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1 The Full Spiking Model

We use the LIF-neuron model given by the equation:

τmb
dV b

i

dt
= Rb

i (−gLV
b
i + Ibi ), b = E, Ip, Id.

In our experiments, we set the membrane resistance Rb
i = 1.

The input currents are defined as:

IEi (t) = BE,fast
i (t) + CE,slow

i (t) + IE,ext
i (t)

I
Ip
i (t) = C

Ip,slow
i (t)

IIdi (t) = BId,fast
i (t) + IId,exti (t).

Ib,exti (t) =
√
KµbX

ext
i (t) b = E, Id

Here, Bb,fast
i (t) and Cb,slow

i (t) denote the contributions of fast E-I balanced neural network (E-INN)
dynamics and slow continuous attractor neural network (CANN) dynamics to the synaptic input of
neuron i in population b at time t, respectively. The parameter µb denotes the strength of the external
input Xext

i (t) to population b.

Connectivity Matrix The conductance parameters that govern the continuous attractor dynamics
are denoted by the symbol w, with superscripts a, b ∈ {E, Ip}. The conductance parameters that
govern the E-INN dynamics are denoted by g with superscripts a, b ∈ {E, Id}.
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wEE
i,j = wEE

max exp

󰀗
− (θ1 − θ2)

2

2a2

󰀘
/NE

wab
i,j = wab

max/(pNb)

gabi,j = gabmax/
󰁳
pNb,

Remarkably, wab
i,j is scaled by K (K being the number of connections) and gabi,j is scaled by

√
K.

The excitatory-to-excitatory connections involved in continuous attractor dynamics exhibit trans-
lational invariance [11], meaning the strength of the connection is solely dependent on the tuning
disparity between neurons. Both Ip (PV-expressing) and Id (SST-expressing) neurons are randomly
connected to excitatory neurons [6, 1]. In our study, we consider direct disinhibition within the
PV and SST populations, without explicitly accounting for the involvement of vasoactive intesti-
nal polypeptide (VIP)-expressing neurons in disinhibition. Although it is possible to incorporate
VIP-mediated disinhibition for biological plausibility, our study does not necessitate its inclusion.
Furthermore, consistent with experimental findings, we do not incorporate connections between the
PV and SST populations [7].

Fast Recurrent Input The fast recurrent input Bfast
i (t) enables the network to exhibit E-INN dy-

namics. It conforms with classical literature (e.g. [8, 9]). The input to E population is given by:

BE,fast
i (t) = ΩE + ΩId

where ΩE =
󰁓

j pi,jg
EE
i,j f

E
j (t) and ΩId =

󰁓
l pi,lg

EId
i,l f Id

l (t) denote the fast synaptic input current
from population E and Id to population E, respectively.

The input to Id population is given by:

BId,fast
i (t) = ΛE + ΛId

where ΛE =
󰁓

j pi,jg
IdE
i,j fE

j (t) and ΛId =
󰁓

l pi,lg
IdId
i,l f Id

l (t) denote the fast synaptic input current
from population E and Id to population Id, respectively. The conductances gEE

i,j , gEId
i,l , gIdEi,j , and

gIdIdi,l are the corresponding synaptic weights between neurons, and are scaled by 1/
√
K (K being

the number of connections). pi,j = {1, 0} denotes that neurons i and j are connected or uncon-
nected, respectively. We set pi,j = 1 randomly with a probability of 0.25. The fast exponential
synaptic current fb(t) is defined as,

f b
j (t) =

󰁛

k

1

τ sfast
e−(t−tj,k)/τ

s
fast , b = E, Id, Ip.

where τ sfast is the time constant for the fast synaptic dynamics, and tj,k denotes the spike time of the
kth spike of neuron j.

Slow Recurrent Input The slow recurrent input Cslow
i (t) enables the network to exhibit CANN

dynamics:
CE,slow

i (t) = ΓE + ΓIp + κSIi(t)

C
Ip,fast
i (t) = ∆E +∆Ip

where ΓE =
󰁓

j w
EE
i,j s

E
j (t) and ΓIp =

󰁓
j w

EIp
i,j f

Ip
j (t) denote the input current from population E

and Ip to population E, respectively. ∆E =
󰁓

k w
EIp
i,k s

Ip
k (t) and ∆Ip =

󰁓
k w

IpIp
i,k f

Ip
k (t) denote the

input current from the population E and Ip to the population Ip, respectively. Note that we adopt
fast inhibitory synaptic dynamics for the Ip population in the model for better correspondence with
our rate-based model in latter sections.

The conductances wEE
i,j , wEIp

i,j , wIpE
i,k and w

IpIp
i,k are the corresponding synaptic weights between

neurons, and are scaled by 1/K. κ represents the strength of shunting inhibition SIi(t), which
is modeled as the product of excitatory postsynaptic currents (EPSCs) and inhibitory postsynaptic
currents (IPSCs) [3]:

κSIi(t) = κ
󰀓
ΩE + ΓE + IE,ext

i (t)
󰀔
ΓIp .
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Finally, the slow exponential synaptic current sb(t) is defined as,

sbj(t) =
󰁛

k

1

τ sslow
e−(t−tj,k)/τ

s
slow

where τ sslow is the time constant for the slow synaptic current dynamics.

1.1 Parameters

All simulations were conducted with the same set of parameters, unless otherwise specified. Ta-
ble S1 shows the network parameters used in the simulations. Here, NE, NIp , and NId denote the
number of excitatory neurons, PV-expressing interneurons, and SST-expressing interneurons, re-
spectively. The total number of neurons in the network is given by NE+NId +NIp . The connection
probability between any two neurons is p.

Table S1: Network parameter

NE NIp NId N p

800 100 100 NE +NId +NIp 0.25

Table S2 presents the neuron parameters for both excitatory (E) and inhibitory (I) neurons. The
parameters include the membrane time constant τmb for both neuron types, the membrane potential
at which the neuron resets Vreset, the membrane potential threshold Vthreshold that triggers spiking,
and the leak conductance gL.

Table S2: Neuron parameters for both E and I neurons

τmE τmI Vreset Vthreshold gL

20 15 0. 1. 0.15

Table S3 shows the synapse parameters used in the simulations. The parameters include the time
constants for fast and slow synaptic dynamics. We choose time constants such that τ sfast is similar
to the time scale of AMPA receptors, τ sslow is similar to that of NMDA receptors. The parameter κ
represents the strength of shunting inhibition.

Table S3: Synapse parameters (part 1)

τ sslow τ sfast k

150 6 1

Table S4 shows the synapse parameters in the fast synaptic input current dynamics Bfast
i (t) used in

the simulations. The parameters include the maximum (measured by magnitude) synaptic conduc-
tances gEE

max, gEId
max, gIdEmax, and gIdIdmax.

Table S4: Synapse parameters (part 2) in the fast synaptic input current dynamics

gEE
max gEId

max gIdEmax gIdIdmax

7.5 -14.4 15 -11.4

Table S5 displays the synapse parameters in the slow recurrent input dynamics Cslow
i (t) used in

the simulations. The parameters include the maximum (measured by magnitude) synaptic weights
wEE

max, wEIp
max, wIpE

max, and w
IpIp
max.

Lastly, Table S6 presents the input parameters used in the simulations. The input parameters include
the feedforward strength µE and µId to E and Id populations, respectively. In our experiments, Id
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Table S5: Synapse parameters (part 3) in the slow recurrent input dynamics

wEE
max w

EIp
max w

IpE
max w

IpIp
max

231.25 -13.75 20.0 -5.0

neurons do not receive direct feedforward inputs. This is in line with the typical role of inhibitory
neurons in the brain, which primarily serve as interneurons and are not directly targeted by feedfor-
ward inputs.

Table S6: Input parameter

µE µId

0.1 0.

2 The Firing-rate Model

We present a firing-rate model to investigate the joint dynamics of continuous attractor neural net-
works (CANNs) and E-I balanced neural networks (E-INNs). The model builds upon an established
rate model for CANNs [12], which we further extend to include a modified rate representation of
E-INN dynamics.

2.1 Model Description

Denote by UE(x, t) the synaptic input to the excitatory neurons at time t for neurons whose preferred
stimulus is x. Let r(x, t) represent the firing rate of these neurons. The firing rate r(x, t) increases
with the synaptic input but saturates in the presence of global activity-dependent inhibition. A
solvable model capturing these aspects is given by the divisive normalization [10]:

rE(x, t) =
[UE(x, t)]

2
+

1 + k
󰁓

x′ [UE(x′, t)]
2
+

. (S1)

Here, k is a small positive constant controlling the strength of global inhibition. The rectified func-
tion is represented by [.]+. The effect of Ip neurons, which provide shunting inhibition in the spiking
model, is incorporated in the divisive normalization in Equation (S1).

The dynamics of the synaptic input to the excitatory neurons UE(x, t) is determined by the external
input Iext(x, t), the synaptic input from the CANN dynamics, the synaptic input from the E-INN
dynamics B(x, t), and its own relaxation. It is given by:

τEslow
∂UE(x, t)

∂t
= −UE(x, t) +

󰁛

x′

J(x, x′)rE(x
′, t) + Iext(x, t) +B(x, t). (S2)

Here, J(x, x′) represents the neural interaction strength from x′ to x. The key characteristic of
CANNs is the translational invariance of their neural interactions. In our model, we choose Gaussian
interactions with a range a, i.e.

J (x, x′) = J0 exp

󰀥
− (x− x′)

2

2a2

󰀦
.

The E-INN dynamics influence the excitatory neurons in the CANN dynamics by providing an input
variable B(x, t), whose dynamics is given by:

τEfast
∂B(x, t)

∂t
= −B(x, t) +

󰁛

x′

gEE(x, x′)rE(x
′, t) +

󰁛

x′

gEI(x, x′)rI(x
′, t). (S3)
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Here, ga,b(x, x′) denotes the connectivity strength of neuron x′ in population b to neuron x in pop-
ulation a and is given by:

gi,jab =

󰀝
gmax
ab , p = α
0, p = 1− α

Since both systems share the same population of excitatory neurons, their firing rates, denoted by
rE , are determined by the CANN dynamics in Equation (S1). Additionally, the firing rate of the
inhibitory neurons (I) is computed by dividing the membrane potential UI by the threshold θI , as
the membrane potential essentially integrates the current influx over time.

τ Ifast
∂UI(x, t)

∂t
= −UI(x, t) +

󰁛

x′

gIE(x, x′)rE(x
′, t) +

󰁛

x′

gII(x, x′)rI(x
′, t) (S4)

rI(x, t) = UI(x, t)/θI , (S5)

where θI denotes the threshold of inhibitory neurons. This inhibitory neuronal group I is equivalent
to the Id group in the spiking model. To avoid clutter, we omit the subscript d here since the effect
of Ip is absorbed into the divisive normalization, and thus there is not need to distinguish between
Ip and Id.

The resulting mathematical formulation is given by:

τEslow
∂UE(x, t)

∂t
= −UE(x, t) +

󰁛

x′

J(x, x′)rE(x
′, t) + Iext(x, t) +B(x, t)

rE(x, t) =
[UE(x, t)]

2
+

1 + k
󰁓

x′ [UE(x′, t)]
2
+

τEfast
∂B(x, t)

∂t
= −B(x, t) +

󰁛

x′

gEE(x, x′)rE(x
′, t) +

󰁛

x′

gEI(x, x′)rI(x
′, t)

τ Ifast
∂UI(x, t)

∂t
= −UI(x, t) +

󰁛

x′

gIE(x, x′)rE(x
′, t) +

󰁛

x′

gII(x, x′)rI(x
′, t)

rI(x, t) = UI(x, t)/θI

2.2 Model Reduction

The model can be reduced under the classical fast/slow dynamical system framework. The E-INN
dynamics is a fast dynamics compared to the CANN dynamics. We can thus assume the E-INN
dynamics is always at its equilibrium. From Equation (S3) and (S4), we have

B(x, t) =
󰁛

x′

gEE(x, x′)rE(x
′, t) +

󰁛

x′

gEI(x, x′)rI(x
′, t)

UI(x, t) =
󰁛

x′

gIE(x, x′)rE(x
′, t) +

󰁛

x′

gII(x, x′)rI(x
′, t) (S6)

Plugging Equation (S5) into Equation (S6), we can rewrite it as,

UI(x, t) =
󰁛

x′

gIE(x, x′)rE(x
′, t) +

1

θI

󰁛

x′

gII(x, x′)UI(x
′, t)

Using mean-field analysis, we represent the effects of gII (x, x′), gII (x, x′), gEI (x, x′),
gIE (x, x′) with their mean values, which are denoted as ḡEE , ḡII , ḡEI , ḡIE respectively. Simi-
larly, we have ŪI(t) = UI(x, t) = U(x′, t). Thus, we can rewrite B(x, t) and UI(x, t) as

B(x, t) = ḡEE
󰁛

x′

rE(x
′, t) + ḡEI

󰁛

x′

rI(x
′, t) (S7)

UI(x, t) =
ḡIE

󰁓
x′ rE (x′, t)

1− ḡIINI

θI

= µ
󰁛

x′

rE (x′, t) ,
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with

µ =
ḡIEθI

θI − ḡIINI
.

We can rewrite B(x, t) in Equations (S7) as

B(x, t) = ḡEE
󰁛

x′

rE (x′, t) +
µḡEINI

θI

󰁛

x′

rE (x′, t)

= β
󰁛

x′

rE(x
′, t), (S8)

where
β = ḡEE +

µ

θI
NI ḡ

EI .

Finally, we plug Equation (S8) into Equation (S2) and arrive at

τEslow
∂UE(x, t)

∂t
= −UE(x, t) +

󰁛

x′

[J (x, x′) + β] rE (x′, t) + Iext (x, t). (S9)

From Equation (S9), it is straightforward to see the effect of E-INN dynamics is absorbed into the
neural interaction strength between neurons in CANN dynamics. When β < 0, the E-INN dynamics
serve to counteract the excitatory recurrent dynamics of CANN.

For the ease of theoretical tractability, we replace the summation with integration and consider
x ∈ − (∞,∞). The rationale is to consider a one-dimensional continuous stimulus x encoded by
a population of neurons, such as the direction of movement or orientation. And we assume that
the range of possible stimulus values is much larger than the range of neuronal interactions, which
effectively introduce a neuron sheet with infinite number of neurons. Here, the infinity assumption is
merely for the ease of theoretical analysis and the neural system could just use a handful of neurons
to perform accurate integration [5]. In our case, we need to rewrite β in large NI limit:

β = ḡEE − ḡIE ḡEI

ḡII
.

We note that the β < 0 condition gives ḡEE ḡII − ḡIE ḡEI > 0, which is exactly the requirement
for maintaining E-I balance in previous literature [8, 9].

Finally, we pack everything together and arrive at the final reduced model:

τEslow
∂UE(x, t)

∂t
= −UE(x, t) +

󰁝 ∞

−∞
[J(x, x′) + β] rE(x

′, t)dx′ + Iext(x, t)

rE(x, t) =
[UE(x, t)]

2
+

1 + k
󰁕∞
−∞ [UE(x′, t)]

2
+ dx′

.

(S10)

2.3 Theoretical Analysis

2.3.1 No External Stimulus

Equilibrium Solution We first consider the equilibrium solution when no external stimulus is
present i.e. Iext(x, t) = 0. The case when external stimulus is present will be covered in latter
sections. We analyze the case when β is sufficiently small for the advantage that it permits an
analytical solution of the network stable state for the reduced model i.e., Equations (S10). Although
there is no theoretical guarantee that the final conclusions of our analysis are applicable to general
cases where β is large, we perform simulations to ensure that for reasonably large β, our conclusion
still holds (see Fig. S1B). When β is sufficiently small, the stable solution is minimally affected
by the E-INN. It is straightforward to check that, for 0 < k < kc, the network holds a continuous
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family of stationary states [11], which can be written as,

ŪE(x | z) = Ag√
2
exp

󰀗
− (x− z)2

4a2

󰀘
(S11)

r̄E(x | z) = A exp

󰀗
− (x− z)2

2a2

󰀘

where

A =

󰀕
1 +

󰁴
1− 8

√
2πak
j2

󰀖

2
√
2πak

=
1 +

󰁴
1− k

kc

2
√
2πak

(S12)

kc =
j2

8
√
2πa

j =
√
2πaJ0.

In the stable solution, we use the free parameter z to represent the center of the activity profile which
has a Gaussian shape.

Perturbative Analysis We next use the perturbative method on the stable state solution (S11)

UE(x, t) = ŪE(x | z) + δUE(x, t).

Notice that z is time-independent. Thus when Iext(x, t) = 0 we have

τEslow (t)
∂

∂t
δUE(x, t) = −δUE(x, t) +

󰁝 ∞

−∞
[J (x, x′) + β] δrE (x′, t) dx′ (S13)

We next use δUE(x, t) to rewrite δrE (x′, t),

δrE (x′, t) =

󰁝 ∞

−∞

∂r̄E (x′ | z)
∂ŪE (x′′ | z)

δUE (x′′, t) dx′′

=
2ŪE (x′ | z)

C
δUE (x′, t)−

󰁝 ∞

−∞

2kŪE (x′ | z)2 ŪE (x′′ | z)
C2

δUE (x′′, t) dx′′(S14)

where

C = 1 + k

󰁝 ∞

−∞
ŪE(x | z)2dx = 1 +

A2j2
√
2πak

2
.

Substituting Equation (S14) into (S13), we get

τEslow (t)
∂

∂t
δUE(x, t) =

󰁝 ∞

−∞

󰁝 ∞

−∞
[J (x, x′) + β]

󰀗
2ŪE (x′′ | z)

C
δ (x′ − x′′)

−2kŪE (x′ | z)2 ŪE (x′′ | z)
C2

󰀦
δUE (x′′, t) dx′dx′′ − δUE(x, t)

Exchanging x and x′, we have

τEslow (t)
∂

∂t
δUE(x, t)

=

󰁝 ∞

−∞

󰁝 ∞

−∞
[J (x, x′′) + β]

󰀗
2ŪE (x′ | z)

C
δ (x′′ − x′)

−2kŪE (x′′ | z)2 ŪE (x′ | z)
C2

󰀦
δUE (x′, t) dx′′dx′ − δUE(x, t). (S15)
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Let

G (x, x′ | z) =
󰁝 ∞

−∞
[J (x, x′′) + β]

󰀗
2ŪE (x′ | z)

C
δ (x′′ − x′)

−2kŪE (x′′ | z)2 ŪE (x′ | z)
C2

󰀦
dx′′,

Equation (S15) can thus be rewritten in a more compact form

τEslow (t)
∂

∂t
δUE(x, t) =

󰁝 ∞

−∞
G (x, x′ | z) δUE (x′, t) dx′ − δUE(x, t).

Hence, G (x, x′ | z) can be regarded as the interaction strength from neurons whose preferred stim-
ulus is x′ to neurons whose preferred stimulus is x. G (x, x′ | z) can be written as the sum of two
terms, GJ (x, x′ | z) and Gβ (x, x′ | z), with

GJ (x, x′ | z) =
󰁝 ∞

−∞
J (x, x′′)

󰀗
2ŪE (x′ | z)

C
δ (x′′ − x′)−

2kŪE (x′′ | z)2 ŪE (x′ | z)
C2

󰀦
dx′′

Gβ (x, x′ | z) =
󰁝 ∞

−∞
β

󰀥
2ŪE (x′ | z)

C
δ (x′′ − x′)− 2kŪE (x′′ | z)2 ŪE (x′ | z)

C2

󰀦
dx′′.

Both GJ (x, x′ | z) and Gβ (x, x′ | z) can be integrated explicitly, with

GJ (x, x′ | z) = Ag2

C
√
πa

exp

󰀥
− (x′ − z)

2

4a2

󰀦
exp

󰀥
(x− x′)

2

2a2

󰀦

−kA3g4

2C2
exp

󰀗
− (x− z)2

4a2

󰀘
exp

󰀥
− (x′ − z)

2

4a2

󰀦

and

Gβ (x, x′ | z) =
√
2Agβ

C
exp

󰀥
− (x′ − z)

2

4a2

󰀦
−

√
πakA3g3β

C2
exp

󰀥
− (x′ − z)

2

4a2

󰀦
.

After gathering and reorganizing terms,

G (x, x′ | z) = GJ (x, x′ | z) +Gβ (x, x′ | z)

=
Ag2

C
√
πa

exp

󰀥
− (x′ − z)

2

4a2

󰀦
exp

󰀥
(x− x′)

2

2a2

󰀦

− kA3g4

2C2
exp

󰀗
− (x− z)2

4a2

󰀘
exp

󰀥
− (x′ − z)

2

4a2

󰀦

+

√
2Agβ

C
exp

󰀥
− (x′ − z)

2

4a2

󰀦

−
√
πakA3g3β

C2
exp

󰀥
− (x′ − z)

2

4a2

󰀦
. (S16)

To rewrite Equation (S16) into a more compact form, we need some preparation first. From Equation
(S12), we can rewrite C as

C =
2

1−
󰁳
1− k/kc

. (S17)
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Moreover, from Equation (S1), C can also be expressed as

C =
Aj2

2
. (S18)

Using Equations (S17) and (S18), we arrive at the final expression of G (x, x′ | z):

G (x, x′ | z) = 2

a
√
π
exp

󰀥
− (x′ − z)

2

4a2

󰀦
exp

󰀥
(x− x′)

2

2a2

󰀦

−
1 +

󰁴
1− k

kc

a
√
2π

exp

󰀗
− (x− z)2

4a2

󰀘
exp

󰀥
− (x′ − z)

2

4a2

󰀦

+
2
√
2β

g
exp

󰀥
− (x′ − z)

2

4a2

󰀦

−

√
2β

󰀓
1 +

󰁳
1− k/kc

󰀔

g
exp

󰀥
− (x′ − z)

2

4a2

󰀦
.

G(x, x′ | z) represents the neural interaction from neuron x to x′, so it is important to consider its
eigenfunctions and eigenvalues. Specifically, the following holds:

• If a certain eigenfunction has an eigenvalue larger than one, then G(x, x′ | z) is unstable in
that direction.

• If a certain eigenfunction has an eigenvalue equal to one, then G(x, x′ | z) is neutrally
stable in that direction.

• If a certain eigenfunction has an eigenvalue less than one, then G(x, x′ | z) will converge
to a stable value as iterations proceed.

Projection onto QHO Basis To determine the eigenfunctions and eigenvalues of G(x, x′ | z), it
is necessary to first select a set of convenient basis functions. Previous studies [11, 2] have sug-
gested that the quantum harmonic oscillator (QHO) can be used as a basis function for this purpose.
The QHO is a set of complete and orthogonal basis functions in the L2-space, and is given by the
following expression:

φn(x | z) = 1

Zn
exp

󰀗
− (x− z)2

4a2

󰀘
Hn

󰀕
x− z√

2a

󰀖
.

Here, Hn denotes the n-th term of the Hermitian polynomial, while Zn is a normalization constant
that can be obtained by evaluating

󰁕
|φn(x|z)|2 = 1. The first four terms of QHOs correspond to

distortions in the direction of height, positional shift, width, and skewness. Therefore, the use of the
QHOs as the basis function can significantly enhance the theoretical analysis of the system [11, 2].

To project G(x, x′|z) onto QHO basis, we denote

Gmn =

󰁝 󰁝
φm(x|z)G(x, x′|z)φn(x

′|z)dxdx′.

By integrating over the range of x and x′, the matrix elements Gmn give the strength of the inter-
action between the mth and nth basis functions. The projection of the interaction kernel onto both
basis functions is necessary to calculate the coupling between them accurately and determine the
overall behavior of the system.

Eigendecomposition of Gmn To calculate the eigenvalues and eigenvectors of Gmn, we first write
out the general form of the QHO using the Rodrigues formula

φn(x | z) = (−1)n(
√
2a)n−1/2

√
π1/2n!2n

exp

󰀗
(x− z)2

4a2

󰀘󰀕
d

dx

󰀖n

exp

󰀗
− (x− z)2

2a2

󰀘
. (S19)
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Let

fJ
n (x | z) =

󰁝 ∞

−∞
GJ (x, x′ | z)φn (x

′ | z) dx′ (S20)

fβ
n (x | z) =

󰁝 ∞

−∞
Gβ (x, x′ | z)φn (x

′ | z) dx′ (S21)

fn(x | z) = fJ
n (x | z) + fβ

n (x | z) (S22)

Using Equation (S19), we have

fJ
n (x | z)

=
(−1)n2(

√
2a)n−

1
2

a
√
π3/2n!2n

󰁝 ∞

−∞
dx′ exp

󰀥
− (x− x′)

2

2a2

󰀦󰀕
d

dx′

󰀖n

exp

󰀥
− (x′ − z)

2

2a2

󰀦

−

󰀓
1 +

󰁳
1− k/kc

󰀔
(−1)n(

√
2a)n−

1
2

a
√
π3/2n!2n+1

exp

󰀗
− (x− z)2

4a2

󰀘 󰁝 ∞

−∞
dx′

󰀕
d

dx′

󰀖n

exp

󰀥
− (x′ − z)

2

2a2

󰀦

fβ
n (x | z) = (−1)n2β(

√
2a)n−

1
2

g
√
π1/2n!2n−1

󰁝 ∞

−∞
dx′

󰀕
d

dx′

󰀖n

exp

󰀥
− (x′ − z)

2

2a2

󰀦

−
β
󰀓
1 +

󰁳
1− k/kc

󰀔
(−1)n(

√
2a)n−

1
2

g
√
π1/2n!2n−1

󰁝 ∞

−∞
dx′

󰀕
d

dx′

󰀖n

exp

󰀥
− (x′ − z)

2

2a2

󰀦

Notice that when n ≥ 1, we have
󰁝 ∞

−∞
dx′

󰀕
d

dx′

󰀖n

exp

󰀥
− (x′ − z)

2

2a2

󰀦
= 0

Thus when n = 0

f0(x | z) =
󰀣
1−

󰁵
1− k

kc

󰀤
φ0(x | z) +

󰀓
1−

󰁴
1− k

kc

󰀔
2
√
πaβ

g
󰁳
(2π)1/2a

, (S23)

and when n ≥ 1, gβn(x | z) has no effect and hence

fn(x | z) = (−1)n2(
√
2a)n−

1
2

a
√
π3/2n!2n

󰁝 ∞

−∞
dx′ exp

󰀥
− (x− x′)

2

2a2

󰀦󰀕
d

dx′

󰀖n

exp

󰀥
− (x′ − z)

2

2a2

󰀦
(n ≥ 1).

We next integrate fn(x | z) for n ≥ 1 explicitly and obtain

fn(x | z) = (−1)n2(
√
2a)n−

1
2

√
π1/2n!2n

󰀕
d

dx

󰀖n

exp

󰀗
− (x− z)2

4a2

󰀘
.

Given the definition in Equations (S20), (S21) and (S22), we can derive Gmn using

Gmn =

󰁝 ∞

−∞
φm(x | z)fn(x | z)dx.

Specifically, when m = n = 0, from Equation (S23) we can integrate G00 explicitly:

G00 = (1 +
2
√
2πaβ

g
)(1−

󰁵
1− k

kc
).

For other m and n values we follow [2]:

Gmn = 21−n

󰁵
n!

m!

󰁌
dt

2πitn−m+1
exp

󰀕
− t2

2

󰀖
(when n ≥ 1),
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where t is a complex variable. This integral can be evaluated using the residue theorem from com-
plex analysis, which allows us to express the integral as a sum over the singularities of the integrand
in the complex plane. The singularities of the intergrand exp(−t2/2)/tn−m+1 are the points where
the denominator tn−m+1 is zero, which occur at t = 0. Thus, we can use the Laurent expansion to
evaluate the contour integral.

The final result is,

Gmn =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

(1 + 2
√
2πaβ
g )(1−

󰁴
1− k

kc
), m = n = 0;

21−n
󰁴

n!
m!

(−1)
n−m

2

2
n−m

2 (n−m
2 )!

, n−m being an even integer;

0, otherwise.

The elements of the matrix G are:

G =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

󰀓
1 + 2

√
2πaβ
g

󰀔󰀓
1−

󰁴
1− k

kc

󰀔
0 −

√
2
4 0 . . .

0 1 0 −
√
6
8 . . .

0 0 1
2 0 . . .

0 0 0 1
4 . . .

. . . . . . . . . · · · . . .

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
.

Notice that matrix G is an upper triangular matrix. We can read its eigenvalues directly from its
diagonal elements. Hence, expressed in the QHO basis, the eigenvalues of the kernel G(x, x′ | z)
are,

λ0 =

󰀣
1 +

2
√
2πaβ

g

󰀤󰀣
1−

󰁵
1− k

kc

󰀤

λn = 21−n, for n ≥ 1.

Computing the first two eigenvectors of the kernel G(x, x′ | z) is straightforward since there are
only one nonzero elements in the each of the first two columns of G:

v0 = (1, 0, 0, · · · )T

v1 = (0, 1, 0, · · · )T .

Consequently, the first two right eigenfunctions of the kernel G(x, x′ | z) are,

uR
0 (x | z) =

󰁛

l

v0,lφl(x | z) = φ0(x | z)

uR
1 (x | z) =

󰁛

l

v1,lφl(x | z) = φ1(x | z).

That is, the first two eigenfunctions of the kernel G(x, x′ | z) are precisely the first two basis
functions of QHO. However, the remaining eigenfunctions are more intricate and are not relevant to
our present investigation, and hence are omitted in this study.

Implications The first two eigenfunctions of the kernel G(x, x′ | z) are also the first two basis
functions in QHO, which describe distortions in the height and positional shift modes.

Let us define

λ∗
0 ≡ λ0

󰀏󰀏󰀏
β=0

=

󰀣
1−

󰁵
1− k

kc

󰀤
.

λ∗
0 thus corresponds to the first eigenvalue when the effect of E-INN dynamics is neglected. When

β < 0, we have

λ0 =

󰀣
1 +

2
√
2πaβ

g

󰀤󰀣
1−

󰁵
1− k

kc

󰀤
< λ∗

0

11



Figure S1: Simulation results on the reduced firing-rate model. (A) The firing-rate model converges
faster when β < 0. White dashed lines indicate when the bump height is 95% of its final value. (B)
The convergence leading time vs. different β values.

and
λ1 = 1.

Therefore, distortions in the height mode will decay more rapidly in the presence of E-INN dynamics
than in its absence (Fig. S1).

The second eigenvalue indicates that the coupled network dynamics is neutrally stable in the second
motion mode. Any distortions in the positional shift mode will remain unchanged. This means that
the ability to maintain a continuous family of activity bumps, as in the original CANN model, is not
compromised when E-INN dynamics is included.

In our case, the E-INN dynamics in the rate-based model has no effect on higher motion modes,
since β does not appear in the eigenvalues other than the first one. Consequently, distortions in these
modes will decay at the same rate regardless of whether E-INN dynamics are coupled. Nonetheless,
these higher order modes decay exponentially fast due to eigenvalues λn = 21−n when n ≥ 1.
Therefore, these modes do not dominate the convergence rate of CANN dynamics.

2.3.2 Suddenly Moving Stimulus

Section 2.3.1 considers the convergence rate of the model near the equilibrium state when no stim-
ulus is present. We deal with the scenario when the external stimulus is present in this section.
Specifically, we investigate how E-INN dynamics contribute to the behavior of the model under a
suddenly moved stimulus in this section.

Assuming the presence of a constant external stimulus Iext(x, t), we consider the model reaching
its equilibrium state for t < 0. At time t = 0, the external stimulus suddenly moves to a nearby
position z0.

Without loss of generality, we assume that for t > 0, the external stimulus takes the form:

Iext (x, t) = α
Ag√
2
exp

󰀥
− (x− z0)

2

4a2

󰀦
,

where α is a positive number.

As the distortion δUE(x, t) is primarily composed of positional shift, with high-order shape distor-
tions from other motion modes, we can assume the solution for UE(x, t) to be of the form:

UE(x, t) = ŪE(x | z(t)) + δUE(x, t)

= ŪE(x | z(t)) +
∞󰁛

n=0

an(t)φn(x | z(t)) (S24)
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The external input can also be expressed in a similar way:

Iext(x,t) =

∞󰁛

n=0

In(t)φn(x | z),

where In =
󰁕
Iext(x, t)φn(x | z)dx is the projection of the external input onto the nth basis func-

tion.

Following [2], the coefficient an(t) in Equation (S24) can be expressed as:
󰀕

d

dt
+

1− λn

τEslow

󰀖
an =

In
τEslow

−
󰀗
U0

󰁴
(2π)1/2aδn1 +

√
nan−1 −

√
n+ 1an+1

󰀘
1

2a

dz

dt

+
1

τEslow

∞󰁛

r=1

󰁵
(n+ 2r)!

n!

(−1)r

2n+3r−1r!
an+2r. (S25)

Using the center-of-mass definition:

z(t) =

󰁕∞
−∞ dxU(x, t)x
󰁕∞
−∞ dxU(x, t)

we obtain:

dz

dt
=

2a

τEslow

I1 +
󰁓∞

n=3, odd

󰁴
n!!

(n−1)!!In + a1

U0

󰁳
(2π)1/2a+

󰁓∞
n=0, even

󰁴
(n−1)!!

n!! an

. (S26)

Equations (S25) and (S26) are master equations of the perturbative analysis.

For our purposes, in the following we will only consider coefficient a0 and set high-order coefficient
an to 0 for n ≥ 1, as the E-INN dynamics does not have effect on high-order motion modes. We will
consider In up to n = 1, and set In to 0 for n ≥ 2, as I1 drives the positional shift of the network
dynamics, and thus cannot be neglected.

From Equations (S25) and (S26) we obtain:
󰀕

d

dt
+

1− λ0

τEslow

󰀖
a0 =

αAg√
2τEslow

󰁴
(2π)1/2a exp

󰀥
− (z0 − z)

2

8a2

󰀦
(S27)

and
dz

dt
=

2a

τEslow

I1

Ag
󰁳
(π/2)1/2a+ a0

=
αAg

󰁳
(2π)1/2a (z0 − z) exp

󰁫
− (z0−z)2

8a2

󰁬

τEslow

󰀓
Ag

󰁳
(2π)1/2a+

√
2a0

󰀔 (S28)

It is noteworthy that I1 and a0 are functions of t, but for the sake of brevity, we shall drop the depen-
dence. By employing the solution to ẋ = ax+g(t), which is given by x(t) = eat

󰁕 t

0
e−asg(s)ds+c,

and taking into account the boundary condition that the network dynamics is in its equilibrium state
when t = 0 (i.e., a0 = 0), we can derive the solution to Equation (S27):

a0(t) =

󰁝 t

0

dt′

τEslow
exp

󰀗
−1− λ0

τEslow
(t− t′)

󰀘󰀫
α
Ag√
2

󰁴
(2π)1/2a exp

󰀥
− (z0 − z)

2

8a2

󰀦󰀬
. (S29)

Combining Equations (S28) and (S29) we get:

dz

dt
=

󰀫
α

τEslow
(z0 − z) exp

󰀥
− (z0 − z)

2

8a2

󰀦󰀬
R(t)−1 (S30)
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where

R(t) = 1 + α

󰁝 t

0

dt′

τEslow
exp

󰀥
−1− λ0

τEslow
(t− t′)− (z0 − z (t′))

2

8a2

󰀦
. (S31)

Equations (S30) and (S31) provide insight into the speed of network adaptation to a suddenly moving
stimulus when accounting for the effects of changes in bump height on the network dynamics. In
Section 2.3.1, we introduced λ∗

0 as the first eigenvalue for CANN without E-INN dynamics:

λ∗
0 =

󰀣
1−

󰁵
1− k

kc

󰀤
.

For β < 0, we obtain

λ0 =

󰀣
1 +

2
√
2πaβ

g

󰀤󰀣
1−

󰁵
1− k

kc

󰀤
< λ∗

0.

Thus, we have the relationship
dz

dt

󰀏󰀏󰀏
λ0

>
dz

dt

󰀏󰀏󰀏
λ∗
0

holding for arbitrary z values. That is, when the stimulus suddenly moves to a new location, the
coupled network dynamics always converge faster to the new location.

2.3.3 Smoothly Moving Stimulus

In this section, we examine the tracking dynamics of a smoothly moving stimulus. A CANN pos-
sesses the ability to track a smoothly moving stimulus up to a maximum speed, denoted as vmax. In
the absence of negative feedbacks [4], the activity bump position consistently lags behind the true
position of the stimulus, and we denote the magnitude of this lag as s.

Assuming that the external stimulus is moving at a constant speed v, we can substitute z0 with vt in
Equation (S30), resulting in s = vt−z, where z represents the instantaneous location of the activity
bump.

To investigate the effect of E-INN dynamics on the smooth tracking ability of CANNs, we examine
the changes in the lag distance s and the maximal trackable speed vmax.

By substituting s = vt − z into Equation (S30), we obtain the following expression for the time
derivative of the lag distance s:

ds

dt
= v − αs

τEslow
exp

󰀕
− s2

8a2

󰀖
R(t)−1

where

R(t) = 1 + α

󰁝 t

−∞

dt′

τEslow
exp

󰀥
−1− λ0

τEslow
(t− t′)− s (t′)

2

8a2

󰀦
. (S32)

At equilibrium, we have s(t′) = s(t) for any t′. For a sufficiently strong stimulus, this equilibrium
is reached quickly. By using this approximation, we can integrate Equation (S32) explicitly and
obtain:

R(t) = 1 +
α

1− λ0
exp

󰀗
− s2

8a2

󰀘

We can then solve for v and obtain:

v =
αs

τEslow
exp

󰀕
− s2

8a2

󰀖
R(t)−1.

Let us define the function g(s) as::

g(s) =
αs

τEslow
exp

󰀕
− s2

8a2

󰀖
R(t)−1.
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Figure S2: When β < 0, we have λ0 < λ∗
0 and the coupled network dynamics thus have smaller

tracking lag and larger maximal tractable speed. Filled circles: stable fixed points. Empty circles:
unstable fixed points.

The lag distance s and the maximal trackable speed vmax can be investigated by plotting g(s) vs. s
(Figure S2). The function g(s) is concave with respect to s, so there is one stable fixed point (on
the left) and one unstable fixed point (on the right) when g(s) = v (for v < vmax). The stable
fixed point on the s-axis is denoted as s̄(v), which represents the distance that the activity bump lags
behind the stimulus.

Similar to the analysis in Section 2.3.2, we find that when β < 0, the lag distance s̄(v) is always
smaller with E-INN dynamics compared to without E-INN dynamics, as expressed by the inequality

s̄(v)
󰀏󰀏󰀏
λ0

< s̄(v)
󰀏󰀏󰀏
λ∗
0

Furthermore, the maximal trackable speed vmax is given by max g(s). If the external stimulus moves
faster than vmax, the network cannot track it. In the case of β < 0, we have

max
λ0

g(s) > max
λ∗
0

g(s).

implying that the CANN dynamics with E-INN dynamics can tolerate a higher maximal speed com-
pared to without E-INN dynamics.
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