Error Compensated Distributed SGD
can be Accelerated

Xun Qian* Peter Richtarik’ Tong Zhang?*
xun.qian@kaust.edu.sa peter.richtarik@kaust.edu.sa tongzhangQust.hk

Abstract

Gradient compression is a recent and increasingly popular technique for reducing
the communication cost in distributed training of large-scale machine learning
models. In this work we focus on developing efficient distributed methods that can
work for any compressor satisfying a certain contraction property, which includes
both unbiased (after appropriate scaling) and biased compressors such as RandK
and TopK. Applied naively, gradient compression introduces errors that either slow
down convergence or lead to divergence. A popular technique designed to tackle
this issue is error compensation/error feedback. Due to the difficulties associated
with analyzing biased compressors, it is not known whether gradient compression
with error compensation can be combined with acceleration. In this work, we
show for the first time that error compensated gradient compression methods
can be accelerated. In particular, we propose and study the error compensated
loopless Katyusha method, and establish an accelerated linear convergence rate
under standard assumptions. We show through numerical experiments that the
proposed method converges with substantially fewer communication rounds than
previous error compensated algorithms.

1 Introduction

When training very large scale supervised machine learning problems, such as those arising in the
context of federated learning [[Konecny et al.,|2016b, McMahan et al.| 2017, [Konecny et al.| | 2016a]
(see also recent surveys [Li et al., {2019} [Kairouz, [2019])), distributed algorithms are indispensable. In
such settings, communication is generally much slower than (local) computation, which makes it the
key bottleneck in the design of efficient distributed systems. There are several ways to tackle this
issue, including reliance on large mini-batches [|Goyal et al.,[2017, [You et al., 2017]], asynchronous
learning [[Agarwal and Duchi, [2011} |[Lian et al., 2015} Recht et al., [2011]], local updates [Ma et al.,
2017} |Stich| 2020, [Khaled et al., 2020}, |[Hanzely and Richtarik} [2020, [Woodworth et al.,|2020] and
communication compression (e.g., quantization and sparsification) [Alistarh et al.|[2017, Bernstein
et al.,[2018|, Mishchenko et al.| 2019, |Seide et al., 2014, |Wen et al., 2017].

Communication compression. In this work, we focus on the last of these techniques: communication
compression. The key idea here is to apply a lossy compression transformation/operator to the
messages before they are communicated so as to save on communication time. While compression
reduces the communicated bits in each communication round, it introduces errors, and this generally
leads to an increase in the number of communication rounds needed to find a solution of any
predefined accuracy. Still, compression has been found useful in practice, as the trade-off often seems
to prefer compression to no compression.

*King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

TKing Abdullah University of Science and Technology, Thuwal, Saudi Arabia; Moscow Institute of Physics
and Technology, Dolgoprudny, Russia

tHong Kong University of Science and Technology, Hong Kong

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Contractive and unbiased compressors. There are two large families of such compression operators:
contraction and unbiased compressors [Beznosikov et al., 2020]. A (possibly) randomized map
Q : R — R is called a contraction compressor if there exists a constant 0 < § < 1 such that

E[llz - Q@] <1 -d)lz|? VzeR)

Further, we say that a randomized map Q : R? — R% is an unbiased compressor if there exists a
constant w > 0 such that

E[Q(x)]zx and E[HQ(J;)H?}g(w+1)||x|\2, Vz € R ?)

It is well known that (see, e.g., [Beznosikov et al., [2020]]) after appropriate scaling, any unbiased
compressor satisfying (2)) becomes a contraction compressor. Indeed, it is easy to verify that for any
Q satisfying (2)), %HQ is a contraction compressor satisfying (I)) with 6 = 1/(w+1). Thus we can
construct corresponding contraction compressor from any unbiased compressor. However, there are
empirically very powerful contractive compressors, such as TopK [Alistarh et al.,2018]] (described
below), which do not arise this way, and because of this, the class of contractive compressors is
important in practice. For illustration purposes, we now define two canonical examples of contraction
compressors. Let 1 < K < d. The TopK compressor is defined as

_ (l‘)ﬂ(l) if ¢ < K,
(TopK(2))(s) = { 0 otherwise,
where 7 is a permutation of {1,2,...,d} such that (|2])~;) > (|2|)x(i41) fori =1,...,d — 1. The
RandK compressor is defined as

x); ifiels,
(RandK(z)); = { (O) otherwise,
where S is chosen uniformly from the set of all K element subsets of {1,2,...,d}. For TopK
and RandK compressors, we have 6 > K/q [Stich et al.l [2018]. Some frequently used unbiased
compressors include random dithering [Alistarh et al., [2017]], random sparsification [Stich et al.,
2018]], and natural compression [Horvath et al., 2019b]. For more examples of contraction and
unbiased compressors, we refer the reader to [Beznosikov et al., 2020].

Related Work. If we assume that the accumulated error is bounded, and in the case of unbiased
compressors, the convergence rate of error compensated SGD was shown to be the same as that
of vanilla SGD [Tang et al., |2018]]. However, if we only assume bounded second moment of the
stochastic gradients, in order to guarantee the boundedness of the accumulated quantization error,
some decaying factors need to be involved in general, and error compensated SGD is proved to have
some advantage over QSGD [Alistarh et al.||2017]] in some perspective for convex quadratic problems
[Wu et al., [2018]]. On the other hand, for contraction compressors, error compensated SGD actually
has the same convergence rate as vanilla SGD [Stich et al.|[2018}, [Stich and Karimireddy} 2019 Tang
et al., 2019]]. Since SGD only has a sublinear convergence rate, these error compensated methods
could not get linear convergence rate. If f is non-smooth and ¢ = 0, error compensated SGD was
studied in [Karimireddy et al., 2019] in the single node case, and the convergence rate is of order
O (1/Vs%).

For variance-reduced methods, QSVRG [Alistarh et al.,|2017]] handles the smooth case (¢ = 0), and
VR-DIANA [Horvath et al.,|2019al], ADIANA [Li et al.;2020] handle the composite case (general
1). However, the compressors of these algorithms need to be unbiased. Error compensation in
VR-DIANA and ADIANA does not need to be used since their method successfully employs variance
reduction (of the variance introduced by the compressor) instead. Recently, an error compensated
method called EC-LSVRG-DIANA which can achieve nonaccelerated linear convergence for the
strongly convex and smooth case was proposed in [Gorbunov et al.l|2020], but besides the contraction
compressor, the unbiased compressor is also needed in the algorithm.

Error compensation. While contractive compressors can be more powerful in practice, they are not
unbiased, and this leads to severe difficulties in the algorithm design space, and poses challenges
for theoreticians trying to understand the convergence behavior of distributed algorithms using
contractive compressors. Indeed, while there is no issue with the use of contractive compressors
in the non-distributed setting (which is of course not interesting from a practical point of view) in

combination with standard gradient-type methods, serious convergence issues arise in the distributed
setting. Indeed, classical methods such gradient descent can diverge (even exponentially fast) when
the TopK compressor is used to compress uplink gradient information [Beznosikov et al., [2020].
Fortunately, this issue can be resolved using the error compensation (EC ﬂ mechanism, which can be
traced back to at least|Seide et al.|[2014]. However, this mechanism remained a heuristic until recently.
To highlight the difficulty of analyzing EC, we remark that the first theoretical breakthroughs applied
to the single node regime only [Stich et al., 2018, |Stich and Karimireddy, 2019]]. More recently,
theoretical progress was made in the crucially important distributed setting as well [Beznosikov et al.|
2020, |Gorbunov et al.,2020|]. However, we are still very far in our understanding of optimization
algorithms using contractive compressors.

One of the key open problems in this area—the problem we address in this paper in
the affirmative— is whether it is possible to design provably accelerated gradient-
type methods that work with contractive compressors.

In this paper, we give a confirmed answer by studying error compensation in conjunction with the
acceleration mechanism employed in loopless Katyusha (L-Katyusha) [Kovalev et al., [2020} |Qian
et al., [2019]], which is a loopless variant of Katyusha [Allen-Zhul 2017]]. The acceleration in Katyusha
or L-Katyusha is an extension of Nesterov’s acceleration [Nesterov, 1983, |2004] in the stochastic
regime. Moreover, Katyusha and L-Katyusha can achieve the optimal iteration complexity among
randomized methods for solving finite-sum strongly convex optimization problems [Lan and Zhou,
2018].

2 Problem Description and Summary of Contributions

We formally describe the distributed optimization problem we solve in Section [2.1] and then summa-
rize our key contributions in Section [2.2]

2.1 Problem Description

We consider the composite finite-sum optimization problem

min Pe) = {5 70+ v(o)). ®
z€RC T=1
where f(z) := 13 f(I(x) is an average of n smooth convex functions, distributed over n

compute nodes, and ¢ : R — R U {+oc} is a proper closed convex function representing a possibly
nonsmooth regularizer. On each node 7, f(7)(z) is an average of mm smooth convex functions, i.e.,

o (x) = % > fi(T) (z), representing the average loss over the training data stored on this node.
i=1

We denote the smoothness constants of functions f, f() and fi(T) using symbols Ly, Land L,
respectivelyE] These constants are in general related as follows:

Ly <L<nL; L<L<mL.)
While we specifically focus on the case when m = 1, our results are also new in the m = 1 case, and

hence this regime is relevant as well. We assume throughout that problem (3) has at least one optimal
solution z*.

We will optionally use the following additional assumption for the contraction compressor. The
assumption is not necessary, but when used, it will lead to better complexity.

Assumption 2.1. E[Q(z)] = dz and E[Q1(x)] = 612 for all v+ € R%, where § and &, are compres-
sion parameters of QQ and ()1, respectively.

It is easy to verify that RandK compressor satisfies Assumptionwith 0 = K/q, and %_HQ where
Qis any unbiased compressor, also satisfies Assumptionwith d = Y(w+1).

“Error compensation is also known under the name error feedback.
SFunction f : RY — R is smooth if it is differentiable, and has L-Lipschitz gradient: |V f(z) — Vf(y)|| <
L||z — y|| for any z,y € R%. L is called the smoothness constant of f.

2.2 Contributions

‘We now summarize the main contributions of our work.

Acceleration for error compensation. We develop a new communication efficient algorithm
(Algorithm [T for solving the distributed optimization problem (3)) which we call Error Compensated
Loopless Katyusha (ECLK). ECLK is the first accelerated error compensated method (this is true
even in the non-distributed setting), which we believe is a significant contribution to the field.

Iteration complexity. We obtain the first accelerated linear convergence rate for error compensated
methods using contraction operators. Let p < O(d1), where p € (0, 1] is a parameter of the method
described later and ¢; is the compression parameter of ()1 in Algorithm [1| (see Assumption [2.1)).
Then the iteration complexity of ECLK is

((VO ESya. E 5)L+\/(1;ng>log1>. ©)

This is an improvement over the previous best known results for error compensated methods in
[Beznosikov et al.l [2020] and [[Gorbunov et al.l [2020], where nonaccelerated linear rates were
obtained for the smooth case (¢ = 0). Moreover, in oder to obtained a linear rate, [Beznosikov et al.
[2020] required the assumption that V f (T)(z*) = 0 for all 7, and also need full gradients to be
computed by all nodes. The complexity of EC-LSVRG-DIANA in [Gorbunov et al.| 2020 is

O((w—l—m—&-ﬁ)log%). (6)

When the last term in (6] is dominant and the last two terms in @ are dominant, the complexity of
ECLK is better than that of EC-LSVRG-DIANA if p > O ((U5H o (=n),

If we invoke additional assumptions (Assumption [2.1)) on the contraction compressor, the iteration
complexity of ECLK is improved to

O(<<15—'_11?—i_\/67+ uzm+ \/(1 5)]f \/upén) >

This is indeed an improvement since L < L (see @])), and because of the extra scaling factor of 7 in
the last term. If § = §; = 1, i.e., if no compression is used, we recover the iteration complexity of
the accelerated method L-Katyusha [Qian et al., [2019].

3 Error compensated L-Katyusha

3.1 Description of the method

In this section we describe our method: error compensated L-Katyusha (see Algorithm[I)). Roughly
speaking, ECLK is a combination of L-Katyusha, error feedback, and a learning scheme in VR-
DIANA [Horvath et al., 2019al].

The search direction in L-Katyusha in the distributed setting (n > 1) at iteration k is
1 = T T
=3 (VAP @) = VD @) + VO b)),
T=1

where], is sampled uniformly and independently from [m] := {1,2,...,m} on the 7-th node for
1 < 7 < n, z* is the current iteration, and w” is the current reference point. Whenever v is nonzero

in problem , V f(x*) is nonzero in general, and so is V f(7)(z*) (it could be nonzero even if
V f(«*) = 0 in the non-regularized case). Thus, compressing the direction

VA (@%) = V1D (k) + VO (wh) ™

directly on each node would cause nonzero noise even if 2* and w* converged to the optimal solution

. On the other hand, since f{™ is L-smooth, Vfi(g) (zF) — Vf(T (w) could be small if 2* and

w” are close enough. For the last term V £(7) (w"), we introduce a vector hk to learn it iteratively in

a similar way in VR-DIANA. However, we use a contraction compressor rather than an unbiased one.
More precisely, we take the update

R = hE 4+ Qu(V T (w*) —), ®)

where @ is a contraction compressor. Y can be initialized by any vector in R?. It is possible to
interprete the learning procedure (8) as one step of the compressed gradient descent method applied
to a certain quadratic optimization problem whose unique solution is the vector V f(7) (w*). Now we
would expect V f(7) (w*) — hk could converge to zero as k — +0o. We substract h* from the search
direction in ([7) to get

g = VD (@*) = VD (h) + VO (wh) - Bk,
and will add h* back after aggregation.

Next we apply the compression and error feedback techniques, i.e., we compress the vector Lil gk +ek

on each node to get g = Q(Lil g* + e¥), where @ is a contraction compressor and £ is a positive

parameter. The accumulated error e+ is updated by the compression error at iteration k. On

each node, a scalar u” is also maintained, and only u¥ will be updated. The summation of u¥ for

1 < 7 < nisuF, and we use u” to control the update frequency of the reference point wk' Each

node sends the two compressed vectors ¥, Q;(V f(™) (w"*) — h¥), and a scalar u**! to the other
1 n

nodes. After aggregating §F = P G*, we add the average vector h* = % >r, hk after

multiplying the stepsize Lil to it to get the search direction g~ + ﬁilh""‘. We also use the following
standard proximal operator for the update of z*:

prox,, () = argmin {3]lz — y|I* +mi(y)}
The reference point w” will be updated if u**! = 1. It is easy to see that w” will be updated with
probability p at each iteration. All nodes maintain the same copies of 2k, wk, yk, 2k gk ,h* and u”.

We need the following assumptions in this section.

Assumption 3.1. The two compressors Q and Q1 in Algorithm[I|are contraction compressors with
parameters 6 and 01, respectively.

Assumption 3.2. fi(T) is L-smooth, f\7) is L-smooth, f is L ¢-smooth and ji¢-strongly convex, and
P is py-strongly convex, where py > 0, py, > 0, and pu := iy + iy > 0.

3.2 Convergence analysis: preliminaries

First, we introduce some perturbed vectors which will be used in the convergence analysis. The
perturbed vector is usually used in the analysis of error compensated methods [Karimireddy et al.|
2019]. In Algorithm leted = 257" ek gk = L5 gk and 7F = oF — L€k, K =

n T=1"7° —n 1+noy

2k — 1+17ﬂ1 e¥ fork > 0. Then e"™! = L 3" | (ef + Lllgf - 57’:) =ef + Lllglc — g*, and from
the optimality condition for the proximal operator, we have
sl _ kHl 1+i701 ekl
= 1+1701 (nalxk +2t gk - z:%hk> - (Z%;ik)z) - fﬁ;;l
= 1+11<71 (nalzk +2F —eF — Cilglc - %hk) - %
- (nalik T L Eilhk) — EE))

The above relation plays a vital role in the convergence analysis, and allows us to follow the analysis
of original L-Katyusha. In particular, we will use ¥ to construct Lyapunov functions. Next we define

some notations which will be used to construct Lyapunov functions. Define Z* := &'2777“/2 || 2% —

5We can also use a single shared random variable " instead.

Algorithm 1 Error Compensated Loopless Katyusha (ECLK)

50 >0, L1 > 0,00 = 5 >0,01,0, € (0,1);

1: Parameters: stepsize parameters 17 =
probability p € (0, 1]

2: Inmitialization: z° = yO = ZO = w’ € R% ug =0 € R; e? =0 € R% hg c R
UO—Z: 1uO.h0: IZT 1

3: for k=0,1,2,...do
4: for r=1,....,ndo
5: Sample i; uniformly and independently in [m] on each node
6 = V@) = VI) + VIO) - wk
7: gy = Q(Zgr +ep), h’““ hE + Qu(V [(wh) — hk)
8: et =l gt — gk, Wit =0forT=2,..,n
9: W — 1 W@th probab@l@ty D
’ 1 0 with probability 1 — p
10: Send g, Ql(Vf(T) (w*) — h¥), and uk** to the other nodes
11 Receive §¥, Ql(Vf(T) (w”*) — h¥), and u¥*! from the other nodes
12: gF =20 gk, WMt =3 Wbt
. k41 _ 1 ko ok _ =k k
b A = prox e (i (110t 24 -5 04
14: Yyt =gk 4 0y (2P — 2F)
ko oseoktl _
15: wtl =14 Y, it =1
w otherwise
16: gkl = 01Zk+1 + w4 (1 — 0 — fo)yFt!
17: e LS Qu(VFO) (k) — hb)
18: end for
19: end for

||, Yr = %(P(yk) — P*),and W* := %_(P(w*) — P*) for k > 0, where P* := P(z*).

Pq61
From the update rule of w* in Algorithm it is easy to see that
Ex[WHH] = (1 — p)W" + &Y*, (10)
for k > 0. Let By(z,y) := f(z) — f(y) — (Vf(y)) be the Bregman divergence and Ej[-]

k

denote the expectation conditional on xk, yk, 2k wk hk u ,and e . The following lemma reveals

the evolution of the other two terms Z* and V.

Lemma 3.3. If £y > Ly and 01 + 02 < 1, then Ey, [2’“‘1 + yk“} can be upper bounded by

i EE + (1= 00— 0)VF +poWh + (G 4+ 5) eI+ (£ + 4) Bx [l

(02— 25) By(wh,ab) — 0=t By (b,

Because of the compression, we have the additional error terms ||e* || and ||e**||2 in the evolution

of Z¥ and yk in Lemma To upper bound these error terms, we need to analyze the evolution of
IS ceband LY ||hk V£ (w*)||? in the next two lemmas.

n
Lemma 3.4. The quantity Ey, [le 3 |lektt |2} is upper bounded by the expression

=1

n

s - s ,
(1= §) &7 flek) + G ZHW) — BE|? 42U (4 4 L) By(ut, o).

T=1

Lemma 3.5. The quantity L 3" By [||hE+1 =V f(7) (wk+1)|12] is upper bounded by the expression

n
B) 530Uk = VIO @)+ aLp (14 2) By(y*,a*) + 4Lp (14 2) By (w*,a").
=1

Under the additional Assumption[2.1] we need to analyze the evolution of [|¢*||2 and || 2% — V f (w")||?
as well, which can be found in the appendix.

3.3 Convergence analysis: main results

With the above lemmas at hand, we are ready to construct suitable Lyapunov functions which enable
us to prove linear convergence. First, we construct the Lyapunov function ®* for the general case.

Let Lo 6L 112(31526)1’ + 28(13;6)L + 224%12;f)f‘p (1 + @>, and for & > 0 define

n
5 §) T
3" ::zk+yk+wk+%'%§:\le’il\2 &%éw~1§:||hk V5 (Wt

Then we can get the linear convergence of ® in the following theorem.
Theorem 3 6. Let Assumptionand Assumptionhold. If L1 > max{Ly,3un}, 61 + 260, <1,
and 0y > 3 £ , then we have

k
If Assumption holds, we define the Lyapunov function ¥* as follows. Let L3 := % +

L0y 2A0-OL | S08(DL | 22400 (Lf n %) (1 + §—”) and for k > 0 define

k
lez 11

M=

\I’k Z~l<: k k 4L k)2 28L1(1-6
: y w 5771 ” ” 517571 : ’ 31
1

I =V F7 (wh)]2.

=3

+56(1 5)?7||hk _ vf(wk)”Q + 504(1-d)n

1
626 ﬁl 526177,[,1 H

Il
-

T

Then we can get the linear convergence of U¥ in Theorem-
Theorem 3.7. LetAssumptlonn Assumptwnnand Assumptlonnhold If L4 > max{Ly,3un},

01+ 205, <1, and 05 > 3£ , then we have

E [\I/k} < (1 — min (W,& + 62 — %2710(1 —q),

From Theorems [3.6]and[3.7] by choosing the parameters appropriately, we can obtain the iteration
complexity for ECLK.
Theorem 3.8. Let Assumption 3.1\ and Assumption (3.2 hold. Let L1 = max (L4, Ly,3pn), 62 =

Ly
3max{Lys,L4}’ and

,%))kw Vk > 0.

[e2][S9)

min (| /£562,00) i Ly < £

P
min <1 /Lif, g) otherwise
(i) Let L4 = L. Then with some q € [2,1), we have E[®*] < ®° for
1 1 1 L L 1
k20(<5+51+p+\/J-i—dﬂ;)loge).

In particular, if p < O(81), then the iteration complexity becomes

kZO((SRR N ‘”LW“,ISQL)logi)- an
(ii) Let L4 = £3 IfAssumptzon holds then for some q € [,1), we have E[UF] < ¥ for
k>0 ((—i— —i— 1/ Lr gy + 4/ ﬁ;) log =) If p < O(01), the iteration complexity becomes

kz@((T ST \/(1“f+\/2p§2f) > (12)

From Theorem it is easy to see that the optimal p for ECLK is ©(d1).

0, =

Comparison to ADIANA. ADIANA [Li et al., 2020] is an accelerated and compressed dis-
tributed method with any unbiased compressor. The iteration complexity of ADIANA is

(’)(w (14’\/%) log%) when n < w, and O((w—i—\/%—i—./\/%%) log%) when n > w.

If we choose @@ and (07 in ECLK to be the contraction compressor %HQ where () is any unbiased

compressor, then § = §; = i, and thus the complexity in (12) becomes

O<<w+\/§+\/w+(w+l)\/“ff—|—\/“)(“);L1)L>logi),

for p = 41. In this case, the dependency of w of the iteration complexity of ADIANA is better than
that of ECLK. However, the full gradients are computed by all nodes at each iteration in ADIANA,
which could be slower than the communication when m is very large. Furthermore, the contraction
compressor could be more efficient than the unbiased compressor in practice, i.e., for the same level
of compression, ¢ could be larger than 1/(w+1). This efficiency of the contraction compressor is
the motivation to study the error compensated methods, and in numerical experiments, ECLK is
comparable to ADIANA.

4 Experiments

In this section, we experimentally study the performance of error compensated L-Katyusha (ECLK)
used with several contraction compressors on the logistic regression problem for binary classification,

z = log (1 + exp(—y; A7 7)) + 31|,
where {A;,y;} are the training data points. We use Python 3.7 to perform the experiments. We
use the datasets aba, a9a, wba, w8a, phishing, and mushrooms from the LIBSVM library [[Chang
and Lin, [2011]. The regularization parameter was set to A = 10~3. The number of nodes in our

experiments is n = 20, and the optimal solution is obtained by running the uncompressed L-Katyusha
for 10° iterations. More experiments can be found in the appendix.

Compressors. We use three contraction compressors: the TopK compressor with K = 1, or the
compressor %HQ’ where Q is either the unbiased random dithering compressor with s = v/d levels
[Alistarh et al.,[2017]] or the natural compressor [Horvath et al.,[2019b]]. For the Topl compressor,
the number of communicated bits for the compressed vector is 64 + [log d], and § = 1/a. For the
random dithering compressor with s = v/d, the number of communicated bits for the compressed
vector is 2.8d + 64, and w = 1 [Alistarh et al.,|2017]] . For the natural compressor, the number of
communicated bits for the compressed vector is 12d, and w = 1/8 [Horvath et al., 2019b].

Parameter setting. In all the experiments, we search for the optimal stepsize for all tested algo-
rithms. In particular, we use the parameter setting in Theorem 3.8] (i) for ECLK. From Theorem [3.§]
(i), we know that we can set values for all parameters if we know values of p, d, d1, p, and Lipschitz
constants. For the tested problem, ;1 = A. @ and), are chosen to be the same contraction compressor
for ECLK, which implies that § = J;, and the lower bound for § can be obtained easily for our used
compressors. We set p = 0 for ECLK except in Section We calculate the theoretical Ly, L, and
L as L'}h, Lt", and L*", respectively. Then we choose L; = t - L'}h, L=t-L" and L =¢- L', and
search for the best ¢ in the sett € {107% | k = 0,1,2,...}. We set p = & for EC-LSVRG-DIANA
[Gorbunov et al.l 2020]. EC-LSVRG-DIANA requires the use of an additional unbiased compressor;
for this we make use of random dithering.

4.1 Topl vs random dithering vs natural compression vs no compression

First, we compare the uncompressed L-Katyusha method with ECLK with three contraction compres-
sors: Topl, random dithering, and natural compression; see Figure[I] ECLK is orders of magnitude
better in terms of communication complexity.

4.2 Comparison with EC-LSVRG-DIANA and ECGD

Next, we compare ECLK with EC-LSVRG-DIANA [Gorbunov et al.,[2020] and error compensated
GD (ECGD) using the Topl, random dithering, and natural compressor. Note that ECGD is a special

a%a

mushrooms w8a
10t 10t 10!
—— Topl —— Topl —=— Topl
107 107 10
—e— Random dithering —e— Random dithering —e— Random dithering
107 —— Natural compression 107 —— Natural compression 107 —— Natural compression
v 10 —+— No compression v 0 —+— No compression ~ . 10 —+— No compression
a a a
T \\\\\ L e
< < <
x x x
T 10 T 10 T 10
107" 107" 107
107" 107" 107
107" 107 1071
1o 20 30 i) 5 i) 20 30 a0 50 6 o 10 20 30 40 0 6 70
Communicated bits per node (1 x 10° bits) Communicated bits per node (1 x 10° bits) Communicated bits per node (1 x 10° bits)

Figure 1: The communication complexity performance of ECLK used with compressors: Topl vs
random dithering vs natural compression vs no compression. Datasets: mushrooms, w8a, and a9a.

Natural compression

o Topl o Random dithering Lo
data: a%a
10 10 ECLK 10
107 10 —— EC-LSVRG-DIANA 107
—e— ECGD
* 107 . 10 . 105
a a a
[| -
~ 10 ~ 10 L0
< < <
-3 a3 Rt 2
& data: a9 a 1w a data: a9a
10- —— ECLK 101 10 —— ECLK
—— EC-LSVRG-DIANA —— EC-LSVRG-DIANA
107 107 1072
—e— ECGD —e— ECGD
107" 107" 1071
5) s 2 EEED) 3 S 10 15 20 25 30 3 40 20 0 % 80 100 120
Communicated bits per node (1 x 10° bits)

Communicated bits per node (1 x 10° bits) Communicated bits per node (1 x 10° bits)

Figure 2: The communication complexity performance of ECGD vs EC-LSVRG-DIANA vs ECLK
for Topl, Random dithering, and Natural compression on a9a data set.

case of error compensated SGD [Stich et al.L 2018|] with 7 = 1, where the full gradient V f(7) (%)
é and é s

is calculated on each node. Figures how that ECGD can only converge to a neighborhood of
the optimal solution, and that ECLK is considerably faster than EC-LSVRG-DIANA.

4.3 Comparison with ADIANA

Let us denote by ECLK-F the special case of ECLK with m = 1, i.e., the full gradient V f(7) (x%)
is calculated on each node. We compare ECLK-F with the accelerated variant of DIANA, called
ADIANA 2020], for six data sets. For ADIANA we use two unbiased compressors: random
dithering and natural compression. Figure [4] shows that in terms of communication complexity,
ECLK-F is comparable to ADIANA, and can be better than ADIANA in some cases.

4.4 TImpact of the update frequency of the reference point

Finally, we test the impact of the update frequency of the reference point p for ECLK with Top1
compressor; see Figure We choose five values for p: /3, d, 36, 99, and 1. Figure shows that the
performance of p = ¢ is usually better than p = 9/3. As we increase p from p = ¢, the performance
of ECLK could be improved. However, if p is too large, the performance of ECLK is no better than

p = 9, generally.

Random dithering Natural compression

10t TODI 10" 10t
data: mushrooms
10 10 ECLK 10
107 107 —— EC-LSVRG-DIANA 107
—e— ECGD
* 1070 * 107 * 10
a a a
& &0 g
& data: mushrooms L L data: mushrooms
107 —— ECLK 101 107 —— ECLK
. —— EC-LSVRG-DIANA o o —— EC-LSVRG-DIANA
—e— ECGD —e— ECGD
107" 1077 1071
10 20 W 50 2 a 3 s o 12 14 20 0 0 100 1
Communicated bits per node (1 x 10° bits)

0
Communicated bits per node (1 x 105 bits) Communicated bits per node (1 x 10° bits)

Figure 3: The communication complexity performance of ECGD vs EC-LSVRG-DIANA vs ECLK
for Top1, Random dithering, and Natural compression on mushrooms data set.

mushrooms w8a a%a
—— ECLK-F Topl —— ECLK-F Topl —=— ECLK-F Topl
—e— ECLK-F Random dithering —e— ECLK-F Random dithering —e— ECLK-F Random dithering
—— ECLK-F Natural compression —— ECLK-F Natural compression —— ECLK-F Natural compression
—+— ADIANA Random dithering —+— ADIANA Random dithering —— ADIANA Random dithering

—=— ADIANA Natural compression

——

ADIANA Natural compression

—

ADIANA Natural compression

P(xK)—pP*
P(xk)—P"
P(xk)—P"

107 - -
10 - -
101 107 101
100 10 10
101 1071 10

To s o To 20 30
Communlcated bits per node (1 x 10° blts) Communicated bits per node (1x 105 blts)

2
Commumcated b\ts per node (1x 105 bits)

phishing wéa a5a

—~— ECLK-F Topl

—e— ECLK-F Random dithering
107 —— ECLK-F Natural compression 107
—+— ADIANA Random dithering
—=—_ADIANA Natural compression

—— ECLK-F Topl —— ECLK-F Topl

—e— ECLK-F Random dithering —e— ECLK-F Random dithering
—— ECLK-F Natural compression 107 —— ECLK-F Natural compression
—e— ADIANA Random dithering —e— ADIANA Random dithering
ADIANA Natural compression —=— ADIANA Natural compression

P(xk)—P"
P(x<)—P"
P(x¥)—P"

P N R T] PR I)
Comrnumcated bits per node (1 x 10° bits) Communlcated bits per node (1 x 10° bits) Communicated bits per node (1x 10S blts)

Figure 4: The communication complexity performance of ECLK vs ADIANA for Topl, Random
dithering, and Natural compression on mushrooms, w8a, a9a, phishing, w6a, and aba data sets.

o mushrooms o w8a o a%a
Topl. Topl

o —— ECLKp=6/3 o —e— ECLKp=6/3 o

107 —— ECLKp=6 107 —— ECLKp=6 107

—— ECLKp=36 —— ECLKp=36

% 10 * 10 O

> —— ECLKp=96 B —— ECLKp=96 h Top1 /\/
- 107 = - 107 - - 107

< ECLKp=1 < ECLKp=1 < —— ECLKp=6/3

& 10 T 100 T 10° —— ECLKp=6

—— ECLK p=36
—+— ECLKp=96
—— ECLKp=1

10 2 30 W 50 o 2 50 o 10 20 30 B
Communicated bits per node (1 x 105 bits) Communicated bits per node (1x10° blts) Communicated blts per node (1 x 10° bits)

Figure 5: The communication complexity performance of ECLK with the Topl compressor and
p € {9/3,6,30,98, 1} on the mushrooms, w8a, and a9a data sets.

Acknowledgments and Disclosure of Funding

Xun Qian and Peter Richtarik acknowledge funding by the KAUST Baseline Research Funding
Scheme, the Extreme Computing Research Center at KAUST, and administrative support from the
Visual Computing Center at KAUST. Tong Zhang acknowledges further funding by GRF 16201320.

10

References

A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In Advances in Neural
Information Processing Systems (NIPS), pages 873—-881, 2011.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. QSGD: Communication-efficient SGD
via gradient quantization and encoding. In Advances in Neural Information Processing Systems
(NIPS), pages 1709-1720, 2017.

D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and C. Renggli. The convergence
of sparsified gradient methods. In Advances in Neural Information Processing Systems (NeurIPS),
pages 5973-5983, 2018.

Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. The
Journal of Machine Learning Research, 18(1):8194-8244, 2017.

J. Bernstein, Y. X. Wang, K. Azizzadenesheli, and A. Anandkumar. SignSGD: Compressed optimisa-
tion for non-convex problems. pages 560-569, 2018.

A. Beznosikov, S. Horvith, P. Richtarik, and M. Safaryan. On biased compression for distributed
learning. arXiv preprint arXiv:2002.12410, 2020.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3):1-27, 2011.

Eduard Gorbunov, Dmitry Kovalev, Dmitry Makarenko, and Peter Richtarik. Linearly converging
error compensated SGD. In Neural Information Processing Systems (NeurIPS), 2020.

P. Goyal, P. Dollér, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.
Accurate, large minibatch SGD: Training imagenet in 1 hour. arXiv preprint arXiv:1706.2677,
2017.

Filip Hanzely and Peter Richtarik. Federated learning of a mixture of global and local models. arXiv
preprint arXiv:2002.05516, 2020.

S. Horvith, D. Kovalev, K. Mishchenko, S. Stich, and P. Richtarik. Stochastic distributed learning
with gradient quantization and variance reduction. arXiv preprint arXiv:1904.05115, 2019a.

Samuel Horvath, Chen-Yu Ho, Cudovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter
Richtarik. Natural compression for distributed deep learning. arXiv preprint arXiv:1905.10988,
2019b.

Peter et al Kairouz. Advances and open problems in federated learning. arXiv preprint
arXiv:1912.04977, 2019.

Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian U Stich, and Martin Jaggi. Error feedback
fixes SignSGD and other gradient compression schemes. arXiv preprint arXiv:1901.09847, 2019.

Ahmed Khaled, Konstantin Mishchenko, and Peter Richtarik. Tighter theory for local SGD on
identical and heterogeneous data. In The 23rd International Conference on Artificial Intelligence
and Statistics (AISTATS), 2020.

Jakub Kone¢ny, H. Brendan McMahan, Daniel Ramage, and Peter Richtarik. Federated optimization:
distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527, 2016a.

Jakub Konecny, H. Brendan McMabhan, Felix Yu, Peter Richtarik, Ananda Theertha Suresh, and Dave
Bacon. Federated learning: strategies for improving communication efficiency. In NIPS Private
Multi-Party Machine Learning Workshop, 2016b.

D. Kovalev, S.1 Horvéth, and P. Richtarik. Don’t jump through hoops and remove those loops: SVRG
and Katyusha are better without the outer loop. In Proceedings of the 31st International Conference
on Algorithmic Learning Theory (ALT), 2020.

Guanghui Lan and Yi Zhou. An optimal randomized incremental gradient method. Mathematical
programming, 171(1):167-215, 2018.

11

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: challenges,
methods, and future directions. arXiv preprint arXiv:1908.07873, 2019.

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtarik. Acceleration for compressed gradient
descent in distributed and federated optimization. In Proceedings of the 37th International
Conference on Machine Learning (ICML), 2020.

X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous parallel stochastic gradient for nonconvex
optimization. In Advances in Neural Information Processing Systems (NIPS), pages 2737-2745,
2015.

Chenxin Ma, Jakub Kone¢ny, Martin Jaggi, Virginia Smith, Michael I. Jordan, Peter Richtarik, and
Martin Tak4c. Distributed optimization with arbitrary local solvers. Optimization Methods and
Software, 32(4):813-848, 2017.

H Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agiiera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Proceedings of the
20th International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

K. Mishchenko, E. Gorbunov, M. Taki¢, and P. Richtarik. Distributed learning with compressed
gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate O(1/k?).
Soviet Mathematics Doklady, 27(2):372-376, 1983.

Yurii Nesterov. Introductory lectures on convex optimization: a basic course (Applied Optimization).
Kluwer Academic Publishers, 2004.

Xun Qian, Zheng Qu, and Peter Richtdrik. L-SVRG and L-Katyusha with arbitrary sampling. arXiv
preprint arXiv:1906.01481, 2019.

B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic
gradient descent. In Advances in Neural Information Processing Systems (NIPS), pages 693-701,
2011.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its application to
data- parallel distributed training of speech DNNS. Fifteenth Annual Conference of the International
Speech Communication Association, 2014,

S. U. Stich and S. P. Karimireddy. The error-feedback framework: Better rates for SGD with delayed
gradients and compressed communication. arXiv preprint arXiv:1909.05350, 2019.

S. U. Stich, J. B. Cordonnier, and M. Jaggi. Sparsified SGD with memory. In Advances in Neural
Information Processing Systems (NeurlPS), pages 4447-4458, 2018.

Sebastian U. Stich. Local SGD converges fast and communicates little. In International Conference
on Learning Representations (ICLR), 2020.

H. Tang, S. Gan, C. Zhang, T. Zhang, and J. Liu. Communication compression for decentralized
training. In Advances in Neural Information Processing Systems (NeurlPS), pages 7652-7662,
2018.

H. Tang, X. Lian, T. Zhang, and J. Liu. DoubleSqueeze: Parallel stochastic gradient descent with
double-pass error-compensated compression. In Proceedings of the 36th International Conference
on Machine Learning (ICML), pages 6155-6165, 2019.

W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, and H. Li. Terngrad: Ternary gradients to reduce
communication in distributed deep learning. In Advances in Neural Information Processing
Systems (NIPS), pages 1509-1519, 2017.

Blake Woodworth, Kumar Kshitij Patel, Sebastian U. Stich, Zhen Dai, Brian Bullins, H. Brendan
McMahan, Ohad Shamir, and Nathan Srebro. Is local SGD better than minibatch SGD? arXiv
preprint arXiv:2002.07839, 2020.

12

J. Wu, W. Huang, J. Huang, and T. Zhang. Error compensated quantized SGD and its applications to
large-scale distributed optimization. In The 35th International Conference on Machine Learning
(ICML), pages 5321-5329, 2018.

Y. You, L. Gitman, and B. Ginsburg. Scaling SGD batch size to 32k for imagenet training. arXiv
preprint arXiv:1708.03888, 2017.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We need Assumptions [3.1]and
B2 for our results.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Assump-

tions 2.1} B.1] and[3.2]

(b) Did you include complete proofs of all theoretical results? [Yes] We include the
complete proofs in the Appendix.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Data sets are
from the LIBSVM library. Code and instructions are in the supplemental material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section[d]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? We used a fixed random seed to make sure the numerical
results can be reproduced.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? We run the experiments on a laptop,
and we did not count the time. Hence the results are independent of the amount of
compute and the type of resources.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We used the LIBSVM
library and cited.
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL?
(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating?
(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A|
5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [IN/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

13

Appendix

Contents

I TIntroduction|

[2° Problem Description and Summary of Contributions|

2.1 ~Problem Description|

3 Error compensated L-Katyusha |

3.1 Description of the method| 0.
3.2 Convergence analysis: preliminaries|
3.3 Convergence analysis: mainresults|.

4 xXperiments

4.1 Topl vs random dithering vs natural compression vs no compression|
4.2 Comparison with EC-LSVRG-DIANA and ECGD|
4.3 Comparison with ADIANA|.,
4.4 Impact of the update frequency of the referencepontl

|A~ Extra experiments|

[B_Lemmas|

[C Proofs of Lemma[B.1] LemmalB.2] Lemma[B.3] and Lemmal3.3|

roois o eorem O. eorem [S. /) an corem fo.

14

N A A

O © o0 o R

15

20

21
21
22
2
24

26
26
27
27
29

A Extra experiments

Top1 vs random dithering vs natural compression vs no compression. We compare the uncom-
pressed L-Katyusha method with ECLK with three contraction compressors: Topl, random dithering,
and natural compression in Figure[6|for phishing, w6a, and aba data sets. ECLK is much better in
terms of communication complexity.

w6a a5a
10!

phishing o

—— Topl

—e— Random dithering
—— Natural compression
—+— No compression

—— Topl

—e— Random dithering
—— Natural compression
—+— No compression . 10

—— Topl

—e— Random dithering
—— Natural compression
—+— No compression v 0

~_|

P(xk)—P

o 1o 20 30 4 S0 6 70

S
Communicated bits per node (1 x 10° bits)

E
Communicated bits per node (1 x 10° bits)

5) 15 2 2
Communicated bits per node (1 x 105 bits)

Figure 6: The communication complexity performance of ECLK used with compressors: Topl vs
random dithering vs natural compression vs no compression. Datasets: phishing, w6a, and aba.

Comparison with EC-LSVRG-DIANA and ECGD. We compare ECLK with EC-LSVRG-
DIANA and ECGD using the Top1, random dithering, and natural compression for w8a, phishing,
w6a, and aba data sets in Figures[7] B} [0] and[I0] These figures show that ECGD can only converge
to a neighborhood of the optimal solution, and that ECLK is usually better than EC-LSVRG-DIANA

in terms of communication complexity.

Random dithering Natural compression

10t T°p1 10t 10!
data: w8a data: wa
10 10 —— ECLK o —— ECK
107 10 —— EC-LSVRG-DIANA 10 —— EC-LSVRG-DIANA
—e— ECGD . —e— ECGD
* 107 * 10 . 10
a a a
Lo Lo Lo
E < <
X Red L
& data: w8a o a
10 —— ECLK 10 10
—— EC-LSVRG-DIANA
102 102 10
o —— ECGD ’ ¢
107" 1071 107
o 20 30 4 s0 e 70 80 5 T s 20 % o To 20 3 4 S0
Communicated bits per node (1 x 10° bits) Communicated bits per node (1 x 10° bits)

Communicated bits per node (1 x 105 bits)

Figure 7: The communication complexity performance of ECGD vs EC-LSVRG-DIANA vs ECLK
for Topl, Random dithering, and Natural compression on w8a data set.

Topl o Random dithering o Natural compression
data: phishing
o —— ECLK

—— EC-LSVRG-DIANA 107

data: phishing
—— ECLK
—— EC-LSVRG-DIANA
—e— ECGD

—e— ECGD

P(xK)—pP*
P(xk)—P"

data: phishing
—— ECLK 1070
—— EC-LSVRG-DIANA
—e— ECGD

v o 10 20 30 40 50 60 70 80
Communicated bits per node (1 x 10° bits)

o 2 4 6 s 10 12

2 3 3) T) 14
Communicated bits per node (1 x 10° bits)

Communicated bits per node (1 x 10° bits)

Figure 8: The communication complexity performance of ECGD vs EC-LSVRG-DIANA vs ECLK
for Top1, Random dithering, and Natural compression on phishing data set.

ECLK vs ADIANA. We compared ECLK-F with ADIANA in Figure [} Now we also compare
ECLK with ADIANA. Figure[TT|shows that even though in ECLK we calculate the stochastic gradient
and in ADIANA we compute the full gradient, ECLK is comparable to ADIANA, and can be better

than ADIANA in some cases as well.

15

Topl o Random dithering Natural compression

data: wéa data: wéa

—— ECLK —— ECLK
10 —— EC-LSVRG-DIANA 10 —— EC-LSVRG-DIANA
—e— ECGD

—e— ECGD

10

Van S Was

data: wéa
10 —— ECLK o
—— EC-LSVRG-DIANA
—e— ECGD

T 20 30 40 0 e 70 80 0 5 T s 2 2 0 EED % 4 0 e 70
Communicated bits per node (1 x 10° bits) Communicated bits per node (1 x 10° bits) Communicated bits per node (1 x 10° bits)

Figure 9: The communication complexity performance of ECGD vs EC-LSVRG-DIANA vs ECLK
for Topl, Random dithering, and Natural compression on w6a data set.

Topl . Random dithering . Natural compression

data: a5a
—— ECLK 107 —— ECLK 107
—+— EC-LSVRG-DIANA . —+— EC-LSVRG-DIANA
—e— ECGD —e— ECGD

data: a5a

data: a5a
—— ECLK
—— EC-LSVRG-DIANA
—e— ECGD

1 x 1
5 10 15 20 25 30 3 e 5 10 15 20 25 30 35 4 m 20 40 60 80 100 120 140
Communicated bits per node (1 x 105 bits) Communicated bits per node (1 x 10° bits) Communicated bits per node (1 x 10° bits)

Figure 10: The communication complexity performance of ECGD vs EC-LSVRG-DIANA vs ECLK
for Top1, Random dithering, and Natural compression on aba data set.

Impact of the update frequency of the reference point. We test the impact of the update frequency
of the reference point p for ECLK with Topl compressor on phishing, w6a, and aba data sets in
Figure We choose five values for p: 9/3, 8, 30, 99, and 1. Similar conclusions can be made as in
subsection 4]

We test the impact of p for ECLK with random dithering compressor in Figure[I3] Noticing that
p = 0 = 1/2 in this case, we choose five values for p: 4/27, 6/9, 6/3, §, and 1. Figure shows that
we may get better performance by decreasing p from . However, if p is too large or too small, the
performance of ECLK is generally no better than p = 4.

We test the impact of p for ECLK with natural compression in Figure Noticing that p = § = 8/9
in this case, we choose five values for p: 9/27, 9/9, 6/3, §, and 1. The performace of ECLK with
p = 1is colse to the p = & case. Sometimes we may get better performance by decreasing p from .
However, if p is too small, the performance of ECLK is no better than p = ¢, generally.

ECLK vs ECLK-F vs EC-LSVRG-DIANA vs ADIANA with A = 107°. We compare ECLK
with ECLK-F, EC-LSVRG-DIANA, and ADIANA for Topl and Random dithering (RD) with
A=10""in Figure Fi gure shows that ECLK-F with Top1 compressor has the best performace
in terms of communication complexity, and EC-LSVRG-DIANA is usually much slower than these
accelerated algorithms : ECLK, ECLK-F, and ADIANA.

ECLK vs EC-LSVRG-DIANA for Top1 compressor. Noticed that for the unbiased compressor in
EC-LSVRG-DIANA, we used the random dithering compressor. However, if we use Top1 compressor
for the contraction compressor in EC-LSVRG-DIANA, the communication cost of the compressed
vector using random dithering is much higher than that using Topl. Let EC-LSVRG-DIANA-2
denote EC-LSVRG-DIANA where we use Randl for the unbiased compressor (RandK can be
transformed to an unbiased compressor by scaling). We compare ECLK with EC-LSVRG-DIANA
and EC-LSVRG-DIANA-2 for Topl with A = 1072 and A = 10~° in Figure 16| and Figure [17]
respectively. Figure|l6{and Figure [17|show that except for the case where phishing and A = 10~
are used, EC-LSVRG-DIANA-2 is better than EC-LSVRG-DIANA, and that ECLK is generally
much better than EC-LSVRG-DIANA-2, especially for A\ = 1075,

16

P(x<)—P"

P(xk)—P*

mushrooms

—— ECLK Topl
—e— ECLK Random dithering

—— ECLK Natural compression
—— ADIANA Random dithering
—— ADIANA Natural compression

5 10 2
Communicated bits per node (1 x 10° bits)

phishing

—+— ECLK Topl

—e— ECLK Random dithering

—— ECLK Natural compression
—+— ADIANA Random dithering
——_ADIANA Natural compression

S) 15 20 B
Communicated bits per node (1 x 105 bits)

P(x¥)—P"

P(x)—P"

w8a

—— ECLK Topl

—e— ECLK Random dithering

—— ECLK Natural compression
—e— ADIANA Random dithering
—— ADIANA Natural compression

5 lo 15 20 25 30 35 4
Communicated bits per node (1 x 10° bits)

wéa

—~— ECLK Topl

—e— ECLK Random dithering

—— ECLK Natural compression
—+— ADIANA Random dithering
—»— ADIANA Natural compression

AN

5 10 15 20 25 30 a0
Communicated bits per node (1 x 10° bits)

35 a:

P(x<)—P"

P(x¥)-P"

a%a

—

——

ECLK Topl
ECLK Random dithering

ECLK Natural compression
ADIANA Random dithering

10
—— ADIANA Natural compression
107
1070
o1
ot
107
10 20 30) 50)
Communicated bits per node (1 x 10° bits)
a5a
100
o —— ECLK Topl
—e— ECLK Random dithering
107 —— ECLK Natural compression
105 —— ADIANA Random dithering
—=— ADIANA Natural compression
107
100
10-1
108
107

0 a0

3 0 £
Communicated bits per node (1 x 10° bits)

Figure 11: The communication complexity performance of ECLK vs ADIANA for Topl, Random
dithering, and Natural compression on mushrooms, w8a, a9a, phishing, w6a, and aba data sets.

o phishing
Topl

o —e— ECLKp=06/3
107 —— ECLKp=6
o —— ECLKp=36

—e— ECLKp=96
0~ —— ECLKp=1
107
104
103
1088 N

10 2 w0
Communicated bits per node (1 x 105 bits)

B

P(x)—P"

Topl
ECLK p=6/3
ECLKp=6
ECLK p=36
ECLK p=96
ECLKp=1

o 20 30 40

Bt E
Communicated bits per node (1 x 10° bits)

P(x*)-P"

107

10

Topl
ECLK p=6/3
ECLKp=6
ECLK p =36
ECLK p =96
ECLKp=1

10754
0

30

40

Communicated bits per node (1 x 10° bits)

Figure 12: The communication complexity performance of ECLK with the Topl compressor and
p € {9/3,8,35,90, 1} on the phishing, w6a, and a5a data sets.

P(xk)—P*

P(xK)—P*

mushrooms

Random dithering
ECLK p =6/27
ECLK p =6/9
ECLK p=6/3
ECLKp=6
ECLKp=1

5 o 15 20 EEED
Communicated bits per node (1 x 105 bits)

phishing

3

Random dithering
ECLK p = 6/27
ECLK p = 6/9
ECLK p=6/3
ECLKp=6
ECLKp=1

3
Communicated bits per node (1 x 10° bits)

P(x)—P"

P(x*)—P"

Random dithering
ECLK p =6/27
ECLK p=6/9
ECLK p=6/3
ECLKp=6
ECLKp=1

o 2 30) 50
Communicated bits per node (1 x 10° bits)

w6a

6

107

1073

10715
o

Random dithering
ECLK p = 6/27
ECLK p=56/9
ECLK p=6/3
ECLKp=6
ECLKp=1

o % 30
Communicated bits per node (1 x 10° bits)

60

P(x¥)-P"

P(x*)—P"

10-1

10

Random dithering
ECLK p =6/27
ECLK p=56/9
ECLK p=6/3
ECLKp=6
ECLKp=1

10754
0

10

S
Communicated bits per node (1 x 10° bits)

5 20 25 30 35 4

a5a

10

107

107554
0

Random dithering
ECLK p =6/27
ECLK p =6/9
ECLK p=6/3
ECLKp=6
ECLKp=1

10

20 25 30 35

3 13
Communicated bits per node (1 x 10° bits)

Figure 13: The communication complexity performance of ECLK with the random dithering com-
pressor and p € {¥/27,9/9,9/3, 5,1} on the mushrooms, w8a, a9a, phishing, wba, and aba data sets.

17

mushrooms w8a
100 10t 10
Natural compression Natural compression Natural compression
10 —e— ECLK p=6/27 0 —e— ECLK p=6/27 o —e— ECLK p=6/27
107 —— ECLK p=6/9 10 —— ECLK p=6/9 107 —— ECLKp=6/9
— —— ECLKp=6/3 . —— ECLKp=6/3 - —— ECLKp=6/3
QI. —— ECLKp=6 “I- —— ECLKp=06 ‘IL —+— ECLKp=6
o v ECLKp=1 oo ECLKp=1 oo ECLKp=1
3 e 3
& w07 T 10° T 107
107 107 107
107 107 1071
1071 1071 1071
o 2 30 50 100 150 200 250 0 40 6 8 100 10 10 160
Communicated bits per node (1 x 105 bits) Communicated bits per node (1 x 10° bits) Communicated bits per node (1 x 10° bits)
o phishing o wba o a5a
Natural compression Natural compression Natural compression
o —e— ECLK p=56/27 o —e— ECLK p=6/27 o —e— ECLK p=6/27
10 —— ECLK p=6/9 10 —— ECLK p=6/9 107 —— ECLKp=6/9
. ECLK p=6/3 R —— ECLKp=6/3 R —— ECLKp=6/3
”:- 1 ”:— —— ECLKp=06 LIL —+— ECLKp=6
o~ o7 1 o~ o7 ECLKp=1 o~ o7 ECLKp=1
x x x
T 100 T 10 T 10°
101 101 100
10 10 1075
10715 10715 10715
) 20 w0 B S0 100 150 00 0 o 20 40 0 8 100 120 120 160
Communicated bits per node (1 x 105 bits) Communicated bits per node (1 x 10° bits) Communicated bits per node (1 x 10° bits)

Figure 14: The communication complexity performance of ECLK with the natural compression
compressor and p € {0/27,9/9,6/3,0, 1} on the mushrooms, w8a, a9a, phishing, wéa, and aba data

sets.

y mushrooms (A=10"%) . w8a (A=10"%) y a9 (A=10"°)
10t 10t 10!
—+— ECLK Topl
107t —e— ECLKRD 101 10
—— ECLK-F Topl
107 ECLK-F RD 107 107
—»— EC-LSVRG-DIANA Top1 »
v 10 . 10 . 108
Ny —%— EC-LSVRG-DIANA RD o o
| —e— ADIANA RD | |
- 107 - 107 - 107
< % ECLK Topl % ECLK Topl
& 10 & 10 —e— ECLKRD T 10° ECLK RD
—— ECLK-F Topl ECLK-F Topl
101 10- \ ECLK-F RD 100 ECLK-F RD
~»— EC-LSVRG-DIANA Topl EC-LSVRG-DIANA Topl
1013 1073 —*— EC-LSVRG-DIANA RD 103 N —*— EC-LSVRG-DIANA RD
—+— ADIANA RD —e— ADIANA RD
1015 10418 10418 s -
2 w0 & 50 100 120 S0 100 150 200 250 300 330 400) 50 100 150 200 250 300 350
Communicated bits per node (1 x 105 bits) Communicated bits per node (1 x 10° bits) Communicated bits per node (1 x 10° bits)
phishing (A =10"°) wéa (A=10"°) a5a (A=1075)
10" 10! 10t
101 10! 107!
— s, |
107 107 107
—+— ECLK Topl
v 100 . 10 —— ECLKRD . 20
°:- “}- —— ECLK-F Topl 1 ‘T
~ 107 L 107 ECLK-F RD 2 107
£ N ECLK Topl % —>— EC-LSVRG-DIANA Topl % ECLK Topl
T w00 . T ECro T 10 —%— EC-LSVRG-DIANA RD & 107 4 ECLKRD
" —— ECLK-F Topl ADIANA RD —— ECLK-F Topl
1071 N ECLK-F RD 1071 1070 ECLK-F RD
~»— EC-LSVRG-DIANA Topl \e —— EC-LSVRG-DIANA Topl
100 —%— EC-LSVRG-DIANA RD 100 105 ¥~ EC-LSVRG-DIANA RD
—a— ADIANA RD —+— ADIANA RD
107" 107 107
20 W & 100 25 5o 75 100 135 150 175 200 S0 100 10 200 250 300 3
Communicated bits per node (1 x 10° bits) Communicated bits per node (1 x 10° bits) Communicated bits per node (1 x 10° bits)

Figure 15: The communication complexity performance of ECLK vs ECLK-F vs EC-LSVRG-
DIANA vs ADIANA for Topl and Random dithering (RD) with A = 1075 on mushrooms, w8a, a9a,
phishing, w6a, and aba data sets.

18

P(xk)—P*

P(xK)—pP*

10-1

1073

10715

mushrooms (A =10"3)

—— ECLK Topl
—— EC-LSVRG-DIANA Topl
—e— EC-LSVRG-DIANA-2 Topl

20) a0 100
Communicated bits per node (1 x 105 bits)

phishing (A =10"3)

—+— ECLK Topl
—— EC-LSVRG-DIANA Topl
—e— EC-LSVRG-DIANA-2 Topl

2 3 3 5 o 1
Communicated bits per node (1 x 105 bits)

P(x¥)-P"

P(xk)—P"

w8a (A=1073)

—— ECLK Topl
—— EC-LSVRG-DIANA Topl
—e— EC-LSVRG-DIANA-2 Topl

50 100 150 200
Communicated bits per node (1 x 10° bits)

wéa (A=1073)

—+— ECLK Topl
—— EC-LSVRG-DIANA Topl
—e— EC-LSVRG-DIANA-2 Topl

10-1
107

10715

50 100 150

P(x¥)-P"

P(xk) =P

50 0
Communicated bits per node (1 x 10° bits)

a%a (A=1073)

o —— ECLK Topl
—— EC-LSVRG-DIANA Topl
107 —e— EC-LSVRG-DIANA-2 Topl
10
1077
107
1071
1071
1071
o 20 % 40 S0
Communicated bits per node (1 x 10° bits)
aSa (A=10")
10!
o —— ECLK Topl
—— EC-LSVRG-DIANA Topl
107 —e— EC-LSVRG-DIANA-2 Topl
10
107
10°
100
1075
107
) o 20 30 4

Communicated bits per node (1 x 10° bits)

Figure 16: The communication complexity performance of ECLK vs EC-LSVRG-DIANA vs EC-
LSVRG-DIANA-2 for Topl with A = 1073 on mushrooms, w8a, a9a, phishing, w6a, and aba
data sets.

P(xk)—pP*

P(x<)—P"

mushrooms (A =10-%)

—— ECLK Topl
—— EC-LSVRG-DIANA Topl
—e— EC-LSVRG-DIANA-2 Topl

S0 100 150 50 0
Communicated bits per node (1 x 105 bits)

phishing (A =107%)

—— ECLK Topl
—— EC-LSVRG-DIANA Topl
—e— EC-LSVRG-DIANA-2 Topl

20 40 60 8 100 130 1a0 160
Communicated bits per node (1 x 10° bits)

P(xk)—P"

P(x¥)—P"

w8a (A=10"°)

—— ECLK Topl
—— EC-LSVRG-DIANA Topl
—e— EC-LSVRG-DIANA-2 Topl

107

1073

10715

100 200 300

wéa (A=10"°)

%0 0
Communicated bits per node (1 x 10° bits)

—+— ECLK Topl

—— EC-LSVRG-DIANA Topl
—e— EC-LSVRG-DIANA-2 Topl
x

Communicated bits per node (1 x 10° bits)

100 200 300 400 E

P(xk) =P

P(x¥)—P"

107

10

10715
0

a% (A=10"%)

—+— ECLK Topl
—— EC-LSVRG-DIANA Topl
—e— EC-LSVRG-DIANA-2 Topl

S0 100 150 200 250 300 350 400
Communicated bits per node (1 x 10° bits)

a5a (A=10"°)

—— ECLK Topl

—— EC-LSVRG-DIANA Topl

—e— EC-LSVRG-DIANA-2 Topl
S S

S0 100 150 200 250 300 330 400
Communicated bits per node (1 x 10° bits)

Figure 17: The communication complexity performance of ECLK vs EC-LSVRG-DIANA vs EC-
LSVRG-DIANA-2 for Topl with A = 1075 on mushrooms, w8a, a9a, phishing, w6a, and aba
data sets.

19

B Lemmas

Lemma B.1. We have

- ZEk VAP @) = VD wh)|| < 2L (fh) = f@8) = (V) ut — b)), a3)
and

—ZHW“ - VIO @) L 2L (Fh) - @) - (ViR - 1), ad)
and

.)
By |- > (VI @) = Vi wh))

< 2L+ B) () - 1) -)0 -), a3
and

flgh + R = VIERIP) < 22 () -) - (it -), ae)

Next two lemmas will be used to prove Lemma[3.3]
Lemma B.2. If L1 > Ly, then we have

L 1
Tl = |2 (g bR R 2R > () = f(@") = o llg R = V)]
4n 6, £16, 9
a7

Lemma B.3. We have

(g + h¥ 2" =) E et — o

Ly ok k+12 | &k+1 Ly zF (51 Nf) k2

> k- A] g
L x
(345)1 0 - vt (13)

Under the additional Assumption 2.1} we analyze the evolution of [|¢*||? and ||2* — V f(w*)||? in
the next two lemmas.

Lemma B.4. Under Assumption the quantity Ei[||e*+1||?] is upper bounded by
(1= §) Nk 1> + 252 Z ek 2 + 252 Z V57 (w*) = n|?

20200 (L 4 L) By (o) + 200 9 ()2

Lemma B.5. Under Assumption the quantity Ey, [||h’c+1 — V f(w**+1)|12] is upper bounded by

(1=) |k — ¥ fuh) 2 + 2)‘”Z||hk VO (w2

+apLy (1+3) By(o*,a*) + 4pL; (1 +2) By(w*, "),

20

C Proofs of Lemma [B.T, Lemma B.2}, Lemma B.3, and Lemma 3.3

C.1 Proof of Lemma[B.1]

Since fi(T) is L-smooth and f is L y-smooth, we have (Nesterov|[2004], Theorem 2.1.5)
IV @) = VA W17 < 2L(F7 (@) = 17 () = (V£), 2 = v)),

forany z,y € R?. Therefore,

B[VA (@) = VD @h)P < 2LE[fT (w*) — £ (@) — (VD (28), wh — 2b)]
= 2L(fO(w*) - O (@k) — (VO (aF), wh - 2b)),

which implies that (I3). From

IVFD (@) = VIO WP < 2L (17 @) = £D) = (VIO Ww)w)

we can prove (I4) similarly.
Denote ¢¥ = Vfi(g)(xk) — Vfi(g)(wk). Then we have

n 2

Z (Vf D) = VD (")

n

Ly

7':1

= <§qf,iq’i>

=1

n
= E Z]Ek qu 9 q‘l’g

T1,T2= 1

= YR + oy 3 (V) - VRO), T) - v wh))
T=1

T1I#T2

1 n
= szkllq’ﬁHQHIVf(w’“) IIQ**ZIIVf(T ~VIO@WhP 9)
T=1

< S EGHR + 2L () — f¥) — (VEH), o)

T=1

(2 428s) (1(04) = 164) = (958) 0" =),

where we use the independence of i in the fourth equality and ||V f(z) — Vf(y)|? <
2L; (f(z) — f(y) — (Vf(y),z — y)) in the first inequality.

21

Recall that ¢* = Vfi(g)(xk) - Vfi(g)(w’“). Then g + A% = L 3" | g% + V f(w"), and thus

Ey [lg" +0F = VFEM)?] = B -Hiiqmvf(w’“)w(z’“) 2
_ K quT — [V f (k) — V)
0 iEHqTHQ 2ZEHWT)) = VO (wh)|?
< Z lat]?
< é; e (PD @) ~ D) = (VD @)k - ah)

= () f) (V) 0k),

where we use E,[1 3", ¢F] = Vf(2*) — V f(w") in the second equality.

C.2 Proof of Lemma[B.2]

k+1 _ k

Since z 28 = - (yF — a*) and n = 55—, we have
Ly HZ/H-I — zkH? + <g]~C 4 pk R Zk> — Ly lly k+1 _ k||2 + i<gl~c + B ylc-i-l B xk>
4 ’ 4,,702 0,)
3L
= k+1 _ Kk 1 B+l k 2
= 01<Vf(")y)+ g, Iy I
1
(gt B = VI Et) o)
1
1 k 3, L
> — +1y _ k =f k41 _ k)2
> g (PO - fh) + (491 2.) =t

1
+9*<gk + hF =V f(aF), g — P

1
1 Ly

s 4 K41y gk Layokrr k2
> 7 (f@) = fla))+491 lly z"||
+9i<gk +hY = Vf(F), gt = 2F)

1

1 k k Lok ok k
z gl(f(y)~ fla))*HH!J +hE =V f)|?,

where the first inequality comes from L ¢-smoothness of f, the second inequality comes from
Ly < L4, and the last inequality comes from Young’s inequality.

C.3 Proof of Lemma

First, from @) and oy = ;Tfl we have
L
gk + B 71(2/@ _ 5k+1) +£10'1(5Ck _ Zk-‘rl) (9’(/J(Zk+1)
n
Ly, . - - -
= SHER - L ELEE) —au(hY),

22

which implies that

<gk + h,k72k+1

,x*>

2k+1>

_‘r*‘|2

— ﬂ<zk+1 —r* i’k o 2k+1> + ﬁ<zk+1 —z* gk o 2k+1>
2 b "7 b
_<Zk+1 _ x*,@z/)(zk+1)>
< %<2k+1 e 2k+1> + ﬁ<zk+1 e 2k:+1>
n
(%) = p(FH) — B — a2
_ ﬂ<2k+1 ot gk 2k+1> + &<5k+1 e 2k+1>
2 b 7’ b
(") = (M) = TR
+%<Zk+1 _ gkl gk gkely &<Zk+1 _ gL gk _
n
= (gt -2t P — 12 — o) - |12 - 2P
L
o (125 = |2 = 247 — 2" - |12* = 2+41)?)
n
’“ﬁff L e e e)
(||Zk+1 ~k+1||2 + ”21@ _ 2k+1H2 _ ||2k _ Zk+1||2)
* /’l/ *
+w<m) — (2R — LA — a2
L L
< (B AL g S - o+ gt
L L
+ (21 + Zf) szﬂ - 2k+1”2 -~ 71H2k - Zk+1||2
n
i
Hp(a®) — (R — B2l — 2|2,

where in the first inequality we use that v is ji,,-strongly convex and in the last inequality we use

—[lz*

For ||z%F — 2*||?, || 2¥

o*|* < 2|z

2% ~

and

Zk+1H2 <0.

2412, and ||z

:17k||2 +2||xk

||Zk+1 _ l‘*||2 Z

k+1 _

*

—_

[\)

|,

||2k+1

x*HZ

_33*”2 —

23

, from Young’s inequality, we have

||2k} k+1||2 > ” k Zk+1||2 . ||Z

DO | =

||Zk+1 _ 2k+1 ||2

k‘i

),

Hence, we arrive at

<gk 4 hk’zk+1 o l‘*>

IN

L ~ Ly .
S R Lt - EEr G T Er

2n 4 4
+E | — 2k + (;; +EL 4 ’“‘;) [Eaair-iaal &
Rl = PR T - P 4 (o) - ()
e R L e e

Ly ko2 L1 B\ k12
(4 5 1+ (55) b

L *
el = P e) —
7
~ El ~k Ll 13
— _Zk+1 et Sad .k %2 ~1 Pf k12
b Bt o () 1
Ly k412 Ly k k412 * k+1
(B4) 112 - Lt - P 4 () - 0,
C.4 Proof of Lemma[3.3]
Since ¢ + 62 < 1, and f is uy-strong convex, we have
F@) = f@)+ (VEh),e —ab) + Bl ek — a2
= fab)+ Hllet — 2P + (VF(ah), 2t = 2 4 2 — o)
i 0 1—6,—06
= fab)+ Hlle 2P + (V5 ("), 2" =) GV, ok =) (V) -)
0 1-6,—6
= @)+ GVt - wf) £ = (W) - S (@) = (V@) gt -)
1-6,—-6
2 (F(aF) — £ + B [EL 2 — 272 + (g8 + BE 2t —) 4 (g R
1

where the last equality follows from the convexity of f and Ej[¢* + h*¥] = V f(z*). For the last
term in the above equality, we have

Ep [Fh 0% — a1 4 (g 4 B, = 25V (gF R R = 2R - () (et — 241

(s L, ZF { ko pk K L1
S 7 LR Rk R Ry Bk k+12]
= L Y SRR L
Ly 12 L1 p k412
ML BE
(F)1 = (S5)l
(1) Ly 2F L1 Ly p
(B - (2) e
Li+nu/2 \2n 2 2n 2
1 1
B | U0 = 60 - pho ot + 1 = TP
1 1V1
(L6)
>

L1 2k L L

S Li+np/2 \2np 0 2
FEL |G () = 1) = 2 () =) = (91t =)]

24

Therefore,

Ex [f(*) = () +v(@*) - 254 + <§7 i sz) e 12 + (;7 i g) Eifle™ 11

B R) 16) — (V16) e
Zk _ _
> A2 BB LR - () + (VSR)

2L /
e (fh) = f@4) (V) — b))
LiZF 1-0,—0, 1 Ly s
T T Livap2 o Fy*) + e—l]Ek[f(y’”)] - Ef(wk)
+% (92 - n2£Ll> (f(wh) = f(@*) = (Vf ("), w® — o).

From the convexity of v, and
yk+1 = l’k + 91(2k+1 — Zk) = 91Zk+1 + ngk' + (1 — 0, — Gg)yk,

we have
62

01

1-61-06,

PP >~y = Ze(wh) Tw@/ﬂ.

v
=)~

Hence, we can obtain

P(e") + (‘1 n ”f) eI + (ﬁl n ”) B2 — L2002 by by - (vt ot - o)

2n 2 2n 2 01
- L ZF 1—6, -0 1 0
> k+1y _ 1 . 1 2 k = k+1y) _ V2 k
> Ex[Z277] Lt 2 0, P(y") + HlEk[P(y) GlP(w)

o (92 - nzaL) (Fw) = Fab) = (VF(),wb - ab)).

After rearranging we can get the result.

25

D Proofs of Lemma 3.4, Lemma 3.5, Lemma B.4, and Lemma [B.5|

D.1 Proof of Lemma[3.4

First, we have

Ex[lle™11%]

S (1= O)Eeh +£ oI

= (- DRk + (VSO - T @) + gk — (VO () - VO
: <1f6>Ek||e’:+f<Vf (@) = VIO)+ T (k) - B
H R0 () -) — (V1) - 9O)
< (1 =0)llef + (VIO @) — I+ “E?ﬁaknw}g '(a*) = VI ()2
< =0+ AR +0-0) (14 5) LIvst) - 1P
H 91) - I)
< (1-g) e+ 2 oot - i+ LR 90) - Vi ot

where we use Young’s inequality in the third inequality and choose 3 = (1 %) when § < 1. When
0 = 1, it is easy to see that the above inequality also holds.

Then from Young’s inequality, we can obtain

n

AR

=1

77 T T
< (1-) 3 e gt ST - 9

4 1 - 7] T - ,'7 T T
+(—Z V50) = 12+ S o) o) - D ()
1 T=1

dnL?
2 (-0 le b1+ S () -) — (9) ¥ - o)
L DIV — R + w7t imw}g @) = VAP I
= (1-3): Zn {7 4 MQ”Zuwﬂ wh) — R
+2(12%‘5)<?+L>(f(B~ flah) — (V)b —).

26

)]

D.2 Proof of Lemma[3.3
First, from the update rule of w”, we have
Ex ([R5 = VT (k)]
= pE[IRT = VOGP + (1= B[R = VO (@h))?)
< o (14 ZYBAVIH) - VO +p (14 2) BIRES - 9O
+(1 = p)E[[hH = VD (b))
= (14 Z) 19O - TIOWHIE + (14 5) Bl - 970w

o
< (14 Z) 1906 - AP+ (1- 5) I - SO W
where the first inequality comes from the Young’s inequality and the last inequality comes from the
contraction property of Q);.
Then we can obtain

1 n
~ D B[= VD @M

T=1

< ﬁ(1+§f)2||w<ﬂ<yk>—w<f>< OI7 + (5) Zlih" NEAUCOl
< (1—‘2);|h’“ VIO @HP + ()ZW” VO
+2 (14)an“ VIO @)
< (1—‘2);;”& VO)I2+4Lp<1+?f)(f(y’“)—f(x’“)—<Vf(fc’“),yk—x’“>)

+aLp <1 + 21") (k) — F(2%) = (V (%), 0 — 2b)).

D.3 Proof of Lemma[B.4
Under Assumption [2.1] we have E[Q(z)] = 0z, and thus

1 & ’
7§:ek+1
n T
T=1
k+1 k+1
2ZE €i
k12 4 k+1 k+1
EE Ellez™ 1" + E Ex(e;
T=1

i#J

Ek”ek+1”2 _]Ek

=

1-6 n n
= Elg‘r ZE <€ +7glﬂej +Eg]>
i#£]
2
(1—5)2 = k U (1- ?
p— E —_—
K Z(€T+£1QT) +

T=1
2

n
1

< (1=0)Ey||e* + e’j+£lg’j
1

)

(1-6)0 &
+ Zl]Ek

27

where we use the definitions of ¢* and g* in the last inequality. Then we can obtain

EkHek+1”2
< n k ? ’
< (1—5)Ek 6 +£
1
2
§)on?
< (1—0)E|e +£i1 k Zn kI 4+ 2£2 Jon ZE g5 11>
2 2 n
< (1-0Ek |+ fgt Zn B2+ 252 ZE IV £ @) = V£ (@)
4(1 — 8)dn?
ALy > IV) -
1 T=
1 gk 2y 0)on”* () k2
= O Zn 512 + 21:2 an wk) — hE|
8(1—46)0L
SO (k) — £(a4) = (910, —). 0)

where in the second and third inequalities we use the Young’s inequality.

2
For (1 — 6)E,, Hek + ﬁllgk‘ , we have

2

(1— 8)Ey |[eF + L g*
Ly

2

= (1-0)E|e +£—1(Vf(Ry - Vf(wk))Jr%gk—%(vf(@“k)—vf(wk))

2

= (1-0)E e+£—1(w(kY — hk)

P 1 (946 - 9) = (9568 - T
< (1= g) e+ 2 o -
+(1fc?772m U (VDGR ~ VD @h) ~ (V) - Vb))
2(1 -

o)
ooy

2
IV5at) = IR + (1=)2 () = £a*) = (V4(H) 0t

b
= (1-5)1te

Since f is L y-smooth, we have
IVf(a®) =52 < 2 VF@") = Vib)[]* + 2|V f(w") — B¥|?
< ALy (f(wh) = f(2*) = (Vf ("), wh —2%)) + 2|V f(w") — B¥|%.

Hence, we arrive at

n

1—8Ey |[e" + == ¢*
()k€+£1g

BN oz 4 40— O :
< (15) 1P+ sty -
20T (54 1) (1)~ 1) = (Tt = o).

28

Combining (20) and the above inequality, we can obtain

Eglle")2
) 2(1 - 8)8 4(1 = 0)on? & .
< (1= 2 b+ LS00 5 ke AL O 0 k) — gk 2
2 n T=1 n El T=1
2(1—0)n* (4Ly L 49L k k ky .k k 4(1 —0)n?
2 5 tot, (f(w®) = f@®) = (Vf("),w" —2")) + e,

) 2(1 — §)d & 4(1 = 8)0n? < ~
< (1 g1+ 2SR S ey Ao S s) P
=1 1 =1

4(1 = §)n?

2(1 = 8)n? /4L 5L
+()n(f

L3

D.4 Proof of Lemma[B.3

First, from the update rule of w”, we can obtain

Ex ||+ — V(w2
= PER[AMF = VENIP + (1 = p)Ee[lh* = Vf(wh)]?

IN

p (142) 19505 - TH@IP + (14 5) B - O

Denote ¢¥ = hE+1 — V(T (wk). For Ey||h¥+1 — V f(w*)|% under Assumption [2.1] we have

E[Q1(x)] = 612, and thus

n 2

S VO

T=1

Ex[[h"* = Vi(W®)|* = Ei

1 — ’
ﬁquﬁ

T=1

1
2]

1 - k|2 1 k k
T=1

i#]

= Ek

IN

i#j
(1—61)2

n2

i(hfﬁ -V (")

=1

T=1

L=60 0k o (g b2, (L= 01)? ko)), k
=1

5 n) (F(w*) = f(2*) = (V") w" = 2")) + Tgnnhk _

k
)7h’] -

< (1= 8)|RE = V)| + (l_rl% > Ik = VO W),

T=1

IV f(w

V f(w”

where in the first inequality we use the contraction property of Q1 and the independence of compres-

1hk

sors on different nodes, and in the last inequality we use h* ..

n Lat=

29

")~

).

Vf(j)(w

2
1—61)01 & .
+ L0 S™ s w2

hk||2

p (1 + 2p) IV £ — Vi wh) 4+ p <1 " jp) E [— VA@M)IP + (1 — pEAE — V F(wh)?

)

Hence, we arrive at

Ex[|hMH = V(w2

< o(1+) 19504 - TrHP + (1-) Ik - Vrh) P

e e YT
< (1—) I = e + L2 Zuhk VO (wh)

w20 (142) 19765 - Vit >||2+2p<1+ 2) Vs h) - V1
< (1= %) Ik vrwh 0300 = s - v by 2

T=1

#apLy (14 2) (109) ~ £a4) (V1) o)
1

L (1 T ff’) (k) — F@@*) — (VI *),uk — aby),

where we use Young’s inequality in the second inequality.

30

E Proofs of Theorem [3.6, Theorem 3.7, and Theorem 3.§]

E.1 Proof of Theorem 3.6

From [|e¥||2 < 13" ||e*||%, Equation (T0), and Lemma we can obtain

ol [Z~k+1 4+ Ykl _’_Wk-i-l}

»Cle k: k& £1 /lf 1 n o
< R — _ It L A
= L1+ /2 +(1 -6 92+)y + A =p+pgW" + o +5 nT§:1H€T||
Ly n l”w_i 2L by —) — (9 f() ko
+ (277 + Z)Ek n;IIeT 1P| = g (82— o) @) = J@") = (VF(ah) w* - a¥))
106

o (f(y") = F(a") = (Vf(a"),y" — "))

Lemma [34] ﬁlék ko k <) 2
S L R 1—p+pgW
=0+ 2P () I

4(1 - o)n?

+5n,cg(2n)ZW“))= P = FE SRR — 56 — (V7)o - o)

(3 (o 22) 2 () (o) e -

L1 ZF
L1+ np/2

IN

4L
=0 =04)y’f (1—p+pg)WF + 1fZII)2

+§§fa§2;HWWw’“)—h’iHQ—1‘9;1‘92<f<y'f>—f< DR\ ICORUEEL)

1(1(2L 16(1—6)L 4(1—6)L

i (- (B4 U DR 2UZIBN) (1) - fat) = (978, - o),

where we use p < % andn = ﬁ in the last inequality. Then, from Lemrna we have

Ex

2k+1 yk+1+Wk+1 ZH k+1||2]

L1 ZF - i ()4&1 1 & SHI2
T 4+ (1-6,-6 1— W (1--) =
£1+W2 EUETEE Y A=ptpa) : P

IN

-6, -6
S Z”Vf“ = WP = TR () — 1) — (V) - a)

_% (92 ~ %1 <2nL . 112(;5; oL 28(19; 5)L>) () — F) — (V) —)

31

)

Finally, by Lemma[3.5] we can get

Sk+1 k1 Lkl Z k12 (_) lzn k+1 (1) (,, k+1y]|2
L1 ZF by . < > AL, 1 .
— 4+ (1-60; — 0+ 1l—p+p)W*+(1—- =
< Ltan (2)37 (1 —p+pg) E "l

n

1— e S hE _ () ky\ (12
+< 6)391525151 3 2)

1 (92 ~ 11 <2L N 112(1 - 6)L L 80 §)L N 224(1 — 0)Lp (1 n 21’)))

01 L1 962 95 3625, 5
(f(wF) = f(a¥) = (Vf(z)w —)

L1 ZF by . ()4511” .
< == 4+ (1-6,—-6 1-— w 1—=) —
S Lm0 2+ VL =prpWt (1= > lle|
o1 (1-90) 1 ! BN
1 N S _ _ T
+(1-%) o n;um V5O W)
1 L . .
— (1= =0, — ==) (J(") — f(a") = (VS (), ¢ —a¥))
01 3L,
1 Lo k k ky ok k
i (0= o) () =) = (T, =),
where we use the definition of L5 in the last inequality. When 65 > and 0, + 205 < 1, we can

get the result.

E.2 Proof of Theorem 3.7]

From Lemma[3.3|and (T0), we have

32

Ex [2’“+1+J}’“+1+W’““}

oL - % L1 | py k2

Bt (170)Y 0t ()1
Ly ke _ L (o 2L Ry _ gk

(48 mule P - o (0= 22) (b = 1) - (9(a) 0t - o)

SR -) — (VR - a)

LenmaBEd £, ZF () k K (51) k(2
< (1= =0+ 2)V (L —p+peWE+ [+ 1) |l
Lit)2 1— U2 +(P+ pq) n w) el

L 5 1 57 -
+(ag) 22 ZH et + 200, ZW VIO

8(1

S0 Mk v - (F5) ~ 1)~ (V7)o — o)

(91(9 fg) 4 "<4Lf)) (f(*) — F&5) — (V@) —

IN

91 0

< m+<1_01_02+q> Vit (1—p+pgW* + ;;;Hekll2
20 ‘””fén L 1Z||hk V£ ()
2k v - #(f(yk))~ (V))
5 (o= 2 - 4(; 22 (B4 2) () - 1) — (90t -),
where we use u < Ll andn = = in the last two inequalities. Then, from Lemmaand Lemma
B4 we can get
Ek Z~k+1 +yk+1+wk+1+467‘€]1”6k+1”2 28‘61 ;i”ek+l|2‘|
< INEE s B et (1—2) L orpe
+(1-3) Ba0=0 Zn b 1220 Znhk VIO W)
+ 0L I~ 9 b O 1 —) — (9 5b), o —)

1 oL 28(1—0) (4L; BHL\ 56(1—0)2 (4L L
A <92 Cnly 9L (5 " ”) - 36L, (671 " >)
(f(w®) = f(@®) = (Vf(a"), " —).

We simplify the coefficient of the last term in the above inequality as follows.

28(1 —4) <4Lf N 5L> 56(1 —4)? (4i L) S 112(1 = 8)Ly 224(1 —8)L 308(1 —§)L

0wr, 5 350, \on 902, 3L, T 9onL,

33

Finally, from Lemma [3.5]and Lemma[B.3] we can obtain

Zk+1 k+1 k+1 ﬁ k:+12 28£1 k+12
B |41 PR S e ZII [
56(1 —d)n k+1 kt1y2 , 004(1 5)77 1 k41 (7) (0 k+1Y]12
B0 Mypent — g i+ 20022 Znh VSO |
60,L,2% B o b (1) AL
< -t B (W +(1) et
g 28L4(1 k12 4 91 504(1 — 77 1 k () 2
+(1-p) B0 =0 Zn e (1-) S Znh VO W)
01\ 56(1 = 0)n,, k 2 Ly g _M 9L
+(1_6) ol L EACR L el Gk a7l €2 aen
(fF) = f@®) = (Vf(F),y" = 2F))
L, 2L 120-8L; 24(1-9)L 308(1-9)L 24(1-8p (, 9L
A nt 9622, 362nL, 96n.L, 36261 L, /
(fwh) = f(@*) = (Vf(F),wh - 2F))
< who L (1 - 'C) (P45 = (") = (VF(b), o = 2*)
o 3L,
1 c
g (B2 32) () = £08) = (97wt =),

where we use the definition of L3 in the last inequality. When 0 > 3%1 and 6; + 205 < 1 we can
get the result.

E.3 Proof of Theorem 3.8

(1) First, we have 2 >0y > 7o . Form the definition of 8, we know 6; < %. Then 6, + 265 < 1.
Thus the result in Theorem- holds. Next we consider two cases:

Case 1. Suppose Ly < % In this case, we have ; = min (4 /ﬁp&g, 02) and 0, = m >

P

E.
Case 1.1. Suppose £ Z,p = 1. In this subcase, 01 = 6.

For m, we discuss two cases. If £ = max(Ly, Ly, 3un) = 3un, then m =1>

If £1 = max(£4,Lf,3un) = max(Ly, Ly), then £, = §- = £, which implies that —£—

|| s

#+2£4 z P+2 > 5 EN

Bychoosmgq— wehave@1+02—%:722§ndp(l—q) L.

Case 1.2. Suppose ﬁp < 1. In this subcase, 8, = ﬁp@g.

For m, we discuss two cases. If £1 = max(Ly, Lf, 3un) = 3un, then u-%% = % > Eaf

Ly = max(Ly, Lf,3un) = max(Ly, Ly), then £, = 392 = ﬁ "54

Vip/Ls w , ; 1
arirrs: Neticing that 75 = 75 p* <p? < 1 wehave g > 54/ 7

By choosmgq =1- 71 /CLp 2 so that 305(1 — ¢) = 61, we have 61 + 05 — 9—2 =60,(1- i) >

01 HBp _ —l M
5 = 1/641)_6,/ and p(1 73

34

Wthh ylelds #lﬁl =

Case 2. Suppose Ly > %. In this case, #; = min < Lif, g), max(Ly,L4) = Ly, and 6,
L
3L; <3

Case 2.1. Suppose , /Lif > £. In this subcase, 0; = £

For }H_bfﬁ, we discuss two cases. If £; = max(L4, Ly, 3,u77) = 3m), then

n
p+661 »Cl -

1
7

L1 = max(Ly4, Ly, 3un) = max(Ly, Ly) = Ly, then
5.
Let g = 2. Then 6; + 62 — 9—2 :91—‘9—2 >Eandp(l—¢q) =%

Case 2.2. Suppose , /#~ < £. In this subcase, 0; = , /4~ s

M+691£1 u+2po = u+18;t/:v p+18

For m, we discuss two cases. If £1 = max(L4, Ly, 3un) = 3pun, then u%% = % >
— _ _ wo__ u _ _/w/Ly

If £; = max(Ly, Ly,3un) = max(Ly,Ly) = Ly, then Ty o T

3

194/ Ls°

Letg=1— /4 >7sothat1—q*101 Then01+02ff279 — L0160, > (1- 1),

0
2= %</Tf andp(l—q)— Lif

Therefore, we have E[®*] < ¢®° as long as
1 1 1 L L
k20<++p+ =4 4).

Since £4 = Lo, we can get the results.

(i1) By using Theoremand L<nL > same as (i), we can get the results.

35

P
=

AV

	Introduction
	Problem Description and Summary of Contributions
	Problem Description
	Contributions

	Error compensated L-Katyusha
	Description of the method
	Convergence analysis: preliminaries
	Convergence analysis: main results

	Experiments
	Top1 vs random dithering vs natural compression vs no compression
	Comparison with EC-LSVRG-DIANA and ECGD
	Comparison with ADIANA
	Impact of the update frequency of the reference point

	Extra experiments
	Lemmas
	Proofs of Lemma B.1, Lemma B.2, Lemma B.3, and Lemma 3.3
	Proof of Lemma B.1
	Proof of Lemma B.2
	Proof of Lemma B.3
	Proof of Lemma 3.3

	Proofs of Lemma 3.4, Lemma 3.5, Lemma B.4, and Lemma B.5
	Proof of Lemma 3.4
	Proof of Lemma 3.5
	Proof of Lemma B.4
	Proof of Lemma B.5

	Proofs of Theorem 3.6, Theorem 3.7, and Theorem 3.8
	Proof of Theorem 3.6
	Proof of Theorem 3.7
	Proof of Theorem 3.8

