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Abstract

Vehicle-to-vehicle (V2V) cooperative perception systems hold immense promise1

for surpassing the limitations of single-agent lidar-based frameworks in autonomous2

driving. While existing benchmarks have primarily focused on object detection3

accuracy, a critical gap remains in understanding how the upstream perception per-4

formance impacts the system-level behaviors—the ultimate goal of driving safety5

and efficiency. In this work, we address the crucial question of how the detection6

accuracy of cooperative detection models natively influences the downstream be-7

havioral planning decisions in an end-to-end cooperative driving simulator. To8

achieve this, we introduce a novel simulation framework, OpenCDA-∞, that9

integrates the OpenCDA cooperative driving simulator with the OpenCOOD coop-10

erative perception toolkit. This feature bundle enables the holistic evaluation of11

perception models by running any 3D detection models inside OpenCDA in a real-12

time, online fashion. This enables a closed-loop simulation that directly assesses13

the impact of perception capabilities on safety-centric planning performance. To14

challenge and advance the state-of-the-art in V2V perception, we further introduce15

the OPV2V-Safety dataset, consisting of twelve challenging and pre-crash open16

scenarios designed following the National Highway Traffic Safety Administration17

(NHTSA) reports. Our findings reveal that OPV2V-Safety indeed challenges the18

prior state-of-the-art V2V detection models, while our safety benchmark yielded19

new insights on evaluating perception models as compared to the results on prior20

standard benchmarks. We envision that our end-to-end, closed-loop benchmarking21

platform will drive the community to rethink how perception models are being22

evaluated at the system level for the future development of safe and efficient23

autonomous systems. The code and benchmark will be made publicly available.24

1 Introduction25

Accurate, robust, and rapid perception of complex and dynamic environments is essential for respon-26

sible autonomous driving. Recent advances in robotic sensing equipped with advanced machine27

learning techniques have fueled perception performance, evidenced by successes in tasks such as28

3D object detection, tracking, and semantic map segmentation. However, these advancements often29

falter in scenarios featuring extensive occlusions, small or distant objects, potentially leading to30
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catastrophic outcomes due to insufficient sensor data coverage, which underscores the challenges31

inherent in single-vehicle perception systems limited by physical constraints and occlusions.32

To overcome these limitations, recent studies have pivoted towards multi-vehicle cooperative frame-33

works that leverage Vehicle-to-Everything (V2X) or Vehicle-to-Vehicle (V2V) communication tech-34

nologies. These frameworks empower Connected and Automated Vehicles (CAVs) to share a diversity35

of data forms—from raw sensor outputs like LiDAR point clouds, RGB images, and radar frames to36

processed features and detection results—thereby collaboratively enhancing perception capabilities by37

amalgamating multiple vehicular perspectives. Despite their potential, these technologies’ evolution38

is predominantly driven by the development of diverse, large-scale, and open-sourced datasets and39

benchmarks. For instance, initiatives such as OPV2V [1], V2X-ViT [2], and V2X-Sim [3] have40

mainly utilized simulation platforms like CARLA [4] and SUMO [5] to create extensive synthetic41

datasets tailored for cooperative perception tasks. Yet, traditional evaluations using metrics like42

Average Precision (AP) fall short of capturing the full spectrum of autonomous driving requirements,43

particularly in ensuring safe driving behaviors and robust vehicular planning.44

To this end, here we introduce a novel framework that marries OpenCDA cooperative driving45

co-simulation platform [6] and the OpenCOOD cooperative perception toolset [1], which we dub46

OpenCDA-∞, allowing for holistic development and testing of cooperative perception models in a47

closed-loop, end-to-end fashion that mainly focuses on safety-centric evaluation. In other words, we48

can directly assess how the perception performance of V2V algorithms impacts the actual driving49

behavior and safety implications of the vehicles. To achieve this, we have made several enhancements50

to the OpenCDA simulation platform. First, we incorporated the OpenSCENARIO standard [7, 8]51

for precise actor controls (vehicles, pedestrians, etc.) in simulation, leading to more realistic and52

customizable scenarios. Second, we’ve added the capability to run cooperative perception models in53

real-time during simulation, enabling a true closed-loop evaluation. Third, we’ve integrated advanced54

modules for vehicle trajectory prediction and robust behavior planning to ensure that the ego vehicle55

(the one we’re controlling) makes intelligent decisions based on the perceived information.56

Moreover, We build the OPV2V-Safety dataset, comprising twelve diverse and challenging pre-crash57

traffic scenarios cataloged by the National Highway Traffic Safety Administration (NHTSA) [9],58

tailored to test the robustness of V2V perception and planning algorithms under adverse conditions.59

This dataset, featuring 4,377 frames, serves as a critical testbed for evaluating state-of-the-art 3D60

object detection techniques and multi-vehicle fusion strategies from a planning perspective. we move61

beyond standard detection accuracy metrics and introduce a multi-tiered safety-critical evaluation62

suite. Our metrics encompass not only the quality of object detection but also the robustness,63

efficiency, and stability of the overall cooperative perception system. This holistic approach provides64

a deeper understanding of how different perception models impact autonomous vehicles’ system-65

level performance and safety. Our extensive benchmarking results on OPV2V-C, using various66

V2V algorithms, reveal that models that excel in traditional detection accuracy metrics do not67

necessarily lead to the best planning outcomes or the safest driving behaviors. This underscores the68

importance of our system-level evaluation approach and the value of the OPV2V-C dataset in driving69

the development of more robust and safety-conscious V2V autonomous driving systems.70

In summary, our contributions are manifold: ❶ We propose a closed-loop, end-to-end simulation plat-71

form called OpenCDA-∞ that facilitates the planning-oriented evaluation of cooperative perception72

models at a system level. ❷ We extend the capabilities of OpenCDA with advanced functionali-73

ties, including realistic scenario customization and robust behavior planning, enabling real-time,74

online simulation, and comprehensive assessment of any perception models. ❸ We release the75

OPV2V-Safety dataset, a safety-critical testbench comprising diverse corner-case scenarios that76

can rigorously test existing V2V perception models and planning algorithms, which can facilitate77

the development of more safety-critical autonomous systems. ❹ A multi-tiered safety evaluation78

metric suite beyond traditional detection metrics has been provided, offering deeper insights into the79

safety and effectiveness of cooperative perception systems. ❺ Our extensive benchmarking results80

on state-of-the-art cooperative perception models highlight the importance of our benchmarking81

platform in regard to system-level evaluation of V2V perception.82
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2 Related Work83

Autonomous driving datasets. Publicly available, large-scale datasets always play a fundamental role84

in advancing any machine learning field, and autonomous driving is no exception. The pioneering85

KITTI dataset [10], a trailblazer in providing multimodal sensor data, marked a significant leap86

towards data-driven autonomous learning with its front-facing stereo cameras and LiDAR across87

22 sequences. Subsequent community efforts have escalated the scale and complexity of KITTI,88

including diversity in driving scenarios, sensor modalities, and data annotations that can be employed89

to train larger, multimodal algorithms for diverse vision and planning tasks. For example, the90

NuScenes [11] and Waymo Open dataset [12] are two representative multimodal datasets that consist91

of a significantly broader array of annotated RGB images and LiDAR point clouds, enabling more92

performant and robust vehicle and pedestrian detection models.93

End-to-end autonomous driving. Significant progress has been made in end-to-end autonomous94

driving. UniAD [13] integrated full-stack driving tasks in a single network with query-unified inter-95

faces. ReasonNet [14] improved perception by leveraging temporal and global scene information for96

better occlusion detection. ASAP-RL [15] proposed an efficient reinforcement learning algorithm for97

autonomous driving that simultaneously leverages motion skills and expert priors. Coopernaut [16]98

enhanced V2V cooperative driving with cross-vehicle perception and vision-based decision-makin.99

LMDrive [17] incorporated large language models, enabling natural language interaction and im-100

proving reasoning in complex scenarios. Approaches like Latent DRL [18] and Roach [19] utilized101

reinforcement learning to enhance decision-making, while ScenarioNet [20] and TrafficGen [21]102

generated diverse driving scenarios for testing. However, this end-to-end driving automation merely103

focuses on single-agent-based approaches, and a system that incorporates cooperative detection104

methods in a closed-loop simulator is in pressing need.105

V2X/V2V cooperative systems and datasets. Despite the rapid progress in single-vehicle au-106

tonomous driving, it still encounters substantial challenges in complex real-world scenarios, such107

as extreme occlusions and limited long-range perception capabilities [22]. Recent advancements108

in Vehicle-to-Everything (V2X) (including Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure109

(V2I)) technologies have enabled vehicles to connect, communicate, and collaborate, significantly110

expanding their perception range as well as compensating each other to collaboratively handling111

occlusion via shared viewpoints. OPV2V [1] paves the way by constructing a novel 3D cooperative112

detection dataset using CARLA and OpenCDA co-simulation. Other studies like V2X-ViT [2]113

and V2X-Sim [3] leverage the capabilities of smart infrastructure in conjunction with connected114

vehicles to enable Vehicle-to-Everything (V2X) perception. In contrast to these simulated datasets,115

DAIR-V2X [23] and V2V4Real [24] provide large-scale real-world data for cooperative detection116

research, establishing benchmarks on realistic and dynamic traffic scenarios.117

V2X/V2V cooperative perception models. Cooperative systems have emerged as powerful tools for118

addressing the inherent limitations of single-vehicle perception, enabling a paradigm shift towards119

multi-vehicle detection. The landscape of V2V and Vehicle-to-Everything (V2X) cooperative percep-120

tion can be broadly segmented into three categories: ❶ Early Fusion, where raw point clouds are121

shared among Connected Autonomous Vehicles (CAVs), allowing the ego vehicle to draw predictions122

based on the assembled raw data [25]; ❷ Late Fusion, where detection outputs (e.g., 3D bounding123

boxes, confidence scores) are exchanged, which are subsequently fused into a single ’consensus’124

prediction [26]; and ❸ Intermediate Fusion, where intermediate feature maps or representations are125

derived from each agent’s observation and then shared among the other CAVs [22, 27, 1, 28]. These126

categories encapsulate the diverse ways in which cooperative systems can be leveraged to enhance127

the breadth and depth of perception in autonomous driving.128

Recent frontier cooperative detection models predominantly adopt intermediate fusion strategies129

where the intermediate neural features computed from each agent’s sensor data are broadcasted,130

achieving the best trade-off between accuracy and bandwidth requirements. Specific examples131

include F-Cooper [27], which devises a simple max-pooling operation to fuse intermediate visual132

features, while V2VNet [22] employs graph neural networks to fuse shared features from connected133
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Figure 1: OpenCDA-∞: a closed-loop, end-to-end simulation platform that bridges two software
suites: the cooperative driving simulation platform OpenCDA and the cooperative perception toolkit
OpenCOOD. We further enhance this platform with advanced modules, including OpenSCENARIO
customization (Sec. 3.3), online cooperative detection (Sec. 3.2), trajectory prediction and planning
(Sec. 3.4). Finally, we build OPV2V-Safety, a challenging, pre-crash scene dataset, equipped with a
spectrum of evaluation metrics for examining cooperative perception models.

vehicle nodes. Additionally, Coopernaut [16] uses Point Transformer [29] to process shared point fea-134

tures, CoBEVT [30] introduces an innovative local-global sparse attention mechanism that captures135

spatial interactions among different views and agents, and AttFuse [1] suggests an agent-specific136

self-attention module to fuse the received features. V2X-ViT [2] designs a unified vision trans-137

former optimized for multi-agent, multi-scale perception, delivering robust performance even under138

conditions of GPS error and communication delay.139

3 OpenCDA-∞: An Online, Closed-loop, End-to-end Simulator140

3.1 OpenCDA Simulation Platform141

OpenCDA [6] is a simulation-integrated framework for dynamic cooperative driving automation142

(CDA) research, which supports a broad range of automated vehicle interactions through a benchmark-143

ing scenario database and trending CDA algorithms. As illustrated in Fig. 1 , OpenCDA coherently144

integrates several core components: simulation tools, a Python-based CDA system, and an extensive145

scenario manager. For the simulation tools, OpenCDA utilizes CARLA [4], a free open-source driving146

simulator that boasts high-quality rendering capabilities powered by the Unreal Engine. The scenario147

manager of OpenCDA is structured into four main elements: the configuration file, initializer, event148

trigger, and evaluation functions. Scenarios blend static elements, such as road structures defined149

by CARLA’s assets, with dynamic features managed by a YAML config file. Central to its design150

is the application layer, where CAVs exchange data and strategies, such as blending individual and151

communal sensing data for improved perception. OpenCDA provides both default and customizable152

protocols, enabling researchers to evaluate the entire CDA system or to conduct comparative analyses153

of specific algorithms. We refer the readers to the Appendix for more details regarding OpenCDA.154

3.2 Online Cooperative Detection155

Most simulation platforms available today, including OpenCDA, do not support the real-time oper-156

ation of trained models; instead, they heavily rely on the offline evaluation of detection accuracy.157

This static approach fails to reflect the dynamic interplay that occurs in real-world driving scenarios—158
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where detection results continuously influence downstream planning and decision-making and, in159

turn, further determine the next system state for perception. This process creates a feedback loop160

that dynamically evolves based on real-time data and interactions. Unfortunately, current driving161

simulation benchmarks [1, 3, 2] fail to account for these feedback mechanisms, focusing instead on162

static outputs that do not measure the adaptive performance of systems under changing conditions.163

To this end, we make a big step forward to fill this gap by amalgamating the current offline cooperative164

perception toolkit OpenCOOD [1] into the OpenCDA simulator. Specifically, compiling OpenCOOD165

as an additional MLManager component, our enhanced OpenCDA-∞ can now not only run a diverse166

array of cooperative detection models on the fly but also allow the outputs of these models to directly167

steer the planning and decision-making processes of its autonomous agents. This enriched feature168

makes it possible to investigate the influence of state-of-the-art cooperative perception models at a169

system level, which can more faithfully simulate real-world scenarios.170

We would like to re-emphasize the importance of building a simulator that runs online detection171

models, as we have later surfaced in Sec. 5.2 that detection accuracy, although a relatively reliable172

metric, does not necessarily strictly reveal the overall rank in terms of planning performance. Instead,173

examining other metrics beyond detection, such as safety- or efficiency-level metrics, can usually offer174

more informative insights into the system-level evaluation in various aspects. On the one hand, this175

type of real-time testing capability allows us to directly test and refine models within an end-to-end176

simulated environment that accurately reflects the unpredictability of real-world driving, thus largely177

reducing the development time before onboard deployment. On the other hand, this approach serves178

as a testbench that supports the crucial phase of the sim-to-real generalization research.179

3.3 OpenSCENARIO Add-ons180

OpenCDA, by default, utilizes the built-in CARLA traffic manager to simulate vehicle dynamics,181

automatically computing routes from initial spawn points to destinations. However, this approach182

provides limited control over the specific behaviors of individual actors, which can be restrictive183

when generating complex scenarios. OpenSCENARIO [7], a standardized XML-based language184

for driving scenarios, offers a structured method to create complex, reproducible, and configurable185

simulations that range from simple straight-road driving to intricate urban settings with multiple186

dynamic actors. This framework not only facilitates the scripting of detailed scenarios but also187

supports the encoding of high-level traffic rules and participant behaviors. We integrated this feature188

with CARLA through the ScenarioRunner extension, allowing us to construct highly challenging189

pre-crash scenarios through accurate agent behavior control. More details are in the Appendix.190

3.4 Trajectory Prediction and Behavior Planning191

OpenCDA originally did not support real-time trajectory prediction, limiting our ability to explore192

how predicted vehicle movements impact subsequent planning in automated driving systems. To193

address this, we have incorporated a trajectory prediction module capable of simulating realistic194

traffic scenarios and driver behaviors. We implemented various common trajectory prediction models195

in OpenCDA-∞: ❶ Constant Velocity: Suitable for steady traffic flow, predicting linear vehicle196

movements as x = vt. ❷ Constant Acceleration: Useful for scenarios of acceleration or deceleration,197

modeled by v = u+ at. ❸ Constant Speed and Yaw Rate: Applies to vehicles moving at a constant198

speed but changing direction, described as θ = ωt. ❹ Constant Acceleration and Yaw Rate: Combines199

linear and angular dynamics for scenarios like exit ramps. ❺ Physics Oracle Model: A comprehensive200

model for predicting complex maneuvers in high-stakes environments.201

OpenCDA utilizes a rule-based finite-state machine for planning, dynamically responding to spe-202

cific traffic scenarios. This system transitions through several states, including route calculation,203

lane changing, overtaking, and adaptive speed regulation based on proximity to obstacles (see Ap-204

pendix.A.1.1 for details). The initial planning algorithms implemented in OpenCDA constantly205

fail to complete the planned global route without incorporating prediction models, particularly in206

scenarios involving complex intersections, lane mergers, or vehicles emerging from blind spots. To207
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(a) Scene 1: Left turn obstacle A (b) Scene 2: Left turn obstacle B (c) Scene 3: Right turn obstacle A

(d) Scene 4: Left turn obstacle C (e) Scene 5: Straight obstacle A (f) Scene 6: Merging obstacle A

(g) Scene 7: Merging obstacle B (h) Scene 8: Unprotected left turn A (i) Scene 9: Highway merging A

(j) Scene 10: Lane-crossing turn A (k) Scene 11: Zigzagging A (l) Scene 12: Studden stopping A

Figure 3: The visualization of potential pre-crash moments in the OPV2V-Safety Benchmark.

enhance the planning capability, in OpenCDA-∞, we established a collision prediction mechanism208

that assesses potential future collisions within a specified lookahead time window, T seconds. Given209

the uncertainty of velocity and traffic conditions, we defined configurable parameters that delineate210

the range of possible future positions, as explained in Fig. 2, formalized as follows:211

L = min
t∈T

min
r∈[t−τ,t+τ ]

|xr − yr|2, (1)

where T = t1, t2, ..., tK represents a uniform time series, xr and yr are the respective positions of212

the ego and threat vehicles at time r, and τ accounts for prediction error. If L exceeds a predefined213

safe distance, the planning algorithm adjusts to mitigate collision risk.214

4 The OPV2V-Safety Dataset and Benchmark215

Figure 2: The diagram of our col-
lision check model for robust plan-
ning with trajectory prediction.

In this section, we will detail how we collect the OPV2V-216

Safety dataset and build the benchmark for end-to-end eval-217

uation of cooperative perception models in our end-to-end218

OpenCDA-∞ simulator.219

4.1 Data Protocols220

Scenario Setting. We generate the scenarios using the eight221

default towns, which are directly available in CARLA for easy222

reproducibility. In each scenario, we follow the safety-critical223
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pre-crash traffic from NHTSA to set up the ego vehicle’s224

driving route and the threat vehicle prone to colliding. We225

further add another layer of complexity by positioning large226

trucks to obstruct the sensors (LiDAR and cameras) of the ego vehicle, simulating challenging227

V2V co-perception conditions. Typically, each scenario features two intelligent CAVs, including a228

collaborating CAV that aids the ego vehicle in detecting potential collision threats.229

Sensor Configuration. Similar to previous works [1, 3], we configured each CAV to be equipped230

with four RGB cameras facing front, back, left, and right, respectively, so that they collectively cover231

the whole 360◦ panoramic view. Each camera has 110◦ field-of-view (FOV), capturing 800×600232

RGB frames. Additionally, a 64-channel LiDAR mounted on the vehicle roof captures detailed point233

clouds with a range of 120 meters, recording data at 10 Hz along with essential metadata such as234

position and timestamps.235

Scenario visualization. Following NHTSA guidelines, we carefully crafted twelve pre-crash sce-236

narios representing diverse challenging driving conditions. These scenarios are designed to test237

the limits of vehicle visibility and showcase the efficacy of multi-agent cooperative perception in238

mitigating visibility constraints and extreme occlusion. Fig. 3 illustrates critical moments before239

potential crashes across all scenarios, depicting a variety of hazardous driving situations. These240

include complex interactions such as left and right turn obstacles, straight and merging challenges,241

unprotected turns, highway merges, and emergency stops. The Appendix provides a detailed specifi-242

cation of these scenarios, ranging from urban intersections to rural roads, each demanding proactive243

hazard avoidance and adherence to traffic norms by the ego vehicle.244

4.2 Evaluation Metrics245

We employ a multi-tiered evaluation framework in the OPV2V-C scenario benchmark to comprehen-246

sively assess cooperative perception models across several dimensions:247

❶ Model Level: We utilize Average Precision (AP) at varying Intersection-over-Union (IoU) thresh-248

olds as standard metrics to assess 3D detection accuracy within a specified range around the ego249

vehicle, reporting AP@0.3, @0.5, and @0.7 for each scenario.250

❷ Safety Level: Critical for any driving system, safety is evaluated through Collision Rate (CR),251

Time-to-Collision (TTC), and Off-Road (OR) incidents, which provide insights into the vehicle’s252

ability to avoid collisions and maintain road discipline.253

❸ Efficiency Level: Operational efficiency is measured by Time-to-Destination (TTD), Average254

Speed (AS), and Average Route Distance (ARD), quantifying the autonomous system’s performance255

in achieving its objectives effectively.256

❹ Stability Level: Stability metrics, including average acceleration (ACC) and average yaw rate257

(AYR), assess the smoothness and predictability of vehicle movements, enhancing passenger comfort258

and trust in the autonomous system.259

❺ System Level: An aggregate score encapsulates overall performance, calculated as a weighted260

sum of normalized scores from all levels: OS =
∑n

i=1 wi × Mi, where each metric Mi is261

normalized based on its optimal value: Mi = mi/m
max
i , if mi is the higher the better; else,262

= 1− (mi/m
max
i ), if mi is the lower the better.263

These metrics collectively provide a detailed and nuanced view of the autonomous system’s capa-264

bilities, offering insights into its real-world applicability and effectiveness. Each metric has been265

chosen to reflect crucial aspects of autonomous operation, ensuring that our evaluations mirror the266

complexities and challenges of real driving scenarios.267
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5 Experiments268

5.1 Experiment Settings269

We conducted all the simulation experiments using our closed-loop simulation platform, The reference270

scenarios directly retrieve 3D bounding boxes from the server (i.e., 100% average precision), then run271

the entire simulation to get the reference metrics, such as the time-to-collision (TTC), average time272

spent to complete the route (TS), etc. We evaluated three types of cooperative detection methods:273

early fusion, intermediate fusion, and late fusion [1], all using the PointPillar [31] backbone for274

feature extraction. For intermediate fusion, we include two leading models, OPV2V [1] and V2X-275

ViT [2]. We run simulations for all the compared perception methods using the same configuration to276

deduce the impact of each detection module on the overall system performance.277

Table 1: Comprehensive diagnostic report of OpenCDA-∞ simulation performance on OPV2V-
Safety benchmark. We evaluated all the cooperative perception models on all the testing scenarios
and reported the metrics. 1) Safety Level. CR: collision rate, TTC: average time-to-collision, SOR:
stuck on road, OR: off-road. 2) Efficiency Level. TTD: time-to-destination, AS: average speed, ARD:
average route distance. 3) Stability Level: ACC: average accelaration, AYR: average yaw rate. 4)
System Level. OS: an overall score that summarizes all the metrics. ↑ / ↓: higher/lower the better.

Safety Level Efficiency Level Stability Level Sys. Level
Method V2V? CR↓ TTC↑ OR↓ TTD↓ AS↑ ARD↓ ACC↓ AYR↓ OS↑

Early Fusion No 0.500 N/A 0.000 15.50 23.91 83.71 0.295 0.132 0.516
Yes 0.000 N/A 0.000 16.05 21.75 79.93 0.354 0.125 0.758

Late Fusion No 0.417 6.31 0.000 15.80 22.53 79.34 0.298 0.132 0.535
Yes 0.083 5.59 0.083 16.39 20.30 77.12 0.249 0.109 0.610

OPV2V [1] No 0.417 6.45 0.000 16.55 20.86 81.85 0.278 0.120 0.532
Yes 0.167 6.64 0.000 18.71 19.98 79.18 0.215 0.103 0.658

V2X-ViT [2] No 0.583 5.28 0.000 16.42 21.73 81.02 0.293 0.136 0.440
Yes 0.250 5.67 0.083 18.11 20.88 77.53 0.301 0.101 0.524

5.2 Quantitative Planning Results278

Tab. 1 outlines the end-to-end simulation outcomes across different online cooperative perception279

methods as per evaluation metrics established in Sec. 4.2.280

❶ Safety Level: we may observe that models without V2V communication consistently report high281

collision rates despite utilizing advanced planning and trajectory prediction (Sec. 3.4). The Late282

Fusion and OPV2V methods report slightly better but still inadequate CRs, over 40%, infeasible283

for practical deployment. In stark contrast, the Early Fusion method with V2V communication284

achieves a zero collision rate, significantly enhancing safety across all scenarios. The V2X-ViT model,285

however, shows a CR of 33.3%, indicating varying performance depending on the fusion method286

used. Evaluating against OR metrics, only Late Fusion and V2X-ViT with V2V communication287

record a metric score of 0.083; other methodologies report no such violations.288

❷ Efficiency Level: Tab. 1 reveals a notable trend: the introduction of V2V communication typically289

results in a trade-off between safety and efficiency, often reducing Average Speed (AS) and increasing290

Time-to-Destination (TTD), due to early threat detection and preventive deceleration to avoid potential291

collision. However, Average Route Distance (ARD) tends to decrease, suggesting more efficient292

route planning. Moreover, it is worth mentioning that different models may outperform others across293

different evaluation metrics. As an illustration, while Early Fusion with V2V integration achieves an294

impressive zero CR score, emphasizing its safety, its efficiency level ARD performance doesn’t quite295

match the performance of some other models.296

❸ Stability Level: From our observations, models present distinct behaviors in this domain. Specifi-297

cally, while both Early Fusion and V2X-ViT excel in performance in ACC, Late Fusion and OPV2V298

largely enjoy the benefits of cooperative perception. In terms of AYR, the integration of V2V com-299

munication facilitates a decline in scores across all fusion methods, hinting at improved stability300

concerning yaw rate modifications.301
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Table 2: 3D cooperative detection results on in-distribution OPV2V-test dataset. We show
Average Precision (AP) at IoU=0.5. The boldfaced and underlined entries indicate the best and
second performers for enabling and disabling V2V communication, respectively.

Scenario index
Method V2V? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Avg.↑

Early Fusion No 0.92 0.75 0.91 0.79 0.70 0.93 0.67 0.32 0.28 0.85 0.81 0.72 0.72 0.57 0.65 0.54 0.70
Yes 0.88 0.91 0.95 0.89 0.71 0.95 0.67 0.43 0.58 0.93 0.80 0.73 0.75 0.64 0.83 0.79 0.78

Late Fusion No 0.91 0.75 0.95 0.82 0.63 0.82 0.67 0.29 0.35 0.84 0.71 0.72 0.64 0.47 0.65 0.63 0.68
Yes 0.89 0.87 0.94 0.88 0.69 0.81 0.82 0.38 0.54 0.91 0.65 0.75 0.71 0.52 0.77 0.68 0.74

OPV2V [1] No 0.92 0.77 0.93 0.74 0.79 0.80 0.78 0.36 0.33 0.82 0.69 0.74 0.76 0.55 0.59 0.57 0.70
Yes 0.91 0.92 0.94 0.92 0.80 0.90 0.48 0.47 0.48 0.93 0.75 0.84 0.76 0.69 0.81 0.73 0.77

V2X-ViT [2] No 0.95 0.75 0.95 0.78 0.84 0.91 0.73 0.34 0.50 0.85 0.80 0.75 0.71 0.68 0.73 0.61 0.74
Yes 0.93 0.92 0.95 0.89 0.86 0.90 0.73 0.46 0.64 0.91 0.86 0.80 0.75 0.67 0.87 0.61 0.80

❹ System Level: Our evaluation reveals a significant trade-off between safety and efficiency metrics302

in single-vehicle mode. Models like Early Fusion achieve high Average Speed (AS) scores, indi-303

cating efficient route completion but at the cost of higher collision rates (CR). Conversely, OPV2V304

showcases low CR scores but at the expense of the slowest Time-to-Destination (TTD), highlighting305

a fundamental conflict between safety and efficiency as also noted in prior studies [32, 33]. However,306

integrating V2V cooperative perception can mitigate these trade-offs. For example, Early Fusion307

with V2V not only maintains low CR but also improves TTD, showcasing the potential of V2V308

systems to break the limitations of single-vehicle perception. This analysis underscores the necessity309

for a unified system-level metric that comprehensively evaluates all performance dimensions. The310

composite Overall Score (OS) metric suggests that Early Fusion enhanced with V2V excels in311

overall system performance, while the popular V2X-ViT model scores lowest within our simulation312

framework despite claiming high detection capabilities in standard benchmarks.313

5.3 Discussions on Detection Results314

We then present comparative results using standard 3D object detection performance metrics on315

both the OPV2V-Test set and our newly introduced OPV2V-Safety set. It is worth noting that, in316

contrast to prior works like [1, 2] that adopted offline evaluation, we embed these models within our317

OpenCDA-∞ simulator for online AP assessment.318

As indicated by Tab. 2, V2X-ViT consistently outperforms others, irrespective of V2V communication,319

aligning with their original study [2]. Interestingly, this result contrasts significantly with our320

planning-focused outcomes in Tab. 1 where V2X-ViT actually lags behind other approaches in the321

planning-oriented view. To further understand the root cause, we evaluated the AP scores on the322

OPV2V-Safety dataset, as in Tab. 3. It may be seen that all detection models, regardless of the fusion323

strategies, experience a marked drop in AP scores. Specifically, without V2V, OPV2V’s AP@0.5324

is only 0.24, significantly lower than scores reported in earlier works [1, 2]. Enabled V2V sees the325

straightforward Early Fusion leading with a 0.39 AP. Still, these results are rather unacceptably low326

compared to numbers on the in-domain test set (i.e., OPV2V-test), highlighting the challenging nature327

of our proposed OPV2V-Safety benchmark. Our findings call for a reevaluation of current V2V328

perception models and emphasize the necessity for advancements in technologies that ensure safety329

and reliability in cooperative autonomous driving. This rigorous analysis of detection capabilities330

within a realistic, dynamic environment reveals critical insights into the limitations and potential331

improvements for future autonomous vehicle technologies.332

6 Concluding Remarks333

In this paper, we introduce a comprehensive closed-loop, end-to-end simulation framework called334

OpenCDA-∞ to evaluate V2V cooperative perception systems with a focus on planning-oriented335

performances beyond detection accuracy. Our framework enriches OpenCDA with functionalities336

such as online cooperative detection, OpenSCENARIO customization, trajectory prediction, and337

advanced planning capabilities, enabling online evaluation of the detection model’s impact on338

downstream planning performance. We also introduced the OPV2V-Safety benchmark, which339
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Table 3: 3D cooperative detection results on the proposed (out-of-distribution) OPV2V-Safety
dataset. We show Average Precision (AP) at IoU=0.5.

Scenario index
Method V2V? 1 2 3 4 5 6 7 8 9 10 11 12 Avg.↑

Early Fusion No 0.08 0.06 0.11 0.10 0.02 0.00 0.46 0.17 0.26 0.21 0.11 0.31 0.16
Yes 0.35 0.56 0.16 0.37 0.29 0.29 0.42 0.38 0.53 0.54 0.33 0.43 0.39

Late Fusion No 0.14 0.10 0.11 0.08 0.01 0.03 0.20 0.15 0.32 0.38 0.14 0.25 0.16
Yes 0.37 0.43 0.16 0.42 0.33 0.44 0.30 0.41 0.46 0.42 0.23 0.38 0.36

OPV2V [1] No 0.18 0.08 0.11 0.07 0.00 0.03 0.55 0.23 0.34 0.31 0.26 0.42 0.22
Yes 0.34 0.52 0.12 0.29 0.31 0.28 0.39 0.36 0.51 0.45 0.42 0.46 0.37

V2X-ViT [2] No 0.16 0.12 0.08 0.08 0.01 0.03 0.47 0.25 0.40 0.30 0.21 0.38 0.21
Yes 0.33 0.33 0.18 0.18 0.27 0.16 0.38 0.32 0.54 0.61 0.29 0.54 0.34

includes twelve complex scenarios carefully designed to challenge current cooperative systems under340

severe occlusions and challenging conditions. We provide a suite of evaluation metrics to assess341

performance across model safety, efficiency, stability, and overall system-level score. Our experiments342

demonstrate the effectiveness of our simulation framework in providing detailed insights into the343

diagnosis report of V2V perception models, highlighting their effects on planning-centric metrics like344

safety and efficiency levels. We hope these contributions mark a significant step forward in advancing345

the safety and planning-oriented benchmarks and modeling for cooperative driving systems.346
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