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ENHANCING TRUST IN LARGE LANGUAGE MODELS WITH
UNCERTAINTY-AWARE FINE-TUNING

A APPENDIX

A.1 EXPERIMENTAL DETAILS

A.1.1 DATASETS

CoQA Conversational Question Answering (CoQA) (Reddy et al., 2019) dataset was developed to
evaluate models’ ability to respond to natural, dialogue-based questions, with free-form text answers
supported by highlighted evidence from the passage. The full dataset comprises of 127k question-
answer pairs derived from 8k conversations based on text passages across 7 distinct domains. For all
our experiments, we utilize the development subset of CoQA, which consists of 8k question-answer
pairs. Figure 4 shows the color-coded co-reference chains in CoQA as illustrated in the (Reddy
et al., 2019).

TriviaQA TriviaQA (Joshi et al., 2017) is a reading comprehension dataset consisting of over
650k question-answer-evidence triplets. It includes 95,000 question-answer pairs authored by trivia
enthusiasts, along with an average of six independently gathered evidence documents per question,
providing high-quality distant supervision for answering the questions. In our experiment, we used
the validation split of the dataset with around 10,000 question-answer pairs. Table 5 shows some of
the samples from the dataset.

OK-VQA Outside Knowledge-Visual Question Answering benchmarks (Marino et al., 2019) con-
sists of visual queries where the image content alone is not sufficient to answer the questions. Thus,
it requires models to incorporate external knowledge to generate accurate answers. The dataset con-
sists of 14k questions across 10 knowledge categories. In our experiment, we used the validation
split of the dataset with around 5k question-answer pairs. Figure 5 shows a few samples from the
dataset across different knowledge categories.

Figure 4: Sample from CoQA (Reddy et al., 2019) illustrating the co-reference chain of conversa-
tional questions.
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Question Answer
Miami Beach in Florida borders which ocean? Atlantic
What was the occupation of Lovely Rita according to the song by the Beatles Traffic Warden
Who was Poopdeck Pappys most famous son? Popeye
The Nazi regime was Germany’s Third Reich; which was the first Reich? HOLY ROMAN EMPIRE

Table 5: Data samples from TriviaQA (Joshi et al., 2017)

Figure 5: Data samples from OK-VQA (Marino et al., 2019) across different knowledge categories.

BioASQ The BioASQ (Krithara et al., 2023) challenge, conducted every year, focuses on tech-
niques in large-scale biomedical semantic indexing and question answering (QA). For our exper-
iments, we utilize Task B (Table 6) from the eleventh edition of the BioASQ challenge (BioASQ
2023), which includes biomedical questions in English and their corresponding gold standard an-
swers. We consider exact answers as gold answers where available; otherwise, we refer to the ideal
answers field in the dataset.

Question Answer
Which amino acid in implicated in the Blue diaper syndrome? tryptophan
What are the outcomes of ubiquitination? Protein degradation, Degradation of proteins
What causes Serpentine Supravenous Hyperpigmentation? 5-fluorouracil, docetaxel
What are positive cell-cycle regulators that can cause cancer when mutated called? Proto-oncogenes

Table 6: Data samples from BioASQ (Krithara et al., 2023)

A.1.2 OPEN-BOOK QA PROMPT

Prompt:

Answer the following question as briefly as possible.
Context: [Provided context paragraph]
Question: [Associated Question]
Answer:

A.1.3 FINETUNING HYPERPARAMETERS AND IMPLEMENTATION

We fine-tune our models for all experiments for 3 epochs using LoRA (Hu et al., 2022) with AdamW
optmizer (Loshchilov & Hutter, 2019). We use an initial learning rate of 1e-4, weight decay of 0.001
and a warm up ratio of 0.03. In our experiments we used Low-Rank Adaptation (LoRA) to efficiently
fine-tune pre-trained LLMs and LVLMs for the causal language modeling task. For LLMs, we set
the LoRA rank as 32, alpha parameter as 64 and a dropout of 0.1. LoRA was applied specifically
to the following modules: q proj, k proj, v proj, up proj, and down proj. In addition to LoRA,
we applied 4-bit normalized float (nf4) quantization to the model’s parameters and utilized FP16
precision during fine-tuning to reduce the computational overhead.

For inference, we utilized FP16 precision and the default greedy decoding provided by Hugging
Face with temperature value T=0.3. The predictive entropy and semantic entropy are estimated by
generating 5 stochastic sequences from the model, each obtained through temperature sampling with
a temperature setting of T=0.3.This temperature was chosen to obtain optimal uncertainty estimates
balanced with high quality generated text, based on the ablation study shown in Figure 6. Our source
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code was implemented using Pytorch 1 framework and the models from Hugging Face 2 library. We
will make the source code available to the community for reproducing the results.

For our LVLM model, LLaVA-1.5 (Liu et al., 2024a), we configured LoRA with a rank of 8, an
alpha value of 8, and applied a 0.1 dropout rate to mitigate overfitting on the small OK-VQA training
subset. In addition to the proposed UA-CLM loss, we experimented with a combined loss function
that anneals the CLM loss with our UA-CLM loss. This approach allows the model to learn to answer
OK-VQA queries using the context provided in the early stages of training, without uncertainty
calibration. As training progresses, we shift our focus toward calibrating the model’s uncertainty.
By this stage, the model has already learned to answer visual question-answering prompts, allowing
us to refine its performance on questions it is likely to answer correctly or incorrectly, based on
insights gained during the initial training phases. Specifically, we assign a higher weight to the
CLM loss in the early stages of training, gradually increasing the weight of the UA-CLM loss after
20% of the training is completed as shown in Equation 4. Our ablation results for this experiment
are presented in Table 9.

L = LCLM + β · LUA-CLM where β =

{
0.2 if steps ≤ 0.2 · total steps
0.8 if steps > 0.2 · total steps

(4)

A.2 TEXT GENERATION QUALITY METRICS

• ROUGE-L (Lin & Och, 2004): Recall-Oriented Understudy for Gisting Evaluation
(ROUGE) is a widely-used evaluation metric for assessing the quality of text generated
based on n-gram matching. We use the Rouge-L variant which uses the longest common
subsequence between the generated answer and the ground truth answer.

• Exact Match (EM): Exact Match (EM) metric is a stringent evaluation criterion used
to assess the performance of models on tasks such as question answering (QA), where a
generated response is compared to a reference answer. It is a widely used metric for open-
book QA, this metric evaluates a model’s ability to extract the precise text span from the
context to answer a question.

• Accuracy: The generated answer is considered as accurate if it achieves Rouge-L(y, ŷ) >
0.3, for a given reference answer y and a model generation ŷ. We follow this criterion for
quantifying accuracy in free-form text generation based on the findings from (Kuhn et al.,
2023) that demonstrated this criterion closely matches the human evaluation accuracy on
COQA and TriviaQA datasets, both of which are utilized in our experiments.

• BERTScore (Zhang et al., 2020): BERTScore utilizes word embeddings to compute a
similarity score between the tokens in the prediction and ground truth and has shown to
well correlate with human judgement. We report Precision, Recall and F1 BERTScores for
all our experiments.

A.3 UNCERTAINTY ESTIMATION METRICS

We assess uncertainty in natural language predictions by utilizing the Area Under the Receiver Op-
erating Characteristic (AUROC) scores, calculated between correct and incorrect predictions across
the following metrics:

• Predictive Entropy Fomicheva et al. (2020): This is a widely used measure for uncer-
tainty estimation and is defined as the entropy of the model’s output probability distribu-
tion from stochastic generated responses. Formally, for a specific instance x, the predic-
tive entropy, denoted as PE(x), is defined as the conditional entropy of the output ran-
dom variable Y , with realization y, given x (Kuhn et al., 2023): PE(x) = H(Y |x) =
−
∫
p(y|x) ln p(y|x)dy

• Semantic Entropy (Kuhn et al., 2023): Defined as entropy of output distributions in se-
mantic event-space rather than traditional token event-space and has been shown to be a
good indicator in detecting confabulation in language models.

1https://pytorch.org/
2https://huggingface.co/
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Table 7: Evaluation of generated text quality metrics: Comparative analysis of Causal Language Modeling
(CLM) and Uncertainty-aware Causal Language Modeling (UA-CLM) fine-tuning methods. The results in the
table indicate that UA-CLM achievies similar or better generated text quality metrics than standard CLM across
a range of models and datasets.

Dataset Model Finetuning
Method Rouge-L Exact Match Accuracy BERT Score

(Precision)
BERT Score

(Recall)
BERT Score

(F1)

CoQA

Llama-2-7b CLM 0.8886 0.8071 0.9253 0.9633 0.9598 0.9604
UA-CLM 0.8882 0.8027 0.9264 0.9671 0.9644 0.9648

Llama-2-13b CLM 0.9106 0.8434 0.9406 0.9678 0.9639 0.9650
UA-CLM 0.9118 0.8204 0.9461 0.9732 0.9698 0.9705

Gemma-2b CLM 0.8654 0.7606 0.9143 0.962 0.9548 0.9570
UA-CLM 0.8632 0.7632 0.9088 0.9627 0.9554 0.9578

TriviaQA

Llama-2-7b CLM 0.5867 0.4939 0.6385 0.8743 0.8785 0.8754
UA-CLM 0.6342 0.5627 0.6754 0.8951 0.8883 0.8910

Llama-2-13b CLM 0.6588 0.5883 0.6967 0.9026 0.8989 0.9001
UA-CLM 0.7277 0.6445 0.7710 0.9204 0.9164 0.9177

Gemma-2b CLM 0.4349 0.3674 0.4759 0.8375 0.8349 0.8355
UA-CLM 0.4563 0.3915 0.4959 0.8404 0.8382 0.8387

OK-VQA Llava-1.5-7b CLM 0.5569 0.5099 0.5891 0.8897 0.8864 0.8877
UA-CLM 0.5354 0.4950 0.5643 0.8841 0.8820 0.8827

Table 8: Uncertainty calibration analysis: The results show UA-CLM have more pronounced negative cor-
relation between the uncertainty estimates and the generated text quality (ROUGE-L) than standard Causal
Language Modeling CLM, indicating enhanced reliability in uncertainty quantification with UA-CLM.

Dataset Model Finetuning
Method

Spearman’s rank correlation coefficient ↓ Pearson correlation coefficient ↓
Token

Entropy Perplexity Predictive
Entropy

Semantic
Entropy

Token
Entropy Perplexity Predictive

Entropy
Semantic
Entropy

CoQA

Llama-2-7b CLM -0.2130 -0.2379 -0.3398 -0.2898 -0.2029 -0.2109 -0.2710 -0.2881
UA-CLM -0.2479 -0.3401 -0.4334 -0.3742 -0.3414 -0.3414 -0.3414 -0.3414

Llama-2-13b CLM -0.2325 -0.2523 -0.3253 -0.3004 -0.2302 -0.2495 -0.3001 -0.2636
UA-CLM -0.2398 -0.3280 -0.4170 -0.3717 -0.2335 -0.3244 -0.3269 -0.3481

Gemma-2b CLM -0.3639 -0.3629 -0.4335 -0.3756 -0.3860 -0.3713 -0.3483 -0.3399
UA-CLM -0.3676 -0.4063 -0.4476 -0.4127 -0.4033 -0.4019 -0.3517 -0.3530

TriviaQA

Llama-2-7b CLM -0.5627 -0.5863 -0.5765 -0.5994 -0.5047 -0.4854 -0.2864 -0.5020
UA-CLM -0.5713 -0.6011 -0.5822 -0.5980 -0.5385 -0.5326 -0.3382 -0.4916

Llama-2-13b CLM -0.5711 -0.5845 -0.5522 -0.5959 -0.5155 -0.4915 -0.4548 -0.4612
UA-CLM -0.5725 -0.5862 -0.5607 -0.5854 -0.5362 -0.5407 -0.4786 -0.4479

Gemma-2b CLM -0.5636 -0.5772 -0.5609 -0.5537 -0.5020 -0.4534 -0.4494 -0.4514
UA-CLM -0.5623 -0.5913 -0.5457 -0.5928 -0.5164 -0.5010 -0.4534 -0.4947

OK-VQA Llava-1.5-7b CLM -0.1253 -0.1132 -0.1320 -0.1062 -0.0862 -0.0861 -0.1256 -0.1340
UA-CLM -0.1606 -0.1619 -0.2050 -0.2660 -0.0748 -0.1214 -0.2100 -0.3020

• Perplexity Fomicheva et al. (2020): A standard metric to assess the quality of
model and is defined as the inverse probability of the generated text: Perplexity =

exp
(
− 1

N

∑N
i=1 log2 p(wi|w1, . . . , wi−1)

)
A.4 ADDITIONAL RESULTS

The results in the Table 7 presents a detailed quantitative evaluation of various text generation qual-
ity metrics across various models, datasets, and uncertainty quantification (UQ) metrics. It compares
standard Causal Language Modeling (CLM) with our Uncertainty-Aware Causal Language Model-
ing (UA-CLM).

The results in Table 8 presents quantitative data with the values of Spearman’s rank correlation co-
efficient and Pearson correlation coefficient across different models, datasets, and uncertainty quan-
tification (UQ) metrics, with a specific focus on comparing standard Causal Language Modeling
(CLM) and our Uncertainty-Aware Causal Language Modeling (UA-CLM). The data reveals that
UA-CLM exhibits a stronger inverse correlation between UQ metrics and ROUGE-L scores, indi-
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Figure 6: Ablation study: Effect of temperature value on the quality of generated text and the quality of
uncertainty estimates evaluated with AUROC for hallucination detection. The study was performed on pre-
trained Llama-2-7B model with CoQA dataset. Based on this study, we selected temperature T=0.3 as it results
in optimal AUROC and ROUGE-L scores.

Figure 7: Selective generation (Llama-2-7B/TriviaQA)

cating better reliability of uncertainty estimates. This enhanced inverse relationship suggests that
UA-CLM is more adept at associating higher uncertainty with low quality text generation quality
and vice versa, which is a key indicator of better uncertainty calibration.

Table 9: Ablation study: Effect of different loss functions during fine-tuning. Exact match is used
as accuracy metric in computing AUARC.

Dataset Model Fine-tuning Loss AUROC (Hallucination/Confabulation detection) AUARC (Area under rejection accuracy curve)

Token
Entropy Perplexity Predictive

Entropy
Semantic
Entropy

Token
Entropy Perplexity Predictive

Entropy
Semantic
Entropy

OKVQA Llava-1.5-7b
LCLM 0.5504 0.5419 0.5455 0.537 0.5809 0.5781 0.579 0.5747
LUA-CLM 0.5839 0.6032 0.5701 0.6727 0.5657 0.5771 0.5601 0.6028
LCLM + β ∗ LUA-CLM 0.6001 0.5984 0.6106 0.6638 0.5989 0.5965 0.6012 0.6265

CoQA Llama-2-7b LCLM 0.6252 0.632 0.6635 0.6889 0.823 0.829 0.8516 0.8405
LUA-CLM 0.6955 0.7398 0.7413 0.7741 0.8246 0.8477 0.8743 0.8571
LCLM + β ∗ LUA-CLM 0.6101 0.6183 0.6978 0.7252 0.8153 0.8153 0.8614 0.8455

TriviaQA Llama-2-13b
LCLM 0.8264 0.8333 0.7971 0.8407 0.7464 0.7526 0.7532 0.7556
LUA-CLM 0.8297 0.8352 0.8033 0.8447 0.7960 0.8059 0.804 0.8069
LCLM + β ∗ LUA-CLM 0.8340 0.8263 0.8049 0.8307 0.7666 0.7692 0.7673 0.7693

Figure 7 shows results on selective generation, based on varying levels of abstaining from provid-
ing generated response informed by uncertainty estimates. We plotted both ROUGE-L scores and
accuracy as functions of the abstention rate, showing how the models perform as they increasingly
withhold responses in situations of high uncertainty. The plots clearly shows that the UA-CLM
outperforms CLM across all the four uncertainty metrics.
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(a) CLM (b) UA-CLM

Figure 8: Analysis of Correct and Incorrect Token Counts in mini-batch during fine-tuning with CLM and
UA-CLM. Both CLM and UA-CLM show increase in correct tokens and a decrease in incorrect tokens as fine-
tuning progresses.

(a) CLM (b) UA-CLM

Figure 9: Analysis of Token Uncertainty associated with Correct and Incorrect tokens in the mini-batch dur-
ing fine-tuning with CLM and UA-CLM. A well-calibrated model should provide low uncertainty for correct
tokens and higher uncertainty for incorrect tokens. With standard CLM Loss, uncertainty for both correct and
incorrect tokens decreases, indicating overconfidence even on incorrect tokens. In contract, with UA-CLM, the
uncertainty for incorrect tokens increases and the decreasing uncertainty on correct tokens, supporting that the
fine-tuning with UA-CLM improves the reliability of uncertainty estimates.

(a) CLM (b) UA-CLM

Figure 10: Analysis of Token Softmax Probability associated with Correct and Incorrect tokens during fine-
tuning with CLM and UA-CLM. A well-calibrated model should assign high probability to correct tokens and
lower probability to incorrect tokens. With standard CLM loss, probabilities for both correct and incorrect
tokens increase as fine-tuning progress, indicating overconfidence. In contrast, UA-CLM fine-tuning results in
higher probabilities for correct tokens and lower probabilities for incorrect tokens, enhancing the reliability of
token probability scores
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(i) CLM

(ii) UA-CLM

Figure 11: Llama-2-7B: Loss convergence and uncertainty values associated with correct and incorrect tokens.

(i) CLM

(ii) UA-CLM

Figure 12: Llama-2-13B: Loss convergence and uncertainty values for correct and incorrect tokens.

Figure 13: Llava-1.5: Loss convergence and uncertainty values associated with correct and incorrect tokens.
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Figure 14: Accuracy versus Expected Calibration Error (ECE) comparison between UA-CLM, CLM, and
pre-trained baseline across different LLM architectures on CoQA dataset. The ideal model should have high
accuracy and low expected calibration error, indicating accurate predictions with well-calibrated uncertainty
quantification (top-left of the Accuracy vs ECE plot). When evaluating three different model architectures, we
observe that the accuracy of models with CLM and UA-CLM remains within a similar range and better than
the pre-trained baseline. While, the ECE of models fine-tuned with UA-CLM shows significant improvement
compared to both the pre-trained baseline and CLM fine-tuning.

Figure 15: Accuracy versus Expected Calibration Error (ECE) comparison between UA-CLM, CLM, and
pre-trained baseline across different LLM architectures on TriviaQA dataset. The ideal model should have high
accuracy and low expected calibration error, indicating accurate predictions with well-calibrated uncertainty
quantification (top-left of the Accuracy vs ECE plot). When evaluating three different model architectures, we
observe that the both accuracy and ECE of the models fine-tuned with UA-CLM shows significant improvement
compared to both the pre-trained baseline and CLM fine-tuning.
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