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Figure 1: Examples of VidTAB.
In this appendix, we provide more details of VideoEval from the following aspects:1

• Details of our benchmark are in § 1.2

• Details of training and evaluation, can be found in § 2.3

• Ethics etatement of the datasets are in § 34

• Limitations and potential negative societal impacts are in § 45

1 Details of Benchmark6

Examples of VidTAB As shown in Figure 1, we present some examples of tasks in VidTAB.7

Details of VidTAB The detals of task construction are presented in Table 1. For each category8

in one task, we sample 4, 16, and 100 samples, respectively. Given the limited volume of medical9

surgery data, we only sample 4 samples from each category for few-shot evaluation. To mitigate the10

impact of randomness, we sampled two sets of data for four tasks and obtained the benchmark results.11

We found that the randomness of sampling had negligible effects on the final rankings of VFMs in12

the benchmark.13

2 Details of Training and Evaluation14

Checkpoints of Evaluation Models We provide checkpoints of the models we evaluate for repro-15

ducibility of our results.16

1



Table 1: Task details of VidTAB. All videos are collected from the public datasets for building tasks
of VidTAB.

Task Source Num. test sample Details of Task Construction
Action Recognition ARID [1] 2011 We directly employ the original classification task definition. Specifically, 11 categories.
Action Recognition BreakFast [2] 822 We directly employ the original classification task definition. Specifically, 12 categories.

Medical Surgery SurgicalActions160 [3] 96 We directly employ the original classification task definition. Specifically, 16 categories.

Animal Behavior Animal Kingdom [4] 2268 Since the annotations in this dataset included multiple labels, we filtered out all categories with only single labels and then
selected categories with more than 150 samples. This resulted in a final set of 12 categories.

Fake Face FaceForensics++ [5] 1800
We used the original 1000 videos as positive samples. Then, we divided the original videos into five parts and used the Deepfakes,
Face2Face, FaceShifter, FaceSwap, and NeuralTextures methods to generate 1000 negative samples by face-swapping. We then
selected 1800 of these samples as the test set and the remaining as the training set.

Harmful Content mob [6] 1661
We categorized videos into three classes based on their content: those containing fast repetitive movements and violence activities,
those containing unpleasant appearances and obscene scenes, and those containing no malicious information at all. This resulted in a
three-class classification task.

Quality Assess DOVER [7] 724 To convert the task into a classification problem, we sorted the "overall score" label and divided the videos into positive and negative
samples, with the top and bottom 40% constituting the respective categories.

Emotion Analysis CAER [8] 3953 We directly employ the original classification task definition. Specifically, 7 categories.

• CLIP [9]: https://huggingface.co/openai/clip-vit-large-patch1417

• EVA-CLIP [9]: https://huggingface.co/QuanSun/EVA-CLIP18

• ViCLIP [10]: https://github.com/OpenGVLab/InternVideo/tree/main/Data/19

InternVid20

• InternVideo2 [11]: https://huggingface.co/collections/OpenGVLab/21

internvideo2-6618ccb574bd2f91410df5cd22

• SigLiP [12]: https://huggingface.co/google/siglip-so400m-patch14-38423

• DINOv2 [13]: https://huggingface.co/facebook/dinov2-giant24

• VideoMAE [14]: https://github.com/MCG-NJU/VideoMAE/blob/main/MODEL_ZOO.25

md26

• VideoMAEv2 [15]: https://github.com/OpenGVLab/VideoMAEv2/blob/master/27

docs/MODEL_ZOO.md28

• UMT [16]: https://github.com/OpenGVLab/unmasked_teacher29

• V-JEPA [17]: https://github.com/facebookresearch/jepa30

Trainging strategies Specific hyperparameter configurations are available in the configs provided31

in our code repository. In essence, we train all models for 25 epochs using a similar training strategy,32

employing the Adam optimizer, a learning rate of 5e-5, and only utilizing RandomResizedCrop for33

data augmentation. And we use a single clip to obtain the final evaluation performance.34

Total amount of compute and the type of resources used Leveraging the low cost of our35

evaluation protocol, we conducted each experiment involving a single VFM and a single task on one36

A100-80G GPU. We performed approximately 300 such experiments, each taking around 1-2 hours,37

resulting in a total of around 400 GPU hours.38

3 Ethics Statement39

license of the datasets The dataset we are using is collected from publicly accessible sources,40

all licensed under Creative Commons (CC-BY) or other open-source licenses. We have diligently41

followed all legal requirements to integrate this data into our research, emphasizing the importance of42

transparency in data licensing for proper attribution and appropriate use. Although we have taken43

steps to ensure the inclusion of suitable content, we recognize that some problematic content may44

still exist. If you encounter any such content, please notify us immediately so we can take corrective45

action to maintain a dataset free from inappropriate material. We are dedicated to maintaining a46

high-quality, ethically responsible dataset and pledge to uphold principles of privacy and transparency47

in all our work.48

Privacy or safety concerns in video For personally identifiable information or offensive content in49

video, our data collection sources have been carefully considered, and we believe these issues are not50

present. However, if you discover any oversights, please do not hesitate to contact us promptly.51
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Table 2: Evaluating state-of-the-art VFMs on the VidTAB with Full Finetuning. The best and
second-best results of foundation models are noted by blue and underline, respectively. We present
the results in the form of ’4s/16s/100s,’ representing the outcomes of 4-shot, 16-shot, and 100-shot
experiments.
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Random 22.7 9.1 10.0 6.2 8.3 33.3 50.0 50.0 14.3
Video Foundation Model
ViCLIP-L-10M [10] 37.9 22.6/18.9/29.5 16.4/24.8/45.7 30.2 26.3/29.7/41.5 35.1/38.2/54.2 51.2/50.8/53.7 56.9/65.9/72.5 20.3/17.2/32.7
ViCLIP-L-200M [10] 38.3 21.1/20.5/37.2 13.6/21.2/53.0 30.2 25.1/30.6/43.6 36.6/40.2/46.8 50.4/51.5/53.7 57.2/67.7/71.6 19.8/19.7/32.2
VideoMAEv1-H [14] 34.0 12.8/13.5/72.1 9.6/10.0/36.7 39.6 18.5/22.0/47.8 32.5/33.1/37.2 50.3/50.3/50.7 44.2/50.8/66.6 15.2/14.3/19.0
VideoMAEv2-g [15] 34.0 13.1/13.4/76.1 31.4/12.3/34.3 18.8 12.2/18.7/50.8 29.4/30.2/41.5 50.8/50.6/50.6 52.0/55.3/62.2 12.7/14.2/17.4
VideoMAEv2-gk710pt [15] 48.6 30.4/77.3/ 94.0 31.2/52.9/89.0 57.3 12.6/32.0/64.5 33.1/39.4/41.8 49.8/50.4/54.7 54.3/59.8/71.4 16.6/17.2/39.3
V-JEPA-L [17] 49.2 43.2/78.8/88.5 25.2/52.0/86.0 46.9 26.6/37.1/59.9 38.5/36.0/46.4 50.2/50.8/55.9 54.3/68.0/76.9 15.0/17.9/27.4
V-JEPA-H [17] 52.5 45.2/ 80.7 /90.8 24.7/48.5/87.1 46.9 26.7/38.1/60.6 40.4/41.7/ 58.5 50.4/51.2/68.2 59.8/ 71.3 / 79.3 20.9/20.4/43.4
InternVideo2-1Bstage1 [11] 52.1 20.3/56.0/80.6 27.7/70.0/92.5 66.7 27.2/38.2/58.8 41.5/36.0/50.0 52.6/52.4/75.0 60.9 /69.0/77.8 16.1/31.8/45.4
InternVideo2-1Bk710pt

stage1 [11] 59.4 59.5 /79.9/88.9 60.8 / 82.6 / 95.6 71.9 31.7/46.4/ 68.0 44.0/37.7/50.1 53.3 / 53.9 / 83.2 59.4/65.4/77.9 22.9/28.0/ 45.8
InternVideo2-1Bstage2 [11] 59.0 55.1/75.6/89.3 55.4/77.7/93.7 60.4 33.3 / 51.0 /67.7 54.2 / 42.2 /55.1 50.9/53.4/76.9 58.5/67.0/77.4 23.9 / 34.6 /44.1

4 Limtiations and Societal Impacts52

Limitations Firstly, due to the limitations of diversity and accuracy in our video sources and53

annotations, which were gathered from public resources, we plan to further enrich the task in the54

future by incorporating manual annotations and self-collected data. Secondly, considering the55

evaluation cost and simplicity, we currently only evaluate tasks like classification and retrieval, which56

primarily rely on VFMs’ global information extraction capabilities. We have not yet considered tasks57

like spatio-temporal action detection and temporal grounding, which assess other aspects of VFMs’58

capabilities. We will expand the scope of evaluation in the future.59

Potential negative societal impacts While our evaluation includes tasks like synthetic video60

recognition and harmful information recognition, these serve only as indicators of the model’s overall61

performance in this area and cannot be used to accurately evaluate the actual performance of a specific62

task. If researchers or engineers in society attempt to use VFMs to perform these specific tasks,63

our benchmark can serve as a reference for their choice of VFMs, but it cannot be used as the final64

standard for evaluating that task. Otherwise, it may have negative impacts on the corresponding65

real-world applications.66
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Table 3: Evaluating state-of-the-art FMs on the VidTAB with Attentive Probe. The best and
second-best results of foundation models are noted by blue and underline, respectively. We present
the results in the form of ’4s/16s/100s,’ representing the outcomes of 4-shot, 16-shot, and 100-shot
experiments.
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Random 22.7 9.1 10.0 6.2 8.3 33.3 50.0 50.0 14.3
Image Foundation Model
CLIP-L [9] 44.3 20.5/21.6/53.5 15.1/21.8/76.6 32.3 29.5/36.3/46.4 49.5/48.1/65.1 52.8/57.1/64.6 60.2/69.4/70.3 21.8/22.8/38.2
SigLiP-SO [12] 43.9 20.1/23.7/39.0 16.8/27.5/71.0 36.5 25.0/35.0/47.4 49.8/48.1/62.1 54.8/57.2/63.4 58.8/68.9/75.7 21.7/23.4/40.5
EVA-g [18] 46.9 26.8/33.5/60.3 22.1/36.7/82.5 34.4 31.9/39.9/51.3 49.6/45.5/60.4 51.6/55.1/58.8 60.4/69.3/74.6 23.2/24.2/39.7
DINOv2-L [13] 42.9 26.2/37.3/58.9 17.0/37.1/80.8 39.6 26.5/36.3/45.4 37.1/31.6/48.0 51.0/52.0/53.6 54.7/64.5/70.3 21.8/22.5/32.4
DINOv2-g [13] 44.5 23.7/33.7/56.1 17.7/38.4/83.2 42.7 26.6/36.1/45.4 40.9/44.2/60.3 51.8/51.8/55.9 54.5/65.5/72.8 21.8/22.7/34.4
Image Foundation Model with image-to-video adaptation method
ST-Adapter-CLIP-L [19] 47.9 21.2/37.3/68.6 17.4/35.1/80.5 31.2 30.1/39.6/50.7 48.0/42.9/51.4 53.3/59.6/80.8 62.4/71.9/80.1 20.3/22.1/48.7
AIM-CLIP-L [20] 49.7 22.4/39.3/62.8 21.2/47.5/81.3 38.5 29.7/39.1/51.7 44.3/38.9/55.9 57.4 / 67.2 / 83.8 64.9 / 73.0 / 83.2 21.8/24.7/45.2
ZeroI2V-CLIP-L [21] 47.6 22.2/37.8/61.0 21.2/40.6/79.1 31.2 31.0/39.4/50.1 40.9/37.9/59.5 55.5/57.7/82.3 58.8/70.4/80.4 20.1/22.6/ 48.7
Video Foundation Model
ViCLIP-L-10M [10] 42.8 22.4/25.2/46.1 19.6/35.3/73.2 30.2 26.3/34.4/45.2 38.0/46.9/58.8 51.6/53.4/56.8 59.5/68.0/71.0 21.2/22.4/37.1
ViCLIP-L-200M [10] 44.5 25.9/32.4/56.2 21.1/38.0/74.7 30.2 28.2/37.0/48.6 45.8/44.6/51.8 52.5/53.6/58.7 56.4/70.2/71.1 21.0/23.2/38.2
VideoMAEv1-L [14] 44.4 19.0/35.1/82.6 12.8/14.6/65.1 31.2 25.6/31.1/55.4 62.1/49.6/57.9 50.5/51.1/54.2 57.9/70.3/77.9 18.9/16.7/36.5
VideoMAEv1-H [14] 45.6 17.7/35.4/83.4 11.8/15.7/65.6 35.4 24.8/32.8/58.2 56.0/45.6/ 65.9 50.4/51.3/53.6 62.6/70.4/78.4 26.1 /26.4/34.8
VideoMAEv2-g [15] 39.6 15.9/19.6/70.0 14.2/14.0/26.8 18.8 25.2/26.1/49.7 63.1/52.9/62.7 50.9/50.5/51.2 56.5/62.6/74.9 16.7/21.9/26.2
VideoMAEv2-gk710pt [15] 54.4 63.4/76.9/ 88.8 59.5/75.3/83.0 50.0 26.5/41.3/59.3 41.0/41.4/49.1 52.9/55.2/62.6 52.3/65.3/72.1 21.4/23.1/36.6
UMT-Lstage1 [16] 41.6 25.5/21.8/55.5 14.8/22.4/68.9 30.0 24.9/32.8/44.8 42.4/41.4/53.0 51.1/52.9/56.9 59.3/66.3/68.5 24.2/20.0/36.9
UMT-Lstage2 [16] 45.9 25.2/26.6/50.8 23.6/35.2/72.8 22.9 29.6/35.4/53.3 66.6 / 61.8 /63.3 50.6/51.4/56.9 58.9/68.5/74.4 25.0/20.5/36.6
V-JEPA-L [17] 43.8 26.8/46.7/77.8 18.1/27.5/57.4 39.6 28.0/36.0/55.2 37.1/41.3/53.2 50.9/50.9/53.4 55.2/67.6/77.2 18.5/17.8/27.8
V-JEPA-H [17] 46.0 28.1/47.5/85.7 17.2/26.9/68.6 35.4 27.6/36.6/57.0 40.4/42.0/59.6 51.3/52.5/55.3 58.0/68.4/77.9 22.1/20.3/32.9
InternVideo2-1Bstage1 [11] 47.2 27.4/38.5/69.7 22.2/42.5/86.1 33.3 28.5/36.3/51.3 44.7/48.2/64.1 50.8/53.0/56.8 57.6/67.1/73.1 23.0/24.0/40.9
InternVideo2-1Bk710pt

stage1 [11] 57.0 66.4 / 77.9 /82.4 65.3 / 77.5 / 89.8 53.1 31.3/44.1/60.7 43.9/42.4/55.4 51.9/54.7/59.9 57.1/66.5/75.0 23.3/ 33.3 /43.0
InternVideo2-1Bstage2 [11] 54.9 54.4/66.6/76.9 56.0/71.7/85.6 38.5 37.2 / 50.4 / 62.5 51.0/46.2/63.6 51.6/54.4/58.2 53.9/65.8/73.2 21.8/29.3/39.9
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