas more related to the representation power of the

network, which we defer their proof into a later Appendix B2 and refer to them here as needed.

A.12.1 FIRST LAYER, CONSTRUCTION OF W*

Lemma 1 Suppose my > 16n?m3 /3. Let P, = {j € [m4]] |W( )xl| < co/y/my} and P = UP;.
During SGD iterations, suppose we have |W'||p < Cy. Then, for a value c, satisfying
Cry/mms Vo < ¢a < kidoy/mi/(2n?),
with high probability Vi
|P| S cav/my /K1,

and for j ¢ P, during the whole algorithm we have

W1 < Y s cofaimy) < /2y

ca/Vmy < Wz,

So the signs of neurons outside P never changes. In particular, we can set co as small as co =
Cy/nms/ \F)\o. In the rest of the proof (i.e. other sections), we set co to this value.

Proof of Lemma 0

Define the matrix

Zi = \F (Wi o 1{Vi : O)sz > ca/Vmy})ie
my

Let P; be the set of indices j such that ]l{Wj(O)Tm > cp/+/my} is zero. First of all, note that by
Bernstein inequality:

|Pz| < 62\/m1/m + O(\/ ng/ml//ﬁl + 1) ,S Cgml/ﬁl.

Now suppose that until the current iteration of the algorithm the assumption has been true, i.e. the
signs of the neurons outside of P have never changed. As a result, due to the specific update of the
SGD for both of the terms Ez¢(fy+ (), y) and ||W’||%, if we define W’|p to be the restriction
of W' to indices that are not in P (i.e. the columns in P are equal to zero), then we can write

m3 n

=3 aniZ. (94)

k=11i=1

An issue here is that we also have some injected noise by PSGD into W’ which violates Equation (24)).
To handle the injected noise as well, we define the subspace ®’ of R"**¢ matrices to be the set of
vectors with arbitrary rows for j € [m;] with j € P, while restricted to the other rows j ¢ P in

should be in the span of (Z%); x. Then, we decompose W' into subspaces @ and &' respectively
as W = W'Y + WP where W’(l) € & W' c L. Here, we want to prove ||W’(1)|| <
¢2/(4+/my). We handle the ||W’ || part in Appendix E3. So instead of W’|p in Equation (B4) we
consider W) |p:

W), ZZak,Zk. (95)

k=111=1
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We handle the other part W’ @ in Appendix E5. Now exactly similar to the drivation in Lemma B,
we can state with high probability

1
o> w2 = (w2

ms3 n
> WO > 31N akiZi)? - O(nms/Vimy) S x|, (96)
k=1 =1

k

Note that we are exploiting the fact that the norm ||T¥’|| remains bounded by C;. Now using a
Hoeffding bound for matrix H oo’ defined below, we write:

H“;lh = Ey.n(o,re) 1{Vi : |wT x| > CQ/ﬂl}mzxiQ(l{wail >0} {w”z;, >0})

= ]Ew:./\[(oJRd)(]].{wail > 0}1{w” z;, > 0}y x4,

+OEL{Fi: |w'zi| < cof/vV/my}(U{w" z;, > 0} 1{w" z;, > 0}))z] 23,

= H;Y,;, £ O(nea/(Vmy k)|, ||| 1)

= H°, +O(nca/(vVmyk1)). 97)

11,12
Now opening Equation (86) and using the property co < k1 Aov/m,/(2n?), we get
LHS =) Y arinani (2, Z2) — Olnmg/v/my Y [lak|)
ki1, k

=D anaoni (HY), 5, £0(1/vimy) = O(nms/Vimy Y llax®)
k

k i1,ip

>3 aknons Hi, £ lawlf0(nea/vmy k1) = O(nms/v/imy Y Jlaxl|?)
k

k i1,ip

> Y ap H™ay = O(nez/Vimym) Y llawlf — O(nms/v/imy Y lle|?)
k k

k

> af H®ap — O(con®/v/myka) > llakl3 — O(nms/vimy > o)
k k

k

= (Mo — O(nms/Vim,) — Ofean® /vy i) Y o
k
> 20/2Y llal.
k

For the last line to hold, we need enough overparameterization. This implies

> llel® £ CF /.
k

Now again, exactly similar to the derivation in Lemma BR, for j ¢ P we have
WO < vams/mt |3 w2 S Vimsacy/v/mio,
k

which completes most of the proof. For the rest, we are left to show that for the other part W’ (2),

we have ||W’§2) | < ec2/(44/m;), which we do in Appendix E3.

Lemma 2 Under condition mgn/\/m, < Xo/4, there exist matrices {W}}['2, € R™*? st for
everyk # k' € [ms] and i € [n]:

<VV§721y>:= 0,

N/ M.
o< V178 -
Wi =W S Vel
< ny/mg

Wi, Z8) — (Wi, zh)| <
Wit Z4) = W 201 S 502

Vil mo .
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Furthermore, for ki # ko:

3

=
E
33

(Wi Wi,)| < (1+ NWVir [z [ Vi, || o (98)

Proof of Lemma 2

Let
W= ka,izlg.

we want to compute the norm of the projection P(W,:' ) of W,j onto the subspace spanned by all
Zi, for k' # kand i € [n]:

-1 )
IPOVIR = (W ZENE et (2005 Z22)) (W3 Zi) il

99)

(k1,i1), (k2 i2) €[ms]—{k} x[n]

where the first and third terms are vectors and the middle term is a matrix. Now note that for each
k', ki, ko # k, by Hoeffding inequality:

(¢z.2i)) = H* + (£1/3/i0)i, ine] (100)

i1,i2€[n]

<W]:_,Zk/ = ka'LZk7Zk’

S

Sf Vil

vn
< Vil groe - 101
,mll kll e (101)

Therefore,

+ i \\T m3
W Zi ) )k iiem | < 14/ m”VkHHW' (102)

Now Equation (ITX) implies for small enough m;
in (232, 282) )2 20/2, (103)
11,i2€ [n]
as long as A\g > 2n/m;. Moreover, define A to be the block version of

A = ((Z” Z}j?}) -

(k1,i1), (kayiz) €[ma]—{k} x[n]’

i.e. for k1 = ko they are the same but for k1 # ko A is zero. Then
Amin(A) = Xo/2,
because the eigenvalues of each block is at least Ao /2 using Equation (I3). But note that

147 = All2 < A" = Al < man/ /.

So as long as mgn/\/my; < Xo/4, we have A,in(A) > Ao/4. Combining this fact with Equa-
tion (X) and plugging it into Equation (B9), we obtain

nm3

PP < — HVk”H‘X’
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Now define W) = W,© — P(W,"). Then

" p < WMy Vil e
Wi ”k =1 (”k )= No/T1 Vil
Wy — W, ZH| < ||P(W Zi|| < Vs .
|< k ko k>|—|| ( k)”” kHNAO ﬁmlnkaH

Furthermore, note that W,;‘z is orthogonal to W,I for k1 # ko, so
(Wi, Wil = W — POWE), W)
= [(PW5), W — P(W,))|
< [[PWDIIWE — POV
< [PWIHIAWL I+ [P (104)

But note that
Wl = 11> VeaZill <3 Wrall Zil < kil < ValVillz. < N Vil o

Therefore, we can bound Equation (I04) as:

* * n mg mg
< — 1 oo oo
W Wi 3 R84 280 Vi i [V

Lemma 3 There exists a matrix W,j 2 such that for every j € P, W,j 2 =0, and
|trace(W,F2ZF) — 2, 1| < C1v/man®/(Mokiv/ma)|| Vel g
Proof of Lemma 3

Define W,j 2 to be equal to le for j ¢ P and equal to zero vector otherwise. Then, by
Lemma BS: (note that | P;| < Cy\/mmz/mi1/(V Aok1))
|trace(W, ZF) — trace(W,2ZF)| < 1/v/m, Z |WiF 4
jEP

1P|
my
< Vnmgz/(miv/ o) | P|||Vi| mee
< Crmgn®/((Aokrv/ma) [[Viel| rree

<

Wl

Combining this with Lemma B4, the desired result follows.

Lemma 4 Under condition man//m, < Ao/4, there exist matrix W' ’s exactly satisfying the same

conditions in Lemma O but with respect to le 2 instead of W,*, and moreover, for j € P we have
Wy =0.

Proof of Lemma @

We can repeat the exact same procedure of Lemma O for W,:' 2. Using the bound in Equa-
tion (1), we have
(¢Zinzi) = H 4 O iaep

=H> + (inCQ/\/mllil)il,ige[n] + O(il/vml)il,ize[n]
= H™ + (£nc2/v/mik1)i, isen)s

i1,i2€[n]
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so as long as

’I’L262/\/TT’LlI<61 = n201«/nm3/(/£1 \ ml)\()) S )\0/2,

with similar argument as in Lemma D, we get

Nuin ({231, Z32)) ) > Ao/2.

i1,i2€[n]

Moreover,

Thus, using the same argument as before the proof is complete.

Lemma 5 Suppose
mq Z n7m3//\0.
During SGD, suppose we are currently at (V', W') with W’ < Cy. For any matrix Wy, we denote
the signs of the first layer imposed by W1 by Dy, »,. Then with high probability, there exists
= Zke[’m.g] Wy such that W}'’s is orthogonal to all other Z,i, s for k' # k, and for every
i € [n], we have:

*
WSDW(O)-‘,-W',QC,'W T; — mZHOO ~

nm nC'
oL T Vil = RVl

1
Vi, Ny

Moreover, we have

W51 s ) [ Dl + 5 s D LIPSENC I

Farticularly, for any diagonal sign matrix ¥ € R™3*™3 we have

NGV
N Vi

which, by having enough overparameterization, implies

[Wellr < 22\%”% V2C1, (107)

W3 )1% < ( (1+Y22) + (14 0(n/(Aov/my) "m3 vaanw. (106)

where

ms
Wy =Y S, Wy (108)
k=1
Moreover, we have

1

WWSDW(O)-FW',MWE‘mi =X
1

1 )
WWéDW(O) +W' 2, W*.'L'l (109)
1
Proof of Lemma B

From Lemma B, we have

|i'i,k — trace(W,ng,i)| < Clm3n2/(/\()l£1\/m1) HVkHHOC
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Combining this with the result of Lemma B, we get:

ny/mg Cymsn?
/\0,/m1 )\inl\/

_ oy 1
= 1+ ]||vk||Hm. (110)

On the other hand, based on the property that W,jj = 0 for j € P and its orthogonal property from
Lemma @, for j € P we get

22 — trace(W; Z})| S | SRS

1 1
7W/§Dw(0) w'’ %W*JUZ = 7W§Dw(o) le*xl
/Tn1 +W, /,,n1 ,
= trace(W* Z},) = trace(W} Z})
1 s *
= Wlwk DW(0>7$¢ Wk i,

which combined with Equation (10) completes the proof. From the above, Equation (1Y) is also
clear. Finally, note that by Lemma B8 we have

W25 < Vg / (v/mado) /Z Vil Free -

which Combined with Lemma B implies

1971 /), [ 3 Vel + ”R’ e () .e\/>

while the other claims follows from Lemma B9 and Lemma B, combined with Equation (B8):

W31 < Z IWil? + Z (Wi, W)l
k1#k2

< STIWEIP + S e+ (5 e
2 4 ”\Fg \/>3
< STIWEIR + 5 Yt + YT Vel

< STIWEIR + S T+ i
< n\/> WB(

nzm
<Sr v F<+Z||W+2||2 gy 2 Vil
< IRV ‘F3C+ZIIW*H2 ”m32||vkumo

T v F
nVn Vi oV, n2m3
S v \/i( \/i)é 1+ (1+0(n/(Aovmy) + 0m1))<1'

Next, we move on to construct V* for the second layer.

A.12.2 SECOND LAYER, CONSTRUCTION OF V*

In this section, we present a couple of lemmas that step by step lead to the construction of V*.
we remind the reader that ¢(®) (z;) is the output of the first layer at initialization weights, ¢'(z;)
and ¢(®)(z;) are the changes in the output of the first layer when W’ and W’ 4 W? are added,
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respectively, and finally ¢*(z;) is the optimal features that are generated by the matrix W* but with
the sign pattern of W) + W, i.e.

d)*(ﬂjz) = WSDw(U)+W/’IiW*Z'i.

1
Vi,
We also define « as

2= O (2)) + ¢ (@) =

Woo (WO + W'+ We)z,).
\ﬁ my
To begin, we state a lemma to bound the magnitude of ||¢'(x;)||, given that the norm of W' is

bounded by C'; and the sign pattern Sgn((W(O) + W )xl> satisfies condition stated for the set of

indices P in Lemma . Later on, we exploit this Lemma in Lemma B3 to state bounds for ||¢(®) (x;)]|.

Lemma 6 Let the matrix W' with norm bound ||W'|| < C4, such that the signs of(W(O) + Wi,

and W° >ch can be different only for j € P, for P defined in Lemma Ul. (Note that for W' at every
step of7 the algorithm, this is automatically satisfied by Lemma ) Then

2C 3/2 n’mj 1/4 2
16/ @oll £ =7 ()4 4 (1 Olmd V) Oy

Particularly for large enough my compared to n, ms, Ao, k1, C1, we have
16/ (zi)ll < Ch-
Proof of Lemma B

We write

|9 () — (W', Z)| < 2/y/m1 Yy [Wiail < 2/v/ma Y |W]l|

JjeEP JEP
’ 03/2 n37n3 1/4
< 24/|P] W T , (111)
VIPI W < 2 (e

where the last line follows from the bound on |P| from Lemma [I.

On the other hand, because by Hoeffding we know that (Z},, Z},) < 1/1/m, by Lemma B0, we get
ms

D W' Z) < (14 O(m3/vmy ) [W' |7 < (14 O(m3/v/my))CF

k=1

Combining this with Equation (ITl), we get
¢/l < ¢Z|¢ vs) — W20 + ¢z .z

205’/2 n3mj

\/El miAo

Next, we prove a structural lemma regarding the sign pattern in the second layer when we feed in 2
to it, with the important message that the dominance of sign patterns are specified by ¢(®) (24).

A

Y4+ (1+ O(m3/v/my))Ch. (112)

Lemma 7 Suppose we have mgn% > Cf, ng\/mz > (5, and my satisfies the condition on
Lemma B. If we have the condition ||¢®) (x;)|| < C, which happens under the high probability
event E° defined in Lemma B3, then for every i € [n], there exist a subset P; which might depend on
WO VO W V' such that

Ct

~ C? |13 C2
Pl < ( 1 1 2 1/3)
REIRS <(m3/<;f)) + (e + Amsr? )(H%mg) mn
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Moreover, for every i € [n), for j ¢ P,,:

SIV80 ) 2 V6 ()] + V(60 (@) + 62 (z)]
V06O 2 ()0 a6 @)

(0) ,(0) 1/3 2/3
V6O (x )|>(m2)/0 3|25 l-

Proof of Lemma 2
By assumption, we know that during the algorithm, we have ||[V’|| < Cs. Also, we know by
Lemma B3 that under E¢:
6@ ()] < 2C1.

Define the set

P = {1V00 @) < es( )05 16O wll) (113)
and P’ = UP/. We have

PV ¢ ()] < es 2)1/302/3H¢ O (2:)]) < es( 2)1/302/3/1-12

so by Bernstein, with high probability:

|P/| < 771202/‘3 (m )3 kg + \/mzcz/gczs( 2 3/ko +1 S C3m202/3(m )3 ks,
2

so with high prob.
|Pl| < eaCal® (223, (114)
K2
On the other hand, Note that
mi
(@) = S 1/m Wi ;oW V) (115)
j=1

is subGaussian with parameter 02 = O(1/m1 > i O'(Wj(o).%'i)2). Furthermore, note that if we com-

pute the variance of ¢,(€0) (z;) with respect to the randomness of W*:

ma

(0)(5(}7;)2 = 1/m1 ZO’(WJ.(O){EZ‘)Q =N
7j=1

which itself concentrates around 1/2k2||x;||> = 1/2k? by another Bernstein, i.e. ¥ = 1/2x3(1 &
O(1/y/my)). Therefore, by concentration of subexponential variables (Bernstein), it is not hard

to see that the squared norm of the vector ¢(®) (x;) is (msr?, k2 )-subexponential and concentrates
around m3N, i.e.

60 (2:)]|? = maR £ O(k2v/m3) = mak?/2 + O(msk2 /v/my) + O(k3\/my), (116)
with high probability. Combining this with the fact that ||¢() (x;)|| < C; implies with high proba-
bility:

6O 5, Vg
lg@ (o)l ~ Ca

Now define P/’ = {j| |V/z{| > |Vj(0)¢>(0) (x;)]/3}. If j € P/" — P/, then by Equation (IT7), with
high probability

VP (@)l = [Vie® (2:)] = [V} (6O (i) + 6@ (2:)| = [V}

(117)
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0 K2 2/3
> (V060 @)l/3 2 es(2) 205 100 (@)l
or 9
2~ 2012 \2/3 44/3 113K
”Vj/” 2 C3(m72) / Cy le

But note that ||V’||% < C3 by our assumption, which implies

2 Pt m
P/ _ Pl <22 Eryesot/3shT bty & M2y0/s 118
| P/ A 2/[63(m2) 2 C? ] C%mgﬁ% P (118)
Now combining Equations (I[14)) and (I1X), we finally obtain
CF 2/3, M2
P/| =P’ — P/|+|P/| < L o232y,
‘z| Iz l‘+|l‘N(CS+C§m3K/%)2 (Hg)
Now define the set
P = (| V" 6@ ()] > |V,V 6O ()] /3}. (119)

Note that for every j € [ma], Vj(o) $©) (x;) is gaussian with variance ||¢(?) (x;)|| over the randomness
of Vj(o), SO
0
(V"¢ () < ana |6 (x:)])) £ e
Therefore, if we define the set
Qi = {j € mal] [V} 6 ()| < ol |6 ()1},

then for large enough ms, by Bernstein with high prob.:

Qi < ama. (120)
Now note that ¢(®)(z;) is fixed during the algorithm. On the other hand, by random matrix the-

ory, we know that with high probability, the eigenvalues of the matrix V() are in (ko (y/m, —

VM), ka(y/my + /ms)). Therefore, even if the vector ¢()(z;) is picked adversarialy (because
it keeps changing during the algorithm), we get that with high probability over the randomness of
V().

VO (@) < K3 (Vimg + vimg) [ (2:)[* S w3mallo® (2:)]|. (121)
Moreover, because ||¢( (x;)|| < C; and from Equation (II8), with high probability over the ran-

domness of W (®); .
1@ (i)l & Vmgk
@ (z)| ~  C
This means that for j € P{" — @;, combining these inequalities we conclude with high probability

7 el

MmaqkK
V06D )| 2 V60 (@1/3 2 anmall6® w0)] > s Y 6 w1
which combined with (CZ11) implies

1P 5 2Ot
N 242"
makKia
Balancing this term with the one in Equation (IZO), we set
2/3
Lo
T B203
3 M
which implies
02
PSP = @il +1Qil < (Gmy) e
31
Defining P; = P}’ U P}, we finally get
= C? 173 C? 2/3, 1 :
Bl < ( 1 L yo2/3_ 2 1/3) .
‘ ‘ ~ ((mgfi%)) + (C3 + C%mglﬁ%) 2 (H%mz) m2

Clearly by the definition of P/ and P} the proof is complete.
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Corollary 5.1 Under the condition ||¢® (z;)|| < Oy (which happens under the event E° defined in

. ci/? 2 ) . o
Lemma B3), setting c3 = — 775 (25> )1/3 in the previous Lemma, we obtain Vi € [n:
ms K/l 2

C? )1 /3
(mak?)
Also for j ¢ ]5,-, the conditions in (ILI3) and (ILIQ) becomes the same as

23
WW(O) (w3
ms  kKyp

1P| < ( ma.

W60 ()] < ks

Hence, for every i € [n] and for j ¢ P, with high probability:

2
36O @) = W8P ()| + W6 () + 6 ()], (122)
(72/3
WO (z;)] 2 @WW%»H 2 ka(vVmgra CT)Y?, (123)
mg' Ky
(72/3
W60 @)| 2 — 77 (124)

~ m:l,)/ 3 Kg/ 3
Next, we state concentration result for the gram matrix of ¢(?) (x;)’s.

Lemma 8 For every iy, i5 € [n], with high probability over the randomness of WO and VO we
have

(@O (@1,), 0O (2,)) = maEo(W V2 )o(W Vz;,) £ O(ms? /Vmy + Vimgk?).
Proof of Lemma 8

First, we compute the expectation:
B0 (@), ¢ (@) = Lm0 Y EWR, Wiy, o (W) ws o (Wi,

J1,j2€[ma] k€[ms]

s s 0 0 0 0
=1/my Z E Z Wk,jkaJ-QU(Wj(l)xil)a(Wj(Z)xiQ) + mg/my Z O'(Wj( )l‘il)U(Wj( )xiz).

J1#J2  k€[ms] JE[ma]
But U(W;P)xil )O'(Wj(f)l'iz) is (m1 k7%, k?)-sub-exponential, so
Z O-(WJ'(O)xil)U(Wj(O)xiz) = ml]EU(Wj(O)xil )U(Wj(O)xiz) + O(\/El’%)v
j€lma]

which means with high probability:

E(6 (21,), 8 (23,)) = msBo (W "z, )o (W w;,) £ O(msk?/v/my).

On the other side, we know that (;3,&0) (z;,) is subgaussian with parameters o2 =

1/ma Z:j(T/Vj(O)xil)2 = ¥y and 0% = 1/my Zj(Wj(O)xiz)z = Ny respectively. On the other
hand, we know that by Bernstein w.h.p

Ny = 1/262(1 + O(1/v/my)).

Hence, o\ (2s,)0\” (2i,) is (RiRy, v/R1Np)-subexponential, and so (¢ (z;,), ¢ (z;,)) is
(ms3R1Ng, v/R1Ny)-subexponential. Therefore, applying another Bernstein on the top, we get

<¢(O)(5Ei1)a ¢(O)($iz)> = ]E<¢(O) (w4,), ¢(0) (z4,)) £ O(\/Eg\/ NiR;)

= msEo(W " 2;, )o (W " 2;,) £ O(msw?/v/m,) +

VI (1 1 01y

= msEo (W " 2;, )o (W " z;,) £ O(msk? /v/m, + Vmgk?).
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Now we define the matrix L; € R™3*™2_ with its jth column L; ; equal to

V60 @) 2 0} (@),

First, we state the following lemma which characterize a concentration result for the gram matrix of
(Li)?zl‘

Lemma 9 With high probability, we have the following approximation:
(Ligs Lia) = (6" (002), 6" (i) [ o (2F((@ir 1)) ) £ O(my M 4 my Vi /).
Proof of Lemma U
By Hoeffding:
(Liv, Liy) = 1/ma Y 6% ()" 6" (i) V" 60 () = 01{V” 61 (23,) = 0)

= 0" ()76 (1) (BL{V," 0V @s,) 2 031{V; V6V (1,) = 0} £ O(1/vimy) )
= 6" (22,)7 0" (i) (P (0 (1,), 00 (@) (16 (@) 16D (i) ) O/ yma) ),

where recall

Fy(z) = 1/4 + arcsin(z) /2,
measures the angle between two unit vectors based on their dot product. Now notice that according
to Lemma B, with high probability:

<Li17Li2>/<¢*('ri1)a ¢*($12)>

msEo (W "z, )o (W Vzy,) £ O((ma/im, + Vmy)w?3)
V maBo(W O 2 & O((ma /iy + v/img)i3)) (msBo (W, )2 & O..)
_ F2<F3<<xi1,x¢2>> £ O/, + Vi) | o Vi),

~ B +0(1/v/m,))

12+ O(1/y/m, + 1/v/imy)
where recall F3 : [—1,+1] — [-1/2,1/2] is defined as:
V1—22 x xarcsinz
Fz)=—— 4+~ 4+ ——.
2w 4 2w

It is easy to see F3 has the property that for unit vectors x1, x5 and w sampled as standard normal:
F3((z1,13)) = Eo(wlz1)o(wl z3).

But because |F5(.)| = O(1), we have
(Liy, Lia) 6" (20), 6" (1)) = Fo(2F3((ry 2,)) £ O(L/Vy + 1y +1/v/ig) ).

Now notice that the derivative of F5, i.e. 1/2mv/1 — 22 is increasing in the interval (0, 1), so for a
fixed 0, the maximum of |F»(x) — Fy(x — 0)| happens at = 1. On the other hand, by writing the
first order approximation of arcsin(1 — ¢2) around ¢ = 0 and upper bounding its derivative in the
interval [0, 1], we get that for 0 < ¢ < 1:

arcsin(1 — 8) > arcsin(1) — 2/6.
Therefore, Fy(z + 6) = Fy(z) £ O(+/6). Hence:
(L, L) 0" (21,), 6" (22,)) = B> (2Bs((is,02)) ) = O 1/vimy + 1/ +1/v/imy)

= B (2B (@i, 2i)) ) £ O(my Vi,

which completes the proof.

Finally, we are ready to construct the weights V'* for the second layer.
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A.12.3 CONSTRUCTION OF V*

Lemma 10 Let

g My 1+ Lcl]
\/ﬁl )\0 K1
Suppose we have the condition that for every k € [mg]:
max Ve < €, (125)

where recall the definition of Vy in Equation (E3). We assume enough overparameterization to make
sure R < 1. Recall for the matrix A defined by

A= (@0, 20) Fa(2Ps((wiy,2:))) ) (126)

b
1<i1,i2<n

we have
(F* @) TATH (S ()i < o

Then, there exists weight matrix V* which only depends on the random initializations W)/ (0)
(e.g. not on V' and W’') for the second layer, such that having enough overparameterization

IV*% < 2, (127)
and for every j € [ms]:

1+ R)nvnls

1V oo < ¢ TRV i gV, (128)

1 Vel
V7l < 1+ 9y 220 Pl gy, (129
2

and further under the high probability event E° defined in Lemma B3:

1 Ch
\/ﬁz \/mg,“l

|=—a" Dy v, V6" (@) = @) S (=) P+ R) (6 D Vil = R
k

(130)

Proof of Lemma I{l
Let
n
Ve=>Y VL,
i=1
be the minimum norm vector which maps L;’s to f*(x;)’s. As a result, for the matrix

L= (<Li1,Li2>>

11,12
it is easy to see
V5 = (F(@a))ima "L ()i

Now combining Lemmas B and &I, we get

16" (z:)]loc < (1+R)E, (131)

6™ @)l < (L +R), )Y IVl ]ee (132)
k

(16" (i), @™ (w02)) = (@i, @) < QR+ R D [ VillFre-
k

and
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Now by Lemma B:
iy Lia) = Aiyia| S @R+ R Wil [Fa (2B (i, w20)) ) | + (1, 22) (g g i 1)
k

+ other cross term.
By applylng <ji17ji2> < H'i‘h ””‘/Z'w” we get
LHS < (3 V=) (@R + 89)| B (2s(ai, i) ) | + (M g i)
k

—1/4 —1/4 —1/4
S O IVl ) (R my g i ).
k

Therefore,
A—((Li;, Ly <||A— ((Li,, L;
l4= (L L)), < A= (Lo Li) e
< (S Velld) (R4 mp g Y mg ) = s
k

Note that , naturally goes to zero (with poly dependence) as 8 — 0 and mq, mq, m3 are large
enough. Now if all of the eigenvalues of the matrix A are £2(1/n?), then if we overparameterize
enough such that R, = O(1/n?) with small enough constant so that R is less than half of the
smallest eigenvalue of A, then for the ith eigenvalue \; of A and L we can write

Ai(L) = Ni(A) — R > Ai(A)/2,
SO
ML <2x,(47h),
which implies the property
V% < 26 (133)

However, A might have very small eigenvalues. To remedie this, we use Lemma BEZ2; we can substi-
tute f* with some f* such that

- B?
Ro(f) < 2Ra(f7) + -, (134)
Frasp<pray, (135)

where f* is on the subspace of eigenvectors of A whose eigenvalues are larger than Q(1/n?). But
it is easy to check that in the context of Theorem B, such substitution results in a f TA-LF <
f*T A= f* < ¢ and o(f*) parameter (as defined in (1)) with respect to f* which satisfies 7/2 < v.
This enables us to use remark ?? with respect to f*. Note that the algorithm is with respect to the
setting v, however we want to exploit generalization bound with respect to f* whose parameter is
U as it enables us to use our analysis in this Lemma. Furthermore, note that using Equation (I34)
we can further upper bound the empirical risk of f* with that of f*, which makes it straightforward
to derive a similar generalization bound as in (83) with respect to f*, of course with a change of
constants. Therefore, without loss of generality we can use substitute f* by f* and still obtain
Equation (I33).

On the other hand, the definition of V* implies

1 T * ok N\ px .
\/mQa DV(U>,x7-,V ¢ (‘T’L) _f (ml)

But note that by Corollary BT, under the high probability event £ defined in Lemma B3, Dy, o) ,,
and Dy (o) 1y ., can only be different in the index set P; and

C? )1/3

Pl <
IS ()

25
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Therefore, for all ¢ € [n]:
| 1
Vm,

1
aTDv(0)+VI)Ii V*¢* (l‘z) — WQTDv(U)’in*Qs* (.’,EZ)‘
2
<1/Vimy Vi 6" (@)

jep

<1/Vmy Yy V7 lllg™ ()

jep

Nz
<V V1), 57 vl
(=) PG+ R > vl
~ \/ﬁs’il H

which proves the first claim. On the other hand, we get:
26 > V¥l = VLY.
But because \p,in (L) = 1/n2, we get
VILY 2 |V3/n?,
which implies

V2 S /¢,

But now using Equation (IZ31), we can write
Vil <D VillLijul < \F ¢ () HooZW\
i=1
(1+R)¢
< Vil < (14 R)EVn[V]/v/m.
e LS (L RV v

Vi,

which proves the other part. Moreover,

£,

A

* |2 2L *(p. 2 Ln R o 2 .
IV < vl \/@(gllé (z:)]l2) < T (1+ )\/C ;IIVkHHoo/Ao
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A.13 EXISTENCE OF A GOOD DIRECTION

Our aim in this section is to show that if the objective value is above certain threshold, there exists a
good random direction which reduces the objective in expectation. Particularly our aim is to prove
the following theorem (informal):

Theorem 6 For a given pair (f*,G) with

<H007G> S Cla

f*T(Koo ®G>—1f* S C27

recall the ideal random matrices (W4, Vsy) constructed in Appendix B2, where ¥ is a random

diagonal sign matrix. Specifically, W is defined in Equation (IU8), and V5, is the projection of the
rows of matrix V* onto the orthogonal subspace spanned by (¢ (z;))7_,.

Using the parameter setting for i = 1,2
Yy = — (137)

with respect to an arbitrary parameter v > 0, then for every pair (W', V') such that |W'| <
Cl, ||V/|| S CQ and

LW V') > A+, (138)

for parameters my, mo, m3, 1/k1, 1/ka polynomially large enough in B,1/ g, n, C1,Co and small
enough step size 1, we have

ExL(W' — n/2W' + /W, V' —n/2V’ + V) < LW, V') —qu/4. (139)

In order to prove the above theorem, we first state and prove the following lemma which is the core
of Theorem B.

Lemma 11 For matrices (W*,V*) constructed in Appendix B12, specifically for their random
coupling (W5, V) as denoted above, we have:

Esl(f(1—n/2ywr s yawe,(1—nj2yvityave (@), i) < (1 =i v (@), yi) +0l(f* (@), yi) £ 0,

where © goes to zero with polynomially large overparameterization (the exact dependence is re-
vealed via the proof).

Proof of Lemma I

For brevity, we use the notation D: , here to refer to the diagonal binary sign matrix when
the input is multiplied by the sum of weight and smoothing matrices. It will be clear in the context
of the equation that what the “input” and the “weight” matrices are. This notation is also defined and
used in Lemma X). Here, we bound multiple cross terms that are created as a result of moving in
the random direction. To simplify the presentation and avoid confusing recursions in the proof, we
have made a sublemma for each of these cross terms and has deferred its proof to Appendix B4
We use difference sub-indices of the symbol R to illustrate terms that go to zero by growing the
overparameterization in our architecture.
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We start by using Lemma I8,

EEE(JC(/pn/z)Wur\/ﬁwg,(17n/2)v'+\/ﬁv§ (i), vi)
= EslEwe ve f(a—n2w + mawe+we,(1—n/2) v+ v +ve (Ti), Yi)

= EEE(EWp,vpaTD/Vp(V(O) + (L =n/2)V' + VP + VS )W*Ds ,(WO + (1 —5/2)W' + WP 4 /W),

+ Rg, yz)

= Esl(Ewovo [a"Drp(VO 4 (1= n/2)V" + VAW Do, (WO 4 (1= 0/2)W + W),
+ 10" D VAW D1 W] 4+ iBweve [aT Do y(VO) 4 (L= 0/2)V' + VO)W* D, Wesa
+ "D VEW D1y (WO (1= n/2)W + W)z

+ %8777?}2‘)

Now using the notation introduced in Lemma [[¥, we have
WeD: (WO + (1= /W' + WP)z; = ¢ (2;) + (1 — 1/2)¢® (2;) + g¢(2)/($i)-
By Lemma [, we have the following bound for ¢’ (z;):

1
]EWp,Vp WQQTDv(O)_;'_Vp_i_V/,xi (V(O) + VP + (]. - 77/2)V/)¢(2)/(x2)

< (koy/mams 4+ /msfa + Ca)Rs.
Therefore, Combining this with Lemma [T, we get

= Ext(Ewnve [a7Drp(VO + (1= 0/2V + VW (6O (1) + (1 = 0/2)6) ()

+ 10" D1 VAW D1 yWei] 4+ iBweve (a7 Do y(VO) + (L= 0/2)V' + VO)W* D, Wiz
+aT D VEW Dy (WO + (1= nf2) W' + W]

£ O((a/mamig + /i + Ca)Rsm) £ O(Ren). v, )

= EEE(IEWp,Vp [(1 —0)a" D ,(VO + V' 4+ VPYW (O (2;) + ¢ (23))

+ 10" D VAW D1 Wai] + iBwe ve (a7 D (VO 4 (1= 0/2)V' + VWD, Wesa

+aT D VEWEDs (WO + (1 —n/2)W' + Wp)xl}

+ O(N(RG + Ra + (Vmzkz + B2)(C1 + Vm3p1))) £ O((kay/mams + vVmyf2 + Co)Rsn) + O(Rsn), yz)

- Eg@((l —0) v (23) + nBawe vea Di  VEWS D, Wik,
+ Ewe. v [aTDgp(V(O) + (1 —n/2)V + VWD Wiz

+aT D VEWSDi (WO 4 (1 —5/2)W' + W”)xl}

+ O(n(RG + Ra + (Vmyrg + B2)(C1 + Vmsf1))) £ O((k2y/mams + V/mzfBa + Ca)Rsn) £ O(Ren), yz)
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Moreover, using the notation (;S*’(a:i) introduced in Lemma 3 and the bound in Lemma [, we can
rewrite the second term as:

LHS = EEZ<(1 =) fiyr v (@) + nBwe vea® Do V5 (9% (2) + 6™ (24))
- ViEwsvo [ Dry (VO 4 (1= n/2)V' + VWD, Wk,
+ "D VEW D1y (WO o (1= /)W + W)z
OI(RG + R + (Vigz + B2)(Cr + Vi) £ O/ + a5 + Ca)Rom) £ O(R) i)
= Esl((1 = 0) flys (@) + nBwo,vea” D V36" (2:)
+ /TEwe.ve [aTD,,p(V@) + (1= n/2)V' + VAW D, Wiz
+ "D VEW D1 (WO (1= n/2)W + W)z
£ O(nR10) £ O((RG + Ra + (Vmgrz + B2)(Cr + vVmzPr))) £ O((k2/mams + V/msfa + C2)Rsn)+
O(Rs). s )- (140)

Now we write the gradient-lipshitz inequality for ¢ at point

1 * [k
Py = (L= 1) flyr v (@) + 1w vea® Di V™ (2:) £ npn,
and regarding the following vector, where ¢; is the sum of all the noise terms above and goes to
zero by over parameterization:

Pl = ViiBws.ve a7 Dy (VO + (L= 0/2)V' + VWD, Wiz
+aT D Vi W Di (WO (1 —n/2)W' + Wp)xz} .

Hence, using the 1 smoothness of £(., y;):

, 1
LHS < Est(p))) + Esi(p) /i + SnEs (). (141)
But note that
Exl(p)y/ipy) = 0(p)y/nEspy) = 0. (142)
On the other hand, using the notation of Lemma 3 and the result of Lemma [&:
2
Es (EwmwaTD/,p(V(o) (1 n/2)V + VP)WSD,WW@;Z-) (143)
2
= Ess (Bws,vra” D1y (VO 4 (1= /2)V + V7) (86" (@) + 6°5(:)) (144)
2
< 4Es, (IEW,J,WaTD,,p(V@) T (1—n/2V + V”)qu*(xi)) (145)
2
+ 4By, (EWWMTD,,,J(V@) +(1—n/2V +VP) E(:m)) (146)
<RI+ RE. (147)

Moreover, using again the result on ¢(?(x;) from Lemma ¥ and the fact that $(¥) (x;) is orthogonal
to the rows of Vsi:

Ewe veal Di VWD (WO 4 (1 —5/2)W' + WP)z
= a" D0, V(0O () + (1= 1/2)6®) (1))

0" D1, Vo™ ()
=(1- )TD/ V5ot ()
+ 307D VEW D6 (a)
S(- )TD PV (2:) £ Rs.
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Combining the last Equation with Lemma [4:
Es (EwoypaTDf,pVZ*WsD/) WO 41 —n/2)W + WPz )2
sufg%%w@wmeWw+ﬁ
<SR+ R (148)
Combining Equations ([IZ7) and ([4R):
EE(p(;))2 SR+ R + RE+ RS = o (149)

Combining Equations ([42) and (I49), plugging into (I4Tl), and reopening the definition of p( ).

LHS < Egﬁ((l — ﬂ)fév/,v' () + nEWpyvpaTD/ﬁpVZ*gb* (z;) £ np1, yz) + nuage.  (150)

Now note that we can easily bound the magnitude of the term nIEWp,VpaTDg Vs * (x;) as:

|Ewevea’ Di Vo™ (2)| < Ewo vola® Dr V55" ()]

< IVSllrlle™ (@l < IVl (2]l < V26 (1+R) ‘/Z VellFroe

while using Lemma B4:

|f1//V/,V/ (351)‘ < (Hszs + 52)(\/53’11 +C + \/Egﬁl) + 02(01 + \/ESﬂl)7

which is O(C1Cs) for enough overparameterization and smoothing parameters i, 32 as defined
in A20°T. Furthermore, from Equations (I32) and (CX7), we easily see that

Ewoveal Dr Vg™ () < v/20(1 + R) ZIIVkHHoo

Now taking 1 small enough so that the bound 7v/2{2(1 + R)\/>_; [[Vk||%~ and np; both also
be bounded of order O(C1C53), we observe that the term inside the argument of ¢(.,y;) Equa-

tion in (I&0) is O(C1Cs). Hence, we can use the lipschitz parameter of ¢ in the interval
[-O(C1C3), 0(C1Cy)], given by Lemma B to take out the noise term:

LHS S Est((1 =) fiys v (2:) + nEwo,vsa” D V36" (2:),3:) £ 01 +n0(C1Cs + B)ps.
(151)

Now by applying Lemma [[9 and writing the Lipchitz property of £ at point (1 — 1) fiy . (%) =
0(C1Cs):

LHS 5 Ezf((l — ) fiyr v (@i) +nf* (i) £ 1R, yi) + np1 +n0(C1C2 + B)po
= Ezf((l =) fivr v (@) +0f" (), yz) + Ry £ np1 +nO0(C1C: + B)gps
= 0((1 = ) fiyr @)+ 0f*(22), ) % g,

where the last line is just definition. Now Convexity of ¢ finishes the proof.

Next, using Lemma [l we prove Theorem B.

Restating Theorem B In the same setting as Theorem B and having enough overparameterization
such that p < £ (p defined in Lemma [) and polynomially small enough step size 7, we have

ExL(W' — W'+ /W, V' — V' + /nVss) < L(W', V') — nv /4.
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Proof of Theorem @

First, note that taking expectation w.r.t >

m3 ms3

Ex|(1—n/2W' + ViWs|* = Es(1 —0/2)*|[W'[|* +2(1 — n/2) (W', Y SeWi) +al Y SeWi||?
k=1 k=1

= (L= n/22[W'|? +0 Y IWE|%,
k

which by orthogonality of W;’s:
LHS = (1= /2% [W/|? +n|W*|2 = (L= n)|[W'|12 4+ nl| W2 + 0| W]
Similarly for V’:
Ex(1=n/2)V"+y/aVs | = (1=n/22|V |2+ |V*SI2 = (1) [V/ [P+l V242 |V
Now using Lemma [T
EsL(W' —n/2W' + /qWs, V' —n/2V" + /nVs)
< (L =mEzl(fiyr v (2),y) + nEzL(f* (), y)
+ (L= ) (Va W2 + w2 VI) + (W12 + 0l V1) + 0 (0 + (W12 + V7))
< LW V) = (LW, V') = A= 16 = a6 ) + (o + n(IW/IP + V%)),
which by the choice of ¢;’s is equal to
LHS < LW/, V') = (LW, V') = A = v/2) + 0o+ n(IW7 + V']
LHS < LW, V') = /2 + (o + n(IW/I> + V'3

Moreover, using the condition
p <v/8,
and picking 7 as small as
n(IW/ 1+ IV'[1?) < n(CF + C3) <w/8,

we finally get
LHS < L(W' V") —nv/4.
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A.14 EXISTENCE OF A GOOD DIRECTION HELPER LEMMAS

In this section, we state and prove the core lemmas that are used in the proof of Lemma [l. Notably,
through all of this section, we assume the norm bounds |W’|| < Cy,||V’|] < C5 and that as our
usual assumption, the rows of V" are orthogonal to ¢(*) (;)’s for all i € [n]. A notation that we use
throughout the proofs is V&% which refers to the projectiono of V' *X onto the orthogonal subspace to

(@@ (@)

Lemma 12 Let P(.) be the projection operator onto the subspace spanned by (¢'°) (z;))1,. Also,
we denote the projection of rows of V*3 onto the orthogonal subspace to (qb(o)(xi))?:l by ng.
Then

Es|[Vs; — Vi'E)|? < 03¢%n/ms,
with high probability

< 03§y
~ \/ﬁ2 b

Vs, = Vis)l

Proof of Lemma @I2

By Equation (I29), we have [|[V'[lc < 03f/\/m2. Now suppose that ui,...,u, are an
orthonormal basis for the subspace span(¢(®) (z;))%,. Then

(2

Ex| Vs, = Vi)I? = Ex| P(V;E)P =D Y Vijuin < Vi ll%n < 05¢*n/ma.
k
Also, by Hoeffding, with high probability:

m3
PV =Y OV uwinse)? SnllVylI%,
i k=1

which implies the second part.

Lemma 13 The first cross term goes away because of the definition of V. (inside the expectations
is zero almost surely)

1 2
Es (EVP,WP[ a" Dy tyoyv miVE*‘ZS(O) (x)}) =0
\/%2 +Ve4+V7, ?
Lemma 14 Second cross term:
EE (EVP Wwe [LG/TDV(O)+V/J+V/ V§¢(2) (.’I;)])z (152)
T my i
< E((1+R)2n + 02n)(CF +msBi) = N2 (153)

Proof of Lemma 04
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This time we use Equation (I29) in Lemma [0 and Lemma I2:

1 2
Es; (Evews v 0 Dy vy o V0D (@)])
2

< B (Bl Vi 3%, (1))
J

1 2
< %EZ,VP,Wﬂ ( Z |V§j¢(2)($i)|>
J

< EveweExs Z |V§j¢(2)($i)|2
J

S EveweEs > (Vs = ViD)e® (2:)]> + ) [V 86 (2:))?
7 J

SEveweBs Y IV = ViD)PI6@ (@) I” + Y IVi 1% N6 (@a)l13
J J

S (1 + R)*nGE® + 03¢ n)Eve wollo® (x4)]13-
Now according to Lemma B3, we have

Evewello® (z:)]? < C1° +mspi?,

which completes the proof.

Lemma 15 We get an additional term ¢*'(x;) as a result of smoothing which we define as

1
o (i) = T WDy o ywriwe o, Wi — ¢* 5 (). (154)
1

P(¢* (2:) # 0) < myexp {—c3/(867)}.

Moreover, we have the following inequality almost surely (over the randomness of W?):
6% @lloo S, D IVell3ree-
k

According to Lemma [, for j ¢ P, for every i € [n] we have
(W + W))ai| > ez/20/m,.

Now note that as long as the sign patterns for j ¢ P does not change, ¢*'(x;) will be zero. Therefore
by union bound

Then

Proof of Lemma I3

P(¢* (z;) #0) < Z]P’(Sign change in j) < ml]P’(|(Wj(0) + W)ai| < W)
j=1
< mP(WFai| > e2/(2v/my)).

But (W/)z; is Gaussian with variance (% /m;. Hence

LHS < myexp{—c2/(883)},

which proves the first part. For the second part, according to Equation (I06) in Lemma B, for every
ke [mg]:

* 1 s * *
"% (2)] < |\/77L Wi Dy o) ywrswe 2, Wil + |7 (24)] (155)
1

<2/Vm Y WS <2AW e S D0 Vel (156)
J k

which implies the second part.
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Lemma 16 Fourth Extra term:

aTDv(O)-i-VP-&-V/,xi(V(O) + VP4 (1 =n/2)V")$" (24))]

1
]EW/J_’VP [ \/m
2

< (k2y/mams + Cz + Vmgfa) ma exp {—c3/(857)}, > IVell3ee = Rus.
k

Proof of Lemma Id

Note that with high probability over the randomness of V(9), we have |V (|| p < | /mamzks. Now
according to Lemma 3 and using the fact that ||V'||p < Ca:

1
my
= Ewe vo|[VO + VP + (1 —n/2V'||ll6* (z:)|

< \/EVP(HV(O) + (1= n/2QV|[5 + IVeF) myexp {-c3/(867)}, > Vel
k
< \/||V(O)||% V1% +ma g miexp{=c3/(861)}, | D Vel
%
S (kav/mams + Cy + v/myfa) myexp {—c3/(857)} Z Vil e -
\ &

Lemma 17 Fifth extra term:

1 k1%
]EWﬂ,Vﬂ[\/m a" Dy sy, Vi /(xi)}‘ S VGm exp {—c3/(867)}, > IVil3ee = Rao-
2 k

Proof of Lemma 07

lall ]V + VO 4+ (1 =)V |l2ll¢™ ()]

S ]EWP,VP

Similar to the previous Lemma, the inner expectation can be bounded as:

1 / * %!
< ]E\/Fn lalllIVSIe 6™ @)l <EIVFelle” (@)l S V/Eymaexp{—=c3/BBD}, [ Vi3
2 k

Lemma 18 We have another extra term as a product of the movement —n/2W' in the first layer:

2
6 @0) = o (W Duyo g (W WP (L 2)W i )~ (1/2)6) )]

Then

1 *
‘]EWI’,VP NG aTDV(D>+VP+V/,zi VoD ()

S \Jeama (28 29 exp 3/ (382)}C3) = . (157
miq miR1
1
Ewoe ve 7\/5 aTDV(0>+VP+V’,zi(V(O) +VP+(1- U/Q)V/W(Q)/(a?z‘)
2
S (k2y/mams + vVmsfa + Co)Rs. (158)

Proof of Lemma I8

First we prove the following approximation argument (for all k € [ms]):
2 Bt + 2CF

Ewe|¢® (zi)i|* < mi T miem
1

+ my exp {—c3/(853%)}C?. (159)
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We have

2
LHS = Ey» ‘

—WiDwo yweswr o, WO + WP WiDy ,W Oz
\/*1 kHEWO +We+W 1( ) \/*1 kW

S Ewe

— leDW(m—&-WP,xi WO+ WP, Wi Dy o, W O ‘
1

\Fl

1 2
+Ewe W;CSDW<0)+W;7,M(W(O) +WP)x; — WW].:DW(O)+WP+W’7I7;(W(O) + WPz,
1

1
Vi,
By the independence of Wj” ’s, the first term can be upper bounded as

1

=Ewr— ((W(O) + WOz {(W” + W)z > 0} — WOz, 1{w Dz > 0})
1

j=1
1 & 1 g2 B2

< — Epo W= —) L =L
_mlj; wel sz‘ mlzﬂh mi

For the second term, note that for every j ¢ P, the jth entries of Dy o TWe.as and
Dy o) 4wesw s, are different only if TV, can make a sign change in the jth row, i.e. |(Wj(0) +
W/)z;| < [W7x;| should happen. We denote this event for every j ¢ P by E;. Furthermore, if this

happens for some j, then the value of (W(®) + W) ,z; is upper bounded by |Wiz;|. Now similar
to our discussion in Lemma [3 and using the result of Lemma [I:

my
P(Uj¢pEj) = P(sign change in some j ¢ P) < Z P(sign change in j)
igp
< P(|(W? + Wz < [WEai]) < miP(Woai| > ca/(2v/my)).
But note that (W/)z; is Gaussian with variance 5% /m1. Hence
LHS < myexp{—c3/(88})},

So finally we can write

ﬁ
mll +Ewpm—1 O [Wai))? +Ewp—(]1{Uj¢pE P W)
JEP jépr
BgE P ~
< P Py (U, By W2
mi mi
51 02C1 2 2 2
+ + myexp{—c5/(887)}CT.
Vi T {—c3/(8p7)}C7

which completes the proof for Equation (IR9). This immediately implies

c C
Ew |6 ()] < \/Ewell¢®" ()2 < \/m3 *+ \/2» Pl exp {—c3/(867)}C%).
1

Now we first prove Equation (IX7):

1 * 1 *
]Ewmw[iﬁ GTDV<0>+VP+V’,a:iV2¢(2)/($i)]‘ < Bwe o lallll Dy voivr o, Vil [P (z:)]]]
2 2

< V&l FBwe P (@)llll < IVl rEwe |63 (20)]]]

miq m KR

2
< \/sz3(1+ 20 —|—m1 exp {—c35/(867)}C1).
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To prove Equation (I5R):

1
Ewo vo N a" Dy vy e, (VO + VP + (1 —n/2)V)8 D (x;)

1
S Bweve ——=llall[Dveotveran/2vie (VO VP (1 —n/2V)||r 6P (21)]

2

S Eweve IIGHIIV(O) + VP4 (L= n/2)V||pl|¢ (1)l

< N Hall\/le VO +[Ve|3 + (1= n/2)V'[13)Ewe [P (z)]

S \/(H§m2m3 +msf3 + CHRs < (koy/mams + v/msfz + C2)Rs

Lemma 19 Closeness condition:
1 * % *
EE‘EWP,VP[WGTDV<U>+VMV/,@V2¢ s(@i)] = [ (2:)| S Ro,
2

where

R = 0s6v/n(1+R) [ [Vell} + Rs (160)
k

+ ma(exp {=(man O/ 26} + ma exp{=C/(SmsBDY ) VG2 + ) /3 Vel
(161)
Proof of Lemma 19

Note that by Corollary BT and according to the proof of Equation [30 in Lemma 00, if for
every j ¢ P we don’t have a sign change in Dy o) {vp 4y ., V¥ @ (), then get

1
|\/%2 aTDV(O)+VP+V’,xiV*¢*($i) - f* (1"1)‘ < %3'
Also, note that we need the event £ (defined in Lemma B3) to happen in order to be able to use
Corrolary B1. Hence, given a W7 for which £ happens, we upper bound the probability of sign
change with respect to the randomness of V. We define the following event with respect to the
randomness of V' when conditioned on a W# for which £ happens (P;’s are defined in Lemma [):
SC = {3j ¢ Py st|VPal] 2 ()33}
ma
Now from the result in Corollary BT we have < 1{sign change in j ¢ P;} < 1{SC}. Therefore,

El{sign change} < 1{SC} < 3 P(V/wl| 2 ()03 i)
igP; e
K2 \1/3 ,~2/3
<maP(VYai] 2 (20 ).
mo
But note that (V)x} is Gaussian with variance B3|«%||? /m2. Hence

LHS <mgexp{— (m21€202)1/3/(2[32)} (162)

Now let D be a sign matrix random variable such that if £¢ and SC* both happens, then it is equal
to the valid sign matrix Dy o) {04y 4, and otherwise it is equal to an arbitrary valid sign matrix in
the case when both E° and SC* happen. Now using Equation (IT’2) we have with high probability
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over the initialization:

1 * ok *
Ez‘EWP,W[ﬁzaTDv<o>+v»+V/,xiV2¢ s(@i)] = f*(x:)
1
SEE‘EWP.VP[iaTDV(O) verv: e (Vs = VE)" s ()]
) m2 +Ve4+V/ix; \VE 2
1
+ Es[Ewe vl =0 Dyior 1o yve, V'S s (@0)] - £ (1)
N e .

< Ewe,veEx| a" Dy 1yopvra, (Ve = VE)9 5 (z))]

1
Vi,
1
+ Ex|Ewe,velo=—a" Dy sveyyre, V6" ()] = £(@)
\/TTLg +VPe+VY,

1 * * *
< BweveEs - > Vs, = ViEllle s (@)
J

+Ex ‘Ewp,w [(\/1%2 a" DV*¢* (w;) — f*(xi))

G/TDv(O)+V/’ri V*¢* (.’L‘l> — D)]‘

1
—i—]l{SCUE}(\/m
2
1 * * *
< ]EWp,vazm—z SOIVs; = VrElllet s (@)
5

+EsfBwo v [(a DV 2 - 1 (20)|
1{SC U E}(

1
+ EsEwoyve " Dyor v 0, V'8 (1) — v aTDV*qS*(:vi))H
2

1
N
Z VEsIVi; = VyE|2le (@)l

1
S EWP,VP \/TT’L
2

+ Rz +2P(SCUE) maX’

a" D'V (x).

Vm,

Now note that for any sign matrix D’, we have the following bound:

1 1
NG < WQIIGHIIV*HFIW(%)II SVGI+R) /Z”VkHHOO'

Also, applying a union bound and using Lemmas B3
P(SCUE) <P(SC)+P(E)
< exp {—(mar3C3)"?/(263)} + mu exp{~CF/(8msf7)}.

Hence, also applying Lemma B0, we further write

LHS S 0s€v/n(1+R) /Zuvkn -+ R
+mz(exP{—(mzﬁgcé)l/?’/(?BS)}+m1eXp{—012/(8m35f)}) G(1+R) /Z||Vk“H°°

Lemma 20 Suppose we have mzr3 > C%. Then, for the following basic term we have:

1
EWP’VP[\/%
2

"DV ()

" Dy svopyr o, (VO + V2 4 (L= 1/2)V) (@ (2:) + (1 = 0/2)6® (7))

1

SJ (1 — U)EW/),VP [WCLTDV(O)JerJFV/,Ii (V(O) + VP + V/)(d)(o) (1‘1) + ¢)(2)($i))
2
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(R + R+ (Vmgra + 52)(C1 + Vi)

where

1/3
Ry = C2(C1 + vVmsB1)ma GXP{—C§/3(\/%2"€2)2/3/8£} + ( Co Co(C1 + vmgpr),

Vmghiz) /3
R = my exp{—C/(8msf7) }v/msrk1(v/my + B2) + Re,
and R is defined in Lemma 2.

Proof of Lemma

First, note that by orthogonality of ¢(°)(z;) to the rows of V":
1
LHS —n/2Bweve [WQGTDWO)JA/%V@M (VO + V) (ay)

1
= LHS —n/2Ew» v [WaTDVm) wvesvie, (VO + VP4 (1= 0/2)V")80 (2;)
2

= (1= n/2)Ews,vo| jm a" Dy yo iy, (VO + VP + (1= n/2V)(0 (i) + 6P (2:))]
2
= (1—1/2)Evs| }% a" Dy vy w (VO + VP + V) (6O (2) + 6P (2:))]
+ (1 -1/2)(n/2)Evs] fm a" Dy vy e, (VO + V) (0O (2) + 6P (2:))] (163)
2

But note that for the second term:

1
Ewwe ol e Dyo sy, (VO + V(00 @) + 6 20)]
2

1
S Ewevol =0 Dy v s, (VO + V(010 (@) + 6 (@)
2

foe Y V@O 6D w)

j: sign change

0Dy v g, (VO + V)60 1) + 92 (2)]

1
=Pl
1

1 h(2) (o
SN S VP (). (164)

Now conditioned on z, by the result of Lemma B1 we know there exists a set of indices O C [ma],

J: sign change

2/3
s.t. |0] < (\/—T%ng and for j ¢ O we have
2

2/3 1/3
0 C5' " (Vmgyka)

Va5 > 22222l

2
and 23

Vg < 02 (VmQHQ)l/S /

| j$i|_ 2/m [EA8
2

Now for j € [ms], define the event

02/3(\/m Ko )/3
Rj = {|ijl‘;| > 2 2\/*2 ||‘T;H}7
my

and R = U; R;. First, note that using Gaussian tail bound, ? is a rare event:

P(R) < Y P(R;) < myexp{—Cy/*(v/mynn)?/ /853}.
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Now for j ¢ O and under R¢, clearly we have that the signs of (Vj(o) +V/)z; and (Vj(o) +V)+V])x;
are the same. Therefore, applying Lemma B3, we can argue under R¢:

1 1
Eweve—e 3 [V/6® ()] < Ewo—e 3 [V} (1)
\/mz j: sign change \/%2 Jjeo
[ 2) "
<AL IV Ewe |62 (2] < C2(C1 + vmgpr).

ma (Vmgk2)1/3

Hence, overall, using Cauchy-Shwartz

c)/?
(Vmyhz)1/3

LS VD ()] < VB 6 () [B(R)+

EWP,VP \/TT’L 02(014»\/%3/81)
2

J: sign change

L3
< Co(Cy + VmaB)ma exp{—Ca'3 (V/myr2)?/? 1882} + 2z Co(Cr + Vimyy) = Ra.

(Vimgriz)
(165)

On the other hand, using Lemma B, we have with high probability over the randomness of initial-
ization
1
Vi

aTDV(O) "y V(O)¢(2) (z;) < Vmgks| ¢(2) (3]
Hence:

Eys| aTDv(0>+Vp’zi(V(0) + Vp)¢(2) (z:)]

1
Vg

1
<Ewr vo|

Vi
- EW"%“TDWMW‘))%” () + BB | ()]
2
< (Vmgkz + B2)Ewe o™ (z:)||
< (Wmska + B2)(Cr + Vms ). (166)

1
T V(32 (4, V”¢5(2) )
a” Dy ,, ¢ (ws) + 1% ()]
v, /., zj: J

Combining Equations (I&3) and (I&A) into Equation (I[&d):

1

vl Ty

a" Dy yvosyvr e, (VO +V2)6® (2)]| < Ry + (Vmgka + B2)(C1 + vms ).
(167)

Moreover, for the first term in (I&3), using Equation (I68) and Lemmas B3 and Lemma B0 we have

1
|EVP[\/%2 a" Dy 1yory e, (VO + VP + V)o@ (2))]]
1 1 1
< |Ew»r ve Doy VO @ (4 Ewe ve 25 (. - '6@) (1.
S Ewe,v \/HQCL v Vo (@) + Ewe,v \/EZZj:quﬁ (zi)] + \/Ezzjzlvjqb ()]
< kavmg(C1 + Biv/mg) + (Ca + B2)Ewe |6 ()
< kav'my(C1 + Brv/my) + (Co + B2)(C1 + Vmyf1). (168)
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Substituting Equations (I&7) and (I&8) into Equation (I&3), we finally get

LHS —1/2Ews vo| a" Dy tyopvr o, (VO + V)0 (2))

1
N
S (1= n/2)Eys|

1
m aTDv<0)+Vp+V’7wi(V(O) + VP + V/)¢(2) (4)]
2

+ g(m + (V/mgka + B2)(C1 + \/771351))
1
Vi,

S (1 =n)Ey.|

U

QTDV<0>+VP+V’7M (V(O) + VP + V/)¢(2) (z:)]

£ [Evs =" Dy cvovr o, (VO + V2 4+ V)6 (a0)

1
1B,
+ g(§R4 + (V/mgka + B2)(Ch + \/771351))

< (1 - By jﬁ

+ 7% (k2vV/m3(C1 + Bivmg) + (Ca + B2)(C1 + VmaBr))
+ 77(%4 + (Vmgka + 82)(C1 + \/@ﬁl)). (169)

aTDv<0)+Vp+V’,mi (V(O) + V7 + V/)¢(2) (4)]

Now by picking n small enough so that the second term is dominated by the third term we get:

1
LHS —n/2Bw» v» [ﬁaTDVMWWW (VO 1 1v2)pO () (170)
1
S- n)JEV”[ﬁaTDvmuwwr,m(V(o) + VP4 V) ()] (171)
+ 77(3?4 + (Vmigka + B2)(Cy + \/5361)). (172)

Now we aim to bound the term Eyy» v» [\} aT Dy pvesy: o (VO +VP)pO ;). First assume
My Ehad2

that we are in the event E¢ defined in Lemma B3, i.e. we have ||¢(®) (z;)|| < C;. Conditioned on
such W*, we now work with the randomness of the initialization and V”. Note that the random
matrix V() + V* jointly over the randomness of V* and the initialization is also Gaussian, and its
variance is

2
K2 < K2+ % < 2k3, (173)

where the inequality follows from the fact that ry > \%ﬂ and B, < 1. Therefore, applying
2

Lemma D2 for the random matrix V(*) in the Lemma as V(*) 4 V# here, the bound does not change
up to constants because of the inequality (I’Z3). Hence, with high probability, lets say with prob.
1 — 67 this time over both the randomness of initialization and V'°:

1
£ = | " Dy vosy (VO + V)90 1) < R (174)
2

This means that with probability at least 1 — /5, over the random initialization, then we have (IZ4)

with prob. at least 1 —+/8; over the randomenss of V”. We name the latter high probability statement
as (*). Moreover, note that by Lemma B2 and assuming mg log(ms) < ms, we have the following
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almost surely bound (also note that V/¢(%)(x;) is Gaussian with std % 6@ ()])):
2

1

Evs| o= aTLRNM+VW+Vﬁ$4tﬂ°>+fVW)¢“D(xa( (175)
1
— Ey» \/ﬁz " Dy yyosyr e, (VO + V) (xi)’ (176)
O (@ |+—EVPVF7 }:\VW¢@> )| (177)
1 mo
SOl s vﬁf jijlv’ |+—44———j£: ol (178)
sw@mWW@+@) (179)

Furthermore, note because each variable |V O ()] is %H(é(o) (z;)|| subGaussian. Therefore,
2

L is subGaussian with parameter ||¢(?)(x;)||32 with respect to the randomness of V?. Now the
point is that the high probability argument in (%) is much stronger than what one can get from
the subGaussian ineqaulity with parameter ||¢(®)(2;)||32 (with the corresponding expectation term
69 (2:)||(v/my + B2)). However, the disadvantage of (%) is that it only works for a fixed d;.

In other words, at least it is not obvious from this argument that why for a fixed W(® in a high
probaiblity region of the random initialization, whether we can send d; to zero by growing the
constant behind Rg with logarithmic rate log(1/6). This makes our job hard for bounding the
expectation with respect to V' if we only wish to rely on (x). Therefore, we combine it with the
inequality that we get from the subGaussian parameter that we introudced above. More rigorously,
we define the thresholding parameter

G = [0 @)l (v + B2) + 160 :)1182 1og (16 ()| (g + B2) /Re)
= (1100 @)lI(v/mg + B2 108 (16 () | (Vima + B2) /Re)).

for which we have
ﬂmag@mwgmg%&

we divide the range of values for £ into three parts:
E[£] = E[£] £ < R|P(£ < Ro)
+E[£]% < £ <T|P(Rs < £ < 0)
+E[L| U< ﬁ}P(U <r)

< B[L] £ < Re| +P(Rs < £<0) + R

< Rs + \/516
Now by choosing §; < 1/U, we conclude with high probability over initialization and conditioned

on W*’s such that £ happens we have

a DV(O)+V;}+V! 4 (V(O) —+ VP ¢(0) ‘ = < §R6

Finally, we integrate also with respect to W*. To control the random variable when E happens, we
use the bound in (CZ9) and the fact that E is a rare event due to Lemma B3:

S0 Dy vy (VO V)6 )| S BOE) [0 o) (i o) + B R
2

Ewo ve

< my exp{~C}/(8masf})}vmsk1 (Vimy + Bs) + Ro = Ry
Substituting this into (CZ2) the proof is finally complete.
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Lemma 21 Third cross term: with high probability over initialization, we have

1 N 2
Es (EWP,W[ﬁaTDVMWW%(V(O) YV (1— VS (a:i)])
2

< & (my exp{—C7/(8msf37)}(k3mams + Bims) + RZC3) == R,
Proof of Lemma 21

Note that the way we defined the matrix W* and as a result ¢*(z;) only depends on the ran-
domness of W not on W’ or the randomness of V(9. Now using Equation (I331) and Jensen
inequality we can write (for vector v, the notation v%® is another vector with each entry as the
second power of the corresponding entry in v):

2
— B (Ewp,w[ " Dy o syoivra, (VO + VP 4 (1 - n)V’)ng)*(mi)})

1
N

1 . 2
Tt Dvorsvesy e (VO + V2 (1= )V (1))

= Ew» vroEsx ((

< EsEwe ve (

1 " 2
T Dy s (VO £V (L= )V), S0 (z:)))
1 20
= EWP,VP<(WQGTD\/(UWVMV',@(V(O) + VP4 (1 - U)V')> , @ (xi)2®>

1
Vi,

< EEwo e

2
< Ewo,ve GTD\/(O)+VP+V/,3:,3(V(O) +VP+(1- n)vl)

Jso

2
a" Dy yopvr o, (VO + VP + (1—n)V) ,

1
Vim,
1
Vi,

1 2
S Dvorevosy s (VO V0| + €0 -0V

1

2
S 252]EWP’VP aT‘DV(O)-‘rVP-‘rV',xi (V(O) + Vp)H2 + 252]EWP$VP

< EEwo e

2
< EBwove aTDV(O)_i,-VP_I,-V”xi(V(O) + VP)H2 +&*(1—n)*C3.

1
v
Now under the event E¢ defined in Lemma B3 we get that ||¢(?)(2;)|| < Ci, so we can bound the
above as

T
a DV(O)-‘,-VP-‘:-V/,.’ﬂi(l
VMo

-V’

1 2
< EBys sup — | @O v+ V)@ @) + ) = 04 + )|
[V ISC2, V! Lo (i) [l ||<Cy T2 11 75
(180)
+&2(1—n)*C3. (181)

Now defining
2

1
L= | S { +V + V6O @i) +2) 2 0}V + V)]
J

to bound the first term, we want to apply Lemma 3 using the same trick that we did in the proof
of Lemma 0. Note that L5 is the same term as Fi,’v, in Lemma 3 except that it is defined with

respect to V() 4+ Ve instead of V(9. On the other hand, note that V(©) + V' has Gaussian entries

2 2
with variance x3 + % and we know x3 < k3 + % < 2k3, which means the argument of Lemma I3
holds true here up to constants:

sup Ly SR2
IV/ISC2, V7 Lo (i), ||| <Cy

This holds with probability say 1 — 5 over the randomness of both V(©) and V*. Therefore, with
probability 1—+/85 over the initialization, then with probability at least 1 —+/d5 over the randomness
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of V” we have the above. Moreover, with a simple Cauchy-Swuartz we get the following almost
surely bound:

L2 SIVOUE + VA% (182)

Now the variable ||V?||? is subexponential with parameter (3{m3, 37m3). Furthermore, with high
probability we have ||V (9|2, < mgymgr3. Therefore, taking

Uy = @(m%mgmg + Bims log ((k3mams + 5fm3)/§R7)),
then one can easily see by the subexponential tail:
E[Ls| £2 > Us] = 0(02)),
P(Ly > Us) < R2/Us.
Hence, we can apply the same trick as Lemma P as
E[Cs] = E|La] £2 < RE|P(L; < R2)
+E[£2| R2 < Ly < 152]1@(%3 <Ly < 62)
+E[£2| Oz < £2}P(UQ < L)
S B|Lo] £2 < RE| + PR < L5 < Up) + B2
< R2 + V5,0,
Now taking d, < R%/U%, we finally get that conditioned on W*’s where E happens, then

EveLsy < R2.

On the other hand, to handle the case when E happens, we can use the bound in (IX2) as it does not
depend on the occurrence of E as well:

Ewe,voLo < P(E)Ey, (VO + |V7|?) + P(E)R?
< ma exp{—C7/(8ma 7))} (k3mams + Bims) + R7.
Plugging this back into (IX) we finally get
LHS < & (mi exp{—C7/(8m3})} (k3mams + Bims) + R7) + £2C3.
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A.15 BOUNDING THE WORST-CASE SENARIO

’
x

Lemma 22 Suppose mg > log(msz) and /msk1 2 C1. We define the sign matrices DY o4y s,

and D,

V) . With respect to the multiplications

VO + V) (6O (x;) + o),

and
VOO () + 27).
Then, with high probability:
1

_= JIp* (0) 4(0) (..
sup a' D s 2, VO ()
o SOV p <Ca Ve Lo VT ¥ T FY
4/3 2/3,,2/3 1/3 /] 1/3 2/3
5( (011/?2) . (C1C3)**my (ffll//zz) Og(mz))<1+10g(m2)012/3(/€2\/52) )
(Vmyk2)'/3(y/mghi) my C5'7 (k1y/mg) /3
m3/251/§2
3T\/log(mg)(1og(mg) + log(log(mz2))) + k1k2y/m3log(mz) ==
2
Proof of Lemma 22

Consider a cover for the euclidean ball of radius C; in R™3 with precision ¢, i.e. Bg, (€).
So for every ' € R™3, there exists an © € B, (e) such that |z — 2/[| < €, and |Be, (¢)| < (1)™=.
Now fix ' and z. We have

1 o 1 ) ©)
Loy = EGTDV(O)—Q—V’,EZ'V(O)Q%)(O)(x’i) - NS ;aiﬂ{(‘/j +V)) (0 (z:)+a') > 0}V; ¢ ().

Now by a union bound, because each variable Vj(o)qﬁ(o) (z;) is Gaussian with parameter
r2]|¢(®) (2;) | and using Equation (II8), with high probability we have for every j € [ms]:
V060 (@) S |60 (1) | log(ma) S kimay/ms Tog(ma). (183)

Therefore, by Hoeffding over the randomness of the Bernoulli variables a;, for a fixed 2’ with high
probability:

1 =
Toim 3 V7 (00 w) +0) 2 01V, V6 w) S o/ Togma)
j=1

On the other hand, We know that the VC-dimension of the class of binary functions with respect to

’

halfspaces in R™? is mg + 1. Therefore, the set of different sign patterns in matrices DY, , is
bounded by m5"* !, i.e. for
D = {Dic/(o) Iz| :E/ € Rnls},
we have
D] < myt

Therefore, by taking a union bound over all sign matrices in D, we get with high probability

suply < Kiko \/mg log(mg)\/log(mgm3+1) = Kk1kamg log(ms). (184)

Now for a threshold » which satisfies
r > 2y/mgkae, (185)

we define 0
T = {i € (o] V" (8 (1) + )] < 7).

Now by Equation (IT6)and the assumption of the Lemma /m4x1 2 C1, we have
19 (z:) + x| < 6P ()| + 2] S V/mgr1 + Ci. (186)
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1617 (2:) + x| = |7 (zi)[| = |ll| Z Vmgr1 — C1 Z Vimgra. (187)
Hence, Vj(o) (¢(9)(x;) + x) is Gaussian with standard deviation at least Q(rz2+/m4#1). Therefore,

(0)( 4(0) (4. <<
PV (¢ (LHI)IJ)N\/@KM-

This implies

E[|Tzr]] S (188)

~ \/73/111’62

On the other hand, note that |jx,r| is the sum of my Bernoulli random variables, so it is subGaussian
with parameter ms. Therefore, with high probability

Tog| S ——=——mo ++/m.
| ZT| f312 my.

Now taking maximum over all z € B¢, (€) and exploiting the subGaussian tail of the random
variables, we get with high probability

max

r
<
r€Bc, (€) |jx.’r| ~ \/ﬁ?ﬁmz

my + v/ log(|Be, (€)])

DS o=
~ \/mglillig

ma + /mamg log(1/e).

(189)
Moreover, consider a threshold 1 < 6, such that e—0?/8 < mgy/mg, and define the following set of
indices

TEy =1 € Ima]| [VV!| > 6ryC1 ).

Then, using Lemma 29 and noting the fact that the standard deviation of Gaussians in V(%) is x5 and
that [|¢(?) (x;)|| < C}, with high probability:

'-SHuPH—l |~71( 9| < ms(log(ms) + log(log(mz))). (190)

Now note that for each j € [my], ||Vj(0) |? is subexponential with parameters (mz3, £3), which
means that with high probability:

max [V S mond + vimgwi/10a(ma) + w3 1og(ms).
But with condition m3 > log(ms), we can further upper bound it as
ma [V * < man3.
Now for fixed x, 2/, for j € J, , we have

V260 (@) + )| < [V (80 (@) + )| + [V, ! — )]
< V26O () + 2)| + |V, ||z — x|
S+ Vmgkae.

On the other hand, for j ¢ *71('2 ?9:
V72| < 0ryC. (191)

Therefore, for j € J,» — jaf,z’)e:
V6O ()] < [V (6 (i) + )| + [V, V2| S 7+ Vimgroe + 0k2Cr (192)
In a similar fashion, if j ¢ 7, ., then using assumption (I¥3):

V6O (@) + 2)| 2 [V (O (@) + 2)| — [V (@ — )| Z 7 — Vimghoe > 7/2. (193)
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Hence, using the fact that ¢(%) (x;) is orthogonal to %%

LV + V)00 () + ) 2 0} = V[V (60 (1) + ') 2 0}
< LV (6 (@) +2)| 2 [V (6O (@) + 2|}

<1{|V}a'| 2 [V, (6O () + o)}

<[Vl 2 [V, (6 () + )]}

<{|IV)lICy 2 [V (6O (i) + ')}

V2 ¢O@) +a) | r
<1 N> 2 )
<1{IVjIl 2 el + 36

(194)

Now by triangle inequality and Equations (T94), (T2), (W) and the fact that ||V’||r < Cs, we can
write:

Tar = Torv|

< YU Ve @) +a) 2 0 - 1O 60w + ') > 0} V060 @)

VITy 2)
JEJm,T—Jm,ﬁ

e Y OO0 +0) 2 0= 1Y 00 @) +0) 2 01,060 @)

34 (Te,rUTTy)

1
e 3 UV V0O @) + o) 2 0} = 1V (60 @) + ') 2 0} IV, ()
2. <2>
6.7
< |Jma7;9| et V03O (ay)]
]e @,
)¢ 1(0) (.. /
1 , |V‘ (@ (zi) +2)] (0)
J— N> J - L 0) (..
w2 MV e TR
2j¢<J LI,
\r 2% max |V 60 (a)|
< | Tor = TSyl max V76O ()]
\/72 JETw,r— ..7(/29
VO (6O (2;) + )| ©
o> a2 - ) (0) /
\f > vz e +4c (V2 (0O (@) +2)] + Or2Ch)
3 (Ta,rUTFy)
\r [77p] e [V ()|
S ——=1Tew = TG max (V6O (a))|
\/m2 ! §€Ta =T,
1
> L{IV]I Z ANV + 0kaCh)
vim; I (T 0T ) %
T z!,0
1
+ EIJSLI max |‘/j(0)¢(0)(zi)|

1 C r
< TN+ OraCh) + —— V2 = ) V12
NWZIJz,T T pl(1 + Vmgkioe + Okio 1)-1—\/52 #(J [ j||NCI>|| 1%
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1 . , r @ ©
R Vil =z + — m ) 4(0) (..
NG (] ViR 01)9@01 \F | T 0| ax |Vg ¢ ()|

! C C?

< 0 203
S |Tair — TS| + v/mghiae + 0r2C1) + —

+ CiCs Oro + L
Vig? "

Now using Equations (POR), (I90), (IX3), and (IX3), and the bound on |‘7w(’2 )9| from Lemma 9, we
write

175 max [V 6O (;)].
VgeEmMS

cics | CiC3

; 1
S \ﬁ2|~7m|(7“+9"€201) \ﬁ T k1 y/ms log(mz) + Tt imar? ———50r
T
< \/TTL (\/ﬁ m@mg—i— m2m310g(1/6))(7“+91€201)
2 3
1 C3C3 C;C3
+ T (mg(log(mg) + log(log(mg))))mmg mg log(ma) + N \F27"29 2.
1 r
< T (\/ﬁ &1m2m2+ mams log(l/e))(r—&—Q&gCl)
2 3
3/2 22 3
——=/1 It log(1 9 195
+ \/a2 Og<m2)( Og(m3) + Og( Og(m2))) + T'\/EQ m2 K2- ( )
Now setting
. ms' (k1kg)/3
= (C1Cy) %32 m11/32
2
By this choice, from (IY3) we obtain
Pt < ( (C1Cy)2 ga@W%%mMWBmwﬁ»@de@ﬁm%>
T T N(Vmgko) V3 (Vmgka) Y3 my/? 03 (k1) /3

3/2

ﬂ%%ﬂlwmmmmwmmem.

Now we set
0* := 3log(ma),
which also satisfies the condition of Lemma 9 and combining with Equation (I84), we get that with
high probability
[Corvr| < Taryr = Lor| + [Tar|

Sy L (COR) o ) VBT sy O T
~ \(Wingha) (e /2 il Oy )13
m§/2/<;1/<;2

N M(log(mg) + log(log(ma2))) + k1Kk2y/ms log(ms),
2

where ||| < Cz and ||V'[|p < Ca, Vi : V/o ©)(z;) = 0. We also need to satisfy condition (IE3),
which regardlng this choice for # = 6* becomes

m /6(I<;1l<;2)1/3
r* = ((1102)2/33T > 2v/mgkage, (196)
my
for which it suffices to set
L/3
e = (C1Cy)%/3 L (197)
2(m2m3)1/3/€§/3

Substituting this choice of € above and picking the overparameterization large enough to dominate
the magnitude of Cy, C5 so that log(1/€*) < log(ms), the proof is complete.
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Lemma 23 Under the following condition

(Vimara) /3 (Vmyr1)?/® > log™"/%(m2)(C1Ca) /2,
with high probability we have

(0) (0) (0)
sup — || a; 1{( Vi +V)(¢ (x;) + ) >0}V I
2/ |SCLIIV! || F<Ca, V! L VTl Z ’

< Vmgko log(ma) + E\/\;Zngg/g (0102)2/3 log1/6(m2) R

Proof of Lemma 23

Similar to Lemma 2, define the helper functions I';» and I'; v as

v = 7 Zaﬂl{ VO + V)60 () + ') > 0}V, (198)
Ty = WH Zajn{vj(’)w(xi) +a') > 0}V (199)
2

First we bound sup,, I';. To this end, note that because Vj(o) € R™3 and the VC-dimension of
half-planes is m3 + 1, then by Sauer’s Lemma, the set

D ={Dyw . |2 €R™, |l¢'|| < C1}
of all sign pattern matrices has cardinality at most
D] < mg*

Now note that with high probability, the entries of the matrix V ©) are all less than
O(k2+/log(mams3)). On the other hand, for each fixed sign pattern D¥ we have for the
sum with respect to this sign pattern.

v(m
Zaﬂl{v (6 () +2') = 0}V (200)
is (makilog®(mams), k3 log(mams)) sub-exponential with respect to the randomness of a, be-

cause each entry of the vector \/»%% Zj aj]l{‘/j(o)(qﬁ(o)(xi) +a') > O}Vj(o) is (rg+/log(mams))-
subGaussian. Therefore, with high probability we have

1 (0) ¢ 4(0) / (0) 12
|7 ;aﬂl{Vj (6@ (i) +a') > 0}V (201)
1 0 0 .
< E|l T Zaj]l{l/}( (6O (2) + 2') > O}Vj( )11?] + deviation (202)
2
< mak3log(mams) + vmgka log(mams) + k3 log(mams). (203)
Similarly, if we take a union bound over all sign matrices in D and using the fact that mo > mg:
1 (0)( 4(0 0) 2

supT? = sup |— Y a; 1{V V(¢ (z;) + 2') > 0}V, 204
wrh = s I DotV ) +) 207, (04)
< mak3log(mams) + v/mgr2 log(mams)y/log(mT= ™) 4 k2 log(mams) log(my™ ) (205)
< mgng logQ(mg), (206)

which implies

sup Ty < v/mgkso log(ms). (207)
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Moreover, defining 7, , similar to Lemma P2 and using the similar approach we get with high
probability

max

z€Bc, () [ Terl S \ﬁ K1K2

—=———ma + \/mzlog(|Bc, (€)|)

DS o=
~ \/ﬁgmmg

ma + /mamg log(1/e).

(208)

Now for simplifying the analysis, we assume that for indices j € J,, we can change the sign
pattern with no cost on V’, i.e. we can pick any subset of them. Therefore, we first compute a high
probability upper bound on the following quantity:

(0)
sup +V2|. (209)
VMg s g, £signs I ; i

If we form the matrix V (®) (Jz,r) be the matrix which only keeps the rows with indices in 7, ,-, then
the above quantity can be computed as

1 (0) T ,(0)
sup I V] I = sup o VTl (210)
VMo SCTy,r,Esigns Z VMg ve{0,1,—1} Tz,
1 1
< Amax (VO (Tz.r)) sup [Jv]| < Amax (VO (T s ) T v (211)
VMg VMg

where \,,q, 1S the maximum singular value of the matrix. Now by random matrix theory, we know
for a fixed = and arbitrary ¢ > 0, the following argument holds:

POnax (VO(To 0 )) /52 2 /M3 4 /| Tar| + 1) < 27 (212)

Therefore, as |D| < m4 ™!, we get with high probability

(0) m3+1
B2 Amax(VE (Tair)) S (Vims + \/IJI; o+ \/IOg ) (213)
log(ma)ms + Ko m (214)

(0)
sup sup || Va7 < (1\/log(ma)ms|Tp.r| + | Tw.r|)- (215)
x€Bc, (€) \/77"2 SCTx,r jGZS \/7 ! !

Therefore, with high probability

On the other hand, as in Equation (I%3) in the proof of Lemma D2, for j ¢ 7, we have:

v O (z;) + 2')| > v o0 (z;) + )| — VO —a > 1 — \/mgkae. (216)
J J J 3
Picking
_ r
a 2\/531432’
we get for j ¢ Ty.»
VO (6O (i) + )| 2 7
Now similar to the derivation in (I94)) we have

LV + V)00 (@) + ') 2 0} = 1V (60 (@) + ') = 0} 217)
< H{|IV/IC1 2 1V, (6 () +2) 1} 218)
<1V 2 &) (219)

Hence, because ||V'||p < O3, the number of indices for which 1{(V © 4 V’)(QS(O)( i) +a') >

0} # ll{Vj(o)(qﬁ(O (z;) + ') > 0} is at most [ = (6‘2762‘2) Therefore, we bound the following
quantity to use in the analysis:

sup 1>V . (220)
SC[m2] & |S|<I,Esigns jes
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But if we define for mo < j < 2me,

) _ (0)
V; =V e

then
0 0
sup I+ ?<  sp 13V
SC[mz] & |S|<l,tsigns jes SC[2m2] & |S|<L jes

jes V( ) is v/l subGaussian. Hence, the quantity || > (O)||2

is (m3l%k3, k3) subexponential. Therefore we have with high probability

2
s |V S B VO + iy o (7)) + i o (7]
jes jes

2 2
< malk3 4+ /malk3y [ log ( Tlnz> + IkZlog < 72)
< malk2 4+ Vmgl? 2621 /log(ms) + 1262 log(my).
sup | SV S Vi Vi + lizy/Tog(ma).

| ‘ ]GS

Now note that each entry of > jesV,

Hence

Now using Equation , we can write
|F ’r / V/|

1S @V + V) (6O (@) +2') > 0} = 1{V, V(¢ () + 2') > o)V, ||

J€Tx,r

> @O+ V@O (@) + ) > 0} = 1V (6O (i) + 2') > 0V
JETw,r

0
sup |V

- \vJm Gons
2 SCJx,r,Esigns jes

1 (0)
sup 1y =V
VM2 gcims] & |S|<(C192)2 tigns  jeg

— \/7’% ( log(m2)m3‘jm,r| + ‘jx,rD + % <m3\[llﬁ§2 + lK/2\/ log(m2)>

< ﬂ( S fmama o (L)) gl + )

(Vims(C1Cafr)ma + (C1Ca )iz loa(m) )

FKQ ))

_\Fz

fz

A

3l

3

A

SIS

~ \rz (\/53/?152 \/m2m3 tog
(\/ﬁg(clc2 /P)ka + (CLC /1) 1og(m2)).
Combining this with (Z0X7):

IDar o] S Vimgha log(ms) (221

T\FQ ﬁ’”
\/7351 ) *

+

§\~

+ Kot/ m3 log( <f3(Cng/r)/<;2+(ClC2/r) Ko log(m2)>.

(222)

\Fz

Now setting
1/6 :
mg/ (111112)1/3

o= %/3(0102)2/3 log!/®(my),
my

71



Under review as a conference paper at ICLR 2022

we get

LHS £ s log(ms) + E\ﬁj’ziz (CLCo) g5 my)

m§/3ng/3(0 Co)/3

/27 1/2
+ kom3' “log ™/ “(ma) + 1/6 1/310g1/6( )

< Vmgkz log(ma) + E\/\C§:i§2/3 (C1C3)%?1og b (my)

+ my k3 (C10y) /3
(V/myk2) /3 (\/gin )13 1og"/© (ma)
Now under the condition
(Vmaka) /3 (Vmgr1)?/? > log™ "% (my)(C1C2) Y3,

The final term is dominated by the first term, which finally completes the proof.
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A.16 CONVERGENCE
The goal of this section is to prove Theorem [1.

Theorem 7 Letting X = 4B2, by Corollary B, we have L'(0) < N. We define the domain

D, = {|v'] £ Cy = %7 [lv']| < Cq = %} For a large enough constant | = O(1) and

function L' (w = (w',v")) : RN — R. Moreover, suppose L' is p; lipschitz, ps gradient lipschitz,
and ps hessian lipschitz in the domain D, in the sense that their first, second, and third directional
derivatives in an arbitrary unit direction is bounded by the corresponding parameters. Suppose we
have access to the gradient of L' at each point in D plus a zero mean noise vector £ such that
o2l < ELLT < 021 and || £]] < Q almost surely. Also, suppose for a threshold X, < X, if
LY (w) > Ny for any w € Dy, then we either have

14

1) VLY (w)]| > ——, (227)

(1) VL™ (w)] 16:/C7 1 C2

(2) Ain (V2L (w)) < —7. (228)
Then starting from wy = 0, with probability at least 0.999 after at most

poly(p1, p2, p3, Q, R, C1,Co,1/v,1log(01/02)) number of iterations, we reach a point w;
such that L (w;) < V.

Proof Our proof here is a refined version of that in Ge'ef-all (Z0T534). As we mentioned in section B,
the key fact that we are using in the other parts of our proof is a uniform upper bound ||w’|| < Cj,
[[v'|l < C which is unjustified by only naively using Ge_ef all (20154). Here, first we restate a
refined version of Lemmas 14 and 16 in Ge’efal’ (20T5a) in Lemmas P4 and P8 respectively, and
then use them to also bound the upward deviations of L. Moreover, to avoid writing repeated
proofs and overwhelm the reader, we mostly treat the arguments in Lemma 16 of Ge“ef-al” (20T5a))
as blackbox and use them for our purpose here. A point to mention before we start, unlike Lemma
14 of Ge“ef"al” (P01T5a) where the dependency on other parameters than the step size 7 is more
explicit, Lemma 16 hides the dependencies on all the other parameters (which is polynomial). Here,
we follow the same style.

We refer to the trajectory of the steps of algorithm by (w;);>¢. In Lemmas of this section, To avoid
introducing new notation and complicating things, we refer to the current point of the algorithm by
wp, while for the next point of the algorithm we use w; (in Lemma [4), and wr (in Lemma P&)
respectively. Also, similar to Ge_ef-all (20154), O and €2 below means we are looking at the depen-
dency on 7.

Lemma 24 Suppose L' (wq) < R+4-21, and consider a parameter x > 1 which can be set arbitrarily.

VLM (wo) | > 24/n(Q2 + 03N )pap?(2x + 1), then
for wy = wg — (VLY (wy) + £) and random variable R, (depending on wy) defined as

EL" (wy) — L™ (wg) = —n*R3, (229)

For every point wg such that L™ (wg) < R+2,

we have R, = Q(1) a.s., and almost surely:

L (wn) — L7 (wo)| < n% /v

(the expectation is over the randomness of £).

Proof This lemma is a tuned version of Lemma 14 in Ge_ef all (20T5a). First, note that the condition
LM (wg) < W + 21 assures the smoothness coefficients py, py and p3 for LT by Corollary ??. We
follow similar to Ge_efall (2005a) (picking n < 1/(2/p2)):

203paN
EL™ (wy) = L™ (w) < =2 VL™ (wo)||? + T222=
n 1 n?02paN
< IV o) [P = 1P (03N + Q)papd (2x + ) + 5 —
< —2IVL™ (wo) |? — 20°Q%papix. (230)
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On ther other hand, L' is p; Lipcshitz, so we have almost surely
LT (w1) = LM (wo)| < prn([ VL (wo) + £]]) < pan(IVL" (wo) || + [|£]])
< pin(IVL" (wo) | + Q) (231)

(To be completely precise, we should justify that we can write the Lipschitz inequality at point wy,
we also need to make sure that w; remains in the domain that we have the Lipschitz parameter in,
i.e. D;. To see why this is true, see the next Corollary).

Therefore
(p22)| L™ (wn) — LM (wo)| < 2020200 X IV LT (wo) |2 + 223723 Q. (232)
Taking
n < (8p1p2x) ", (233)
we get from Equation (Z310):
ELM (wy) — LM (wo) < =207 pF pax || VL (wo)||* — 2paxn*.p71Q°. (234)

Combining Equations (32) and (Z34)), we see that

(0| ) = £ < —(BL ) — 7 wy).

Hence, if we define
ELH(wl) — Ln(wo) = —7729%%7

we get
’Ln(wl) - LH(wo)‘ < %1/ Vp2x; (235)
and from Equation (234), that
N7 > 207 pax || VL (wo) |1 + 202xp7Q° > 2p2xp7Q% = Q(1).

Moreover, because the function is p;-Lipshitz at the domain point wg, we get from Equation (2Z3T):

1
—ngRRT = ELM (w1) — L (wo) = —np1 (| VL (wo) || + Q) = —np1(p1 + Q) > ——,

p2X
by taking
1< (prlpr +Q)p2x) ™",

which implies

1

R < —.

P2X

This combined with Equation (Z39) and a triangle inequality implies:
LY (wy) — ELM (wy)| < 081/ /pax + n*R3 < 201/ /pax- (236)

Lemma 25 As long as the value of the function at some w is bounded by X + 21 (L™ (w) < X+ 21),
then 1 can be picked small enough (polynomially in other parameters) so that the change of the
Sfunction by a step is a.s. bounded by I.

Proof Let ¢) = min{ty,v}. First, note that as the function is bounded by X + 2[, we have the
lipschitz parameter py, hence | VL™ (w)|| < p;. Therefore, the change in w in a step is bounded as

IVLY (w) + £] < Q + p1.

n< (\/Nz?)l - \/NZ21)/(Q+m),
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R+31

,LZ) b
the smoothing parameters even after one step. Therefore, now we can use the Lipcshitz parameter p;
to bound the value of the function after one step as it is written in Equation Equation (Z31). Using
this Equation, it is enough to pick 7 as small as:

n < /(IVLY (wo) || + Q), (237)

so that the change in the function would be most [ as desired.

we guarantee that the value of w after a step remains in the ball of radius hence we still have

Lemma 26 For a fixed point wy s.t. L' (wq) < R + 21, suppose we pick n small enough such that

ﬂm:2wﬂf+ﬁNm%@x+5< -

2" 7 16,/C2+CF
Then, note that for |V L (w) || < §(n), condition implies:
Ain (V2L (w0) ) < 7.

Then, using the notation Er for the high probability event corresponding to Equations (36) and (44)
in Ge_etall (20154), for small enough 1 (polynomially small w.r.t other parameters), for Rs defined
as

E[L" (wr) — L (wo)|1{€r} = —R3s?, (238)
we have almost surely
(L7 (wr) — L™ (wo)|L{€r}| < Ran/ /P2 (239)

Note that in the expectations above wy is assumed fixed. Furthermore, we can assume P(Er) >
1—O0(n°).

Proof This Lemma is a tuned version of Lemma 16 in Ge“ef all (20T5a). We change a couple of
things here. First, we consider an implicit coupling that if w; exits D; we do not move it anymore,
ie. wy = wy, V' > t, which means the noise vectors also becomes zero, i.e. £y = 0,Vt' > t¢.
This way, the sequence of noise vectors remain bounded by @, because if w; is inside Dy, then by
assumption || £]| < @, while otherwise £; = 0. We call this event & for T' defined in Lemma
16 of Ge“ef all (D0I5a). Note that we also have the smoothing parameters p1, pa, p3 for all (w;)
because of this coupling. In fact, we will use a more strict coupling; we consider the event & to
be the high probability event corresponding to the bounds in Equations (44) and (36) of Ge ef all
(P0T53) holding for all ¢ < T'; We will see that &p C Ep at the end of this proof, but for now we
assume it is true. An important point to note here is that in Ge“ef-all (2015a), P(&7) is bounded
by O(n?). However, the exponent dependency of 7 in this bound comes from Azuma-Hoeffding
type inequalities, particularly used in Equations (60) and (42) in Ge“ef-all (Z(015a), in which by
considering larger constants one can easily get higher exponents. Unlike their analysis though, a bit
stronger dependence of 7)° is sufficient for our later use.

Also, because the distribution of our noise depends on the point w, our sequence of noise vectors
(£¢) is a martingale instead of being i.i.d, so we apply Azuma-Hoeffding inequality instead of the
simple Hoeffdings in Lemma 16 of Ge'ef-all (P015a)). (because we are also sampling also a random
(24, y;) to compute the estimate of gradient, this could be simplified to the case where we compute
the actual gradient and the injecting an i.i.d noise vector in each step, but it is an overhead to compute
the actual gradient, so here we choose to analyze the more complicated case.)

Next, notice the definition of A and A right after Equation (66) in Ge_ef all (201I3a), which in our
notation translates to

. T PO 1
A = VLY (we)Té + 55%5, A = VLY (w) T + 55%5. (240)

where ~

6:'121T—w0, 6:wT_1I}Ta
for (w;) which is a coupled sequence with (w;) as defined in Ge_ef all (2015a). Note that we apply
the coupling for the sequence w; as well, i.e. if w11 = w;, we also set W41 = W;.
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To show Equation (Z38), we want to use Equation (67) in Ge’ef all (Z01534), though we only use the
expansion for the first term which is under 1{&r}, i.e.

E[LM (wr) — LM (wo)]1e, = EAlg, + EAlg,. (241)

First of all, as it is mentioned in Lemma 16 of ((Ge_ef-all, P{1153a), in the case where the noise vector
012 <E££T < 552] instead of having E££T = 2] for a fixed o, in order to still get a negative
term of order 7 in Equation (68) of (Ge“ef-all, POT53), we just need the size of Ti,ax to be as large
as O( (logd + log 22)), and it does not change the order of 7 in any other part of Lemma 16.
Now s1m11ar to Equatlon (68) of (Gelef-all, DT5a), if w.l.o.g we assume the smallest eigenvalue ~q
corresponds to ¢ = 1:

N T—1
~ 1
EAle, <5 > A D> Loucop(1 = nX)* n’ofP(€r)+ (242)
=1 =0
1 N T—1
27, 2 2
5;/\ 2 1ia,s03(1—1\)*™n (243)
2 T-1
n o N —1 27 noi
Sj[az ” — 007 (@T);(l‘Fm’o) }<—7- (244)

where in the last line we use the fact that P(¢r) < 1/2 plus the additional log(o2/01) factor.
Second, note that our threshold §(n) for the size of gradient in Lemmas P4 and DA has the same
order of 7 compared to that of Lemmas 14 and 16 in Ge_ef all (2(1T53). Therefore, the arguments in
Lemma 16 that considers the order of 1 and treat the other parameters as constants is true here as
well. Hence, we still have Equation (69) of Ge_ef all (2(1T54) which is under the event Er. Applying
it to Equation (Z4]),

Hence, finally by a similar derivation of Equation (67) in Ge_ef all (Z0T3a):
E[L™(wr) — L™ (wo)]1{€r} < —Q(n). (245)

Furthermore, combining Equations (36) and (44) we get with high probability (we use the final high
probability parameter of Lemma 16 which is the result of a union bound over all the high probability
arguments which is equivalent to the occurrence of &), i.e. when &7 happens,

~ 1 1
lwr — woll < O(n? log )- (246)
Picking 7 small enough such that for the bound above we have

1 1 N+ 3l N+ 2]
O(nzlog—) < — ,
(n gn)_\/ m \/ "

we get for every w in the line connecting wg to wr :

_ N+ 31
@]l <4/ ——

/l/} )
which implies that L' has the smoothing parameters p, p2, p3 along wg to wy. Therefore, by the
p2-gradient smoothness property of L!:

1 1
IVLY (@) — VL (wo) || < pallwo — @] < O(p2n? log 5)~

Combining the assumption of the Lemma ||V L (wp)|| < O(n?), we get
IVL™ (@) = O(n'/* log(1/n)).

(The last O also hides the dependency on ps). Now integrating over the derivative along the direction
from wy to wr:

L% (wy) = L7 (w) + /ﬁ VL™ (o + (1 — £ywp) T (wr — wo)dt,
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Therefore, using (Z46) one more time, under the event Ep:
L) = L wn)| < [ [VL (two + (L ur)T wr - wo)|de

1
< / ||VLH(tw0 + (1 = O)|||lwr — wol|dt
0
< O(n*?log 1/n)|lwr — wol| = O(nlog? 1/n).
Hence
1L (wr) — LM (o) 1{Er}| < O(nlog? 1/n), (247)

which

Now comparing Equations (Z43) and (E41), it is obvious that one can pick 1 small enough (again
polynomially small in the other parameters) such that for some random variable SRs, which also
depends on 717 Equations (P3X) and (Z39) hold. Furthermore, note that the bound in (Z47) is an a.s.
upper bound on the change of the function value under the event Er for every 1 < ¢t < T'. Therefore,
by picking 1 small enough (polynomially) s.t. the quantity O(nlog(1/n)?) in Equation (Z47) is
bounded by [, we again make sure that the value of function during these steps changes by at most
compared to wy, i.e. forevery 1 <t < T"

(L™ (wy) — LM (wo)]1{&,}| <1 (248)

,therefore remains bounded by X + 3[. This also implies that &7 C Ep as promised.

A.17 PROCESS FROM A HIGHER VIEW: DEFINITION OF THE (X) SEQUENCE

The goal is to find a w* with L (w*) < ¥, using Lemmas 4 and Z8. For this purpose we define
a coupled sequence this way: First, as done in Ge“ef-all (P(0T5a), define a sequence of times 7;
inductively in the following way: To define 7;4; based on 7;, if the condition

Ny < L™M(wy,,,) <N +21 (249)

does not hold, then just set 7,41 = 7; x(1). Otherwise, using the conditions (ZZ®), we are either in
the situation of Lemma 4 or Lemma P8, setting wy = w,,. In the first case, define 7,47 = 7; + 1
*(2). In the latter case, Let €1 be the same high probability event that we consider in Lemma (28),
which happens when the aggregate behavior of the noise vectors does not behave oddly, so that we
remain close to the starting point wg. Note that from Lemma D8, we know P(€7) > 1 — O(n?).
Now if the event €7 happens, define 7,11 = 7; + T x(3), for T also from Lemma P8 and defined
originally in Lemma 16 of Geef all (2013a)), while otherwise define 7;,1 = 7; x(4) and, moreover,
define all the rest of 7’s equal to 7;: 7 = 7; for every i’ > 4. At the same time, we define the event
G;, where G; happens in the case x(4), and G; 11 happens in case x(4). Also, G; happens if any of
the previous G;.’s happen for i’ < i; in other words, G; is included in G;, 1. We use these events to
bound the probability that the process remains above X,. Moreover, define the sequence of random
variables (X;) as X; := LY(w;,,). Note that by Lemma I3 and Equation (?48) in Lemma 6, we
have N, — [ < X; < N+ 3l. The key idea behind defining X;’s is that we want to bound the MGF
of L (w;), without worrying about falling out of the assumptions of Lemmas Z4 and Z&. With the
definition of (X;) and G;, we are ready to state the theorem which roughly says the sequence 7; will
most likely stop after a number of steps.

Lemma 27 Let Qp = Ufil ({ 7. <R}N QZ) Then, for some

_ O(log(1/61))(R + 31)

R
On? ’

(250)

we have P(QRr) < 1. In other words, after R iterations of PSGD, the defined sequence (X;) above
has either been in situation x(1) or x(4).
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Proof By Equations (2Z9) and (Z43) in Lemmas P4 and D6, there exist a constant § depending
polynomially on all parameters except 7 such that

E[X;41 — Xi| Gi] < —(Ti41 — Ti)772~ (251)

Now for some constant C' that we specify later, define the random time 2 as the largest 7 where
7 < C/772. Using the fact that G;_; C G,, for every ¢ we have a.s.:

X1 1{G} — Xi1{Gi1} = 1{G; — Gim1 H(—X3) + (Xiy1 — X;)1{G;}.

Now summing this for ¢ = 1 to 1, taking expectation from both sides and using (IXT):

EX,111{G.} — Xo = iEﬂ{gi = Gi 1} (=Xi)1{v > i}

=1
I Z i1 — X)U{GiNn{e>4}}
< ZE(JL{Qi} —1{Gi1})(—X3)

+ > (X -
i=1

< supsup | X;|
1

Jin{e = i)P(Gi N {v > i})

+ ZE(—@-H —rn? | Gin e 2 PG {2 1))

= supsup | Xil —n ZTE Tiy1 — 1) 1{Gi N {2 > i}}.
1=1
Now using Lemma 3, we know that in except when €7 happens (in which we stop the time se-
quence T7;), the increments of X; are at most [. Therefore, the value of X;’s always remain bounded
by N + 3/, hence:

LHS <N+31— 09> E(rip1 — 7)1{G: N {2 > i}}.
i=1
Also, by restricting the integration of the second term to the part [ J;- (Ql Nn{r >2C/ 772}) of the

sample space, we know that under the event {2 > i}, G; automatically happens (it is easy to check).

Therefore:

Gz N {Ti > 0/772})}Z(Ti+1 — 7,)]1{_(';1 N {Z > Z}}

(@

LHS <N +3l— 97721[-3]1{

s
Il
—

oo

(
=N+3] - 6’172E]1{ (Gz N{r > C/n’} }Z Tiv1 — 1) 1{2 > i}
(
(9

(@

&
Il
-

(2

)
gn{rn>cC )}Z Tig1 — Ti)
/)

=N+3l— 97721[3]1{

1Cs

Qi
D
.
a
I\/

(@

=R+3l— 9n2m{ Mot

N
Il
—

Now by the definition of 2, 7,11 > C/n?:

LHS <N+3l— Wm{[j (g} n{r > C/nz})}(C/nz)
i=1

N+ 30— 091[»( G (g} n{n> C/nz})).

i=1
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But note that X;’s are a.s. bounded between 0 and X + 3/, which implies the LHS above is at least
— (N + 31). Therefore, we finally get:

B (60 (m 2 opy)) < 202

i=1

Therefore, by picking C* = 2(2R + 61)/0:

(252)

P (Gt O ) < &

Note that the differences between 7;’s is at most Ty, = O(l /n) Geetall (2015a). Hence, again for

1 polynomially small in other parameters, (P52) implies that for R = 27102* , there exist R = poly(.)

such that after R iterations on the main sequence (wy), the corresponding sequence (7;) has either
been in x(1) or x(4) with chance at least 1/2. Repeating this argument log(1/d;) times (using the
markov property of the process) we conclude the proof.

A.18 BOUNDING THE MGF OF X;’s

Next, we want to exploit X;’s to bound the upward deviation of L™ (w;). For a fix  the goal
here is to bound E[exp{6X;}] (this is a different §!). More precisely, let F; be the sub-sigma field
generated by variables w; from time zero to ¢, and F; := F, be the sigma field of the stop time 7;.
Then, obviously, X; is measurable w.r.t ;. We prove the following theorem:

Theorem 8 For any 0 > 0, the sequence (Eef(Xi=X0))20
filteration (F;),

is a supermartingale with respect to the

Proof We proceed inductively by jointly conditioning on the previous X; and whether G; has hap-
pened or not, and whether we are in situation x(2) or x(3). We have

Elexp{6(X;+1 — Xo)}| Fi]
= Elexp{0(Xi+1 — Xi + X; — Xo)}1{G: }|Fi]
+ Elexp{0(Xiy1 — X; + Xi — Xo)}1{G; N *(2)}[Fi]
+ Elexp{0(X;11 — X; + Xi — X0)}1{G: N x(3)}|.F].
Now by the a.s. bounds of Lemmas 4 and [@:
E[Xi11 — Xi| Gi, wr,s.t. % (2)] = —Rin’,
E[Xi41 — Xi| G, wy,s.t. % (3)] = —R2n?,
(Xiy1 — X)1{G;} = 0. (as.)
Where fR; and R, are r.v. defined in Lemmas P4 and P8 and are clearly F; measurable. This implies
E[(Xiy1 — X)1{Gi, wr,s.t.x (2)} Fi] = —Rin*1{G;, wr,s.t. % (2)},
E[(Xi41 — X)1{Gi, wr,s.t.x (3)} Fi] = —R2n*1{Gs, wr,s.t. x (3)}.
Now we mention the following fact:

Fact For a o subGaussian random variable X we have E[exp{6 X }] < exp{6?c?}.

Using the a.s. bounds of Lemmas D4 and I8, we get that conditioned on {G;, w,, s.t. x (2)},
Xit1 — EX,41 is as. bounded by 2n09R;/(p2x), and conditioned on {G;, w,, s.t. x (3)},
X1 — EX, 1 is bounded by 2n0R2/(p2x). Therefore, using the above fact
E[exp{@(Xi_H CE(Xi1| G, wy, stk (2)))}‘ G, wr, 5.t % (2)] < exp{dn20292/(p2X)},
(253)
E[exp{Q(Xi_H —E(Xi41]| Gi, wy, st % (3)))’ Gi, w,, s.t.% (3)}] < exp{4n*0*R3/(pax)},
(254)
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which implies in the notation of conditional expectation on sigma field:
E[GXP{Q(XiH — E(Xi41|F)} 1{Gi, *(2) }‘]-‘1} < exp{4n*0°RT/(p2x)} 1{Gi, %(2)}, (255)

E[exp{0(Xis1 — B(Xi1 )G, *(3)}|F] < expl4n?0°R3/(p2011{Gs, #(3)}. (256)

Now we write:

LHS < Elexp{0(X; — Xo)}1{G;_1}| Fi]
+E[exp{0(Xit1 — E[Xi11| Fil)} exp{0(E[Xi11| Fi] — X;)} exp{0(X; — Xo)}1{Gi N x(2)}| Fi]
FE[exp{0(Xis1 — E[Xip1| Fi]) } exp{O(E[Xs11| Fi] — Xi)}exp{0(Xi — Xo)}1{G; N *(3)}| Fi]

< exp{0(X; — Xo)}1{G;}
+exp{0(X: — Xo)}Elexp{0°Rin?/ ()} exp{ ~0(n)} 1{Gi N +(2)}] Fi]
+ exp{8(X; — Xo)Elexp{6°R317/ (p2x)} exp{~0(930*)}1{Gi N +(3)} ]

< exp{0(X; — Xo)}E [(n{gi}
+ exp {02030/ (p2x) — 0(FEnA)}1{G: N+(2)}
+ exp {02080/ (p2x) — O(R3)}1{G: 0 (3)})| 7).

Now setting 6 := 1 and picking x > 1/pa:

LHS < exp{(X; — XO)}E[]l{gi_l} F1{Gi N*(2)} + 1{Gi1 N*(3)}| F.
= exp{X; — Xo}.
Now by hypothesis of Induction we have
Elexp{X;+1 — Xo}] = E[E[exp{ X1 — Xo}| Fi]] < Elexp{X; — Xo}] < 1,
which finishes the proof of step of induction.
Now using Doob’s Maximal inequality for positive supermartingales and R defined in (Z30):
P( sup (X; — Xo) > 2)
1<i<R
=P( sup exp{X; — Xo} > exp{z}) < E[exp{Xr — Xo}]/exp{z} <e™". (257)

1<i<R

A.19 PROOF OF THEOREM 7

Finally with the developed tools, we are ready to prove Theorem 7.

Proof of Theorem 7 Starting from wy = 0 with L' (wy) < X, we use Equation (Z37) to get
P(sup;«;<p exp{X; — Xo} > Q(log(1/d1))) < ;. Therefore, setting [ = O(log(1/41)) and a
union bound implies with probability at least 1 — 20; we should have gotten into situation x(1) or
*(4) without the value of X; exceeding X + 2. On the other hand, using Lemma I8 we know that
¢ happens with probability at least 1 — O(?f‘) for every 1 <t < R which is equal to 7; for some ¢
and when we are in the situation of Lemma P8. As a result, the chance that even one of &1’s happen
along R iterations is at most

O(log(1/61))(R + 31)
; .

But picking 1 small enough with respect to log(d;) and other parameters, we conclude that with
probability at least 1 — 39, after R rounds, we should have got into situation x(1) and not x(4) and
not exceeding X + 2/, which means that X; = L' (w;,) has gotten under the threshold X,. Note that
as soon as that happens, we terminate the algorithm. We elaborate on this more in Appendix BTT0.

RO(n°) =7’
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A.20 GAUSSIAN SMOOTHING

In this section, we describe our smoothing scheme and the approximation that it provides which
enables us to keep the signs from the case n = 0. Recall that we use Gaussian smoothing matrices
Vi ~ N(0, B%/m;) and WP, ~ N(0, 33 /ms). Here, we will particularly specify lower bounds
for 81 and B2 in order for our sign approximation to be precise. On the other hand, we normally
prefer the smoothing noise to be as low as possible so the primary and smoothed functions are close,
so we set 31, B2 equal to their lower bounds, and use this setting in the other parts.

To begin fix one of the inputs x;. In order to reduce and simplify the amount of notations, we refer
to the sign pattern matrix (diagonal sign matrix) of both the first and second layers by D with the
appropriate indices. More specifically, for the first layer, we refer to Sgn(W(©) + W' + W*)x; by
D: , and Sgn(W©® + (1 — n/2)W' + WP + /jW*)z; by D ,. Similarly, for the second layer,
of course depending on the input vector, we refer to the sign matrix with respect to the matrices
VO 4+ V' +VPand VO + (1 —n/2)V' + VP + /V* by by D/ , and D: , ,,, respectively. We
introduce two new notations as well for the output of the first layer with respect to different matrix
and sign patterns:

2D = WD, (WO (1 =)W + WP 4 V)i, (258)
'@ =WD ,, (WO 4 (1 =)W' + WP + V). (259)

For further brevity, we sometimes refer to /() by .

Now we are ready to mention our approximation theorem regarding the smoothing and the sign
changes.

Lemma 28 Under the conditions k1v/my 2, C1 + B1y/mg and ma > mglog(ms), then for every

]EWP,W a"Dr (VO + (1 =)V + VP VYWD, (WO + (1= )W + WP + V),
— "D, (VO 4 (1 =)V + VP 4 VWD ,(WO 4 (1 =)W' + WP + V¥,

<no3By! {(01 + VmsB1)?/ (k1v/ms) + [mgmlﬂl + Cl} exp{—Cf/(SmSBf)}}
0213

X [eXp {—03/3(\/%2@)2/3/(853)} + W]
+1(k2v/imz + C1 ) ((exp{—c3/(3283)} + mf/gﬁ )2 mgz/@ = nRs. (260)

Proof of Lemma

We can bound the Left hand side above as

LHS <

[Euwevsa? Drpy (VO 4 (L= )V VP 4 V)W Dr g (WO 4 (L= )W+ WP W)

— "D, (VO 4+ (1 =)V + VP VYWD, , (WO 4 (1 =)W' + WP + W)z,

+ ’EWW a' D, (VO 4 (1 =)V + VP + gVIWEDs , (WO (1 =)W' + WP + /gW )z,

— "D (VO 4 (1 =)V VP 4+ VYWD, ,(WO (1 — )W + WP + /W ")z
= A1+A2. (261)

We bound A; and A, separately. First, we start with Aj.
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Let P, be the set of indices j for which ]l{|(Vj(0) + V])2'| < R*ral|2’||} happens. Then, from
Lemma 31, we have |151| < R*mgy. Now for j € [mg], we write

1{sign change in thejth neuron} x |amount of change| (262)
< YVPa' e (VO —Vie' +qVia’ — via, VO — Via')} x \Fg (InVia'| + |vaVia'))
(263)

Moreover, note that

Via'| = V] (@' = ¢ (a:))],
Ve = |V} (2" — @ (@:)].

Also, because [|V/[| < [[V’|| < 2C; plus using Equation (I29), we can further upper bound the
above indicator as:

< YVPa' € (~V, O V]2~ (V] |1+l Vi) min{ 2], |2’ —¢© ()|}, —V V2’ ~Via')}

1 ! * /
X IV + IV Dl = 6 )|
LS Hfj“”x’fV-'w’f<2ncz+\/ﬁgz/m2>min{nx’u, o' =60 @)}~V V}a")}
< (20Ca 4 Vi V)~ 0 x|

Taking /1 < 0/(2C2+/m,), we can further upper bound as

SV € (VO — Via' - 2y/mee min{|la’ — 6O (@), 12|}/ Vg, —V V2’ — V]a')}

x (viez/ma)llz’ — @ ()]

Therefore, conditioned on z':

Ey»[1{sign change in thejth neuron} x |amount of change]| | x’] <
P(V/a’ € (~V2' = Vja' — 2/ min{||a’ — ¢ (x|, |2/ |1} /v/m, =V} "2’ = V/a'))
x (viz/m2) |’ — ' ()]
Now notice that for j ¢ Pi, we have
| = V%' —V]a'| > R*ksl2’|.

Also, note that the variable V"2’ is gaussian with variance ||2/[| 2//m, Therefore, conditioned on

a/,forj ¢ P,, we have (note that 2’ does not depend on the randomness of V' *):
B(Vfa' € (V" = V]’ = 2y/mesmin{|la’ — ¢ (@)L, ||}/ vima, ~V"a’ = V]a'))
S exp {min{| — V"2’ = /o' — 2y/m0a |||/ V/ms|, | = Vo' = V]a' [}/ (V2I|'|| B2/ /) }
< ([|2']|B2/v/ma) ™" x (Vg min{[|a” — ¢ ()|, [|2|[}/v/m)-

This equation follows from the fact that
—b .
Pla<N <b) < o =Bl v a0} 02 (264)
o
2/3( Sy ko)
On the other hand, note that for /7 < %222)13 we have:

Ca (i) '/?
2/m,

R koll2’| /2 = 2]l = 2v/mealla’ [l /v/m,
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which implies
< exp { R ko |||/ (2V2]127 | B2/ vima) Y (/02 / B2)
< exp {—Cy/* (Vimara)?/% [ (853)}(v/1102/ Bo).-
On the other side, for j € PZ-, we can write
B(Vfa' € (~V;"a' — Via' — 2oy min{|la’ — ¢ ()| '} /V/my . ~V}"a' = V]a!))
< (12']182/vima) ™ (/g2 min{ |2 — ¢ (@), 1271}/ v/msy) = min{[|2" — ¢ (:)[|/]|2']|, 1}y/no2/Ba-

Therefore, overall using the fact that [|[V*[| < 02/+/m,, we can write

A1 S Y e {=Cy P (Vimyra)*® [(883)} (v/iloa/ B2) minf |2’ — ¢ (@) [2/I|a|I, 2" — ¢ (i)}

i¢P
3 (Vs B2y minfll — 6 )[4/, 13 x (yiioa/ma)la’ — 60 )]
jeP
< [ma x exp (O3 (Vimama)?/*(862)} (vflea/ o) x (vfieam2)
a3 0 mingfa? — 60 @) 2/12), '~ 6O )}
(72/3
< g3y min{a’ = 60 @) /') ' = 60 )1 exp =3 (Vimgma PP (59} + et .

(265)

Next, we bound A,. First we bound Eyy» ||2'(") —2/(?)||. Recalling the setting co = 2,/nmzC1 /v Ao
and the definition of in P from Lemma [, we obtain that for j ¢ P, we have for all i € [n]:

W V2| > ea//my,
(Wiai| < e/ (2vmy),
which means for j ¢ P:
(W + W] > ea/(2v/my). (266)
Also, we have

|P| S Czﬁl/ﬁl. (267)

Now using Equation (&) in Lemma B, we can write for every ¢ € [n]:
val; = 1{sign change in thejth neuron} x |amount of change‘
0 « 0
<YWz € (—Wj( Vg — Wiz, +nWiz; — nWj i, —Wj( Vs — Wiz;)}

X (VAW xi + nWiai|).

1
Vi,
Using the fact that [|[W}|| < ||[W'||p < Ci, and Equation (IS) (||W}|| < o,/7:%) and picking

Vi < Cf’l‘ﬁ?’ we obtain
< ﬂ{Wf’xi € (=W = Wias =l Wl = vl Wyl =Wz, - Wia,))

Wil +alw;l)

\Fl
o (0) / Vimg ) -
< ]l{Wj T; € (—Wj r; — Wiz — 2¢/no W i — Wixg)}

\/>1 J
x V%(\/ﬁg\/fj)
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Now for j ¢ P, because ij x,; is Gaussian with std \/@1 :

Ewolval;] < PWPz; € (—WVu; — Wia; — 2 g\ﬁ?’ fW.(O)zifW’zz Vi
W[ J] ( j ( j Jj \/> \/*1 j )) \/* f \/*1

S exp —{min{] = W%z = Wiz =2/ 9?3’! =W — Wi} (V2B V)Y
X (B1/v/my) "t X (\fQ\/\/:S) \/» fg\/\C3
Now from Equation (268) and by picking /1 < 7 \/m so that
VIS < oo/ (a/y),

2v/ne
then
92m3

Bima

LHS < exp{—c3/(326%)}n (268)

On the other hand, for j € P we have

Eval; < P(Wa; € (W Oz — Wiz —2 g\ﬁi” W% — Wiz Vi
J ( J ( J i i \/> \/71 g 7,)) \/* \/> \/*1

S (B/vmy)” f@\\ﬁj X f@‘ﬁ = 217:1?1" (269)

Now define the following random variable with respect to the randomness of W *:

Val = Z 1{sign change in thejth neuron} x |amount of change|
j=1
then for every k € [mg], we have
|J];€( - .’L‘;C(z | < Val,
which implies
|z'® — '@ < /msVal.
But Combining Equations (Z68) and (Z&Y):

EVal < ((exp{—c3/(326%)} + |P|) Qﬁrln‘”’

) 92m3

i

< ((exp{—c3/(3269)} + ﬂ

which implies

C 2m m-
Ewella'® — 2@ < ((exp{—c3/(328])} + = )n® ;:R. (270)
1

Now we can write
‘aTD,, VO 41—V + VP + 7V’ ® — "D, (VO (1 =)V + VP 4 gV *)a’D

ma

_\/7’12-Z

—_

N

(V) + (L =) V] + V4 vy ) (@@ — ')

2

Z ‘V(O) (2) /(1))| + (1 _ 77)|Vj/($/(2) _ J)/(l))| + ‘Vjp(l‘/@) _ x/(l))l + \/mvj*(x/(Q) o l‘/(l))|

ma

O/ 12 _ .11 n(2) (1 1 . ! * n(2) (1)
i (@ O+ V(@ — 2 >)|+Ta D@ =)V + valvi D la® — 2'®)

2 j=1

1 A 0 )
< =S WO D)+ V@D = D)+ (A= IVl + VAV )2 D).
2 j:l
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Now by Equation (IZ7) in Lemma [ (i.e. |[V*||r < v/C5) and the fact that ||[V'||p < Cs, and by
taking

&
< )
Vs Vs
we have
(@=mIVlle+vailv*Ir) S €1, @)

so we can bound the above as

1 & (0) 2 1 2 1 2 1
LHS § =3 (V)@@ —2O)| + [V (@@ /D)) + Cufl'® D).

2 j=1

Furthermore, using Lemma B2 and noting the fact that the entries of V(?) are normal with standard
deviation 2, we get with high probability over the randomness of V (9):

1 &
S G VO D) (2 52 /s (0(ms) -+ Toglog(ma)))+Cr ) %))
2 j:1

Now note that V (z'(2) —z/(})) is normal with standard deviation —\/ﬁ% |2’ —2'(M)||. Hence, taking
2
expectation with respect to V*:

Ev»

a'Di (VO + (1 =)V + VP + V)2’ D — "D, ,, (VO + (1 —n)V' + VP + V)’ D

5 (IQQ\/’”TQ + ng/mg(log(mg) —+ log(log(mQ))) + Cl) ||17/(2) _ I,(l)H
272)

Finally, Combining Equation (263) and (ZZ2) and applying it to Equation (2&1) implies with high
probability over the random initialization:

Ewove al Di (VO + (1 =)V + VP + gV Wea'?)
—dTD (VO £ (1 -V + VP + \/EV*)WSJJ’(I)’
<A+ A4

03/3 }

< Buong3 s min{la’ =6 ) /21 e’ = 6 (@)} [exp (= C"(Vimara) S} + (s

+ B (123 + hay/ms(log(ms) + log(log(m2))) + C1 ) 2/®) — /)|
Now notice that under E°, using the assumption x1y/mg 2 C1 + /m33; and Lemma B3 we have

2/l 2 169 @) | - 12" = 6@ ()]
> wk1v/mg — (C1 + Vmgpr)
2 51\/%37
and
lz" = @ (2:) | < (C1 + Vimgf)?, (273)
which implies:
Evw, min{||z’ — ¢ (2:) /|2’ 12" — &' (z:)]}
< Ews L{E Y2’ — ¢ (2:)[*/l|2']| + L{E} 2’ — ¢ (a3)]]
S (Cr+ VmgB1)? [ (k1vmg) + Ewe L{E} ||z’ — ¢ ()]
S (C1+ V1) (sav/img) + [Vimgm 81 + Ca exp{~CE/(5ma)).

85



Under review as a conference paper at ICLR 2022

Substituting this above and further applying the result of Lemma B3 and Equation (ZZ0) and the
assumption that msy > mg log(ms):

Ay + Ay S ey (O + VimsB1)? /(1 Vms) + [Vimgma By + C | exp{=CF/(8ma )}
(o
woxasd

2
+ n(ligx/mg + Cl> (exp{—cg/(326f)} + Kl\cjm ) 0 m;l\/mg7
1

x {exp {—03/3(\/732@)2/3/(865)} +

which completes the proof.

A.20.1 SETTING 31 AND f35

As we mentioned, to minimize the amount of deviation of the smoothed function compared to the
original one, we prefer to choose 31, B2 as small as possible. (The benefit of such choice, indeed, can
be observed more explicitly in other parts of the proof, e.g. Appendix A—T4.) Observing the bound in
Equation (Z&f) and noting that we can easily make the exponential terms orders of magnitude smaller
than the poly terms, it is easy to find the following optimal setting for the smoothing parameters:

B = O, ((mimg) ™ (Vimgna) ).
B1 =6, (m3\/ﬁ3/("11\/ﬁ1))-

Using this setting, we still can make ¥g arbitrarily small. Here, we remind the reader that O, only
cares about the non-logarithmic dependencies on the overparameterization, i.e. my, ma, ms, K1, Ko.
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A.21 BaAsic TooLS
In this section, we introduce and prove some lemmas that we use in our analysis as basic tools.

Lemma 29 Suppose V(©) € R™2%™s has standard normal entries and a is a random sign vector.
Suppose theta > 1, R < 1 are given thresholds, such that

maR 2 ms(log(1/R) + log(ms) + log(log(msz)),

e=0°/8 < mg/ma.
Then, for the following quantities:
Ni(z) = #(j € m]: [V,"a] < R)
Ni(@) = #(j € ]+ v,z = 0),
with high probability we have
sup Np(a') S makR,

2/ [l =1
Sup Nj (2') S ms(log(ms) + log(log(mz))).
x'||=1

Proof of Lemma

Suppose Bj (¢) is a cover for the Euclidean ball in R™3 with precision e. We know
[Bi(e)| S (1/e)™.
Now for a fixed ||z|| = 1, we have
P(W "z < 2R) < R.
Therefore, using Bernstein, with high probability we have
#(j € lmal: V02| <2R) S maR+ VmaR+1.

Hence, using union bound, we have with high probability

sup #(j € [m]: |Vj(0)x| < QR) < maR + \/log | By (€)|\/maR + log | By (€)|
z€B1(€)

= maR + \/maRms3log(1/e) + m3log(1/e).
By picking
e S R/(v/mslog(mams)),
The assumption implies mo R > mglog(1/¢), which implies

LHS < mgR.
On the other hand, note that with high probability we have

sup VY| < Vlog(mams). (274)

j€[m2],k€[ms]

Now for ||z’|| = 1 which is not in the cover, if x is the closest point to it in the cover, i.e. z € B (€)
and ||z — 2'|| < ¢, then for every j € [ms] we have

1V — VO || < VO |z — 2| < v/ms3log(mams)e < R,

by picking a small enough constant. Therefore, for a j that |Vj(0):c| > 2R, then

V7| > 2R~ R=R.
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Therefore, we get that with high probability, for every ||2’|| = 1:
sup #(j € [mo) : \Vj(o)x'\ < R) < maR.

llz" =1

For the second part, note that for ||z|| = 1, by the tail bound for normal vars:
[P’(Wj(o)ac >0/2) < e/,

Hence, again using Bernstein, we have with high probability

sup #(j € [ma] : Wj(o)x| > 9/2) < mae /8 4+ Vlog |Bi(e)[v/mae=0%/8 + log | By (€)

z€Bi (€)

S mae™ /8 4+ \/ms log(1/€)\/mae=92/8 4+ m3log(1/e).
By picking
e S 1/(y/mslog(mams)),

and using the assumption m26’92/ 8 < mg, all terms are dominated by the third term so we can
bound the above as

sup # (i € [ma] : |V,”a] > 6/2) < ma(log(ms) + log(log(ms)).
€ B (€)

Now for ||z’|| = 1 not in the cover, for the new € we can write

IV V] — VO || < V||l — 2/|| < \/m3log(mams)e < 1/2 < §/2.
Hence, with high prob.

sup #(3 € ma]  1V}"z] 2 6) S malog(ma) + log(log(ma))

Lemma 30 For x € R% and W e R™*4 which has standard normal entries (and a is a random
sign vector), we have with high probability:

1 _ L 10
Hleuz)l f(z): \/ﬁa c(WOz) < Vd.

Proof of Lemma B

For the first part, we first compute an upper bound on

1
E sup ——alo(WO).
llzll=1 VT

To do so, we use Dudley’s chaining. Note that the for x1,x2 € RY, the variable U(Wj(o)xl) —

O'(Wj(o)QSQ) is subGaussian with parameter ||z1 — z2||, so the variable f(z1) — f(x2) is also sub-
Gaussian with parameter ||z1 — x2||. Hence, by Dudley’s integral:

E sup —a o(WOz) < / \/1og(N (B, €)) < V.
[|z||= 1\/7

Now for a fixed x, note that

1 1
—a U(Wll’) - 7& g ng ||W1 W2 H S HWI — W2||F.
vm vm Z J J

Hence, the function f(x) is 1-lipchitz with respect to W and [2 norm, so is the function sup f(z).
Hence, by Gaussian concentration, sup f(x) is 1-subGaussian around its mean, so we finally get
with high probability

sup f(z) SVd+1 <V

88



Under review as a conference paper at ICLR 2022

Lemma 31 For
3

we have with high probability over the randomness of V' (©):

R* =

sup — #(5 € o]+ 1V + V)| < R'afla’|) S Roma.
2 VI [V | <Cy
Proof of Lemma BT
Note that obviously the condition of Lemma is satisfied with this choice of R = R".

Therefore, with high probability we have for an arbitrary z':
#(|V 0a'| < 2R k|2’ ||) < myR".
On the other hand, note that for j € [ms] such that [V/2'| > Rka||2’||, we have
Vil = [Via'| = Rezl’|l,

which implies
IVi[l > Rks.

Therefore, there are at most Therefore, setting aside mo R + R2 Yy of j’s, for the rest we have

R2 2
0 O
(VO + V') > VO | - Ve > 2Rn2|\x’u — Rksl|2'|| = Rea 2|

Setting R* as defined above balances the terms mo R and 2 Yt which completes the proof.

Lemma 32 If V() € R™2%™3 js q matrix with standard normal entries, then with high probability

1 A
SUp —— Z Wj(o)x/| < Vma + \/m3(log(m3) + log(log(my))).
2 j=1

llz" =1

Proof of Lemma B2

Let B (€) be a cover for the unit Euclidean ball with precision e, for which we have | By (€)| < ()™=
Now for a fixed x € Bj(¢), note that because V(O)x is a standard normal variable, the random
variable |Vj(0)a:’| —IE\VJ-(O)Q:’\ is O(1)-subGaussian, which means \ﬁ > (|Vj(0)3:’| —E|Vj(0)x’|)
is also O(1)—subGaussian. Now from the tail of maximum of subGaussian variables:

mo

Z |V(O)£C| E|V(O)$| < Vlog(|Bi(e)]) = /mslog(1/e).

sup

€ B (€) \/7

On the other hand, note that ]E|Vj(0)x’ |) = O(1), which implies w.h.p:

Z|V0) | < v/ma + /mgzlog(1l/e).

sup

z€B1(e) V 2
Moreover, note that again by the tail of subGaussian variables, we have w.h.p:

(0)
max V2| < y/log(mams),
je{mz],ke[m3]| ik | g(mams)

which implies with high prob for every j € [ma]:

HV | < v/mslog(mams).
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Now by picking
-1
€= ( ms log(mgmg)) ,
we get with high probability

1 &
sup —— Z |Vj(0)x\ < /mg 4+ /mas(log(ms) + log(log(ms))). (275)
z€ B (€) \/77"2 =1
On the other hand, for an arbitrary =’ with ||2’|| = 1, if @ € Bj(e) is the representative of z’, we

have by definition ||z’ — z|| < ¢, which combined with (AZZ) implies

0) s (0) 0) .1 (NI
VO = v )| < VO @~ ) < 1V’ - 2l

5 \/mg log(mgmg) <\/m3 log(mgmg)) - S 1.

Therefore
L R0 (R )
—— > W = =3Vl < Vim,. (276)
T 2~ e

Combining Equations (Z73) and (Z6), we conclude the result.
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A.21.1 DEFINING THE RARE EVENTS F;
Lemma 33 For 2'® defined in Equation (Z39) we have

Evollz'® — ¢ ()], Ew» [ (2:)]| < C1 + Vg,
Ew [[¢® (2:)|* < CF + mafi.
Moreover, for the events
Ej = {‘ijl‘ll > Cl/\/mgml}, FE= UjEj,
we have under E°:
12 = 6O (@3)|I, 16 ()| < Ch-
Furthermore, E happens rarely:
P(E) < my exp{~C7}/(8m3f7)},
Ewe 1{E}|6® (@0)]] < [Vimgma By + C1 | exp{~C3/(8msB3)}.
Ewe 1{E}2'® — 60 (a)|| < [vmami By + C1| exp{~CF/(8map?)}.

Finally, we have the following almost surely bound.:

ma 1
6@ (@)l < C1+ Vimg Y ——=W/z,|.
= Vm

Proof of Lemma B3

We start by writing

1 X 1
2P — ——Wia(WO + (1= )W+ W)z <3 — [Wha|. @77
T 2
Now notice that by Lemma [, we know for every j ¢ P:
Wi > ea/v/ms, (278)
(L= n)Wjzi| < ca/(2Vmy). (279)

In addition, by Equations in (II3) from Lemma B, for every j € [my]:

m
Wi < 91\/*3,
my

so by picking
1 < ca/(4dovmy)
we obtain e
Wiz < . 280
77| 7 T | = 4\/ﬁ1 ( )

Combining this with Equations in (ZZ9), we see that the signs of (Wj(o) + (A =)W+ W)z,
and Wj(o)xi are the same for j ¢ P.

Moreover, the matrix (1 —n)W’ + /nW* satisfies
1A =mW' + /W™ < (1 =n)Cr + Vnv2(e < Cy,
by picking \/n < C1/ V/C,. Hence, the conditions of Lemma B are satisfied and we get:
1

v

Weag(WO + (1 =)W' 4+ agW*)z; — 6 (2)|| < Ch. (281)
1
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Combining Equations (ZZZ4) and (ZET)):
miq 1
2 0
2" = O ()| < Cy + Vi ; T Wil (282)

In exactly similar fashion, one can derive

16 ()| < C1 + v/ Z Pay]. (283)

Now first of all, note

Jx'L' S 617

mi
Ewoe
2V
which proves the first part of the claims. For the second part, note that by the Gaussian tail bound

P(|WFa;| > Cy/y/msmy) S exp{—C7/(8msf3})}.

Therefore,

<Y P(E;) < myexp{—C}/(8msf7)}.

J
Moreover
IEWp]l{E}Z \F (Wa| < Ewe—— \F SN H{EL W]+ f Z]Ewpl{E HW Pz,
J2 J#J2
==Y Ewe|Wlai| + — ZEWp (Wl Ej]|P(E;)
[\/TTH J2 j#j2 }

< [miBi + Cofvims| exp{~C/(8ms ).

Plugging this into (Z82) finishes the proof. Also, under £ by Equation (&) we have
|2"® = O (zi)], 62 ()| < C1.
Finally, exploiting Equation (ZX3):
Evwol|¢™ ()]

1
S 012 + ngEWp (Z |ijxt|)2 S 012 + ngWp Z |ij$1|2
J J
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A.21.2 BOUNDING THE VALUE OF f’

The following Lemma provides a reasonable bound on the value of the smoothed function.

Lemma 34 We have the following general bound on the values of the smoothed function: With high
probability over the initialization, for |W'|| < C1, ||[V'|| < Cq and Vi € [n] (having small enough
choices of 31, B described in Appendix B20):

| fivr v ()] S (Kav/ms + ﬁz)(\/TTLgm +C1 + ﬂgﬁl) + Co(C1 + Vmyph),

which is O(C1Cs) for large enough overparameterization as described in AppendixB3. Moreover,
we have the following almost surely bound (with respect to the randomness of W? and V°):

| fwrswe vigve ()]

S /iy + V1) (Vs + Co (e S0 IWED) + CalCot (i 32 WYl

Notably, with slightly higher overparameterization, the high probability bound in (B4) holds even if
we take supremum over x.

Proof of Lemma

Using Lemmas B0 and B3 and using the fact that ¢(®)(z;) is orthogonal to the rows of V'
(recall ) = ¢(O) () 4+ ¢ (x)):

| fwrswe vigve ()]

1 . 1
< aTo(VOzl) + — |(VE 4+ V)
T SR

My
1
< (kav/mg)||z]| + —= > [VFal] + Col|o®@ (z))||
o)l %;J | |

< (R2Vmg + [Vl p) 2] + Callo® (a:)l)

1 1
< (rav/mg + [Vl ) (Vimsis + C1 + v/

T WD) + CalC o Vi ( 3 W)
’ (2;34)

Note that above, if we apply the stronger worst-case norm bound of the first layer’s output presented
in Lemma B6, we would get sup,, (=1 | fw'+we v'+ve(x)| is bounded by the RHS, which in turn
proves a stronger uniform bound on f’.

Similarly, this time by taking expectation with respect to W* and V*:

|five v (@) = [Ewo vo fwr v ()]
< Ewe,vel|fwr v (xi)]
= Ewe (k2v/mg + B2)||2i]| + Callz; — ¢ (2,)]]
S (ka/my + B2) (Vinga + C1 + Vimgfi ) + Ca(Cr + vimah).

Corollary 8.1 If we set C; = Cy = 0 above, we get
Fh 0@l < (ke + B2) (Vimgms + vims 1),
the point being these terms go to zero by an order of O((\/ﬁyig)_%). Therefore, taking

(\/mzlig)_% << B, we make sure that |fj o| < B, so by the 1 smoothness of { and B bound-
edness of the labels we get {(fg o(x4),y;) < 4B>.
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A.21.3 BOUNDING THE DIFFERENCE BETWEEN ORIGINAL AND SMOOTHED FUNCTIONS

The following Lemma bounds the difference between the smoothed function and original function
of the network.

Lemma 35 Bound on the smoothing change under the assumption mq > mglog(ms): with high
probability over the initialization, for any (W', V') with |W'|| < C1, |V']] < Cs:

\fwr v (@i) = fivr v (@)
< Bo(k1v/mg + C1 + Vmgfr) + (Cz + Hz\/m72) VmgzBi.
Proof of Lemma BS
We write
|fwr v (i) = fir v ()] = [ fwr v () — Bwe ve fwrgwe vigve (2)]
= ’EWP,VP (fW/,V’ (x;) — fW'+WP,V/+VP($i)>’
Jwr v (i) — fwrawe vigve (T;)

< Ewoe,ve

In the following, 0 means we apply Relu activation to the vector in front of it (entrywise):
1 1
alo(VO 4V 4 Vo) ——Wea(WO + W' + WP)z;
my my
1
vm.

1 5 1
ATo(VO £ V) —We(WO + W’ + W)z,
VAL vy '
1 5 1
— —a"o (VO 1 V) — W (WO + W)z,
Vmy Vmy
Now for the first term above, using the previous notation of z representing the output of the first
layer and using Lemma B3:

LHS <Ewoye

1
ATo(VO £ V) —We(WO + W + WP)z;
2 Vmy

+EWp7Vp

1
aTo(VO 4 V' 4 vP)

Weo(WO + W + Wr)a;
My my

]EWp,VP

1
T (0) ! W (0) / P\.n
aTo(VO 77 c(WW + W' + WP,
My vy

1
< Ewe,ve |V
LS

< BoEwol| 2|
< BaEwe,ve (6 (i)l + 163 (z:)]])
< Ba(k1vmz + C1 + VmgfBh). (285)

For the second term, by starting off with a simple triangle inequality:

Ewe,ve a"o (VO + V)] - %a%(v@) + V(6O () + ¢(2)‘/(mi))’

my my

LSO 4 iy el — 6O (a) — 64z,
sEWp,VPﬁQ;](vj +V))(at = 00@i) — 6 (a))
1 — !/ / /!
< Bwrve—= 3 [V (al = 0O @) — 6w + V)@~ 60 w) — 97|
2 j=1
/ 1 — /
< ol = 00 (w1) = 6P| + Buo e SOV 0] = 60 ) = 90¥(w2))|.
2 j=1

94



Under review as a conference paper at ICLR 2022

Now using Lemma B2:

< (ot rav/ims | Bws | = 60 (@) — 62|
1
< (CQ + st/mg) \/%BEWP ; WJW;’xi‘
S (02 + Hzx/m2) Vmsf. (286)

Combining Equations (Z83) and (Z88) we conclude the proof.
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B.1 SMOOTHNESS COEFFICIENTS

Recall that for a function f € C® on RY, we say it is u1 lipschitz, u» gradient lipschitz, and ps3

hessian lipschitz at point z if for every unit direction v, \%f(x + )| < pa, |%f(:v + )| < pa,
2

and |d‘17f(sc + )| < ps.

The aim of this section is to bound the lipschitz coefficients of the loss £(, y) and objective L(W’, V")
in a bounded domain ||W’|| < C4, ||V’|| < C,. The following is our main Theorem in this regard:

Theorem 9 For given values Cy,Cy > 0, in the domain |W'|| < C1, ||[V'|| < Cy, for any label
ly| < B, the loss function {(.,y) is O((C1Cy+ B?))-lipschitz (having enough overparameterization)
and 1 gradient-lipschitz x = fiy. \,,. Moreover, the loss function L(W', V") is (O(C1C2)+ B)¥1 +
2(01 +CQ) lipSChilZ, \IJ%+(O(0102)+B)\I’2+4 gradient lipschitz, and 3\112\Ifl+(0(0102)+3)\1/3
hessian lipschitz, where W1, Vo, U3 are defined in Lemma B8.

Proof of Lemma 8

As in the proof of Lemma B8, let (W,V) be a unit direction, ie. |[W]? + ||[V|? =
Then, using Lemma B4, we know that for every i € [n]: |fjy, . (2:)] = O(C1C2), so by
1-smoothness of the loss and B-boundedness of the labels, we get that £(.,y) is (O(C1C2) + B)
lipshcitz at point f{/V,VV,. The gradient smoothness parameter of the square loss ¢ is bounded by 1
and its third derivative is zero. Now using these coefficients, we can easily compute the coefficients
for L as well by simple differentiation:

d d
|d)\ (fW’—i-/\W V’+)\V(Il) y2)| = M( 7y2)d)\f | (0(0102) + B)\Ij
. d .
|d)\2 (f‘/}[//+)\v~[/’vl+)\‘7(zi)7yi)| = \E(f’,yi)(af'f +€(f/,yz)d)\2f | < UT + (O(C1Ca) + B)¥s.

d d .. 43
|W£(f‘/)[//+)\v~[/,v/+)\f/'(xi) )| ‘é(f yl)(d)\f)3+3£(f/>yl)dA2f 7]0 + (f yz)d)\g

< U3 4 30,0, + (O(C1C) + B)Us.

Moreover, note that

fl

%HW’ FAW|P =2W + AW, W) =2(W', W) < 2|W'|| = 2Cy,
dAQIIW’ FAW|? = (W, W) =
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and similarly for ||V’ 4+ AV ||2. Combining these results finishes the proof.

Above, we used parameters ¥y, Wo, U5, the lipschitz coefficients of f’ in domain ||[W'| <
Cy, ||[V'|| € Cs, which we bound in Lemma B8 below.
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B.1.1 COMPUTING THE LIPSCHITZ COEFFICIENTS OF f{;, 1/

In this section, we bound the lipschitz coefficients of f{y y, in the domain [|[W’|| < Oy, [|[V'|| < Cq
by poly(mi, ma, ms, 51, B2) functions.

Lemma 36 For every point (W', V") in the domain |W'|| < C1,[|[V'|| < Ca, we have the following
bounds on the lipschitz coefficients of fyy: v (W, V) is a unit direction with |W | + ||V ||? = 1):

A=0 ‘

S B%(;éQ Vims(k1+C +ﬂ1)(“2\/ﬁ3 +C2) + \/Bé\/ﬁg(m +Ch +61))

7 (s

d2
d\2 fW’+>\W V’+>\V( )

‘ afW/-F)\W,V’-‘r)\V(xi)

2

) (navin + Ca) + oy (e (s + €1) + )} =

(0

A=0

< (TP + Z2171) (v + €202 3) o+ €2 4 7] = 0

‘CD\SfW’—&-)\W V’+/\V( ),\:o‘

. L \3/2
< (2L 2 M2 502 2 2 2 2] .
s (VP +Z171) ¢m3(<n2m3+02> +63) (51 +C2 + 7] = W
(287)
Proof of Lemma
Let
1 wepz o ve)?
pr,Vp):: expi— — s
( («/27r)mg’rn3+7n1d(ﬁl/\/ml)7rL1d(52/ﬁ2)m277L3 { 2ﬂ%/m1 Zﬂg/mQ}

be the density function of the law of W” and V* which is a joint Gaussian. Then to compute the
derivative and second derivative of the function in the unit direction (W, V), s.t. [|[W|% + ||[V]|%,
we can write the value of the smoothed function as an integration with density p, change variable,
and then take derivatives:

d
ﬁfilzv'+,\v1/,v'+/\\7 (i) A0

d/\EWp vefwrawswe, viiavsve ()
B a/fW/+AW+Wﬁ,V/+/\\7+VP(xi)P(Wp7Vp)d(Wp,V”)
d 4 ~
= /fvv+,v+(:1:7:)p(W+ (W AW), VT — (V! AT )W, V).

But one can easily see that for fixed V'’ and V, the set of functions fy+ v+ (z;)p(W+ — (W' +

)\I/V)7 Vt—(V'+ )\f/)) for a small neighborhood of A can simultaneously be upper bounded by an
integrable function. Hence, the Leibnitz rule holds here because of dominated convergence theorem,
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and we can change the order of integration and derivation:
d ~ -
_ /fW+ e ) (W = (W' W),V — (V4 A7)+, V)

= [ e @ (D (W = ) (2 (v = v 420

mi ma

p(WH — (W £ AW), VT — (V£ AV)d(WH, V)

= [ w70, e 2V howe v oya(we, v)

Bl " B3
= Ew» V"(ﬂ1 <W Wp> 52 <V 46 >)fW'+AW+WP,V/+W+VP(:u)(iﬂi) \—0
= Ew» Vp<ﬁ1 (W, we) + G LV V) fwrewo vrsvoce (@) (288)

Similarly we can compute the second derivative:

d2
Wf{/V%)\W,VUrAV(xi)

A=0
= i J e e (O P (97 ) (0 (V- (77 a0
p(WH — (W' + )\W)7 vt (V' + )\V))d(WJF,V‘F)

= [ e e @ [{07, 9, (L) (0 = 74 20), () (v - i) -

my ma2

(W, ), ((fi)lw (ﬁ)lmﬂp(vw — (W 4 AW), V= (V4 AV)d(W, V)

= [ fwewr @ (079, O 51 W V) (7.0 G S0 v v awe. v)

= Eweve [ (G5 W, W7) + E me ) - (G112 + ZZ V1) [ i, )

= Burvo (0707 + Z2T.V0)) = (G + Z20712) s v @)

A=0

(289)
Similarly for the third derivative:
d3
d/\3 fW +)\W v’ +)\V( )
/fW+ v (22) < (W+ (W' + AW)), (fi)—l(w — (V' + W)))f-
<<W7v> (2w, <5 )y v>>}p<w+ — (W XV), V= (V4 AV, V)
/fW+ v () [(OF, ) (W= (W AW, (fi)-l (vr-v'+ Af/)))>3

~s(or 7, (- (W+ (W’HW)),(fi)l(W<V'+W>)>><<W,V),(<5l>1 W, (22)17) )]

mi ’ mao
p(WH — (W' +AW),VH — (V’ AV AW, V)

= Eyo v [(61 (W, WPy + 22(7, VP)) - 3(

52 (W, WPy +

ZVVn) (G I+ V)

B 52

Jwrswe vigve(e,) (fﬂi)} :
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Now for first derivative, exactly similar to the derivation in (Z84), we can write

’]EWP Vp<51 <W Wp> < >>fW’+WP,V’+VP(a:i)(‘Ti)

< Ewoys /31 (W, wr) + —<f/ VO [ oo o)
< B (097 G (0. (oAl IV e+ B 22 5197
< Ewoe (| (W) | G (77 )]) (ool 1V el 30 v
J
- %(Ew <‘7,V’°>‘EW/7H$;(2)|| (Hg\/ﬁg + ||V’||F> +IEWP]EW\/7%2‘<‘7’Vp>‘ zj: |‘/;px;(2)|>
+ %%1 <(EWP||33;(2)||‘<W, WP>’) (52\/7713 + ||V/||F) +Ews <W, W”>‘Ew \/%2 Z |Vjp$;(2)|)
J
~ % (EVP <V Vp>‘E p||$ )H (52\/73 + CQ) + EwrEy, \/%2 ‘<f/’ Vp>‘ EJ: |ijpx;(2)|>

mi

i ((Ewo 120, W) (mav/ims + C2) + Ews

3 1 1(2)
o P
(o )
where the last line follows because ||V/|| < C5. But notice that because ||I7||F <1, HWHF <1,

then <‘~/, Ve > and <W, we > are Gaussian variables with variances at most 83 /mz and 3% /m;.
Hence

Bvo|(V,V?)] S Ba/v/ima, (290)
Euwo [ (W, W7)| 5 B1/v/m,. (291

Similarly, using the same derivation as in (B3), one can also get the following a.s. bound (over the
randomness of W 7).

" < L P
1421 Vs (m o+ €+ 2 zil), (292)
therefore
1
Ewo|2/® || S vy (514 C1 + Bwo—— > [WPa,| (293)
’ ( ml ; ! )
< Vs (m +C1 + 61). (294)

Moreover, for every j € [ma]:

~ - 2
(v e < (7. ve ) v

. 52 62 H /(2)”7 62 ” /(2)||
\ngf

Ewe <W,W">’|szi| oy (295)
my
Similarly, using Equation (Z92) we bound

]EWP||:5;<2>\|]<W, WP>‘ < s (]Ewp <W, W”>’(m + 01) + EWP\/% 3 KW Wp>’|ijxi|)
J

< \/>3(\/»1 (m + 01> \/ﬂn»il) (296)
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Now applying these bounds (Z91), (Z94), (Z93), and (Z98) to (Z90) and using the fact that

EVp

1
— > v < Gl
2 .
J

we get

LHS 575222(\/5%2 vms(k1 +Cy + 51)<I€2\/73 + 02> + Ewo \/’éZ ||x;(2)||)
+Tg§<\/”r>n3(\/€%l <I<L1 + 01) + \/Tinl)(lﬁ\/mg + CQ) + Ewe <W,Wp>‘52”m;(2)”)
57;222(\/% V(i + Cr + By) (rav/ms + Ca ) + fg Vi (k1 + G+ 81 )
+nﬂ?(m3(\/%l (m + Cl) + \/Bri;)(@\/»?’ + 02) "‘52\/»3(\/—1 (Iﬂ + C'1> \/B;nl))

To make it easier for handling the second and third derivatives, we first bound the expectations of
Fovriwo v +Vo(ay) (i) which enables us to use Cauchy-schwartz. Again using similar derivation

as in (Z84) and Equation (Z92):

2
Ewe,ve fW’+WP,V’+VP(a:1-) (1)

1 2
< Ewo ve (/fg\/ﬁ?)”x;@) ” + CQH:L';(2) ” + W Z |Vjp$2(2) ‘)
2
1 2
< (sav/my + Oo)Ewe [ |+ Bwo By (30 V)
J

2) (2 (2 (2
< (rav/my + Co) Buwo |2 |* + Evw —ZEV VP 4 B 37 By [Vl By [Vl

J1#j2

m(m — 1

< (ki + Co)EugJ 2|2 + Ewp%nx;@m? + B @2 1)
(R2v/ms + C2)* + 83 ) Ews|o/ 2|

l€2\/73+02 +ﬁ2)Eme3</€1+Cl+ \/7 Z|prl>2

JﬁéJz

< ((
= ((
(mfﬁcz +ﬁ§)m3 (k1 + C1)? +—Z]Ewp|W”xl\2+— Y Ewe |Wjﬁxi|EW]el|W]in|}
(

112\/>3+02 +ﬂ§)m3_(1€1+01)2 51 —l—ﬂ M}

A

— ms ((m\/ﬁg T )t ﬂ%) :(m FO)? ﬁl]. (297)

101



Under review as a conference paper at ICLR 2022

Now for the second derivative, we can proceed by applying Cauchy-Swartz:
d2
ﬁfW'+,\W viaw (i)

A=0
ma .z ma -~
< Bwovo| (8 % W)+ BT V) = (G + BRI sy v (@0
my, = Mo |~ 2myms ~
< EW’HV” ﬁ4 <W Wp> a2 ||W||2 54 <V Vp> 2 HVH2 52ﬁ2 <W Wp><Va Vp>‘
i 65 103
‘fW’+WP,V'+Vp(Ii)(xi)
m? - my .~ Mo, ~ 2mims 2
<.|E % i weyz — gz 4 2207 vey2 — 22 4 WWpVVp(
\/ weve| ( ) 3 W]* + 54 < )2 - 5 V2 + 25 ( ) )

fW’+WP,V’+VP(z71)($i)

Jeurr

Now note that the cross terms have expectation zero, so we get

- 2 -~ N2 4
B (0.0 )+ (20 v B w7 v

S

m2 - m2 - 4mime
S\/inl4+f|Vl4 W2V 124/ Ewe ve
1 2

2

fW/+WP,V/+VP(z7:)(xi)

2

fW’+WP,V’+VP(zi)(33z’)

feies
mq, % mao  ~
s (IWie+ ﬁguvn?)%@Wﬂ,w

Now applying Cauchy-shwartz and Equation (Z¥7) to above and combining it with Equations (Z89):

d2
2 fwraw vroap (@)

2
fW’+WP,V’+VP(a:i)(xi)

A=0
< (SI 4 Z2IVIP) s (Ceam, + Co2+ 38) o+ 0o+ 58]

Similarly for the third derlvatlve.

ol

CURICES i V)’ =3(G W)+ ) (TP + V)|

‘ A3 fW’Jr)\W vraav (@)

== ]EWF"VP

‘fW/+WP,V/+VP (3)

< \/EW,J,W (Gporawe)« Z2w.ve)) —a(Grav.we) + 2 ve)) (v + B2V )|

B3
\/Ewn,vp

But note that

2
(298)

fW’+WP,V’+VP (33@)

3 ~ . - 2
Buve,ve (7 (VW) 4 G20V =3O, we) 4+ 20, v) ) (G WP+ 2 17 P) |
< By (ML, WPy 1 27 vey)°
< 2By (T (W, W) + 27, V7))
mi mo -~ mi ma 2
+18( G IWIP + 21V ) e (T W)+ V)
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Now note that %(VTL we) + %(V, V'#) is a normal variable with variance %HVT/H2 + %HV”2
1 2 1 2
Therefore, by the bound on the moments of normal random variables:
my, .~ mo | ~ 3
LHS S (S IWI2 + Z2IV)2) (299)
Eh B3
Plugging this into Equation (Z98) and also using Equation (292):

a3,
wfwwxvi/,v%w(xi)

o

- - 3/2
< (GITIE+ B2IV) ™ o (o + €20 52) [+ o+ 57]
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B.2 REPRESENTATION LEMMAS

In this section, we prove lemmas mostly related to the representation power of the network, which
we mainly use in Appendix BT

B.2.1 REPRESENTATION TOOLBOX

Lemma 37 Recall the definitions of W, , and Z; 1, from Equations (B9), and (B3). For all k,i € [n]:
|Zi x — trace(W,F Z1)| < /n/(mado)||Vicll o=

Proof of Lemma 372

n n
trace(W," Z}) = trace(Z, > Vi Z1) = > ViilZi, Z}). (300)
j=1 i'=1

But note
mi
i i 0 0
(25, 2y = 1/my Y Wi AW O T e YW O e Hag, @)
j=1
(T4, 1) < - )T or
J:

Now note that (z, 2;) < 1, and 1{W " Ta;} 1{W " T2/} is a Bernoulli with

EL{W T2} 1{W " Tey} = 1/4 + arcsin((z, y)) /27.
Therefore, by Hoeffding inequality we get
(Zi Zi) — H5 | = O(1/y/mn).
Hence, because obviously || H*||s < 1, we get
trace(W,} Z}) = ZV;”/H”, +0(1/v/m)) Zv,”, =Zix +O(1/v/my) Zv;“ :
=1 =1 i'=1
which implies
[trace(Wyf Z) — Ti k| < O(1/v/my)vV/nl[Vie|2
< O/ (Vmy Vo)) Vil =
< vn/(mido) Vel g

Lemma 38 (Bounding the rows norm) For every 1 < j < my, we have

W < v/ms/ (vV/mide) ZHVkHHoc

Furthermore, for every k € [mg], we have
IWFI < Vi Aoma Vil . (301

For the ease of notation, because here we want to work with row sub indices of the matrix W,j , We
refer to it by W**. Proof of Lemma
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For a fixed 1 < j < m; we have with high probability over the randomness of the sign
matrix W?*:

m3 ms n
s 0
W =11 Wi = 11> w1/ mn Y Ve 1w Ve > 0}
k=1 k=1

i=1

< V)i, | 31D Veaw (W, > 0}

< M/m\/z (S ml)’

< mg/ymi [n Y |[Vel?
k

< vimsn/(vmixo) [ [ Vil3e.
k

Furthermore, for every k € [mg], we have

W< 1y Y Ve < (Vafv/m) [Vl < (Ve v/ Roma) [ Vil e

Lemma 39 With high probability over the initialization, we have
IWEHIE < (1 £ O(n/(Aov/mn))) Vel Free -
Proof of Lemma

Recall from the definition of W*¥ in Equation (E9):

IWE 15 = 1D VeaZillE = D2 ) ViiVia (Zi, Zi)

i=1 i=11'=1
=2 D VeaVea (HZ5 £ 0(1/Vmy)) S VEH®Vi £ O(([Vilh)?/v/ma)
i=14'=1

= [Villfre £ IVell7r=O(n/(Aoy/mr)) = (1 £ O(n/(Aov/mn))) Vil Fr

B.2.2 SOME LINEAR ALGEBRA

Lemma 40 Forn < s, letry,...,T, be s-dimensional vectors that are approximately normalized
and orthogonal to one another, i.e. given some § > 0, for every 1 < i # j < n:

—5 S <7"Z‘,7"j> S 5, HTZHZ S 1 +5.

Then, for any vector v we have

n

D (0,r)? < (148 +n(n—1)8(1+6)*)|o]*.

i=1
Proof of Lemma &{
Define

n

vy = Z(v,ri>m, Vg =V — V1.

i=1
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First, note that

n n

D (o) < (1+3) Z(v,m>2llm\|2

=1

:(1+6)||Z(v,ri)ri||2—2(1—|—(5) > (oo ) (ri )

1<ij<n

=@+ OulP —20+8) 3 (oo rary).

1<i#j<n

Next, we write

I
Fj
=
.
s
S~
[\v]
I
Pj
=
5
S
~— L
[\v]
I
O
tﬂ
=
5
3
<=
=
=
-
N
=
3
3
.
.
o

i 4 i#£]
=-2 Z(vmﬁ(v,rj)(ri,rj).
i£]
Therefore
D ) <40 ([0l + [lv = o) =200 48) D (v,ma) (v, 7 (ri,my).
i=1 1<i#j<n

<@+ 8)(Jorl* + o — v1]|* 4 2(v1, 0 — v1))
+ 2(1 + 5) Z <Ua Ti><’U, 7‘1'><7‘7;, lrj>

1<i#j<n
S@+O)IP+200408) D> olPlrilllirlis
1<i#j<n
<@A+)IF+201+0) Y follP1+0)d
1<i#j<n

= (1 +8)[[v]* +n(n - 1)8(1 +8)*[[v]|?
= (L+0+n(n—1)5(1+8)*)]vlf?,
which completes the proof.

In the following lemma, we state a trivial bound on the norm of z; based on (3.

B.2.3 BOUND ON THE NORM OF Z;’S

Lemma 41 For every i € [n], we have

Izl <, D IVellfe = V.

k

Proof of Lemma A1

By definition:
ms

z = (Hloovk> k=1

Now consider the Cholskey factorization H>* = K K. Because of the assumption ||z;|| = 1, we
know that the diagonal of H° is all 1/2. Hence, for the ith row of K we have || K;|| = 1/2. Now
by Cauchy-Swartz, we have

22 = (O ViaK, i) < S ViK1, |12 = 1720 Vi e

Summing over ¢ and noting Equation (E4) completes the proof.
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Lemma 42 In the context of Lemma L0, for (3 < 2nB?, one can substitute f* by f; such that

_ 2

N B
Rl ) < 2Ra(f) + —,
f*TA—lf* S f*TA_lf*,
and furthermore, f* is in the subspace of eigenvectors of A with eigenvaue larger than Q(#)

Proof of Lemma B2

For an arbitrary ¢ € [n], define
o=1f; = £,

and suppose the slope of £(.,y;) at point f is equal to ¢. Then, using the convexity, the fact that
£(yi,y;) = 0, and the 1-smoothness of £(., y;), it is not hard to see the following poincare inequality
between the value and derivative of £(., y;) at point f;:

e < \J20(fr, y;) = 2¢. (302)

where from now on, for brevity, we refer to ¢(f,y;) by ¢. Also, from the definition of ¢ and again
using 1 smoothness property, it is easy to see that

CCfFyi) < (c40)8 +L(fF yi) = (c+ )0 + £, (303)

Plugging Equation (B02) into (BO3) and using AM-GM inequality:
OFr y) <62+ c6+0< 6%+ V2U5+ 0
<O+ 6%)2410
< 20+ 36%/2.

Summing above for ¢ € [n], we obtain

Ro(f*) < 2R, (f) + 3] £ — Fl3/2. (304)

Now we write an eigendecomposition for A as A = >""" | A\ju;ul for orthonormal basis {u;}, and
let f* = 3", v;u; be the representation of f* in this basis. Then, from our assumption, for arbitrary
w>0

SNt = pTAT < anp?,
which implies
w7 A7 <4anB?,
i A\ <w
or equivalently

72 < 4nB?w, (305)

i A <w

where notice that ) . A <w 7?2 is the squared norm of the projection of f* onto the directions whose

eigenvalue is at most w. Now taking w = 13-z and defining f* by keeping only the directions for
which A; > w completes the proof.
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B.3 COUPLING FOR Vyy, Vy

In general, because the gaussian smoothing matrices (/W*, V) can become unbounded, the gradi-
ent estimates (Viy, V') = Vi v l(fwrwe vrsve(2i),yi) also become unbounded. However, in
analyzing the stochastic behavior of SGD and showing that it can escape saddle points, it is conve-
nient to assume the gradient’s noise vector is almost surely bounded. The goal of this section is to
introduce a coupling between (W*, V?) and another random variable that is a.s. bounded polynomi-
ally in other parameters. As that the coupled random variables take different values is exponentially
small while the number of iterations in our algorithm is only polynomially large, without any con-
cern we instead work with this new random varaible, and with an overload of notation we also denote
itby (WP, VP).

Lemma 43 For an arbitrary parameter x >> 1, On any pair for (W', V') with |W'|| < Ci,
V|| < Cs, there exist a mean zero random vector A with respect to the randomness of the uniformly
picked data point (x;,y;) and the smoothing matrices W*1, Wr:2, VPl and VP2 which define
@W',V/ (meaning it is a function of those variables), such that with probability at least
1= 2exp{—(x* = 1)dm, /4} — 2exp{—(x* — 1)mgma/4} =1 - 41,
we have
Vwr v = Vo LIV, V') + A, (306)

and finally A is a.s. polynomially bounded, i.e. almost surely we have

A < poly(mq, ma,ms3,Cy, Ca, B, X).

Proof of Lemma B3

Remember that 2 was the output of the first layer (by considering the smoothing matrix
Wr). Now with high probability over the initialization,

INw fwrewe viqve (@i)lle = [V fwswe vigve (2 TW’H
D(z!
Hvz/lfW/+Wp,V’+Vp(xl)”H dg/l/l/) H

1 1 X

| a" Dy (VO + V! + VP diag(Wi) Dwrswe,z,07 ||
Vi, VY Vimy g R

1 . s
< (VO 1V o+ V7 (e D g () Duwe o, )

Lok
1 , .

< (/s + Co o [VO110) (i 3 Idiag (W) Do o )

Lok
< (kay/mams + Cy + ||Vp||F). (307)

On the other hand, using the final bound in Lemma B3:

1 .
Vv fwrswe vrpve (@i)llr = || T diag(a) Dy yvez" ||r < ||
2
< kivms + Cp +Vm ZLW%\
S KR 3 1 3 - \/ﬁl j v

S Hlmg + Cl + \/’I’TL?)HWFJHF (308)

Denoting é(fW/+Wp,17V,+Vp,1,yi)VW/yvzE(fW/+Wp,27V/+Vp,z (zi),y:) by @W@w, then combin-
ing Equations (B0Z) and (BOX) and using the 1 gradient lipschitzness property of the square loss,

IVw v lle
dl(f,y;
| LELD | 19 s (@O + [Ty furrswnsyrsvn (@) [

df

< (|fW’+W”1,V/+VP1 (IZ)‘ + |B|> (I{l\/Eg + Cl + \/E3||WP’QHF “+ Koy/Mmoms + 02 + ||Vp’2||p>.
(309)
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Finally, applying Cauchy-Swartz to the second a.s. bound in Lemma B4 we have:

fW’+WP,v'+VP(£Ui)
< (wav/iy + (V211 ) (Viltgss + Cr 4 VA IW7]) + Ca(Ch + /s W),

Combining this with (B0Y):

Vw v lr
SP+MW%+WNmb%m+a+ﬁﬁwmmﬂma+ﬁﬂwmw
x (Wi + C1 + Vg [WP2| p + ki + C + [V ).

Therefore, using the lipschitz bound in Theorem B:

IVwr v = Vwr v By gzl iy v (i), 9) | 7
< IVwr v e + 1B yomz Vvl fwrpwe vrpve (@), yi) | 7
< [B+ (kav/ims + [V ) (Vimgra + C1 + s | W) + Co(Ca + yimg W)
X (Klﬁzg +Ci + \/E?)HWP’QHF + Koy/momsz + Cs + HVP’QHF) + (0(0102) + B)\I/l
(310)
Now we define the following events
Ev = {WPle 2 xVdBy Vv WP p > xVdpr},
Ex = {[V*lF =2 xvmsfa V[V |lr = xv/msBa},
where recall we assume y >> 1. Then, as we know the variable |[IW?||2 has mean df? and is

subexponential with parameters (d3; /m1, 3% /m1). Hence, by a union bound and Bernstein (Note
that W1, W*-2 are independent):

P(=1)

<2P(|W?|p > xB1Vd)

= 2B(|W*||% > x283d)

< 4max ((exp{—(* = 1)281d%/(4d3} /m1)}, exp{—(x* — 1)82d/(453 /m1)})

= 4 max (exp{—(x2 — 1)%dmq /4}, 2exp{—(x* — 1)dm1/4}) < 2exp{—(x* — 1)dm, /4}.

Similarly for || V?|| p:
P(Z2) = P(|V*|[r = xB2v/ms) < dexp{—(x* — 1)mzma/4}.

Moreover, because of the subexponential tails of ||[IW?||% and ||V?||%, for each of W1 or Wr2,
Ve or VP2
E(|W?|r| E1) S xVdBi, E(W*|15] E1) S x*dBs.
E([V?[lr| Z2) S xvmsbz, E(IV?|[3] E2) S x*maf3.
Now Defining = = =; U =3 and combining the above equations:
E(IW?I1{Z}) <E[WPI(1{E1} + 1{Z2}) = E([W”|[| E0)P(E1) + E(|W?|)P(Z2)
S xVdpi2exp{—(x* — 1)dmy /4} + VdBi2 exp{—(x* — 1)mgma/4}
= 2Vdp1 (x exp{~(x* = 1)dm1/4} + exp{~(x* = Dmama/4}),
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and
E[[WPP1{Z1} = E(|W*[*] E1)P(Z1)
< 2dBix? exp{—(x* — 1)dmi /4}.
Similarly
E([VPIII{Z}) < 2vmsBa(exp{—(x* — 1)dmi/4} + x exp{—(x* — 1)mama/4}),
and

E(|VPI*1{Z2}) < 2msBix® exp{~(x* — 1)mama/4}.

Applying these equations to (BIO) with Cauchy-Schwartz to get the upper bounds
EL{Z }|We || |[We2]| < EL{E }|W?||*> and (Ew. [|[W?])? < Ewe||W?||? (for terms with only
one W#:* or VP we simply write them as W* and V*):

EwevelVw v = Vi viBy yomz iy v (@), y:) |l F1{E}
< Ewo vo e | B+ (rav/ms + [V ) (Vi + Cy+ yimg[WP] ) + Co(Cr + Vimg [W7))|
x (k1v/my + C1 + Vg |[W g + ka/imams + Ca + V]| + a(O(C1C2) + B) ¥,
[BJF (kav/msg) (fsﬁl+cl)+clc2}
x (w1 + Oy -+ g/ + Ca + VimgBuw L{EY W+ Bvo LYV )
(

+ (B + (Vimk1 + CL )V + (kams + Cav/mig) + Vi (k13/ms + C1 + ka\/mamms + 02))
X (Ewe H{EH WP FEv [[VP|lp + Ewe [|[W? || pEve 1{E2}|V?|| )

+ (B + vmgk1 + C1) (B 1{E2} V[ + P(E1)E[[V?]?)

+ Coms (Bw» 1{E1 }|W?||* + P(Z2)E[|W*|1?)

+ma(Bwe {ELHWPPEvo VP + Ewo [WP*Eys 1{E2} V7))

+ Vg By {E VP PEwe [WP| + Evo [V *Ewe 1{E1 W)

1+ (0(C1Cs) + B)U,B(Z)

< (exp{—(x? — 1)dm1/4} + x exp{—(x® — 1)mgms/4})poly(m1, ma, ms3) = negligible. a1
But note that
Vv = Ve + Vv (@ [W 4 oo [V]]2),
Vv LW V') = Vi v B,y mz iy v (20),5i) + Vv (W2 + 4o [V]]?).
Applying this to Equation (BI1l), we get that if we define
A= Vv = Vv LW V),

then

E[[AL{E}]| < (exp{—(x* — 1)dmi/4} + x exp{—(x* — Lymgma/4})poly(m1, ma, ms).
On the other hand, note that using again Equation (BIl), we have the following a.s. bound:
||A]]‘{EC}|| = pOIY(mla ma,ms, 017 027 X)

Defining
A = AT{E"},
Ay = I{E}E(A[Z),
A=A+ Ao,
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we get that with probability at least 1 — P(Z):
Vw: v =V v LIV, V') + A
and also note that
EA = EA = 0.
Finally by the a.s. bound for A, we have a.s.:
Al < Ewe,ve,o,pn IAL{EH + AL{Z}|

< (exp{—(x* — 1)dmy /4} + x exp{—(x* — 1)magma/4})poly(m1,mz, m3) + poly(mi, ma, ms)
= poly(m1, ma, ms,C1,Ca, B, X),

which completes the proof.

Corollary 9.1 It is easy to check that running PSGD with unbiased gradient estimate Vi v
is eqmvalent to running SGD after our change of coordinates, with unbiased gradient estimate
Vo o = TVW/ v+, where Y is the matrix for our change of coordinate, which is equal to Y
defined in Appendtx BA10 for the coordinates in V' and simply identity for the coordinates in W'.
Therefore, projecting both sides in Equation (BI2) of Lemma B3 onto &+ by multiplying X implies
that with high probability for all iterations of the algorithm

ﬁw’,v’ = TVW’,V’LH(le V/) + TA

= Vo LM (W', 0') + TA, (312)
where £ = YA (using the properties of A in Lemma B3) is a mean zero noise vector with almost

surely bounded norm, i.e. ||£] < Q' for some Q' = poly(my,ms, m3, C1,Cs). (we dropped the x
parameters by considering constant high probability argument).

Finally, note that injecting noise (Z1/(|Z1]|, E2/(v/m1||Z2|)) by PSGD results in adding an extra
zero mean noise (21,Z2) = (YZ1/||Z1], Y=2/(y/m1||Z2l])) to the gradient ¥V, LY (w',v").
Therefore, overall running SGD on L™ (which is equivalent to PSGD on L) observe an unbiased

noise vector deﬁned as £ = £ + (él, ég). Now it is easy to check that the moment matrix of =
and =5 are 04?1 and o1 for

1
oh? = (313)
1 %d
oy = malma =) (314)
my's,

which implies the moment matrix of £ is upper bounded by
031 == (Q'/(mams3 + m1d) + max{o}? 5°})I,

and lower bounded by
o321 = min{o}? 42},

ie.
U%IEffT < 0'21

(Note that we look at the new coordinates (w',v') as a vectors, so the term E£ £ makes sense.)

|22l < 1 almost surely, which implies the following almost surely

£l < Q=Q +1+1/v/my.

bound for £:
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Lemma 44 Let g(x) be a second order differentiable function over RY such that at point x, there
exist a random direction y and deterministic direction z and fixed positive real r with:

Ey =0,
Eyg(z +nz +/ny) < g(x) —nr.

Then, for the gradient and Hessian at point x, we have either
r
V@) =
42|

or

i (V2900)) < =3

Proof of Lemma @4

We write the second order tailor approximation of g around x:
1
9@ +w) = g(x) + Vg(@) w + Sw Vig(z)w + o([[w]]*).

Now substituting w with nz + /7y and taking expectation with respect to y, as we send  — 0 and
using the fact that Ey = 0:

Eyg(x +nz +/my) = g(x) + B, Vg(x)" (nz + y) + %(nz + Vi) V() (nz + igy) + olllnz + viyll?)

1 1
=Eyg(z) + nVg(z)" 2 + §n2zTV29($)Z + ninVQQ(:E)y + o(nllyll*)

1
=Eyg(z) + nVg(@)" 2 + 05y V2g(x)y + o(n).

Combining the assumption with the above Equation, we get that for small enough 7, we have

nVg(e)"z + n%EnyWQ(x)y < —nr/2,
ie.
V(z)"z + %EnyVQQ(w)y < —r/2,
which means we should either have
Vy(x)'z < —r/4,
which implies .
IVg(z)| = e

or
E,y" Vig(z)y < —r/2,

which implies
r

2 MaXgesupport(y) ||g||2 .

Amin (Vzg(m)) <
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B.4 HANDLING THE INJECTED NOISE BY PSGD

In this section, we prove that having SGD injecting noise into our gradient estimates mostly does not
change the sign pattern of the first layer, namely among the set of rows in P defined in Lemma [I.

Lemma 45 Having enough overparameterization, with high probability, at every iteration of the
PSGD for W' 2) defined in Lemma [, we have for every j € [my]:

2
WP < 2/ (4v/my).
Proof of Lemma A3

Let &’ be the subspace of the first layer weight matrices which is zero in rows j € P (P is
defined in Lemma ), while in other rows it is the span of Z!’s, i.e. using our notation Z

introduced in the proof of Lemma [, we can write ®' is span(ZF); .

Recall from Lemma [ that we decompose the first layer weight W’ as W' + W' namely
the parts in the subspace ®' and subspace ®'* respectively. Moreover, let E1/(Vmy||E1) =
21 4+ =3 be the decomposition of the injected noise at some iteration of PSGD into subspaces &’
and @' respectively.

Now recall that the current W' is the value of the previous iteration moved by the gradient plus the
injected noise:

W =W —n(Vw: + 20 +2)
:W/777(@{/[//+27/11W/7’(1)+2¢1W’7’(2)+E(1)+E(2)),

where W is the weight of the previous iteration and W’ 7’(1), W@ are again its decomposition to
@’ and &'+, where @W/y/ is defined in Lemma B3. Applying Lemma 4 for the previous iteration
of the algorithm, we get Vi € & since the bad events E defined in Lemma B3 occurs only with
probability exponentially small (hence union bound across all the iterations rules it out). Hence, the
decomposition for the current iteration becomes

W' =w W (T 2w L 20, (315)

W' = (1= 2w 1 E®, (316)

We handle the W'") part in Lemma I and prove that as long as W' D)2 < ||[W)|? remains
bounded by C?%, then the sign pattern of the first layer, when only considering the W’ 1) part, is
specified by the initialization except within set P; here we handle the W’ @ part as well.

Note that for every row j €  [my], the variable H(El/(w/m1||51”)>,”2 is
J

(O(1/(mid)),O0(1/(m3d)))-subexponential with mean 1/m;. Therefore, with probability

that is exponentially small in m, | (51 /(/mT||E \|)) || is bounded by O(1/m ). It is not hard to
J

see the same argument holds for the projection of Z; /(,/m1||Z1]|) onto &, i.e. Z(2). Applying a

union bound for all iterations, again using the fact that we run PSGD for poly iterations while the

chance of error is exponentially small in m1, we can then argue that with high probability over the
noise of gradients, at every iteration and for every j € [m;]:

IZ51 = O(1/my). (317)
But applying trinagle inequality to Equation (BIf) and writing it in a telescope form, particularly

for the jth row, and further using the assumption in BT, we get that ||W’ 52) | grows at most to

O(1/(mn)); as we set 1/¢1 = O(poly(n)), assuming polynomially large enough m4 concludes
the claim.
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B.4.1 BOUNDING THE NORM OF THE FIRST LAYER’S OUTPUT IN THE WORST CASE

Lemma 46 Suppose W' satisfies the assumption of Lemma B, i.e. [|[W'| < Ci, and |W]|| <
ca/(2+/my) except possible for indices in P, also defined in . Then, with high probability over
initialization
/ 2 2 2 Jm Cf/Q n’ms 1/4
sup ||¢'(z)]| < (1 + O(m3d=log(m1)?/m1))Cy1 + vVm —_— ,
il 16" (@)l < ( (m3 (m1)”/ma)) 3k (m1>\o)

which is O(Ch) for large enough overparameterization.

Proof of Lemma A6

Note the because the VC-dimension of the class of binary functions with respect to halfs-
paces in R? is d 4 1, the number of different sign patterns DWm’x for different x can be at most
m{™!. Now similar to Equation (BIB), for k € [m3] define
Zu(z) = 1/ /mr (W,fj]l{Wj(O)Tx}x) ' (318)
: =1
Then, for k1 # ko, as ||z|| = 1:

1 s .
(Zk, (%), Zk,(2)) = e Z thjkaﬂ{Wj(O)Tx}
=1

1 S S S

< — sup g Dy ) 25.iWiy,iWis. -
mi =z =

But for each fixed Dyy (o) ., using Hoeffding bound, we have with probability 1 — 4:

1 o . . log(1/9)
Jm, Do) i Wity jWis s S| ———
j=1

my
Applying the above for all possible sign patterns with § < O(1/m%*!) and a union bound, we have
with high probability

1 L
sup (Zg, (v), Zk,(2)) < — supZDw<o>,xj,jW;§1,jW;§2,j S dlog(my)//ma.
j=1

z,||z||=1 mi =z

We can even state the following stronger bound with respect to two adversarially picked vectors
z, 1’
1 -
" Su”p H (Zr, (), Zgy (2")) < mflSupZDw<0>,zj.,ij<0>,x/j,szi,jWsz,j < dlog(my)//ma,
z||=1,||z'||=1 x
s 7j=1

(319)

because each Dy (o) 4, has at most m{ T cases as we discussed above, then Dy (o) i Pw© 24,5

has at most mf“ possible cases, and applying a similar Hoeffding bound for each of them and a

union bound as we did will imply (BI9). We will use this generalized version in another section.

Now combining Equation (B19) with the fact that ||I¥’|| < C; and applying Lemma BQ:

sup Z(W’,Zk(x»Q < (1 + O(m3d?log(mq)?/m4))C?. (320)
Tvler:l k=1

On the other hand, setting ms = my, ms = d, and R = ¢3/(2y/m, k1) in Lemma DY, we get with
high probability

#(5 € fml: 1V,Vu] < cof2ym)) < maca/(2y/imn) = vimea/ (k).
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Noting that ||[W|| < ca/(2y/m,) for j ¢ P, we conclude that with high probability, for any =,
H{(W® + w7z > 0} and ]l{Wj(O)Tx > 0} can be different in at most /myca/(2k1) of the 5’s
outside of [m4] \ P. Therefore, as we have also |P| < neav/m, /K1 from Lemma [, we conclude

that with high probability, for any z, there are at most O(ncz+/m, /£1) sign changes by adding W’
to W (9. This further implies:

|65 (z) = (W, Zy(2))] < 2/v/my > Wizl

j: Sen(W VT 2)#Sgn((W (@ + W) Tz)

< 12| 1 S2nW072) £ Sen(W )+ W T |y

S Cry/ neav/my [K1/v/my

B cy 2 ndmg 1
\/El mi )\0
Combining this with (B20), we conclude with high probability:

/4

)

03/2 nd3m
/ < 1—|—Om2d210 my)?/my))C + Mg ——— Z BN/
sup |[@' ()| S Vi
oo 1” ()” ( ( 3 g( 1)/ 1)) 1 3\/E1( 1)\())

which completes the proof.

You may include other additional sections here.
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