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ABSTRACT

Learned classifiers should often possess certain invariance properties meant to en-
courage fairness, robustness, or out-of-distribution generalization. However, mul-
tiple recent works empirically demonstrate that common invariance-inducing reg-
ularizers are ineffective in the over-parameterized regime, in which classifiers per-
fectly fit (i.e. interpolate) the training data. This suggests that the phenomenon of
“benign overfitting,” in which models generalize well despite interpolating, might
not favorably extend to settings in which robustness or fairness are desirable.
In this work, we provide a theoretical justification for these observations. We
prove that—even in the simplest of settings—any interpolating learning rule (with
an arbitrarily small margin) will not satisfy these invariance properties. We then
propose and analyze an algorithm that—in the same setting—successfully learns a
non-interpolating classifier that is provably invariant. We validate our theoretical
observations on simulated data and the Waterbirds dataset.

1 INTRODUCTION

Modern machine learning applications often call for models which are not only accurate, but which
are also robust to distribution shifts or satisfy fairness constraints. For example, we might wish to
avoid using hospital-specific traces in X-ray images (DeGrave et al., 2021; Zech et al., 2018), as
they rely on spurious correlations that will not generalize to a new hospital, or we might seek “Equal
Opportunity” models attaining similar error rates across protected demographic groups, e.g., in the
context of loan applications (Byanjankar et al., 2015; Hardt et al., 2016). A developing paradigm for
fulfilling such requirements is learning models that satisfy some notion of invariance (Peters et al.,
2016; 2017) across environments or sub-populations. For example, in the X-ray case, spurious
correlations can be formalized as relationships between a feature and a label which vary across
hospitals (Zech et al., 2018). Equal Opportunity (Hardt et al., 2016) can be expressed as a statistical
constraint on the outputs of the model, where the false negative rate is invariant to membership in
a protected group. Many techniques for learning invariant models have been proposed including
penalties that encourage invariance (Arjovsky et al., 2019; Krueger et al., 2021; Veitch et al., 2021;
Wald et al., 2021; Puli et al., 2021; Makar et al., 2022; Rame et al., 2022; Kaur et al., 2022), data
re-weighting (Sagawa et al., 2020a; Wang et al., 2021; Idrissi et al., 2022), causal graph analysis
(Subbaswamy et al., 2019; 2022), and more (Ahuja et al., 2020).

While the invariance paradigm holds promise for delivering robust and fair models, many current
invariance-inducing methods often fail to improve over naive approaches. This is especially notice-
able when these methods are used with overparameterized deep models capable of interpolating,
i.e., perfectly fitting the training data (Gulrajani & Lopez-Paz, 2021; Dranker et al., 2021; Guo
et al., 2022; Zhou et al., 2022; Menon et al., 2021; Veldanda et al., 2022; Cherepanova et al., 2021).
Existing theory explains why overparameterization hurts invariance for standard interpolating learn-
ing rules, such as empirical risk minimization and max-margin classification (Sagawa et al., 2020b;
Nagarajan et al., 2021; D’Amour et al., 2022), and also why reweighting and some types of dis-
tributionally robust optimization face challenges when used with overparameterized models (Byrd
& Lipton, 2019; Sagawa et al., 2020a). In contrast, training overparameterized models to inter-
polate the training data typically results in good in-distribution generalization, and such “benign
overfitting” (Kini et al., 2021; Wang et al., 2021) is considered a key characteristic of modern deep
learning (Cao et al., 2021; Wang & Thrampoulidis, 2021; Shamir, 2022). Consequently, a num-
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ber of works attempt to extend benign overfitting to robust or fair generalization by designing new
interpolating learning rules (Cao et al., 2019; Kini et al., 2021; Wang et al., 2021; Lu et al., 2022).

In this paper, we demonstrate that such attempts face a fundamental obstacle, because all interpo-
lating learning rules (and not just maximum-margin classifiers) fail to produce invariant models in
certain high-dimensional settings where invariant learning (without interpolation) is possible. This
does not occur because there are no invariant models that separate the data, but because interpolating
learning rules cannot find them. In other words, beyond identically-distributed test sets, overfitting
is no longer benign. More concretely, we consider linear classification in a basic overparameterized
Gaussian mixture model with invariant “core” features as well as environment-dependent “spuri-
ous” features, similar to models used in previous work to gain insight into robustness and invariance
(Schmidt et al., 2018; Rosenfeld et al., 2021; Sagawa et al., 2020b). We show that any learning
rule producing a classifier that separates the data with non-zero margin must necessarily rely on the
spurious features in the data, and therefore cannot be invariant. Moreover, in the same setting we
analyze a simple two-stage algorithm that can find accurate and nearly invariant linear classifiers,
i.e., with almost no dependence on the spurious feature.

Thus, we establish a separation between the level of invariance attained by interpolating and
non-interpolating learning rules. We believe that learning rules which fail in the simple over-
parameterized linear classification setting we consider are not likely to succeed in more compli-
cated, real-world settings. Therefore, our analysis provides useful guidance for future research into
robust and fair machine learning models, as well as theoretical support for the recent success of non-
interpolating robust learning schemes (Rosenfeld et al., 2022; Veldanda et al., 2022; Kirichenko
et al., 2022; Menon et al., 2021; Kumar et al., 2022; Zhang et al., 2022; Idrissi et al., 2022; Chatterji
et al., 2022).

Paper organization. The next section formally states our full result (Theorem 1). In Section 3
we outline the arguments leading to the negative part of Theorem 1, i.e., the failure of interpolating
classifiers to be invariant in our model. In Section 4 we establish the positive part Theorem 1, by
providing and analyzing a non-interpolating algorithm that, in our model, achieves low robust error.
We validate our theoretical findings with simulations and experiments on the Waterbirds dataset in
Section 5, and conclude with a discussion of additional related results and directions for future
research in Section 6.

2 STATEMENT OF MAIN RESULT

2.1 PRELIMINARIES

Data model. Our analysis focuses on learning linear models over covariates x distributed as a
mixture of two Gaussian distributions corresponding to the label y.
Definition 1. An environment is a distribution parameterized by (µc,µs, d, σ, θ) where θ ∈ [−1, 1]
and µc,µs ∈ Rd satisfy µc ⊥ µs and with samples generated according to:

Pθ(y) = Unif{−1, 1}, Pθ(x|y) = N (yµc + yθµs, σ
2I). (1)

Our goal is to find a (linear) classifier that predicts y from x and is robust to the value of θ (we discuss
the specific robustness metric below). To do so, the classifier will need to have significant inner
product with the “core” signal component µc and be approximately orthogonal to the “spurious”
component µs. We focus on learning problems where we are given access to samples from two
environments that share all their parameters other than θ, as we define next. We illustrate our setting
with Figure 3 in Appendix A.
Definition 2 (Linear Two Environment Problem). In a Linear Two Environment Problem we have
datasets S1 = {x(1)

i , y
(1)
i }N1

i=1 and S2 = {x(2)
i , y

(2)
i }N2

i=1 of sizes N1, N2 drawn from Pθ1 and Pθ2
respectively. A learning algorithm is a (possibly randomized) mapping from the tuple (S1, S2) to a
linear classifier w ∈ Rd. We let S = {xi, yi}Ni=1 denote that dataset pooled from S1 and S2 where
N = N1 +N2. Finally we let rc := ∥µc∥ and rs := ∥µs∥.

We study settings where θ1, θ2 are fixed and d is large compared to N , i.e. the overparameterized
regime. We refer to the two distributions Pθe for e ∈ {1, 2} as “training environments”, following
Peters et al. (2016); Arjovsky et al. (2019). In the context of Out-of-Distribution (OOD) generaliza-
tion, environments correspond to different experimental conditions, e.g., collection of medical data
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in two hospitals. In a fairness context, we may think of these distributions as subpopulations (e.g.,
demographic groups).1While these are different applications that require specialized methods, the
underlying formalism of solutions is often similar (see, e.g., Creager et al., 2021, Table 1), where
we wish to learn a classifier that in one way or another is invariant to the environment variable.

Robust performance metric. An advantage of the simple model defined above is that many of the
common invariance criteria all boil down to the same mathematical constraint: learning a classifier
that is orthogonal to µs, which induces a spurious correlation between the environment and the
label. These include Equalized Odds (Hardt et al., 2016), conditional distribution matching Li et al.
(2018), calibration on multiple subsets of the data (Hébert-Johnson et al., 2018; Wald et al., 2021),
Risk Extrapolation (Krueger et al., 2021) and CVaR fairness (Williamson & Menon, 2019).

In terms of predictive accuracy, the goal of learning a linear model that aligns with µc (the invariant
part of the data generating process for the label) and is orthogonal to µs coincides with providing
guarantees on the robust error, i.e. the error when data is generated with values of θ that are different
from the θ1, θ2 used to generate training data.2

Definition 3 (Robust error). The robust error of a linear classifier w ∈ Rd is:

max
θ∈[−1,1]

ϵθ(w), where ϵθ(w) := Ex,y∼Pθ
[sign(⟨w,x⟩) ̸= y]. (2)

Normalized margin. We study is whether algorithms that perfectly fit (i.e. interpolate) their train-
ing data can learn models with low robust error. Ideally, we would like to give a result on all
classifiers that attain training error zero in terms of the 0-1 loss. However, the inherent discontinuity
of this loss would make any such statement sensitive to instabilities and pathologies. For instance,
if we do not limit the capacity of our models, we can turn any classifier into an interpolating one by
adding “special cases” for the training points, yet intuitively this is not the type of interpolation that
we would like to study. To avoid such issues, we replace the 0-1 loss with a common continuous
surrogate, the normalize margin, and require it to be strictly positive.

Definition 4 (Normalized margin). Let γ > 0, we say a classifier w ∈ Rd separates the set S =
{xi, yi}Ni=1 with normalized margin γ if for every (x, y) ∈ S

yi⟨w,xi⟩
∥w∥

> γ
√
σ2d.

The
√
σ2d scaling of γ is roughly proportional to ∥x∥ under our data model in Equation (1), and

keeps the value of γ comparable across growing values of d.

2.2 MAIN RESULT

Equipped with the necessary definitions, we now state and discuss our main result.

Theorem 1. For any sample sizes N1, N2 > 65, margin lower bound γ ≤ 1
4
√
N

, target robust error

ϵ > 0, and coefficients θ1 = 1, θ2 > − N1γ√
288N2

, there exist parameters rc, rs > 0, d > N , and
σ > 0 such that the following holds for the Linear Two Environment Problem (Definition 2) with
these parameters.

1. Invariance is attainable. Algorithm 1 maps (S1, S2) to a linear classifier w such that with
probability at least 99

100 (over the draw S), the robust error of w is less than ϵ.

2. Interpolation is attainable. With probability at least 99
100 , the estimator wmean =

N−1
∑
i∈[N ] yixi separates S with normalized margin (Definition 4) greater than 1

4
√
N

.

1We note that in some settings, more commonly in the fairness literature, e is treated as a feature given to
the classifier as input. Our focus is on cases where this is either impossible or undesired. For instance, because
at test time e is unobserved or ill-defined (e.g. we obtain data from a new hospital). However, we emphasize
that the leaning rules we consider have full knowledge of which environment produced each training example

2In fact, as we show in Equation (5) in Section 3, learning a model orthogonal to µs is also a necessary
condition to minimize the robust error. Thus, attaining guarantees on the robust error also has consequences on
invariance of the model, as defined by these criteria. We discuss this further in section F of the appendix.
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3. Interpolation precludes invariance. Given µc uniformly distributed on the sphere of radius rc
and µs uniformly distributed on a sphere of radius rs in the subspace orthogonal to µc, let w
be any classifier learned from (S1, S2) as per Definition 2. If w separates S with normalized
margin γ, then with probability at least 99

100 (over the draw of µc,µs, and the sample), the robust
error of w is at least 1

2 .

Theorem 1 shows that if a learning algorithm for overparameterized linear classifiers always sepa-
rates its training data, then there exist natural settings for which the algorithm completely fails to
learn a robust classifier, and will therefore fail on multiple other invariance and fairness objectives.
Furthermore, in the same setting this failure is avoidable, as there exists an algorithm (that neces-
sarily does not always separate its training data) which successfully learns an invariant classifier.
This result has deep implications for theoreticians attempting to prove finite-sample invariant learn-
ing guarantees: it shows that—in the fundamental setting of linear classification—no interpolating
algorithm can have guarantees as strong as non-interpolating algorithms such as Algorithm 1.

Importantly, Theorem 1 requires interpolating invariant classifiers to exist—and shows that these
classifiers are information-theoretically impossible to learn. In particular, the first part of the theo-
rem implies that the Bayes optimal invariant classifier w = µc has robust test error at most ϵ. There-
fore, for all ϵ < 1

100N we have that µc interpolates S with probability > 99
100 . Furthermore, a short

calculation (see Appendix C.1) shows that (for rc, rs, d and σ satisfying Theorem 1) the normalized
margin of µc is Ω((N +

√
N2/γ)

− 1
2 ). However, we prove that—due to the high-dimensional na-

ture of the problem—no algorithm can use (S1, S2) to reliably distinguish the invariant interpolator
from other interpolators with similar or larger margin. This learnability barrier strongly leverages
our random choice of µc, µs, without which the (fixed) vector µc would be a valid learning output.

We establish Theorem 1 with three propositions, each corresponding to an enumerated claim in
the theorem: (1) Proposition 2 (in §4) establishes that invariance is attainable, (2) Proposition 3
(Appendix C) establishes that interpolation is attainable, and (3) Proposition 1 (in §3) establishes
that interpolation precludes invariance. We choose to begin with the latter proposition since it is
the main conceptual and technical contribution of our paper. Conversely, Proposition 3 is an easy
byproduct of the developments leading up to Proposition 1, and we defer it to the appendix.

With Propositions 1, 2 and 3 in hand, the proof of Theorem 1 simply consists of choosing the free
parameters in Theorem 1 (rc, rs, d and σ) based on these propositions such that all the claims in the
theorem hold simultaneously. For convenience we take σ2 = 1/d. Then (ignoring constant factors)
we pick r2s ∝ 1

N and r2c ∝ r2s/(1 +
√
N2

N1γ
) in order to satisfy requirements in Propositions 1 and 3.

Finally, we take d to be sufficiently large so as to satisfy the remaining requirements, resulting in
d ∝ max

{
N2, N

γ2N2
1 r

2
c
, (Q−1(ϵ))2

Nminr4c
, 1
N2

minr
4
c

}
, where Nmin = min{N1, N2} and Q is the Gaussian

tail function (see Appendix E for the full proof).

We conclude this section with remarks on the range of parameters under which Theorem 1 holds.
The impossibility results in Theorem 1 are strongest when N2 is smaller than N2

1 γ
2. In particular,

when N2 ≤ N2
1 γ

2/288, our result holds for all θ2 ∈ [−1, 1] and moreover the core and spurious
signal strengths rc and rs can be chosen to be of the same order. The ratio N2/(N

2
1 γ

2) is small
either when one group is under-represented (i.e., N2 ≪ N1) or when considering large margin
classifiers (i.e., γ of the order 1/

√
N ). Moreover, unlike prior work on barriers to robustness (e.g.,

Sagawa et al., 2020b; Nagarajan et al., 2021), our result continue to hold even for balanced data
and arbitrarily low margin, provided θ2 is close to 0 and the core signal is sufficiently weaker than
the spurious signal. Notably, the normalized margin γ can be arbitrarily small while the maximum
achievable margin is always at least of the order of 1√

N
. Therefore, we believe that Theorem 1

essentially precludes any interpolating learning rule from being consistently invariant.

3 INTERPOLATING MODELS CANNOT BE INVARIANT

In this section we prove the third claim in Theorem 1: for essentially any nonzero value of the
normalized margin γ, there are instances of the Linear Two Environment Problem (Definition 2)
where with high probability, learning algorithms that return linear classifiers attaining normalized
margin at least γ must incur a large robust error. The following proposition formalizes the claim; we
sketch the proof below and provide a full derivation in Appendix B.3.
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Proposition 1. For σ = 1/
√
d, θ1 = 1, there are universal constants cr ∈ (0, 1) and Cd, Cr ∈

(1,∞), such that, for any target normalized γ, θ2 > −N1γ/
√
288N2, and failure probability δ ∈

(0, 1), if

max{r2s , r2c} ≤ cr
N

,
r2s
r2c

≥ Cr

(
1 +

√
N2

N1γ

)
and (3)

d ≥ Cd
N

γ2N2
1 r

2
c

log
1

δ
, (4)

then with probability at least 1−δ over the drawing of µc,µs and (S1, S2) as described in Theorem
1, any ŵ ∈ Rd that is a measurable function of (S1, S2) and separates the data with normalized
margin larger than γ has robust error at least 0.5.

Proof sketch. We begin by noting that for any fixed θ, the error of a linear classifier w is

ϵθ(w) = Q

(
⟨w,µc⟩+ θ⟨w,µs⟩

σ∥w∥

)
= Q

(
⟨w,µc⟩
σ∥w∥

(
1 + θ

⟨w,µs⟩
⟨w,µc⟩

))
, (5)

where Q(t) := P(N (0; 1) > t) is the Gaussian tail function. Consequently, when
⟨w,µs⟩/⟨w,µc⟩ ≥ 1 it is easy to see that ϵθ(w) = 1/2 for some θ ∈ [−1, 1] and therefore the
robust error is at least 1

2 ; we prove that ⟨w,µs⟩/⟨w,µc⟩ ≥ 1 indeed holds with high probability
under the proposition’s assumptions. Our proof has two key parts: (a) restricting the set of classifiers
to the linear span of the data and (b) lower bounding the minimum value of ⟨w,µs⟩/⟨w,µc⟩ for
classifier in that linear span.

For the first part of the proof we use the spherical distribution of µc and µs and concentration of
measure to show that (with high probability) any component of w chosen outside the linear span
of {xi}i∈[N ] will have negligible effect on the predictions of the classifier. To explain this fact, let
P⊥ denote the projection operator to the orthogonal complement of the data, so that P⊥w is the
component of w orthogonal to the data and ⟨P⊥w,µc⟩ =

〈
w, P⊥µc

∥P⊥µc∥

〉
∥P⊥µc∥. Conditional on

(S1, S2) and the learning rule’s random seed, the vector P⊥µc/∥P⊥µc∥ is uniformly distributed
on a unit sphere of dimension d − N while the vector w is deterministic. Assuming without loss
of generality that ∥w∥ = 1, concentration of measure on the sphere implies that |⟨w, P⊥µc

∥P⊥µc∥ ⟩|
is (with high probability) bounded by roughly 1/

√
d, and therefore |⟨P⊥w,µc⟩| is roughly of the

order rc/
√
d. For sufficiently large d (as required by the proposition), this inner product would be

negligible, meaning that ⟨w,µc⟩ is roughly the same as ⟨(I −P⊥)w,µc⟩, and (I −P⊥)w is in the
span of the data. The same argument applies to µs as well.

In the second part of the proof, we consider classifiers of the form w =
∑
i∈[N ] βiyixi (which

parameterizes the linear span of the data) and minimize ⟨w,µs⟩/⟨w,µc⟩ over β ∈ RN subject to
the constraint that w has normalize margin of at least γ. To do so, we first use concentration of
measure to argue that it is sufficient to lower bound

∑
i∈[N1]

βi subject to the margin constraint and
∥w∥2 ≤ 1, which is convex in β—we obtain this lower bound by analyzing the Lagrange dual of
the problem of minimizing

∑
i∈[N1]

βi subject to these constraints.

Overall, we show a high-probability lower bound on ⟨w,µs⟩
⟨w,µc⟩ that (for sufficiently high dimensions)

scales roughly as r2sN1γ

r2c
√
N2

. For parameters satisfying Equation (3) we thus obtain ⟨w,µs⟩
⟨w,µc⟩ ≥ 1, com-

pleting the proof.

Implication for invariance-inducing algorithms. Our proof implies that any interpolating algo-
rithm should fail at learning invariant classifiers. This alone does not necessarily imply that specific
algorithms proposed in the literature for learning invariant classifiers fail, as they may not be in-
terpolating. Yet our simulations in Section 5 show that several popular algorithms proposed for
eliminating spurious features are indeed interpolating in the overparameterized regime. We also
give a formal statement in Appendix G regarding the IRMv1 penalty (Arjovsky et al., 2019), show-
ing that it is biased toward large margins when applied to separable datasets. Our results may seem
discouraging for the development of invariance-inducing techniques using overparameterized mod-
els. It is natural to ask what type of methods can provably learn such models, which is the topic of
the next section.
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Algorithm 1 Two Phase Learning of Overparameterized Invariant Classifiers
Input: Datasets (S1, S2) and an invariance constraint function family F(·, ·)
Output: A classifier fv(x)

Draw subsets of data without replacement Strain
e ⊂ Se for e ∈ {1, 2} where

∣∣Strain
e

∣∣ = Ne/2

Stage 1: Calculate we = 2N−1
e

∑
(x,y)∈Strain

e
yx for each e ∈ {1, 2}

Define Sfine
e = Se \ Strn

e for e ∈ {1, 2} and Spost = Sfine
1 ∪ Sfine

2

Stage 2: Return fv(x) = ⟨v1 ·w1 + v2 ·w2,x⟩ that solves

maximize
∑

(x,y)∈Spost

yfv(x) subject to ∥v∥∞ = 1 and fv ∈ F(Sfine
1 , Sfine

2 )

4 A PROVABLY INVARIANT OVERPARAMETERIZED ESTIMATOR

We now turn to propose and analyze an algorithm (Algorithm 1) that provably learns an over-
parametrized linear model with good robust accuracy in our setup. Our approach is a two-staged
learning procedure that is conceptually similar to some recently proposed methods (Rosenfeld et al.,
2022; Veldanda et al., 2022; Kirichenko et al., 2022; Menon et al., 2021; Kumar et al., 2022; Zhang
et al., 2022). In Section 5 we validate our algorithm on simulations and on the Waterbirds dataset
Sagawa et al. (2020a), but we leave a thorough empirical evaluation of the techniques described here
to future work.

Let us describe the operation of Algorithm 1. First, we evenly3 split the data from each environment
into the sets Strain

e , Spost
e , for e ∈ {1, 2}. The two stages of the algorithm operate on different splits

of the data as follows.

1. “Training” stage: We use {Strain
e } to fit overparameterized, interpolating classifiers {we} sep-

arately for each environment e ∈ {1, 2}.

2. “Post-processing” stage: We use the second portion of the data
(
Spost
1 , Spost

2

)
to learn an invari-

ant linear classifier over a new representation, which concatenates the outputs of the classifiers
in the first stage. In particular, we learn this classifier by maximizing a score (i.e., minimizing
an empirical loss), subject to an empirical version of an invariance constraint. For generality we
denote this constraint by membership in some set of functions F(Spost

1 , Spost
2 ).

Crucially, the invariance penalty is only used in the second stage, in which we are no longer in
the overparamterized regime since we are only fitting a two-dimensional classifier. In this way we
overcome the negative result from Section 3.

While our approach is general and can handle a variety of invariance notions (we discuss some of
them in Appendix F), we analyze the algorithm under the Equal Opportunity (EOpp) criterion (Hardt
et al., 2016). Namely, for a model f : Rd → R we write:

F(Sfine
1 , Sfine

2 ) =
{
f : T̂1(f) = T̂2(f)

}
, where T̂e(f) :=

4

Ne

∑
(x,y)∈Sfine

e :y=1

f(x).

This is the empirical version of the constraint EPθ1
[f(x)|y = 1] = EPθ2

[f(x)|y = 1]. From a
fairness perspective (e.g., thinking of a loan application), this constraint ensures that the “qualified”
members (i.e., those with y = 1) of each group receive similar predictions, on average over the
entire group.

We now turn to providing conditions under which Algorithm 1 successfully learns an invariant pre-
dictor. The full proof for the following proposition can be found in section D.1 of the appendix.
While we do not consider the following proposition very surprising, the fact that it gives a finite
sample learning guarantee means it does not directly follow from existing work (discussed in §6
below) that mostly assume inifinite sample size.

3The even split is used here for simplicity of exposition, and our full proof does not assume it. In practice,
allocating more data to the first-stage split would likely perform better.
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Figure 1: Numerical validation of our theoretical claims. Invariance inducing methods improve
robust accuracy compared to ERM in low values of d, but their ability to do so is diminished as d
grows (top plot) and they enter the interpolation regime, as seen on the bottom plot for d > 102.
Algorithm 1 learns robust predictors as d grows and does not interpolate.

Proposition 2. Consider the Linear Two Environment Problem (Definition 2), and further sup-
pose that |θ1 − θ2| > 0.1.4 There exist universal constants Cp, Cc, Cs ∈ (1,∞) such that
the following holds for every target robust error ϵ > 0 and failure probability δ ∈ (0, 1). If
Nmin := min{N1, N2} ≥ Cp log(4/δ) for some Cp ∈ (1,∞),5

r2s ≥ Cs

√
log

68

δ

σ2
√
d

Nmin
, r2c ≥ Ccσ

2

√
log

68

δ
max

{
Q−1(ϵ)

√
d

Nmin
,

√
d

Nmin
,

r2s
Nminr2c

}
, (6)

and d ≥ log
68

δ
(7)

then, with probability at least 1 − δ over the draw of the training data and the split of the data
between the two stages of learning, the robust error of the model returned by Algorithm 1 does not
exceed ϵ.

Proof sketch. Writing down the error of fv = v1 ·w1 + v2 ·w2 under Pθ, it can be shown that to
obtain the desired bound on the robust error of the classifier returned by Algorithm 1, we must upper
bound the ratio

(v⋆1θ1 + v⋆2θ2)∥µs∥2 + ⟨µs, v⋆1 n̄1 + v⋆2 n̄2⟩
(v⋆1 + v⋆2)∥µc∥2 + ⟨µc, v⋆1 n̄1 + v⋆2 n̄2⟩

,

when n̄e is the mean of Gaussian noise vectors, and v⋆1 and v⋆2 are the solutions to the optimization
problem in Stage 2 of Algorithm 1. The terms involving inner-products with the noise terms are
zero-mean and can be bounded using standard Gaussian concentration arguments. Therefore, the
main effort of the proof is upper bounding

v⋆1θ1 + v⋆2θ2
v⋆1 + v⋆2

· ∥µs∥
2

∥µc∥2
.

To this end, we leverage the EOpp constraint. The population version of this constraint (correspond-
ing to infinite N1 and N2) implies that v⋆1θ1 + v⋆2θ2 = 0. For finite sample sizes, we use standard
Gaussian concentration and the Hanson-Wright inequality to show that the empirical EOpp con-
straint implies that |v⋆1θ1 + v⋆2θ2| goes to zero as the sample sizes increase. Furthermore, we argue
that |v⋆1 + v⋆2 | ≥ |θ1 − θ2|/2, implying that—for appropriately large sample sizes—the above ratio
indeed goes to zero.

5 EMPIRICAL VALIDATION

The empirical observations that motivated this work can be found across the literature. We therefore
focus our simulations on validating the theoretical results in our simplified model. We also evaluate
Algorithm 1 on the Waterbirds dataset, where the goal is not to show state-of-the-art results, but
rather to observe whether our claims hold beyond the Linear Two Environment Problem.

4Intuitively, if |θ1 − θ2| = 0 then the two training environments are indistinguishable and we cannot hope
to identify that the correlation induced by µs is spurious. Otherwise, we expect |θ1 − θ2| to have a quantifiable
effect on our ability to generalize robustly. For simplicity of this exposition we assume that the gap is bounded
away from zero; the full result in the Appendix is stated in terms of |θ1 − θ2|.

5This assumption makes sure we have some positive labels in each environment.
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5.1 SIMLUATIONS

Setup. We generate data as described in Theorem 1 with two environments where θ1 = 1, θ2 = 0
(see Figure 4 in the appendix for results of the same simulation when θ = − 1

2 ). We further fix rc = 1
and rc = 2, while N1 = 800 and N2 = 100. We then take growing values of d, while adjusting
σ so that (rc/σ)

2 ∝
√
d/N .6 For each value of d we train linear models with IRMv1 (Arjovsky

et al., 2019), VREx (Krueger et al., 2021), MMD (Li et al., 2018), CORAL (Sun & Saenko, 2016),
GroupDRO (Sagawa et al., 2020a), implemented in the Domainbed package (Gulrajani & Lopez-
Paz, 2021). We also train a classifier with the logistic loss to minimize empirical error (ERM), and
apply Algorithm 1 where the “post-processing” stage trains a linear model over the two-dimensional
representation using the VREx penalty to induce invariance. We repeat this for 15 random seeds for
drawing µc,µs and the training set.

Evaluation and results. We compare the robust accuracy and the train set accuracy of the learned
classifiers as d grows. First, we observe that all methods except for Algorithm 1 attain perfect ac-
curacy for large enough d, i.e., they interpolate. We further note that while invariance-inducing
methods give a desirable effect in low dimensions (the non-interpolating regime)—significantly im-
proving the robust error over ERM—they become aligned with ERM in terms of robust accuracy
as they go deeper into the interpolation regime (indeed, IRM essentially coincides with ERM for
larger d). This is an expected outcome considering our findings in section 3, as we set here N1 to be
considerably larger than N2.

5.2 WATERBIRDS DATASET

We evaluate Algorithm 1 on the Waterbirds dataset (Sagawa et al., 2020a), which has been previously
used to evaluate the fairness and robustness of deep learning models.

Setup. Waterbirds is a synthetically created dataset containing images of water- and land-birds
overlaid on water and land background. Most of the waterbirds (landbirds) appear in water (land)
backgrounds, with a smaller minority of waterbirds (landbirds) appearing on land (water) back-
grounds. We set up the problem following previous work (Sagawa et al., 2020b; Veldanda et al.,
2022), where a logistic regression model is trained over random features extract from a fixed pre-
trained ResNet-18. Please see Appendix H for details.

Fairness. We use the image background type (water or land) as the sensitive feature, denoted A,
and consider the fairness desiderata of Equal Opportunity Hardt et al. (2016), i.e., the false negative
rate (FNR) should be similar for both groups. Towards this, we use the MinDiff penalty term (Prost
et al., 2019). The

Evaluation. We compare the following methods: (1) Baseline: Learning a linear classifier w by
minimizing Lp+λ · LM , where Lp is the standard binary cross entropy loss and LM is the MinDiff
penalty; (2) Algorithm 1: In the first stage, we learn group-specific linear classifiers w0,w1 by
minimizing Lp on the examples from A = 0 and A = 1, respectively. In the second stage we learn
v ∈ R2 by minimizing Lp + λ · LM on examples the entire dataset, where the new representation
of the data is X̃ = [⟨w1, X⟩, ⟨w2, X⟩] ∈ R2.7

Results. Our main objective is to understand the effect of the fairness penalty. Toward this, for
each method we compare both the test error and the test FNR gap when using either λ = 0 (no
regularization) or λ = 5. The results are summarized in Figure 2. We can see that for the baseline
approach, the fairness penalty successfully reduces the FNR gap when the classifier is not interpo-
lating. However, as our negative result predicts and as previously reported in Veldanda et al. (2022),
the fairness penalty becomes ineffective in the interpolating regime (d ≥ 1000). On the other hand,
for our two-phased algorithm, the addition of the fairness penalty reduces does reduce the FNR gap
with an average relative improvement of 20%; crucially, this improvement is independent of d.

6This is to keep our parameters within the regime where benign overfitting occurs.
7This is basically Algorithm 1 with the following minor modifications: (1) The we’s are computed via

ERM, rather than simply taken to be the mean estimators; (2) Since the FNR gap penalty is already computed
w.r.t. a small number of samples, we avoid splitting the data and use the entire training set for both phases; (3)
we convert the constrained optimization problem into an unconstrained problem with a penalty term.
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Figure 2: Results for the Waterbirds dataset (Sagawa et al., 2020a). Top row: Train error (left)
and test error (right). The train error is used to identify the interpolation threshold for the baseline
method (approximately d = 1000). Bottom row: Comparing the FNR gap on the test set (left), with
zoomed-in versions on the right.

6 DISCUSSION AND ADDITIONAL RELATED WORK

In terms of formal results, most existing guarantees about invariant learning algorithms rely on the
assumption that infinite training data is available (Arjovsky et al., 2019; Wald et al., 2021; Veitch
et al., 2021; Puli et al., 2021; Rosenfeld et al., 2021; Diskin et al., 2021). Wang et al. (2022);
Chen et al. (2022) analyze algorithms that bear resemblance to Algorithm 1 as they first project
the data to a lower dimension and then fit a classifier. While these algorithms deal with more
general assumptions in terms of the number of environments, number of spurious features, and noise
distribution, the fact that their guarantees assume infinite data prevents them from being directly
applicable to Algorithm 1. A few works with results on finite data are Ahuja et al. (2021); Parulekar
et al. (2022) (and also Efroni et al. (2022) who work on related problems in the context of sequential
decision making) that characterize the sample complexity of methods that learn invariant classifiers.
However, they do not analyze the overparameterized cases we are concerned with.

Negative results about learning overparameterized robust classifiers have been shown for methods
based on importance weighting (Zhai et al., 2022) and max-margin classifiers (Sagawa et al., 2020b).
Our result is more general, applying to any learning algorithm that separates the data with arbitrarily

small margins, instead of focusing on max-margin classifiers or specific algorithms. While we focus
on the linear case, we believe it is instructive, as any reasonable method is expected to succeed in
that case. Nonetheless, we believe our results can be extended to non-linear classifiers, and we leave
this to future work.

One take-away from our result is that while low training loss is generally desirable, overfitting to
the point of interpolation can significantly hinder invariance-inducing objectives. This means one
cannot assume a typical deep learning model with an added invariance penalty will indeed achieve
any form of invariance; this fact also motivates using held-out data for imposing invariance, as in
our Algorithm 1 as well as several other two-stage approaches mentioned above.

Our work focuses theory underlying a wide array of algorithms, and there are natural follow-up
topics to explore. One is to conduct a comprehensive empirical comparison of two-stage methods
along with other methods that avoid interpolation, e.g., by subsampling data (Idrissi et al., 2022;
Chatterji et al., 2022). Another interesting topic is whether there are other model properties that
are incompatible with interpolation. For instance, recent work (Carrell et al., 2022) connects the
generalization gap and calibration error on the training distribution. We also note that our focus
in this paper was not on types of invariance that are satisfiable by using clever data augmentation
techniques (e.g. invariance to image translation), or the design of special architectures (e.g. Cohen
& Welling (2016); Lee et al. (2019); Maron et al. (2019)). These methods carefully incorporate
a-priori known invariances, and their empirical success when applied to large models may suggest
that there are lessons to be learned for the type of invariant learning considered in our paper. These
connections seem like an exciting avenue for future research.
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2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pp. 1944–1953. PMLR, 2018. URL http://proceedings.
mlr.press/v80/hebert-johnson18a.html.

Badr Youbi Idrissi, Martin Arjovsky, Mohammad Pezeshki, and David Lopez-Paz. Simple data
balancing achieves competitive worst-group-accuracy. In Conference on Causal Learning and
Reasoning, pp. 336–351. PMLR, 2022.

11

http://proceedings.mlr.press/v139/creager21a.html
http://jmlr.org/papers/v23/20-1335.html
https://arxiv.org/abs/2110.12403
https://proceedings.mlr.press/v178/efroni22a.html
https://openreview.net/forum?id=lQdXeXDoWtI
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
http://proceedings.mlr.press/v80/hebert-johnson18a.html
http://proceedings.mlr.press/v80/hebert-johnson18a.html


Published as a conference paper at ICLR 2023

Jivat Neet Kaur, Emre Kiciman, and Amit Sharma. Modeling the data-generating process is nec-
essary for out-of-distribution generalization. In ICML 2022: Workshop on Spurious Corre-
lations, Invariance and Stability, 2022. URL https://openreview.net/forum?id=
KfB7QnuseT9.

Ganesh Ramachandra Kini, Orestis Paraskevas, Samet Oymak, and Christos Thrampoulidis. Label-
imbalanced and group-sensitive classification under overparameterization. Advances in Neural
Information Processing Systems, 34, 2021.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is suffi-
cient for robustness to spurious correlations, 2022. URL https://arxiv.org/abs/2204.
02937.

David Krueger, Ethan Caballero, Jörn-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai
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0, N1 = 800, N2 = 100, rs = 2, rc = 1. Left and right plots show projections of training points on
µc,µs ∈ Rd, and on u1,u2 drawn uniformly from the d-dimensional unit sphere, respectively. As
we increase d there are many hyperplanes w ∈ Rd that separate the data, for some ⟨w, µc⟩ is much
higher than ⟨w, µs⟩ (i.e. their predictions are invariant) and for some the opposite may hold. We ask
whether interpolating learning rules can find the former.
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A SETTING AND HELPER LEMMAS

A.1 NOTATION

Let U(O(d)) be the uniform distribution over d × d orthogonal matrices, Rad(α) the Rademacher
distribution with parameter α, and N (µ,Σ) the Gaussian and multivariate normal distribution with
mean µ and covariance Σ (the dimension will be clear from context) and W (Σ, d) the Wishart
distribution with scale matrix Σ and d degrees of freedom. For the dataset S = {xi, yi}Ni=1 we
denote the indices of examples with set S̄ = [N ], and recalling that S comprises two datasets
S1, S2, we denote the indices of their respective examples within S by S̄1, S̄2 ⊆ S̄ where |S̄e| = Ne

for e ∈ {1, 2}. Our generative process is then:

U ∼ U(O(d))

µc = U1 · rc,µs = U2 · rs

yi = Rad(
1

2
), ni ∼ N (0, σ2Id) ∀i ∈ [N ]

xi = yiµc + yiθeµs + ni ∀e, i ∈ S̄e.
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The vectors E1, E2 ∈ {0, 1}N are binary vectors where [Ee]i = 1 for i ∈ S̄e and e ∈ {1, 2},
while 1 is the vector of length N whose entries equal 1. We also denote zi = xiyi for i ∈ S̄ and
Z = [z1, . . . , zN ]⊤ ∈ RN×d the matrix that stacks all these vectors. The i-th column of a matrix
M is denoted by Mi, smin(M), smax(M) are its smallest and largest singular values accordingly.
The unit matrix of size n is denoted by In and for convenience we denote the direction of any
vector v as v̂ := v

∥v∥ . Finally, for some vector of coefficients β ∈ RN , we will use the form
ŵ =

∑
i∈S̄ βiyixi + w⊥ where w⊥ is in the orthogonal complement of span({xi}i∈S̄), to write

any linear model (here normalized to unit norm).

For convenience we will write our proofs for the case where θ1 = 1 and σ2 = d−1, extensions to
different settings of these parameters are straightforward but result in a more cumbersome notation.

A.2 OPERATOR NORMS OF WISHART MATRICES

We begin with stating the required events for our results and their occurrence with high-probability:
Lemma 1. Consider the matrix G = Z−1µ⊤

c − (E1+ θ2E2)µ
⊤
s . For any t > 0, with probability

at least 1− 6 exp(−t2/2) the following hold simultaneously:

1−
√

N

d
− t√

d
≤ smin(G

⊤) ≤ smax(G
⊤) ≤ 1 +

√
N

d
+

t√
d

(8)

∥Gµc∥ ≤ t

√
N

d
∥µc∥ (9)

∥Gµs∥ ≤ t

√
N

d
∥µs∥ (10)

Proof. G is a random Gaussian matrix with Gi,j ∼ N (0, d−1IN ). By concentration results for
random Gaussian matrices (Vershynin, 2012, Cor. 5.35) we obtain that with probability at least
1− 2 exp(−t2/2) Equation (8) holds.

Next we note that Gµc ∼ N (0, d−1∥µc∥2IN ) and similarly for Gµs. The norm of a Gaussian
random vector can be bounded for any t2 > 0:

P [∥Gµc∥ ≥ t2] ≤ 2 exp

(
− dt22
2N∥µc∥2

)
Setting t2 = t

√
N
d ∥µc∥ we get that with probability at least 1 − 2 exp(−t2/2) Equation (9) holds.

Repeating the analogous derivation for Equation (10) and taking a union bound over the 3 events,
we arrive at the desired result.

Lemma 2. Conditioned on the events in Lemma 1 with parameter t ≥ 0, if
√
N + t√
d

+
√
N(∥µc∥+ ∥µs∥) ≤

1

2
, (11)

then

∥ZZ⊤ − E[ZZ⊤]∥op ≤ 3

√
N + t√
d

and
1

2
IN ⪯ ZZ⊤ ⪯ 2IN .

We note that we already assume d ≫ N and ∥µc∥ ≪ N−1/2, hence the additional assumption
introduced in the conditions of this lemma is regarding the size of ∥µs∥

√
N1.

Proof. Since GG⊤ ∼ W (d−1IN , d) we have that E[GG⊤] = IN . Then from Equation (8) we can

also obtain (1−
√

N
d − t√

d
)2 In ⪯ GG⊤ ⪯ (1 +

√
N
d + t√

d
)2 In, which leads to:

∥∥GG⊤ − E[GG⊤]
∥∥
op

≤

(
1 +

√
N

d
+

t√
d

)2

− 1.
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Combining this with Equation (9) and Equation (10)

∥ZZ⊤ − E
[
ZZ⊤]∥op ≤ ∥GG⊤ − E

[
GG⊤]∥op + ∥Gµc1

⊤∥op + ∥Gµs (E1 + θ2E2)
⊤∥op

≤
√

N

d

(
2

√
N + t√
N

+
(
√
N + t)2√
Nd

+ t
√
N(∥µc∥+ ∥µs∥)

)

≤
√
N + t√
d

(
2 +

√
N + t√
d

+
t√

N + t

√
N(∥µc∥+ ∥µs∥)

)

≤
√
N + t√
d

· 2.5,

where the last transition follows from substituting Equation (11). To obtain the spectral bound on
ZZ⊤ we have that Z = G+ 1µ⊤

c + (E1 + θ2E2)µ
⊤
s . From Weyl’s inequality for singular values:

|smin(G
⊤ + µc1

⊤+µs (E1 + θ2E2)
⊤
)− smin(G

⊤)| ≤

smax(µc1
⊤ + µs (E1 + θ2E2)

⊤
) ≤ ∥µc∥

√
N + ∥µs∥

√
N.

Taken together with Equation (8) and the assumption in Equation (11) we get:

smin(Z
⊤) ≥ smin(G

⊤)− ∥µc∥
√
N − ∥µs∥

√
N

≥ 1− 1√
d

(√
N + t

)
− ∥µc∥

√
N − ∥µs∥

√
N

≥ 1

2
.

To prove that ZZ⊤ ⪯ 2 we simply need to follow the same steps while taking notice that Weyl’s
inequality also holds for smax(G

⊤). This will give us smax(Z
⊤) ≤ 3/2 ≤ 2 from which the upper

bound follows.

A.3 SUFFICIENCY OF LINEAR CLASSIFIERS SPANNED BY DATA POINTS

We wish to bound ⟨ŵ⊥,µc⟩ = rc⟨ŵ⊥, U1⟩. To this end let us take an orthonormal basis
{v1, . . . ,vN} and let these vectors form the columns of the orthogonal matrix V ∈ Rd×N . Let
PV be the orthogonal projection matrix on the columns of V . We first claim that conditioned on the
data, the component of the mean vectors that is not spanned by the data is distributed uniformly.
Lemma 3. Let µ⊥

c := (I − PV )µc and µ⊥
s := (I − PV )µc. Conditional on the training set

{xi, yi}i∈S , the vectors µ⊥
s

∥µ⊥
s ∥ and µ⊥

c

∥µ⊥
c ∥ are uniformly distributed on unit spheres a subspace of

dimension d−N .

Proof. Recalling the notation zi = yixi, note that {zi}i∈S̄ are sufficient statistics for µs,µc given
the training data, i.e., P(µs,µc | {zi}i∈S̄) = P(µs,µc | {xi, yi}i∈S̄). Furthermore, since the joint
distribution of µs,µc, {zi}i∈S̄ is rotationally invariant, we have

P(µs,µc | {zi}i∈S̄) = P(Rµs,Rµc | {Rzi}i∈S̄)
for any orthogonal matrix R ∈ Rd×d. Focusing on matrices R that presereve that data, i.e., satisfy-
ing Rzi = zi for all i ∈ [N ], we have

P(µs,µc | {zi}i∈S̄) = P(Rµs,Rµc | {zi}i∈S̄).
We may also write this equality as

P(PV µs, PV µc, (I − PV )µs, (I − PV )µc | {zi}i∈S̄)
= P(PVRµs, PVRµc, (I − PV )Rµs, (I − PV )Rµc | {zi}i∈S̄).

The fact that R preserves {zi}i∈S̄ implies that PVR = PV = RPV and therefore

P(PV µs, PV µc,µ⊥
s ,µ

⊥
c | {zi}i∈S̄) = P(PV µs, PV µc,Rµ⊥

s ,Rµ⊥
c | {zi}i∈S̄).

Marginalizing PV µs, PV µc, we obtain that, conditional on the training data, the distribution of
µ⊥
s ,µ

⊥
c , is invariant to rotations that preserve the training data. Therefore, the unit vectors in the

directions of µ⊥
s and µ⊥

c must each be uniformly distributed on the sphere orthogonal to the training
data, which has dimension d−N .
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Now we simply need to derive a bound on ⟨w⊥,µs⟩:
Corollary 1. For any t > 0 as in Lemma 1, with probability at least 1 − 10 exp(−t2/2), all the
events in Lemma 1 hold and additionally

|⟨w⊥,µs⟩| <
∥µs∥√
d−N

t and |⟨w⊥,µc⟩| <
∥µc∥√
d−N

t. (12)

Proof. Note that

|⟨w⊥,µs⟩| =
∣∣⟨w⊥,µ

⊥
s ⟩
∣∣ = ∥µ⊥

s ∥∥w⊥∥
∣∣∣∣〈 w⊥

∥w⊥∥
,

µ⊥
s

∥µ⊥
s ∥

〉∣∣∣∣ ≤ ∥µs∥
∣∣∣∣〈 w⊥

∥w⊥∥
,

µ⊥
s

∥µ⊥
s ∥

〉∣∣∣∣ .
Conditional on the training data and the algorithm’s randomness, w⊥

∥w⊥∥ is a fixed unit vector in

the subspace orthogonal to the training data (of dimension d − N ), while µ⊥
s

∥µ⊥
s ∥ is a spherically

uniform unit vector in that subspace. Therefore, standard concentration bounds (Ball et al., 1997,
Lemma 2.2) imply that, for any t2 > 0

P
(∣∣∣∣〈 w⊥

∥w⊥∥
,

µ⊥
s

∥µ⊥
s ∥

〉∣∣∣∣ ≥ t2

)
≤ 2 exp(−(d−N)t22/2).

The claimed result follows by taking t2 = t/
√
d−N , applying the same argument for µc and taking

a union bound.

B PROOFS OF MAIN RESULT

In this section, we provide the proof of Proposition 1, our main theoretical finding highlighting a
fundamental limitation to the robustness of any interpolating classifier. Following the notation of
Appendix A, we write a general unit-vector classifier as ŵ =

∑
i∈S βizi +w⊥, where zi = yixi.

As explained in the proof sketch at Section 3, in order to show a lower bound on robust accuracy, we
show a lower bound on the spurious-to-core ratio ⟨w,µs⟩

⟨w,µc⟩ or equivalently upper bound ⟨w,µs⟩
⟨w,µc⟩ , which

we can write as

⟨w,µc⟩
⟨w,µs⟩

=
⟨ŵ,µc⟩
⟨ŵ,µs⟩

=
∥µc∥2

∥µs∥2
·

1⊤β + 1
∥µc∥2

[∑
i∈S̄ βi⟨ni,µc⟩+ ⟨w⊥,µc⟩

]
(E1 + θ2E2)⊤β + 1

∥µs∥2

[∑
i∈S̄ βi⟨ni,µs⟩+ ⟨w⊥,µs⟩

] . (13)

We develop the lower bound - and prove Proposition 1 - in three steps, each corresponsding to a sub-
section below. First, we give a lower bound on (E1 + θ2E2)

⊤β using Lagrange duality (Lemma 4).
Second, in Lemma 5, we bound the residual terms of the form 1

∥µ∥2

∣∣∑
i∈S̄ βi⟨ni,µ⟩+ ⟨w⊥,µ⟩

∣∣
(for µ ∈ {µc,µs}) using concentration of measure arguments from Appendix A. Finally, we com-
bine these two results with the conditions of Proposition 1 to conclude its proof.

B.1 LOWER BOUNDING (E1 + θ2E2)
⊤β

The crux of our proof is showing that the term (E1 + θ2E2)
⊤β, i.e., the sum of the contribu-

tions of elements from the first environment to w, must grow roughly as N1γ for any interpolating
classifier. This will in turn imply a large spurious component in the classifier via manipulation of
Equation (13).
Lemma 4. Conditional on the events in Corollary 1 (with parameter t > 0), if Equation (11) holds
and w has normalized margin at least γ, we have that

(E1 + θ2E2)
⊤β ≥ 1

2

(
(N1 + [θ2]+N2)γ −

√
2N2N1∥µc∥2

−
√
18N ·

√
N + t√
d

−
√
8N2 [−θ2]+

)
, (14)

where [z]+ = max{x, 0} denotes the positive part of x.
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Proof of Lemma 4. Our strategy for bounding (E1+θ2E2)
⊤β begins with writing down the smallest

value it can reach for any unit-norm classifier ŵ with normalized margin at least γ. Recalling that
ŵ = Z⊤β +w⊥ (for w⊥ such that Zw⊥ = 0), the smallest possible value of E⊤

1 β is the solution
to the following optimization problem:

min
β∈RN ,w⊥∈ker(Z)

(E1 + θ2E2)
⊤β (15)

subject to ⟨Z⊤β +w⊥, yixi⟩ ≥ γ ∀i ∈ [N ]

∥Z⊤β +w⊥∥ = 1.

Since zi = yixi and Zw⊥ = 0, the first constraint is equivalent to the vector inequality ZZ⊤β ≥
γ1, and the second constraint is equivalent to β⊤ZZ⊤β = 1 − ∥w⊥∥2. Relaxing the second
constraint, the smallest value of (E1 + θ2E2)

⊤
β is bounded from below by the solution to:

min
β∈RN

β⊤(E1 + θ2E2) (16)

subject to ZZ⊤β ≥ γ1

β⊤ZZ⊤ β ≤ 1.

We now treat separately the two cases where θ2 ≤ 0 and θ2 > 0.

The case where θ2 ≤ 0. Take Lagrange multipliers λ ∈ RN+ and ν ≥ 0, from strong duality the
above equals:

max
λ∈RN

+ ,ν≥0
min
β∈RN

β⊤(E1 + θ2E2) + λ⊤(1γ − ZZ⊤β) +
1

2
ν(β⊤ZZ⊤β − 1)

Optimizing the quadratic form over β, the above becomes:

max
λ∈RN

+ ,ν≥0
λ⊤1γ − 1

2
ν − 1

2

(
E1 + θ2E2 − ZZ⊤λ

)⊤ (
νZZ⊤)−1 (

E1 + θ2E2 − ZZ⊤λ
)

Maximizing over ν this becomes:

max
λ∈RN

+

λ⊤1γ −
√
(E1 + θ2E2 − ZZ⊤λ)

⊤
(ZZ⊤)

−1
(E1 + θ2E2 − ZZ⊤λ) := max

λ∈RN
+

L(λ) (17)

Thus, (E1 + θ2E2)
⊤β is lower bounded by L(λ), for any λ ∈ RN+ . Taking λ = αE1 for α =(

1 +
(
∥µc∥2 + ∥µs∥2

)
N1

)−1
, we obtain:

L(λ) = N1γα−
√

(E1 + θ2E2 − αZZ⊤E1)
⊤
(ZZ⊤)

−1
(E1 + θ2E2 − αZZ⊤E1)

≥ N1γα−
√
2∥E1 + θ2E2 − αZZ⊤E1∥

≥ N1γα−
√
2∥E1 − αZZ⊤E1∥ −

√
2N2|θ2|

= N1γα−
√
2∥
(
IN − α

(
E
[
ZZ⊤]+ ZZ⊤ − E

[
ZZ⊤]))E1∥ −

√
2N2|θ2|

≥ N1γα−
√
2∥
(
IN − αE

[
ZZ⊤])E1∥ −

√
2∥α

(
ZZ⊤ − E

[
ZZ⊤])E1∥ −

√
2N2|θ2|

Here, the first inequality is from our assumption that Equation (11) holds and hence ZZ⊤ ⪰ 1
2IN

and the second is a triangle inequality. Recall the bound ∥ZZ⊤ − E
[
ZZ⊤]∥op ≤ 3

√
N+t√
d

from
Lemma 2 and apply it to obtain:

L(λ) ≥N1γα−
√
2∥
(
IN − αE

[
ZZ⊤])E1∥ − α− α

√
18N1 ·

√
N + t√
d

−
√
2N2|θ2|

≥N1γα−
√
2∥
(
IN − αE

[
ZZ⊤])E1∥ − α− α

√
18N ·

√
N + t√
d

−
√
2N2|θ2|.
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Let us break down the second term in the bound above:

∥
(
IN − αE

[
ZZ⊤])E1∥ = ∥

(
1− α− αN1∥µs∥2

)
E1 − αN1∥µc∥21∥

= ∥
(
1− α− αN1∥µs∥2

)
E1 − αN1∥µc∥2 (E1 + E2)∥

=

√
(1− α (1 +N1(∥µs∥2 + ∥µc∥2))2 N1 + α2N2

1 ∥µc∥4N2

= αN1∥µc∥2
√
N2,

where the final equality used α
(
1 +N1(∥µs∥2 + ∥µc∥2

)
= 1. Overall, we get:

β⊤(E1 + θ2E2) ≥ L(λ) ≥ α

(
N1γ −

√
2N2N1∥µc∥2 −

√
18N ·

√
N + t√
d

)
−
√
2N2|θ2|.

(18)

The proof is complete by noting that α ≥ 1/2 due to Equation (11).

The case where θ2 > 0. Before introducing Lagrange multipliers, we revisit Equation (16) and this
time we first bound the optimum from below as

min
β∈C(Z,γ)

β⊤(E1 + θ2E2) ≥ θ2 min
β∈C(Z,γ)

β⊤(E1 + E2) + (1− θ2) · min
β∈C(Z,γ)

β⊤E1,

where we used C(Z, γ) as a shorthand for the constraints in Equation (16). By our derivation
for the case of θ2 ≤ 0, the second term on the right hand side is readily bounded by the term in
Equation (18) with θ2 = 0. We are left with bounding the first term, which turns out to be simpler
since E1+E2 = 1. We repeat the process of taking the Lagrangian up until Equation (17), and now
choose λ = α1 for α =

(
1 +

(
∥µc∥2 + ∥µs∥2

)
N
)−1

. For completeness, let us rewrite the lower
bound on the Lagrangian with these slight changes:

L(λ) = Nγα−
√
(1− αZZ⊤1)

⊤
(ZZ⊤)

−1
(1− αZZ⊤1)

≥ Nγα−
√
2∥1− αZZ⊤1∥

= Nγα−
√
2∥
(
IN − α

(
E
[
ZZ⊤]+ ZZ⊤ − E

[
ZZ⊤]))1∥

≥ Nγα−
√
2∥
(
IN − αE

[
ZZ⊤])1∥ − √

2∥α
(
ZZ⊤ − E

[
ZZ⊤])1∥

Using again the bound on ∥ZZ⊤ − E
[
ZZ⊤]∥op, the above bound becomes

L(λ) ≥ Nγα−
√
2∥
(
IN − αE

[
ZZ⊤])1∥ − α− α

√
18N ·

√
N + t√
d

.

This time the chosen value for α makes the second term vanish, since

∥
(
IN − αE

[
ZZ⊤])1∥ = ∥

(
1− α− αN

(
∥µs∥2 + ∥µc∥2

))
1∥ = 0.

Equation (11) again tells us that α > 1/2 which leads us to the bound:

β⊤(E1 + θ2E2) ≥
1

2

(
γ(θ2N + (1− θ2)N1)− (1− θ2)

√
2N2N1∥µc∥2

−
√
18
(
θ2
√
N + (1− θ2)

√
N1

)
·
√
N + t√
d

)

≥ 1

2

(
γ(θ2N2 +N1)−

√
2N2N1∥µc∥2 −

√
18N ·

√
N + t√
d

)
.

Combining the two cases for negative and positive θ2, we arrive at the desired bound in Equa-
tion (14).
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B.2 CONTROLLING RESIDUAL TERMS

We now provide a bound on the terms in Equation (13) associated with quantities that vanish as the
problem dimension grows.

Lemma 5. Conditioned on all the events in Corollary 1 with parameter t > 0 (which happen
with probability at least 1− 10 exp(−t2/2)) and the additional condition of Lemma 2, we have for
µ ∈ {µc,µs}:

1

∥µ∥2

∣∣∣∣∣∣
∑
i∈S̄

βi⟨ni,µ⟩+ ⟨w⊥,µ⟩

∣∣∣∣∣∣ ≤ 3t

∥µ∥

√
N

d−N
(19)

Proof. We prove the claim for µs; the proof for µc is analogous. Recall the random matrix G =

Z− 1µ⊤
c −E1µ

⊤
s ∈ RN×d from Lemma 1. From Equation (10) we get that ∥Gµs∥ ≤ t

√
N
d ∥µs∥

and then: ∑
i∈S̄

βi⟨ni,µs⟩ = β⊤Gµs ≤ ∥β∥∥Gµs∥ ≤ t∥β∥
√

N

d
∥µs∥.

To eliminate ∥β∥ from this bound, we use ZZ⊤ ⪯ 1
2IN due to Lemma 2 to write

1√
2
∥β∥ ≤

√
β⊤ZZ⊤β ≤

√
β⊤Z⊤Zβ + ∥w⊥∥2 = ∥ŵ∥ = 1.

Finally, we use Equation (12) from Corollary 1 to bound |⟨w⊥,µ⟩|.

B.3 PROOF OF PROPOSITION 1

Proposition 1. There are universal constants cr ∈ (0, 1) and Cd, Cr ∈ (1,∞), such that, for any
target normalized γ, θ2 such that θ2 > −N1γ/

√
288N2, and failure probability δ ∈ (0, 1), if

max{r2s , r2c} ≤ cr
N

,
r2s
r2c

≥ Cr

(
1 +

√
N2

(N1 + [θ2]+N2)γ

)
and

d ≥ Cd
N

γ2N2
1 r

2
c

log
1

δ
,

then with probability at least 1−δ over the drawing of µc,µs and (S1, S2) as described in Theorem
1, any ŵ ∈ Rd that is a measurable function of (S1, S2) and separates the data with normalized
margin larger than γ has robust error at least 0.5.

Proof of Proposition 1. Let t
√
10 log 10

δ ≥
√

2 log 10
δ , so that the events described in the previous

lemmas and corollaries all hold with probability at least 1− δ. Note that for cr ≤ 1/64 we have

√
N(∥µc∥+ ∥µs∥) ≤

1

4
(20)

and (since γ ≤ 1
4
√
N

)

d ≥ Cd
10

1

γ2

Nt2

N2
1 ∥µc∥2

≥ Cd
10cr

Nt2

N1γ2
≥ 16Cd

10cr

N2t2

N1
N ≥ 6

4
CdNt2.

Consequently, for Cd ≥ 1 √
N + t√
d

≤ 2

√
1

64Cd
≤ 1

4
. (21)

Combining Equations (20) and (21), we see that the condition in Equation (11) holds.
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Therefore, we may apply Lemma 4; we now argue that under the assumptions of Proposition 1 the
lower bound on (E1 + θ2E2)

⊤β simplifies to a constant multiple of N1γ. First, taking cr ≤ 1/9
and Cr ≥ 1, we have√

2N2N1∥µc∥2 ≤
√
2N2N1∥µs∥2

Cr

(
1 +

√
N2

N1γ

) ≤ N1γ

√
2N1∥µs∥2

Cr
≤ N1γ

√
2cr
Cr

≤ 1

6
N1γ.

Second, using again cr ≤ 1/64 and taking Cd ≥ 180,

√
18
(
[θ2]+

√
N + (1− [θ2]+)

√
N1

) √
N + t√
d

≤ N1γ

√
18√

Cd/10

√
N + t

t
√
N

√
N∥µc∥ ≤ 1

6
N1γ.

Finally, due to our condition on θ2 in the proposition statement, we have
√
8N2 [−θ2]+ ≤ N1γ/6.

Substituting all these into Equation (14), we conclude that under our assumptions (E1+θ2E2)
⊤β ≥

1
4 (N1 + [θ2]+N2)γ.

Next, we combine the lower bound on (E1 + θ2E2)
⊤β with Lemma 5 to handle the denominator

and numerator in the RHS of Equation (13). Beginning with the numerator, we have

1⊤β +
1

r2c

∑
i∈S̄

βi⟨ni,µc⟩+ ⟨w⊥,µc⟩

 ≤ (E1 + θ2E2)
⊤β + (1− θ2)∥E2∥∥β∥+

3t

rc

√
N

d−N
.

As argued in the proof of Lemma 5, we have ∥β∥ ≤
√
2 and therefore (1− θ2)∥E2∥∥β∥ ≤

√
8N2.

Substituting again our assumptions d (which imply d > 2N ), and taking Cd ≥ 64 · 180, we have

3t

rc

√
N

d−N
≤

√
18t

∥µc∥
√
d ≤ N1γ

√
180

Cd
≤ 1

8
N1γ.

For the denominator, noting ∥µc∥ ≤ ∥µs∥ by our assumption, we may similarly write

(E1 + θ2E2)
⊤β +

1

∥µs∥2

∑
i∈S̄

βi⟨ni,µs⟩+ ⟨w⊥,µs⟩

 ≥ (E1 + θ2E2)
⊤β − 1

8
N1γ.

Consequently (since (E1 + θ2E2)
⊤β ≥ 1

4N1γ), we have that the denominator is nonnegative. (If
the numerator is not positive, w will have error greater than 1/2 for θ = 0). Substituting back to
Equation (13) and using the lower bound (E1 + θ2E2)

⊤β ≥ 1
4N1γ, we get

⟨w,µc⟩
⟨w,µs⟩

∥µs∥2

∥µc∥2
≤

(E1 + θ2E2)
⊤β +

√
8N2 +

1
8N1γ

(E1 + θ2E2)⊤β − 1
8N1γ

≤
1
4 (N1 + [θ2]+N2) γ +

√
8N2 +

1
8N1γ

1
4 (N1 + [θ2]+N2) γ − 1

8N1γ

≤ 3 +

√
512N2

(N1 + [θ2]+N2) γ
.

Therefore, for Cr ≥ 32 we have ⟨w,µs⟩
⟨w,µc⟩ ≥ 1 as required. Since the error of classifier w in environ-

ment with parameter θ is

Q

(
⟨w,µc⟩
σ∥w∥

(
1 + θ

⟨w,µs⟩
⟨w,µc⟩

))
,

(where Q(t) := P(N (0; 1) > t) is the Gaussian tail function), the fact that ⟨w,µs⟩
⟨w,µc⟩ ≥ 1 implies that

there exists θ ∈ [−1, 1] for which the error is Q(0) = 0.5, implying the stated bound on the robust
error.

C LOWER BOUNDS ON THE ACHIEVABLE MARGIN

We now argue that, in our model, a simple signed-sample-mean estimator interpolates the data with
normalized margin scaling as 1/

√
N . This fact establishes the first part of Theorem 1.
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Proposition 3. There exist universal constants c′r, C
′
d > 0 such that, in the Linear Two Environment

Problem with parameters N1, N2, d > 0, µc,µs ∈ Rd, θ1, θ2 ∈ [−1, 1] and σ2 = 1/d, for any
δ ∈ (0, 1/2) if

max{rc, rs} ≤ c′r
N

, θ1N1 ≥ −θ2N2 and d ≥ C ′
dN

2 log

(
1

δ

)
then with probability at least 1 − δ, the signed-sample-mean estimator wmean = 1

N

∑N
i=1 yixi

obtains normalized margin of at least 1√
8N

.

Proof. Using the notation defined in the beginning of Appendix A, we note that wmean = 1
NZ⊤1

and (for σ2d = 1) its normalized margin is

min
i∈[N ]

yi⟨xi,wmean⟩
∥wmean∥

= min
i∈[N ]

[Zwmean]i
∥wmean∥

= min
i∈[N ]

[ZZ⊤1]i
∥Z⊤1∥

.

Substituting the assumed bounds on d and ∥µc∥, ∥µs∥ into Lemma 2 (with t =
√

8 log 1
δ ≥√

2 log 6
δ ), it is easy to verify that for sufficiently small c′r and sufficiently large C ′

d, the condition in
Equation (11) holds, and therefore

∥ZZ⊤ − EZZ⊤∥op ≤ 3

√
N + t√
d

≤ 1√
4N

,

with the final inequality following by choosing C ′
d sufficiently large. Lemma 2 then also implies

that ZZ⊤ ⪯ 2IN .

Noting that EZZ⊤ = IN + ∥µc∥211⊤ + ∥µs∥2(θ1E1 + θ2E2)(θ1E1 + θ2E2)
⊤, we have that, for

all i ∈ [N ],

[ZZ⊤1]i ≥ [EZZ⊤1]i − ∥ZZ⊤ − EZZ⊤∥op∥1∥ ≥ 1− 1√
4N

∥1∥ =
1

2
.

Moreover, ZZ⊤ ⪯ 2IN implies that

∥Z⊤1∥ =
√
1⊤ZZ⊤1 ≤ 2∥1∥ = 2

√
N.

Combining the above two displays yields the claimed margin bound.

C.1 MARGIN FOR INVARIANT CLASSIFIERS

We now lower bound the margin achieved by the invariant classifier w = µc. To that end, note that
yi⟨µc,xi⟩/∥µc∥ ∼ N (∥µc∥;σ2) for all i ∈ S̄. Therefore, taking σ2 = 1/d, with probability at
least 1− δ we have, for all i ∈ S̄

yi⟨µc,xi⟩
∥µc∥

√
σ2d

≥ ∥µc∥ −
1√
d
Q−1

(
δ

N

)
≥ ∥µc∥ −

√
2 log N

δ

d
.

Substituting the choices

∥µc∥2 = Θ

 1

N
(
1 +

√
N2

N1γ

)
 and d = Ω

(
log 1

δ

N2
min∥µs∥4

)
≥ Ω

(
log N

δ

∥µc∥2

)

form the proof of Theorem 1 (see Appendix E), we obtain that, with probability at least 1 − δ, the
normalized margin of µc is

Ω(∥µc∥) = Ω

 1√
N
(
1 +

√
N2

N1γ

)
 = Ω

(
min

{
1√
N

,

√
γ

N2

})
.

24



Published as a conference paper at ICLR 2023

101 102 103

d

0.2

0.4

0.6

0.8

1.0

Ro
bu

st
 A

cc
ur

ac
y

Robust Accuracy vs. d

101 102 103

d

Tr
ai

ni
ng

 A
cc

ur
ac

y

Training Accuracy vs. d

101 102 103

d

In
-D

om
ai

n 
Te

st
 A

cc
ur

ac
y In-Domain Test Accuracy vs. d

ERM
VREx
IRM
MMD
CORAL
GroupDRO
Algorithm 1
Invariant Interpolator
(not learned from data)

Figure 5: Simulation from Section 5 with an added model trained after removing the spurious fea-
ture. This demonstrated the existence of an invariant interpolator, yet our theoretical results suggest
that this type of model cannot be learned by an interpolating learning rule

In addition, letting ni ∼ N (0;σ2Id), we may also consider the invariant classifier

w = µc +
1

N

N∑
i=1

ni =
1

N

∑
e∈{1,2}

∑
(x,y)∈Si

(yixi − θeµs).

The proof of Proposition 3 (with θ1 = θ2 = 0) shows that, under the assumptions of that proposition,
the classifier w defined above attains margin of 1

4
√
N

with high probability.

We emphasize once more that, while the discussion above shows the existence of invariant classifiers
with good margin, our main results proves that these classifiers may be unlearnable from the finite
samples S1 and S2. To show this existence numerically too, we run our simulations from Section 5
and add a model that is fitted on the features where µs is removed (i.e. the new datapoints are
xi − θeµs for each point xi ∈ Se). We observe in Figure 5 that for a sufficiently large dimension
the model is both interpolating and has high robust accuracy, demonstrating the existence discussed
above. We emphasize again that this model cannot necessarily be learned by an algorithm that
receives the original (S1, S2) (before the removal of µs).

D ANALYSIS OF ALGORITHM 1

The proof that Algorithm 1 indeed achieves a non-trivial robust error will require some definitions
and more mild assumptions which we now turn to describe.
Definitions. Denote the first-stage training set indices by S, where |S| = N and second stage
“fine-tuning” set by |D| = M . Let us denote:

n̄e =
1

Ne

∑
i∈Se

ni, m̄e =
1

Me

∑
i∈De

ni, m̄e,1 =
1

Me,1

∑
i∈De,1

ni.

Models will be defined by:

we :=
1

Ne

∑
i∈Se

yixi = µc + θeµs + n̄e, e ∈ {1, 2},

fv(x;S) = ⟨v1 ·w1 + v2 ·w2,x⟩.
The Equalized Opportunity (EOpp) constraint is:

T̂1(fv;D,S) = T̂2(fv;D)

T̂e(fv;D,S) =
1

Me,1

∑
i∈De,1

fv(xi)

Additional Assumptions We assume w.l.o.g θ2 > θ1, define ∆ := θ2−θ1 > 0 and rµ = ∥µs∥
∥µc∥ > 1.

We consider rµ,∆ as fixed numbers. That is, they do not depend on N, d and other parameters of
the problem. Also define r := ∆θmax

∆+4θmax
, where θmax := argmax{|θ1|, |θ2|} ≤ 1. The following

additional assumptions will be required for our concentration bounds.
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Assumption 1. Let t > 0 be a fixed user specified value, which we define later and will control the
success probability of the algorithm. We will assume that for each e ∈ {1, 2} and some universal
constants cc, cs > 0:

∥µs∥2 ≥ tσ2csmax

{
1

r2Ne
,

1

(r∆)2Me,1
,

√
d

Me,1r∆

}

∥µc∥2 ≥ tσ2ccmax

{
1

∆2Ne
,

r2µ
(∆2Me,1)

,
r2µ

∆2Me
,

√
d

Me,1∆2
,

√
d

Me∆

}

Analyzing the EOpp constraint. Writing the terms defined above in more detailed form gives:

ϵe(v) =⟨m̄e,1, v1 (µc + θ1µs + n̄1) + v2 (µc + θ2µs + n̄2)⟩
δe(v) =⟨m̄e, v1 (µc + θ1µs + n̄1) + v2 (µc + θ2µs + n̄2)⟩

T̂e(fv;D,S) =(v1 + v2)∥µc∥2 + (v1θ1 + v2θ2)θe∥µs∥2+
⟨µc + θeµs, v1n̄1 + v2n̄2⟩+ ϵe(v)

So the EOpp constraint is:

v1
[
θ1∥µs∥2 + ⟨n̄1, µs⟩

]
θ1 + v2

[
θ2∥µs∥2 + ⟨n̄2, µs⟩

]
θ1 + ϵ1(v) =

v1
[
θ1∥µs∥2 + ⟨n̄1, µs⟩

]
θ2 + v2

[
θ2∥µs∥2 + ⟨n̄2, µs⟩

]
θ2 + ϵ2(v) (22)

Lemma 6. Consider all the solutions v = (v1, v2) that satisfy EOpp and have ∥v∥∞ = 1. With
probability 1 there are exactly two such solutions vpos,vneg, where vpos = −vneg.

We will consider vpos as the solution that satisfies vpos,1 + vpos,2 > 0.

Proof. Is it easy to see that the EOpp constraint is a linear equation in v1, v2 and with probability 1
the coefficients in this linear equations are nonzero. Therefore the solutions to this equation form a
line in R2 that passes through the origin. Consequently, this line intersects the l∞ unit ball at two
points, that we denote vpos,vneg, which are negations of one another.

The proposed algorithm. Now we can restate our algorithm in terms of vpos and vneg and analyze
its retrieved solution.

• Calculate w1 and w2 according to their definitions.

• Consider the solutions {vpos,vneg} that satisfy EOpp and also ∥v∥∞ = 1.

• Return the solution: v ∈ {vpos,vneg} which has the higher score, where the score is:

v∗ ∈ arg max
v∈{vpos,vneg}

∑
i∈D

⟨v1w1 + v2w2, yixi⟩

We first analyze the two possible solution vpos and vneg and show that their coordinates cannot be
negations of each other. Intuitively, in an ideal scenario with infinite data, the EOpp constraint will
enforce v1θ1 = −v2θ2. Then v1 = −v2 is only possible if θ1 = θ2, which we assume is not the case
(if it is, we cannot identify the spurious correlation from data). The assumption of a fixed ∆ > 0,
will let us show that indeed with high probability v1 = −v2 does not occur.

Lemma 7. Let t > 0 and consider the solutions vneg, vpos that the algorithm may return. With
probability at least 1− 34 exp(−t2) , the solutions satisfy |v1 + v2| ≥ ∆

2 .

Proof. Assume that for e ∈ {1, 2} the following events occur:

|⟨n̄e, µs⟩| ≤ r∥µs∥2 (23)

|⟨m̄1,1 − m̄2,1, µc + θeµs + n̄e⟩| ≤ r∆∥µs∥2 (24)
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Corollary 3 will show that they occur with the desired probability in our statement. Let us incorpo-
rate these events into the EOpp constraint. We group the items multiplied by v1 and those multiplied
by v2:

−v∗1
[
θ1∥µs∥2∆+ ⟨n̄1, µs⟩∆+ ⟨m̄1,1 − m̄2,1, µc + θ1µs + n̄1⟩

]
=

v∗2
[
θ2∥µs∥2∆+ ⟨n̄2, µs⟩∆+ ⟨m̄2,1 − m̄1,1, µc + θ2µs + n̄2⟩

]
Let us denote for convenience (where we drop the dependence on parameters in the notation):

a = ∥µs∥−2∆
(
⟨n̄1, µs⟩+∆−1⟨m̄1,1 − m̄2,1, µc + θ1µs + n̄1⟩

)
b = ∥µs∥−2∆

(
⟨n̄2, µs⟩+∆−1⟨m̄2,1 − m̄1,1, µc + θ2µs + n̄2⟩

)
Now the EOpp constraint can be written as −v∗1∥µs∥2∆(θ1 + a) = v∗2∥µs∥2∆(θ2 + b). Plugging
in Equation (23) and Equation (24), we see that max{|a|, |b|} ≤ r.

Assume that |θ1 + b| ≥ |θ2 + a|, and note that since ∥v∗∥∞ = 1 we have that |v∗1 | = 1 (the proof
for the other case is analogous). 8 We note that by definition ∆ ≤ 2θmax, hence if v∗2 = 0 we have
|v∗1 + v∗2 | = 1 ≥ ∆

2θmax
and our claim holds. Otherwise, we can write:

|v∗1 + v∗2 | =
∣∣∣∣1− θ2 + b

θ1 + a

∣∣∣∣ = ∣∣∣∣∆+ a− b

θ1 + a

∣∣∣∣ ≥ ∆− 2r

θmax + r
=

∆− 2 ∆θmax

∆+4θmax

θmax +
∆θmax

∆+4θmax

=
∆(∆+ 4θmax − 2θmax)

θmax (∆ + 4θmax +∆)
=

∆

2θmax
≥ ∆

2

The result above will be useful for proving the rest of our claims towards the performance guarantees
of the algorithm. We first show that the retrieved solution is the one that is positively aligned with
µc.
Lemma 8. With probability at least 1− 34 exp(−t2) , between the two solutions considered at the
second stage of our algorithm, the one with v1 + v2 ≥ 0 achieves a higher score.

Proof. Let’s write down the score on environment e ∈ {1, 2} in detail:∑
i∈De

w⊤xiyi =(v1 + v2)∥µc∥2 + ⟨µc, v1n̄1 + v2n̄2⟩+ (25)

(v1θ1 + v2θ2)θe∥µs∥2 + ⟨µs, θe (v1n̄1 + v2n̄2)⟩+
⟨m̄e, (v1 + v2)µc + (θ1v1 + θ2v2)µs + v1n̄1 + v2n̄2⟩

We will bound all the items other than (v1 + v2)∥µs∥2 with concentration inequalities, and for the
second line also use the EOpp constraint. Regrouping items in Equation (22) we have:∣∣(v1θ1 + v2θ2) ∥µs∥2 + ⟨µs, v1n̄1 + v2n̄2⟩

∣∣ ·∆ = |ϵ2(v)− ϵ1(v)|

In Corollary 3 we will prove that with probability at least 1 − 34 exp(−t2) , it holds that |ϵ2(v) −
ϵ1(v)| ≤ ∆

6 |v1+ v2| · ∥µc∥2. Combined with |θe| < 1, we get that the magnitude of the terms in the
second line of Equation (25) is bounded by 1

6 |v1+v2| · ∥µc∥2. We will also show in Corollary 3 that
the other two terms in Equation (25) besides (v1 + v2)∥µc∥2, are bounded by 1

6 |v1 + v2| · ∥µc∥2.
Hence we have for some b such that |b| ≤ 1

2 |(v1 + v2)| · ∥µc∥2 that:∑
i∈De

w⊤xiyi = (v1 + v2)∥µc∥2 + b

We note that the score in the algorithm is a weighted average of the scores over the training environ-
ments, yet the derivation above holds regardless of e. That is, θe did not play a role in the derivation
other than the assumption that its magnitude is smaller than 1. Hence it is clear that the solution
v∗ = vpos will be chosen over vneg.

8In the case where |θ2 + a| ≥ |θ1 + b| then |v∗2 | = 1 would hold.
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Once we have characterized our returned solution, it is left to show its guaranteed performance over
all environments θ ∈ [−1, 1]. We can draw a similar argument to Lemma 8 to reason about the
expected score obtained in each environment.
Lemma 9. Let t > 0 and consider the retrieved solution v∗. With probability at least 1 −
34 exp(−t2) , the expected score of v∗ over any environment corresponding to θ ∈ [−1, 1] is larger
than ∆

3 ∥µc∥
2.

Proof. The expected score can be written same as in Equation (25), except we can drop the last item
since it has expected value 0. We let θ ∈ [−1, 1] and write:

Ex,y∼Pθ

[
w⊤xy

]
=(v∗1 + v∗2)∥µc∥2 + ⟨µc, v∗1 n̄1 + v∗2 n̄2⟩+

(v∗1θ1 + v∗2θ2)θ∥µs∥2 + ⟨µs, θ (v∗1 n̄1 + v∗2 n̄2)⟩ ≥
2

3
(v∗1 + v∗2)∥µc∥2.

The inequality follows from the arguments already stated in Lemma 8, where the second and third
items in the above expression have magnitude at most 1

6 (v
∗
1 + v∗2)∥µc∥2. Now it is left to conclude

that (v∗1 + v∗2) ≥ ∆
2 , which is a direct consequence of Lemma 7 and Lemma 8.

D.1 PROOF OF PROPOSITION 2

Now we are in place to prove the guarantee given in the main paper on the robust error of the model
returned by the algorithm. We will restate it here with compatible notation to the earlier parts of this
section which slightly differ from those in the main paper (e.g. by incorporating ∆). We also note
that to obtain the statement in the main paper we should eliminate the dependence of Assumption
1 on Me,1. We do this by assuming that our algorithm draws Me as half of the original dataset for
environment e. Then we have that P(Me,1 ≤ Nmin/8) is bounded by the cumulative probability
of a Binomial variable with k = Nmin/8 successes and at least Nmin trials. This may be bounded
with a Hoeffding bound by 1 − 2 exp( 12Nmin) and with a union bound over the two environments.
To absorb this into our failure probability we require Nmin > ceo log(1/δ), leading to this added
constraint in the main paper.
Proposition 4. Under Assumption 1, let ϵ > 0 be the target maximum error of the model and t > 0.

If ∥µc∥2 ≥ tQ−1(ϵ) 15∆ σ2
√

d
Nmin

, then with probability at least 1−34 exp(−t2) the robust accuracy
error of the model is at most ϵ.

Proof. The error of the model in the environment defined by θ ∈ [−1, 1] is given by the Gaussian
tail function:

Q

(
⟨w, µc + θµs⟩

σ∥w∥

)
The nominator of this expression is simply the expected score from Lemma 9, which we already
proved is at least ∆

3 ∥µc∥
2. Then we need to bound ∥w∥ from above to get a bound on the robust

accuracy. According to Corollary 3, if we denote Nmin = min{N1, N2}, this upper bound can be
taken as 5t

√
σ2d/Nmin. We plug this in to get:

⟨w, µc + θµs⟩
σ∥w∥

≥ ∆

15t
∥µc∥2

1

σ2

√
Nmin

d

Since Q is a monotonically decreasing function, if ∥µc∥2 ≥ tQ−1(ϵ) 15∆ σ2
√

d
Nmin

our model
achieves the desired performance.

D.2 REQUIRED CONCENTRATION BOUNDS

To conclude the proof we now show all the concentration results used in the above derivation. Note
that v∗ is determined by all the other random factors in the problem, hence we should be careful
when using them in our bounds. We will only use the fact that ∥v∗∥∞ = 1 and hence ∥v∗∥1 ≤ 2.

To bound the inner product of noise vectors, we use (Rudelson & Vershynin, 2013, Theorem 1.1):
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Theorem 2. (Hanson-Wright inequality). Let X = (X1, . . . , Xn) ∈ Rn be a random vector with
independent components Xi which satisfy EXi = 0 and ∥Xi∥ψ2

≤ K. Let A be an n × n matrix.
Then, for every t ≥ 0,

P
{∣∣X⊤AX − E[X⊤AX

]
| > t

}
≤ 2 exp

[
−cmin

(
t2

K4∥A∥2HS

,
t

K2∥A∥

)]
We can apply this theorem to get the following result.

Corollary 2. for some universal constant c > 0 (when we assume w.l.o.g that Me′ ≤ Ne):

P {|⟨n̄e, m̄e′⟩| > t} ≤ 2 exp

[
−cmin

(
M2
e′t

2

σ4d
,
Me′t

σ2
√
d

)]
(26)

Proof. We take X as the concatenation of n̄e and m̄e′ , then A is set such that X⊤AX = ⟨n̄e, m̄e′⟩
(e.g. Ai,i+d = 1 for 1 ≤ i ≤ d and 0 elsewhere). Then ∥A∥2HS = d and ∥A∥ =

√
d. Since entries

in n̄e, m̄e′ are distributed as N (0, σ
2

Ne
),N (0, σ

2

Me
) respectively, we have K ≤ C σ√

min {Ne,Me′}
(assume w.l.o.g that Me′ < Ne) for some universal constant C which we can incorporate into the
constant c in the theorem. This gives:

P {|⟨n̄e, m̄e′⟩| > t} ≤ 2 exp

[
−cmin

(
M2
e′t

2

σ4d
,
Me′t

σ2
√
d

)]

The next statement collects all of the concentration results we require for the other parts of the proof.

Lemma 10. Define r := ∆θmax

∆+4θmax
where θmax := argmaxe∈{1,2}{|θe|}, denote by v∗ the solution

retrieved by the algorithm, and let t > 0. When Assumption 1 holds, then with probability at least
1− 34 exp(−t2) we have that all the following events occur simultaneously (for all e, e′ ∈ {1, 2}):

|⟨n̄e, µs⟩| ≤r∥µs∥2 (27)

|⟨n̄e, µc⟩| ≤
∆

24
∥µc∥2 (28)

|⟨m̄e,1, µc + θe′µs⟩| ≤min

{
1

4
r∆∥µs∥2,

∆

36
∥µc∥2

}
(29)

|⟨m̄e,1, µs⟩| ≤
∆

64
∥µc∥2 (30)

|⟨n̄e, m̄e′,1⟩| ≤min

{
1

4
r∆∥µs∥2,

∆2

288
∥µc∥2

}
(31)

|⟨m̄e, (µc + θe′µs)⟩| ≤
1

48
∆ · ∥µc∥2 (32)

|⟨n̄e, m̄e′⟩| ≤
1

48
∆ · ∥µc∥2 (33)

∥n̄e∥ ≤t

√
2σ2d

Ne
(34)

Proof. We first treat Equation (27) with a tail bound for Gaussian variables:

⟨n̄e, µs⟩ ∼ N (0,
σ2∥µs∥2

Ne
) ⇒ P (|⟨n̄e, µs⟩| > t2) ≤ 2 exp

(
− t22Ne

2σ2∥µs∥2

)
Hence as long as ∥µs∥2 ≥ t 2σ2

r2Ne
, Equation (27) holds with probability at least 1 − 4 exp{−t2}

(since we take a union bound on the two environments). Following the same inequality and taking a
union bound, Equation (28) also hold with probability at least 1− 8 exp{−t2} if ∥µc∥2 ≥ t 1152σ

2

∆2Ne
.
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We use the same bound for Equation (29), Equation (30) and Equation (32) while using |θe| ≤ 1.
Hence for t2 = 1

4r∆∥µs∥2 and t2 = ∆
36∥µc∥

2:

P (|⟨m̄e,1, µc + θe′µs⟩| > t2) ≤ 2 exp

(
− t22Me,1

2σ2∥µc + θe′µs∥2

)
= 2 exp

(
− (r∆)2∥µs∥4Me,1

32σ2∥µc + θe′µs∥2

)
≤ 2 exp

(
− (r∆)2∥µs∥2Me,1

128σ2

)
P (|⟨m̄e,1, µc + θe′µs⟩| > t2) ≤ 2 exp

(
− ∆2∥µc∥4Me,1

2592σ2∥µc + θe′µs∥2

)
= 2 exp

(
−∆2∥µc∥2Me,1

10368σ2r2µ

)
Similarly with t2 = 1

48∆ · ∥µc∥2:

P (|⟨m̄e, (µc + θe′µs)⟩| > t2) ≤ 2 exp

(
− ∆2∥µc∥4Me

(48σ∥µc + θe′µs∥)2

)
Taking the required union bounds we get that with probability at least 1 − 24 exp

(
−t2/2

)
Equa-

tion (29), Equation (30) and Equation (32) hold, as long as ∥µs∥2 ≥ t · 128σ2((r∆)2Me,1)
−1 and

∥µc∥2 ≥ t ·max
{
10368σ2r2µ

(
∆2Me,1

)−1
, (96σrµ)

2(∆2Me)
−1
}

.

For Equation (31) and Equation (33) we use Corollary 2: 9

P {|⟨n̄e, m̄e′,1⟩| ≥ t2} ≤ 2 exp

[
−c

M2
e′,1t

2
2

σ4d

]

Setting t2 = r∆
4 ∥µs∥2 or t2 = ∆2

288∥µc∥
2 we will get that:

P
(
|⟨n̄e, m̄e′,1⟩| ≥ min

{
r∆

4
∥µs∥2,

∆2

288
∥µc∥2

})
≤

2 exp

(
−c

M2
e′,1

σ4d
min

{
(r∆)2

16
∥µs∥4,

∆4

2882
∥µc∥4

})

Hence we require ∥µc∥2 ≥ t·c·(Me′,1∆
2)−1 ·(288σ2

√
d) and ∥µs∥2 ≥ t·c·(Me′,1r∆)−1 ·(4σ2

√
d)

for Equation (31) to hold. For Equation (33) we can get in a similar manner that it holds in case that
∥µc∥2 ≥ t · c · (Me′∆)−1(48σ2

√
d). The probability for all the events listed so far to occur is at

last 1− 32 exp
(
−t2/2

)
. Finally, for Equation (34) we simply use the bound on a norm of Gaussian

vector:

P (∥n̄e∥ ≥ t2) ≤ 2 exp

(
− t22Ne

2σ2d

)

Plugging in t
√

2σ2d
Ne

we arrive at the desired result with a final union bound that give the overall

probability of at least 1− 34 exp
(
−t2/2

)
.

We now use the bounds above to write down the specific bounds on expressions that we used during
proof.

9For simplicity, assume we have
√

M−2
1,1 +M−2

2,1 ≤ N−1
1 and that we set t large enough such that(

M−1
1,1 +M−1

2,1

)−2
t2/(σ4d) ≥

(
M−1

1,1 +M−1
2,1

)−1
t/(σ2

√
d)
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Corollary 3. Conditioned on all the events in Lemma 10, we have for e ∈ {1, 2} that:

∆

6
|v1 + v2| · ∥µc∥2 ≥ |ϵ2(v)− ϵ1(v)| (35)

1

6
|v1 + v2| · ∥µc∥2 ≥ |⟨µc, v1n̄1 + v2n̄2⟩| (36)

1

6
|v1 + v2| · ∥µc∥2 ≥ |⟨m̄e, (v1 + v2)µc + (θ1v1 + θ2v2)µs + v1n̄1 + v2n̄2⟩| (37)

r∆∥µs∥2 ≥ |⟨m̄1,1 − m̄2,1, µc + θeµs + n̄e⟩| (38)

r∥µs∥2 ≥ |⟨n̄e, µs⟩| (39)

5t

√
σ2d

mineNe
≥ ∥w∥ (40)

Proof. Equation (39) is just Equation (27) restated for convenience. Equation (38) is a combination
of Equation (29) and Equation (31):

|⟨m̄1,1 − m̄2,1, µc + θeµs + n̄e⟩| ≤
∑
e′

|⟨m̄e′,1, µc + θeµs⟩|+ |⟨m̄e′,1, n̄e⟩| ≤ r∆∥µs∥2

These are the events required for Lemma 7, hence from now on we can now assume that:

|v1 + v2| ≥
∆

2
=

∆

4
· 2 ≥ ∆

4
∥v∥1

Now we can combine with Equation (28) to prove Equation (36):

⟨µc, v1n̄1 + v2n̄2⟩ ≤
∑
e

|ve| · |⟨µc, n̄e⟩| ≤ ∥v∥1
∆

24
∥µc∥2 ≤ 1

6
|v1 + v2| · ∥µc∥2

Next we prove Equation (37) in a similar manner using Equation (32) and Equation (33):

|⟨m̄e,(v1 + v2)µc + (θ1v1 + θ2v2)µs + v1n̄1 + v2n̄2⟩| ≤∑
e′

|ve′ | · (|⟨m̄e, µc + θe′µs⟩|+ |⟨m̄e, n̄e′⟩|) ≤ ∥v∥1 · 2 ·
1

48
∆∥µc∥2 ≤ 1

6
|v1 + v2| · ∥µc∥2

For Equation (35), let us write the right hand side:

|ϵ2(v)− ϵ1(v)| = |⟨m̄2,1 − m̄1,1, v1(µc + θ1µs + n̄1) + v2(µc + θ2µs + n̄2)⟩|

= |(v1 + v2) · ⟨m̄2,1 − m̄1,1, µc +
1

2
(θ1 + θ2)µs⟩

+ ⟨m̄2,1 − m̄1,1, v1n̄1 + v2n̄2⟩+
1

2
(v1 − v2)⟨m̄2,1 − m̄1,1,∆µs⟩|

≤ |v1 + v2| ·
∑
e

|⟨m̄e,1, µc +
1

2
(θ1 + θ2µs)⟩|+ ∥v∥1

∑
e,e′

|⟨m̄e,1, n̄e′⟩|

+
1

2
∆∥v∥1

∑
e

|⟨m̄e,1, µs⟩|

≤ |v1 + v2| ·
∑
e

|⟨m̄e,1, µc +
1

2
(θ1 + θ2µs)⟩|+

4

∆
|v1 + v2|

∑
e,e′

|⟨m̄e,1, n̄e′⟩|

+ 2|v1 + v2|
∑
e

|⟨m̄e,1, µs⟩|

≤ 1

6
∆|v1 + v2|

The first inequality is simply a triangle inequality, the second plugs in the bound we obtained for
∥v∥1 and the last uses the relevant inequalities from Lemma 10.
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For Equation (40), we write the weights of the returned linear classifier as:

w = v∗1(µc + θ1µs + n̄1) + v∗2(µc + θ2µs + n̄2)

Hence we can bound:

∥w∥−(v∗1 + v∗2)∥µc∥ ≤ ∥(v∗1θ1 + v∗2θ2)µs + v∗1 n̄1 + v∗2 n̄2∥

=
√
(v∗1θ1 + v∗2θ2)

2∥µs∥2 + 2⟨v∗1 n̄1 + v∗2 n̄2, (v∗1θ1 + v∗2θ2)µs⟩+ ∥v∗1 n̄1 + v∗2 n̄2∥2

=
√
(v∗1θ1 + v∗2θ2) ((v

∗
1θ1 + v∗2θ2)∥µs∥2 + 2⟨v∗1 n̄1 + v∗2 n̄1, µs⟩) + ∥v∗1 n̄1 + v∗2 n̄2∥2

We also proved in Lemma 8, that under the events we assumed and the EOpp constraint:

(v∗1θ1 + v∗2θ2)∥µs∥2 + 2⟨v∗1 n̄1 + v∗2 n̄2, µs⟩ ≤ 2
(
(v∗1θ1 + v∗2θ2)∥µs∥2 + |⟨v∗1 n̄1 + v∗2 n̄2, µs⟩|)

)
≤ 1

3
(v∗1 + v∗2)∥µc∥2

Incorporating with v∗1θ1 + v∗2θ2 ≤ 2(v∗1 + v∗2), the concavity of the square root and Equation (34),
we get:

∥w∥ ≤
(
1 +

√
2/3
)
(v∗1 + v∗2)∥µc∥+ ∥v∗1 n̄1 + v∗2 n̄2∥

≤
(
1 +

√
2/3
)
(v∗1 + v∗2)∥µc∥+ ∥n̄1∥+ ∥n̄2∥

≤
(
1 +

√
2/3
)
(v∗1 + v∗2)∥µc∥+ t ·

√
σ2d

mineNe

≤ 4∥µc∥+ t ·

√
σ2d

mineNe

≤ 5t ·

√
σ2d

mineNe

E PROOF OF THEOREM 1

Proof of Theorem 1. Our proof simply consists of choosing the free parameters in Theorem 1
(rc, rs, d and σ) based on Propositions 1, 2 and 3 such that all the claims in the theorem hold
simultaneously. Keeping in line with the setting of Propositions 1 and 3, we take σ2 = 1/d. Next,
our strategy is to pick rs and rc so as to satisfy the requirements of Propositions 1 and 3, and then
pick a sufficiently large d so that the requirements of Proposition 2 hold as well. Throughout, we set
δ = 99/100 so as to meet the failure probability requirement stated in the theorem; it is straightfor-
ward to adjust the proof to guarantee lower error probabilities.

Starting with the value of rs, we let

r2s =
min{cn, c′n}

N

where the parameters cn, cm and c′n are as given by Propositions 1 and 3, respectively. Next, we
pick rc to be

r2c =
r2s

Cr

(
1 +

√
N2

N1γ

) =
min{cn, c′n}

CrN
(
1 +

√
N2

N1γ

)
with Cr from Proposition 1 (this setting guarantees rc ≤ rs as Cr ≥ 1). Thus, we have satisfied
the requirements in Equation (3) in Proposition 1, as well as the requirement max{rc, rs} ≤ c′n

N in
Proposition 3; it remains to choose d so that the remaining requirements hold.
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Proposition 1 requires the dimension to satisfy d ≥ Cd
N

γ2N2
1 r

2
c
log 1

δ and Proposition 3 requires d ≥
C ′
dN

2 log 1
δ . Substituting our choices of σ2 = 1/d, rs and rc above, let us rewrite the requirements

of Proposition 2 as lower bounds on d. The requirement in Equation (6) reads

d ≥ C2
s

log 1
δ

N2
minr

4
s

,

while the requirement in eq. (7) (with minor simplifications) reads

d ≥
C2
c log

1
δ

Nminr4c
max

{
(Q−1(ϵ))2,

1

Nmin
, r2s

}
.

Using rs ≥ rc and r2s ≤ 1
Nmin

, the above two displays simplify to

d ≥
max{Cc, Cs}2 log 1

δ

Nminr4c
max

{
(Q−1(ϵ))2,

1

Nmin

}
.

Therefore, taking

d = max{Cd, C ′
d, C

2
s , C

2
c }max

{
N2,

N

γ2N2
1 r

2
c

,
(Q−1(ϵ))2

Nminr4c
,

1

N2
minr

4
c

}
log

1

δ

fulfills all the requirements and completes the proof.

F DEFINITIONS OF INVARIANCE AND THEIR MANIFESTATION IN OUR
MODEL

In section 4 we show that the Equalized Odds principle in our setting reduces to the demand that
⟨w,µs⟩ = 0. Here we provide short derivations that show this is also the case for some other
invariance principles from the literature. We will show this in the population setting, that is in
expectation over the training data. We also assume that θ1 ̸= θ2.

Calibration over environments (Wald et al., 2021) Assume σ(⟨w,x⟩) is a probabilistic classifier
with some invertible function σ : R → [0, 1] such as a sigmoid, that maps the output of the linear
function to a probability that y = 1. Calibration can be written as the condition that:

Pθ(y = 1 | σ(⟨w,x⟩ − b) = p̂) = p̂ ∀p̂ ∈ [0, 1].

Calibration on training environments in our setting then requires that this holds simultaneously for
Pθ1 and Pθ2 . We can write the conditional probability of y on the prediction (when the prior over y
is uniform) as:

Pθe(y = 1 | ⟨w,x⟩ − b = α) =
exp

(
(α−⟨w,µc+θ1µs⟩+b)2

2σ2∥w∥2

)
exp

(
(α−⟨w,µc+θ1µs⟩+b)2

2σ2∥w∥2

)
+ exp

(
(α+⟨w,µc+θ1µs⟩+b)2

2σ2∥w∥2

)
Now it is easy to see that if the classifier is calibrated across environments, we must have equality
in the log-odds ratio for the above with e = 1 and e = 2 and all α ∈ R:

(α− ⟨w,µc + θ1µs⟩+ b)
2

2σ2∥w∥2
− (α+ ⟨w,µc + θ1µs⟩+ b)

2

2σ2∥w∥2
=

(α− ⟨w,µc + θ2µs⟩+ b)
2

2σ2∥w∥2
− (α+ ⟨w,µc + θ2µs⟩+ b)

2

2σ2∥w∥2
.

After dropping all the terms that cancel out in the subtractions we arrive at:

⟨w,µc + θ1µs⟩ = ⟨w,µc + θ2µs⟩.

Clearly this holds if and only if ⟨w,µs⟩ = 0, hence calibration on both environments entails invari-
ance in the context of the data generating process of Definition 2.
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Conditional Feature Matching (Li et al., 2018; Veitch et al., 2021) Treating the environment
index as a random variable, the conditional independence relation ⟨w,x⟩ ⊥⊥ e | y is a popular
invariance criterion in the literature. Other works besides the ones mentioned in the title of this
paragraph have used this, like the Equalized Odds criterion (Hardt et al., 2016). This independence
is usually enforced w.r.t available training distributions, hence in our case w.r.t Pθ1 ,Pθ2 . Writing
this down we can see that:

Pθe(⟨w,x⟩ | y = 1) = N (⟨w, µc + θeµs⟩, ∥w∥2σ2I).

Hence requiring conditional independence in the sense of Pθ1(⟨w,x⟩ | y = 1) = Pθ2(⟨w,x⟩ | y =
1) means we need to have equality of the expectations, i.e. ⟨w, µc+ θ1µs⟩ = ⟨w, µc+ θ2µs⟩ which
happens only if ⟨w, µs⟩ = 0.

Other notions of invariance. It is easy to see that even without conditioning on y, the independence
relation ⟨w,x⟩⊥⊥e used in Veitch et al. (2021) among many others will also require that ⟨w,µs⟩ = 0.
For the last invariance principle we discuss here, we note that VREx and CVaR Fairness essentially
require equality in distribution of losses (Williamson & Menon, 2019; Krueger et al., 2021) under
both environments. Examining the expression for the error of w under our setting (Equation (5))
reveals immediately that these conditions will also impose ⟨w,µs⟩ = 0.

G INVARIANT RISK MINIMIZATION AND MAXIMUM MARGIN

In the main paper we note that the IRMv1 penalty of Arjovsky et al. (2019) can be shown to prefer
large margins when applied with linear models to separable datasets. This can be shown when we
apply the IRMv1 principle with exponentially decaying losses such as the logistic or the exponential
loss. We characterize the condition on the losses below and then give the result using a technique
similar to Rosset et al. (2003) who prove that exponentially decaying losses maximize margins under
separable datasets.

For generality we do not assume anything about the data generating process (specifically, we do not
assume the data is Gaussian as we do in the main paper) and also allow for more than two training
environments. We do assume for simplicity that the datasets for each environment are of the same
size, yet the proof can be easily adjusted to account for varying sizes. Let Se = {(xei , yei )}mi=1 be
datasets for each environment e ∈ Etrain, with X = Rd,Y = {−1, 1}. Assume the pooled dataset
S = {(xei , yei )}i,e is linearly separable and we are learning with an l2 regularized IRM, that is

L(w;S) + λ1

∑
e

∥∇v:v=1L(v ·w;Se)∥+ λ2∥w∥22. (41)

Here we defined the average loss over a dataset as L(w; S̃) = 1
|S̃|

∑
(x,y)∈S̃ l(w

⊤xy). Our result
holds for losses that satisfy the following conditions for any ϵ > 0:

lim
t→∞

l(t · [1− ϵ])

l(t)
= ∞, (42)

lim
t→∞

∇s:s=t·[1−ϵ]l(s)

∇s=tl(s)
= ∞. (43)

Relation to Previous Formal Results. Previous works (Zhou et al., 2022; Lin et al., 2022) have
noted that the IRMv1 penalty cannot distinguish between solutions that achieve a vanishing 0−1 loss
(i.e. that perfectly classify the data). That is, they show that the solution of the IRMv1 problem is not
unique when perfect classification is achievable and that the set of possible solutions that coincides
with the set of possible solutions for ERM. Yet these results concern the 0−1 loss, and not the more
commonly used log-loss. Hence this result does not preclude the possibility that IRMv1 will learn
an interpolator that achieves small margin. In this section we will be interested in the implicit bias of
this loss, hence we are interested in a more specific characterization of the IRMv1 solutions that is
not provided by prior works. We ask whether out of the hyperplanes that separate S, will the IRMv1
principle find one that attains a margin that is considerably smaller than the attainable margin (hence
our negative result would not imply its failure), or instead it finds a large-margin separator and hence
our theory predicts its failure in learning a robust classifier?

While ideally we would like to give a characterization of the solutions towards SGD will converge, as
in e.g. Soudry et al. (2018), the techniques used to gain such results are inapplicable to non-convex
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losses such as the IRMv1 penalty. Hence we turn to prove a different type of result, concerning the
convergence of solutions for an ℓ2 regularized problem, as the regularization term vanishes. This has
been used in previous work to gain intuition on the type of losses that lead to margin-maximizing
solutions (Rosset et al., 2003).

Claim 1. Let ŵ(λ2) be a minimizer of Equation (41) with λ2 > 0, where we assume that the empir-
ical loss l : R → (0,∞) is monotone non-increasing, and satisfies Equation (42) and Equation (43).
Any convergence point of ŵ(λ2)

∥ŵ(λ2)∥2
as λ2 → 0 is a maximum margin classifier on S.

Proof. We prove the claim in three steps.

Showing that limλ2→0 ∥ŵ(λ2)∥22 = ∞. To this end we note that the loss is strictly positive and
due to Equation (42) it approaches 0 if and only if the margin approaches ∞. The margin can only
grow unboundedly large if the weights also do. Therefore if a sequence ŵ(λ2) approaches loss 0 as
λ2 → 0 then also ∥ŵ(λ2)∥ → ∞. Now we will show that this must happen, thus concluding this
part of the proof. Due to Equation (43) we can also observe that the IRMv1 regularizer approaches
0 as the margin approaches ∞. This holds since for any dataset S̃,

∥∥∥∇v:v=1L
(
v ·w; S̃

)∥∥∥ =

∥∥∥∥∥∥ 1

|S̃|

∑
(xi,yi)∈S̃

⟨w,xi · yi⟩ · ∇s:s=⟨w,xi·yi⟩ℓ (s)

∥∥∥∥∥∥ .
Invoking Equation (43), we may gather that for any ϵ > 0 it holds that

lim
t→∞

t · [1− ϵ] · ∇s:s=t·[1−ϵ]l(s)

t · ∇s:s=tl(s)
= (1− ϵ) · lim

t→∞

∇s:s=t·[1−ϵ]l(s)

∇s:s=tl(s)
= ∞.

Due to non-increasing monotonicity of the loss, we see that t · ∇s:s=tl(s) < 0 any t > t0 for
some t0 and approaches 0 as t → ∞.10 This means that if the margin attained by some series of
hyperplanes approaches ∞, then the value of the IRMv1 regularizer also approaches 0. Now to see
that ∥ŵ(λ2)∥ → ∞ as λ2 → 0, we observe that the objective of this series as given by Equation (41)
must approach 0. This holds since there is a series of hyperplanes whose objective approaches 0 (e.g.
any series whose norm grows sub-linearly with λ−1

2 and separates the dataset with margin that grows
to infinity). Hence any series whose objective does not approach 0 cannot be a series of minimizers.
As mentioned before, the loss can only approach 0 if ∥ŵ(λ2)∥ approaches ∞.

Maximum margin separators approach 0 faster than others. Let w1 and w2 be vectors on the
unit sphere that define separating hyperplanes, and assume w1 achieves a larger margin than w2.
That is, if we define for k ∈ {1, 2}

s
(k)
i,e = w⊤

k x
e
iy
e
i , s

(k)
e = min

i
s
(k)
i,e , and s(k) = min

e
s(k)e ,

then our assumption on the margins is that s(1) > s(2). We will show that the direction of ŵ(λ2)
cannot approach w2 as λ2 → 0. To this end, note that for some t0 it holds that for all t > t0 we
have simultaneously that:

t · s(1)∇s:s=t·s(1) l(s) < (m2|Etrain|)−1t · s(2)∇s:s=t·s(2) l(s) (44)

t · s(1)i,e∇s:s=t·s(1)i,e
l(s) ≥ t · s(1)∇s:s=t·s(1) l(s) ∀i, e (45)

10we should also note that the derivative of the loss does not approach −∞ since it is bounded below by 0,
hence it must indeed be the case that the denominator approaches 0.
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Figure 6: We plot the inner product between the (unit-normalized) weights learned by gradient
descent on the log-loss (ERM), VREx, IRMv1 and MMD (all after 20, 000 iterations of training)
with those learned by an SVM from sklearn. At high dimensions the weights of IRMv1, VREx and
ERM coincide with those of the SVM, up to a rather small difference which we think may be due to
numerical fine details of using SGD and the light regularization on the SVM. The results for IRMv1
are also somewhat noisy, due to instabilities in optimization, yet for high enough dimensions the
solutions do coincide on average with the SVM ones. The MMD does not exactly coincide with the
SVM solution, yet as the theoretical results and simulations in Section 5 of the main paper suggest,
it still fails at learning a robust model.

This is true since s(1) > s(2), s(1)i,e ≥ s(1) for all i, e, and Equation (43) holds. We will now show
that the value of the IRMv1 regularizer under tw1 is lower than that under tw2:

∑
e

∥∇v:v=1L(v ·w1;S
e)∥ =

∑
e

(
1

m

m∑
i=1

t · s(1)i,e∇s:s=t·s(1)i,e
l(s)

)2

≤ |Etrain| · (t · s(1)∇s:s=t·s(1) l(s))
2

< (m−1 · t · s(2)∇s:s=t·s(2) l(s))
2

≤
∑
e

(
1

m

m∑
i=1

t · s(2)i,e∇s:s=t·s(2)i,e
l(s)

)2

=
∑
e

∥∇v:v=1L(v ·w2;S
e)∥.

The third inequality is true since for a separating hyperplane, all the summands are negative, thus if
we only add summands then the square of the entire sum becomes larger. The second one is due to
Equation (44), while the first inequality is due to Equation (45) when we again use the negativity of
the summands.

Following the proof of Rosset et al. (2003), we can gather that the above also holds when we replace
the multiplication between gradients of the loss and the margin, simply to the value the loss. Taken
together, this means that tw1 achieves a lower loss than tw2 for all t > t0 for some t0.

Showing that only max-margin classifiers can be limit points. To finish the proof we simply note
that if w1 is a convergence point of ŵ(λ2)/∥ŵ(λ2)∥ and it achieves margin γ1, while w2 is another
vector on the unit sphere that attains margin γ2 > γ1. Then there is also a neighborhood around
w1, Nw1

= {w : ∥w∥ = 1, ∥w − w1∥ ≤ δ} with sufficiently small δ, such that each w ∈ Nw1

attains margin at most γ2 − ϵ > γ1. Therefore by our previous paragraph we know that for some t0
and all t > t0 then tw2 attains a lower loss than tw for all w ∈ Nw1

, which means w1 cannot be a
convergence point of ŵ(λ2)/∥ŵ(λ2)∥ (since the items of this series are kept out of a neighborhood
Nw1

around w1). This is a contradiction to w1 being a convergence point, meaning w2 cannot attain
a larger margin than w1.
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Our simulations indicate that indeed, when we apply unregularized IRMv1 to the synthetic setting
we study, it finds a separator that is very close to the max-margin solution. This also holds for some
other penalties such as VREx and we believe that the proof above can be adapted to this loss and
several other ones, which we leave for future work. We illustrate this in Figure 6 ref by plotting the
cosine similarity of the learned hyperplane with the hyperplane found by an SVM classifier (trained
with a hinge loss using LinearSVC from sklearn (Pedregosa et al., 2011) with C = 1000) as d
grows and we approach the interpolating regime. We note that while some other methods such as
CORAL and MMD do not maximize margin, they still separate the data with non-vanishing margin
and indeed fail achieve worst robust accuracy as the dimension grows.

H EXPERIMENTAL DETAILS FOR WATERBIRDS DATASET

Here we elaborate on experimental details in our Waterbirds experiment that were left out from the
main paper due to lack of space. The dataset is split into training, validation and test sets with 4795,
1199 and 5794 images in each set, respectively. We follow previous work (Sagawa et al., 2020b;
Veldanda et al., 2022) in defining a binary task in which waterbirds is the positive class and landbirds
are the negative class, and using the following random features setup: for every image, a fixed pre-
trained ResNet-18 model is used to extract a drep-dimensional feature vector x′ (drep = 512).
This feature vector is then converted into an d-dimensional feature vector x = ReLU(Ux′), where
U ∈ Rd×drep is a random matrix with Gaussian entries. Finally, a logistic regression classifier
is trained on x. The extent of over-parameterization in this setup is controlled by varying d, the
dimensionality of x. In our experiments we vary d from 50 to 2500, with interpolation empirically
observed at d = 1000 (which we refer to as the interpolation threshold).

For all the experiments we use the Adam optimizer, a batch size of 128 and a learning rate schedule
with initial rate of 0.01 and a decay factor of 10 for every 10,000 gradient steps. Every experiment
is repeated 25 times and results are reported over all runs. For the baseline model we train for a
total of 30,000 gradient steps whereas for our two-phased algorithm we use 15,000 gradient steps
for each model in Phase A and an additional 250 steps for Phase B.
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