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Abstract

Gradient compression is a recent and increasingly popular technique for reducing
the communication cost in distributed training of large-scale machine learning
models. In this work we focus on developing efficient distributed methods that can
work for any compressor satisfying a certain contraction property, which includes
both unbiased (after appropriate scaling) and biased compressors such as RandK
and TopK. Applied naively, gradient compression introduces errors that either slow
down convergence or lead to divergence. A popular technique designed to tackle
this issue is error compensation/error feedback. Due to the difficulties associated
with analyzing biased compressors, it is not known whether gradient compression
with error compensation can be combined with acceleration. In this work, we
show for the first time that error compensated gradient compression methods
can be accelerated. In particular, we propose and study the error compensated
loopless Katyusha method, and establish an accelerated linear convergence rate
under standard assumptions. We show through numerical experiments that the
proposed method converges with substantially fewer communication rounds than
previous error compensated algorithms.

1 Introduction

When training very large scale supervised machine learning problems, such as those arising in the
context of federated learning [[Konecny et al.,|2016b, McMahan et al.| 2017, [Konecny et al.| | 2016a]
(see also recent surveys [Li et al., {2019} [Kairouz, [2019])), distributed algorithms are indispensable. In
such settings, communication is generally much slower than (local) computation, which makes it the
key bottleneck in the design of efficient distributed systems. There are several ways to tackle this
issue, including reliance on large mini-batches [|Goyal et al.,[2017, [You et al., 2017]], asynchronous
learning [[Agarwal and Duchi, [2011} |[Lian et al., 2015} Recht et al., [2011]], local updates [Ma et al.,
2017} |Stich| 2020, [Khaled et al., 2020}, |[Hanzely and Richtarik} [2020, [Woodworth et al.,|2020] and
communication compression (e.g., quantization and sparsification) [Alistarh et al.|[2017, Bernstein
et al.,[2018|, Mishchenko et al.| 2019, |Seide et al., 2014, |Wen et al., 2017].

Communication compression. In this work, we focus on the last of these techniques: communication
compression. The key idea here is to apply a lossy compression transformation/operator to the
messages before they are communicated so as to save on communication time. While compression
reduces the communicated bits in each communication round, it introduces errors, and this generally
leads to an increase in the number of communication rounds needed to find a solution of any
predefined accuracy. Still, compression has been found useful in practice, as the trade-off often seems
to prefer compression to no compression.
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Contractive and unbiased compressors. There are two large families of such compression operators:
contraction and unbiased compressors [Beznosikov et al., 2020]. A (possibly) randomized map
Q : R — R is called a contraction compressor if there exists a constant 0 < § < 1 such that

E[llz - Q@] <1 -d)lz|?  VzeR )

Further, we say that a randomized map Q : R? — R% is an unbiased compressor if there exists a
constant w > 0 such that

E[Q(x)]zx and E[HQ(J;)H?}g(w+1)||x|\2, Vz € R ?)

It is well known that (see, e.g., [Beznosikov et al., [2020]]) after appropriate scaling, any unbiased
compressor satisfying (2)) becomes a contraction compressor. Indeed, it is easy to verify that for any
Q satisfying (2)), %HQ is a contraction compressor satisfying (I)) with 6 = 1/(w+1). Thus we can
construct corresponding contraction compressor from any unbiased compressor. However, there are
empirically very powerful contractive compressors, such as TopK [Alistarh et al.,2018]] (described
below), which do not arise this way, and because of this, the class of contractive compressors is
important in practice. For illustration purposes, we now define two canonical examples of contraction
compressors. Let 1 < K < d. The TopK compressor is defined as

_ (l‘)ﬂ(l) if ¢ < K,
(TopK(2))(s) = { 0 otherwise,
where 7 is a permutation of {1,2,...,d} such that (|2])~;) > (|2|)x(i41) fori =1,...,d — 1. The
RandK compressor is defined as

x); ifiels,
(RandK(z)); = { (O ) otherwise,
where S is chosen uniformly from the set of all K element subsets of {1,2,...,d}. For TopK
and RandK compressors, we have 6 > K/q [Stich et al.l [2018]. Some frequently used unbiased
compressors include random dithering [Alistarh et al., [2017]], random sparsification [Stich et al.,
2018]], and natural compression [Horvath et al., 2019b]. For more examples of contraction and
unbiased compressors, we refer the reader to [Beznosikov et al., 2020].

Related Work. If we assume that the accumulated error is bounded, and in the case of unbiased
compressors, the convergence rate of error compensated SGD was shown to be the same as that
of vanilla SGD [Tang et al., |2018]]. However, if we only assume bounded second moment of the
stochastic gradients, in order to guarantee the boundedness of the accumulated quantization error,
some decaying factors need to be involved in general, and error compensated SGD is proved to have
some advantage over QSGD [Alistarh et al.||2017]] in some perspective for convex quadratic problems
[Wu et al., [2018]]. On the other hand, for contraction compressors, error compensated SGD actually
has the same convergence rate as vanilla SGD [Stich et al.|[2018}, [Stich and Karimireddy} 2019 Tang
et al., 2019]]. Since SGD only has a sublinear convergence rate, these error compensated methods
could not get linear convergence rate. If f is non-smooth and ¢ = 0, error compensated SGD was
studied in [Karimireddy et al., 2019] in the single node case, and the convergence rate is of order
O (1/Vs%).

For variance-reduced methods, QSVRG [Alistarh et al.,|2017]] handles the smooth case (¢ = 0), and
VR-DIANA [Horvath et al.,|2019al], ADIANA [Li et al.;2020] handle the composite case (general
1). However, the compressors of these algorithms need to be unbiased. Error compensation in
VR-DIANA and ADIANA does not need to be used since their method successfully employs variance
reduction (of the variance introduced by the compressor) instead. Recently, an error compensated
method called EC-LSVRG-DIANA which can achieve nonaccelerated linear convergence for the
strongly convex and smooth case was proposed in [Gorbunov et al.l|2020], but besides the contraction
compressor, the unbiased compressor is also needed in the algorithm.

Error compensation. While contractive compressors can be more powerful in practice, they are not
unbiased, and this leads to severe difficulties in the algorithm design space, and poses challenges
for theoreticians trying to understand the convergence behavior of distributed algorithms using
contractive compressors. Indeed, while there is no issue with the use of contractive compressors
in the non-distributed setting (which is of course not interesting from a practical point of view) in



combination with standard gradient-type methods, serious convergence issues arise in the distributed
setting. Indeed, classical methods such gradient descent can diverge (even exponentially fast) when
the TopK compressor is used to compress uplink gradient information [Beznosikov et al., [2020].
Fortunately, this issue can be resolved using the error compensation (EC ﬂ mechanism, which can be
traced back to at least|Seide et al.|[2014]. However, this mechanism remained a heuristic until recently.
To highlight the difficulty of analyzing EC, we remark that the first theoretical breakthroughs applied
to the single node regime only [Stich et al., 2018, |Stich and Karimireddy, 2019]]. More recently,
theoretical progress was made in the crucially important distributed setting as well [Beznosikov et al.|
2020, |Gorbunov et al.,2020|]. However, we are still very far in our understanding of optimization
algorithms using contractive compressors.

One of the key open problems in this area—the problem we address in this paper in
the affirmative— is whether it is possible to design provably accelerated gradient-
type methods that work with contractive compressors.

In this paper, we give a confirmed answer by studying error compensation in conjunction with the
acceleration mechanism employed in loopless Katyusha (L-Katyusha) [Kovalev et al., [2020} |Qian
et al., [2019]], which is a loopless variant of Katyusha [Allen-Zhul 2017]]. The acceleration in Katyusha
or L-Katyusha is an extension of Nesterov’s acceleration [Nesterov, 1983, |2004] in the stochastic
regime. Moreover, Katyusha and L-Katyusha can achieve the optimal iteration complexity among
randomized methods for solving finite-sum strongly convex optimization problems [Lan and Zhou,
2018].

2 Problem Description and Summary of Contributions

We formally describe the distributed optimization problem we solve in Section [2.1] and then summa-
rize our key contributions in Section [2.2]

2.1 Problem Description

We consider the composite finite-sum optimization problem

min Pe) = {5 70+ v(o) ). ®
z€RC T=1
where f(z) := 13 f(I(x) is an average of n smooth convex functions, distributed over n

compute nodes, and ¢ : R — R U {+oc} is a proper closed convex function representing a possibly
nonsmooth regularizer. On each node 7, f(7)(z) is an average of mm smooth convex functions, i.e.,

o (x) = % > fi(T) (z), representing the average loss over the training data stored on this node.
i=1

We denote the smoothness constants of functions f, f() and fi(T) using symbols Ly, Land L,
respectivelyE] These constants are in general related as follows:

Ly <L<nL;  L<L<mL. )
While we specifically focus on the case when m = 1, our results are also new in the m = 1 case, and

hence this regime is relevant as well. We assume throughout that problem (3) has at least one optimal
solution z*.

We will optionally use the following additional assumption for the contraction compressor. The
assumption is not necessary, but when used, it will lead to better complexity.

Assumption 2.1. E[Q(z)] = dz and E[Q1(x)] = 612 for all v+ € R%, where § and &, are compres-
sion parameters of QQ and ()1, respectively.

It is easy to verify that RandK compressor satisfies Assumptionwith 0 = K/q, and %_HQ where
Qis any unbiased compressor, also satisfies Assumptionwith d = Y(w+1).

“Error compensation is also known under the name error feedback.
SFunction f : RY — R is smooth if it is differentiable, and has L-Lipschitz gradient: |V f(z) — Vf(y)|| <
L||z — y|| for any z,y € R%. L is called the smoothness constant of f.



2.2 Contributions

‘We now summarize the main contributions of our work.

Acceleration for error compensation. We develop a new communication efficient algorithm
(Algorithm [T for solving the distributed optimization problem (3)) which we call Error Compensated
Loopless Katyusha (ECLK). ECLK is the first accelerated error compensated method (this is true
even in the non-distributed setting), which we believe is a significant contribution to the field.

Iteration complexity. We obtain the first accelerated linear convergence rate for error compensated
methods using contraction operators. Let p < O(d1), where p € (0, 1] is a parameter of the method
described later and ¢; is the compression parameter of ()1 in Algorithm [1| (see Assumption [2.1)).
Then the iteration complexity of ECLK is

(( VO ESya. E 5)L+\/(1;ng>log1>. ©)

This is an improvement over the previous best known results for error compensated methods in
[Beznosikov et al.l [2020] and [[Gorbunov et al.l [2020], where nonaccelerated linear rates were
obtained for the smooth case (¢ = 0). Moreover, in oder to obtained a linear rate, [Beznosikov et al.
[2020] required the assumption that V f (T)(z*) = 0 for all 7, and also need full gradients to be
computed by all nodes. The complexity of EC-LSVRG-DIANA in [Gorbunov et al.| 2020 is

O((w—l—m—&-ﬁ)log%). (6)

When the last term in (6] is dominant and the last two terms in @ are dominant, the complexity of
ECLK is better than that of EC-LSVRG-DIANA if p > O ((U5H o (=n),

If we invoke additional assumptions (Assumption [2.1)) on the contraction compressor, the iteration
complexity of ECLK is improved to

O(<<15—'_11?—i_\/67+ uzm+ \/(1 5)]f \/upén) >

This is indeed an improvement since L < L (see @])), and because of the extra scaling factor of 7 in
the last term. If § = §; = 1, i.e., if no compression is used, we recover the iteration complexity of
the accelerated method L-Katyusha [Qian et al., [ 2019].

3 Error compensated L-Katyusha

3.1 Description of the method

In this section we describe our method: error compensated L-Katyusha (see Algorithm[I)). Roughly
speaking, ECLK is a combination of L-Katyusha, error feedback, and a learning scheme in VR-
DIANA [Horvath et al., 2019al].

The search direction in L-Katyusha in the distributed setting (n > 1) at iteration k is
1 = T T
=3 (VAP @) = VD @) + VO b)),
T=1

where ], is sampled uniformly and independently from [m] := {1,2,...,m} on the 7-th node for
1 < 7 < n, z* is the current iteration, and w” is the current reference point. Whenever v is nonzero

in problem , V f(x*) is nonzero in general, and so is V f(7)(z*) (it could be nonzero even if
V f(«*) = 0 in the non-regularized case). Thus, compressing the direction

VA (@%) = V1D (k) + VO (wh) ™

directly on each node would cause nonzero noise even if 2* and w* converged to the optimal solution

*. On the other hand, since f{™ is L-smooth, Vfi(g) (zF) — Vf(T (w*) could be small if 2* and

w” are close enough. For the last term V £(7) (w"), we introduce a vector hk to learn it iteratively in



a similar way in VR-DIANA. However, we use a contraction compressor rather than an unbiased one.
More precisely, we take the update

R = hE 4+ Qu(V T (w*) — ), ®)

where @ is a contraction compressor. Y can be initialized by any vector in R?. It is possible to
interprete the learning procedure (8) as one step of the compressed gradient descent method applied
to a certain quadratic optimization problem whose unique solution is the vector V f(7) (w*). Now we
would expect V f(7) (w*) — hk could converge to zero as k — +0o. We substract h* from the search
direction in ([7) to get

g = VD (@*) = VD (h) + VO (wh) - Bk,
and will add h* back after aggregation.

Next we apply the compression and error feedback techniques, i.e., we compress the vector Lil gk +ek

on each node to get g = Q(Lil g* + e¥), where @ is a contraction compressor and £ is a positive

parameter. The accumulated error e+ is updated by the compression error at iteration k. On

each node, a scalar u” is also maintained, and only u¥ will be updated. The summation of u¥ for

1 < 7 < nisuF, and we use u” to control the update frequency of the reference point wk' Each

node sends the two compressed vectors ¥, Q;(V f(™) (w"*) — h¥), and a scalar u**! to the other
1 n

nodes. After aggregating §F = P G*, we add the average vector h* = % >r, hk after

multiplying the stepsize Lil to it to get the search direction g~ + ﬁilh""‘. We also use the following
standard proximal operator for the update of z*:

prox,, () = argmin {3]lz — y|I* +mi(y)}
The reference point w” will be updated if u**! = 1. It is easy to see that w” will be updated with
probability p at each iteration. All nodes maintain the same copies of 2k, wk, yk, 2k gk ,h* and u”.

We need the following assumptions in this section.

Assumption 3.1. The two compressors Q and Q1 in Algorithm[I|are contraction compressors with
parameters 6 and 01, respectively.

Assumption 3.2. fi(T) is L-smooth, f\7) is L-smooth, f is L ¢-smooth and ji¢-strongly convex, and
P is py-strongly convex, where py > 0, py, > 0, and pu := iy + iy > 0.

3.2 Convergence analysis: preliminaries

First, we introduce some perturbed vectors which will be used in the convergence analysis. The
perturbed vector is usually used in the analysis of error compensated methods [Karimireddy et al.|
2019]. In Algorithm leted = 257" ek gk = L5 gk and 7F = oF — L€k, K =

n T=1"7° —n 1+noy

2k — 1+17ﬂ1 e¥ fork > 0. Then e"™! = L 3" | (ef + Lllgf - 57’:) =ef + Lllglc — g*, and from
the optimality condition for the proximal operator, we have
sl _ kHl 1+i701 ekl
= 1+1701 (nalxk +2t gk - z:%hk> - (Z%;ik)z) - fﬁ;;l
= 1+11<71 (nalzk +2F —eF — Cilglc - %hk) - %
- (nalik T L Eilhk) — EE ) )

The above relation plays a vital role in the convergence analysis, and allows us to follow the analysis
of original L-Katyusha. In particular, we will use ¥ to construct Lyapunov functions. Next we define

some notations which will be used to construct Lyapunov functions. Define Z* := &'2777“/2 || 2% —

5We can also use a single shared random variable " instead.



Algorithm 1 Error Compensated Loopless Katyusha (ECLK)

50 >0, L1 > 0,00 = 5 >0,01,0, € (0,1);

1: Parameters: stepsize parameters 17 =
probability p € (0, 1]

2: Inmitialization: z° = yO = ZO = w’ € R% ug =0 € R; e? =0 € R% hg c R
UO—Z: 1uO.h0: IZT 1

3: for k=0,1,2,...do
4: for r=1,....,ndo
5: Sample i; uniformly and independently in [m] on each node
6 = V@) = VI ) + VIO ) - wk
7: gy = Q(Zgr +ep), h’““ hE + Qu(V [ (wh) — hk)
8: et =l gt — gk, Wit =0forT=2,..,n
9: W — 1 W@th probab@l@ty D
’ 1 0  with probability 1 — p
10: Send g, Ql(Vf(T) (w*) — h¥), and uk** to the other nodes
11 Receive §¥, Ql(Vf(T) (w”*) — h¥), and u¥*! from the other nodes
12: gF =20 gk, WMt =3 Wbt
. k41 _ 1 ko ok _ =k k
b A = prox e (i (110t 24 -5 04
14: Yyt =gk 4 0y (2P — 2F)
ko oseoktl _
15: wtl =14 Y, it =1
w otherwise
16: gkl = 01Zk+1 + w4 (1 — 0 — fo)yFt!
17: e LS Qu(VFO) (k) — hb)
18: end for
19: end for

||, Yr = %(P(yk) — P*),and W* := %_(P(w*) — P*) for k > 0, where P* := P(z*).

Pq61
From the update rule of w* in Algorithm it is easy to see that
Ex[WHH] = (1 — p)W" + &Y*, (10)
for k > 0. Let By(z,y) := f(z) — f(y) — (Vf(y ) ) be the Bregman divergence and Ej[-]

k

denote the expectation conditional on xk, yk, 2k wk hk u ,and e . The following lemma reveals

the evolution of the other two terms Z* and V.

Lemma 3.3. If £y > Ly and 01 + 02 < 1, then Ey, [2’“‘1 + yk“} can be upper bounded by

i EE + (1= 00— 0)VF +poWh + (G 4+ 5 ) eI+ (£ + 4) Bx [l

(02— 25) By(wh,ab) — 0=t By (b,

Because of the compression, we have the additional error terms ||e* || and ||e**||2 in the evolution

of Z¥ and yk in Lemma To upper bound these error terms, we need to analyze the evolution of
IS ceband LY ||hk V£ (w*)||? in the next two lemmas.

n
Lemma 3.4. The quantity Ey, [le 3 |lektt |2} is upper bounded by the expression

=1

n

s - s ,
(1= §) &7 flek) + G ZHW) — BE|? 42U (4 4 L) By(ut, o).

T=1

Lemma 3.5. The quantity L 3" By [||hE+1 =V f(7) (wk+1)|12] is upper bounded by the expression

n
B) 530Uk = VIO @)+ aLp (14 2) By(y*,a*) + 4Lp (14 2) By (w*,a").
=1



Under the additional Assumption[2.1] we need to analyze the evolution of [|¢*||2 and || 2% — V f (w")||?
as well, which can be found in the appendix.

3.3 Convergence analysis: main results

With the above lemmas at hand, we are ready to construct suitable Lyapunov functions which enable
us to prove linear convergence. First, we construct the Lyapunov function ®* for the general case.

Let Lo 6L 112(31526)1’ + 28(13;6)L + 224%12;f)f‘p (1 + @>, and for & > 0 define

n
5 §) T
3" ::zk+yk+wk+%'%§:\le’il\2 &%éw~1§:||hk V5 (Wt

Then we can get the linear convergence of ® in the following theorem.
Theorem 3 6. Let Assumptionand Assumptionhold. If L1 > max{Ly,3un}, 61 + 260, <1,
and 0y > 3 £ , then we have

k
If Assumption holds, we define the Lyapunov function ¥* as follows. Let L3 := % +

L0y 2A0-OL | S08(DL | 22400 (Lf n %) (1 + §—”) and for k > 0 define

k
lez 11

M=

\I’k Z~l<: k k 4L k)2 28L1(1-6
: y w 5771 ” ” 517571 : ’ 31
1

I =V F7 (wh)]2.

=3

+56(1 5)?7||hk _ vf(wk)”Q + 504(1-d)n

1
626 ﬁl 526177,[,1 H

Il
-

T

Then we can get the linear convergence of U¥ in Theorem-
Theorem 3.7. LetAssumptlonn Assumptwnnand Assumptlonnhold If L4 > max{Ly,3un},

01+ 205, <1, and 05 > 3£ , then we have

E [\I/k} < (1 — min (W,& + 62 — %2710(1 —q),

From Theorems [3.6]and[3.7] by choosing the parameters appropriately, we can obtain the iteration
complexity for ECLK.
Theorem 3.8. Let Assumption 3.1\ and Assumption (3.2 hold. Let L1 = max (L4, Ly,3pn), 62 =

Ly
3max{Lys,L4}’ and

,%))kw Vk > 0.

[e2][S9)

min (| /£562,00) i Ly < £

P
min <1 /Lif, g) otherwise
(i) Let L4 = L. Then with some q € [2,1), we have E[®*] < ®° for
1 1 1 L L 1
k20(<5+51+p+\/J-i—dﬂ;)loge).

In particular, if p < O(81), then the iteration complexity becomes

kZO(( SRR N ‘”LW“,ISQL)logi)- an
(ii) Let L4 = £3 IfAssumptzon holds then for some q € [ ,1), we have E[UF] < ¥ for
k>0 (( —i— —i— 1/ Lr gy + 4/ ﬁ;) log = ) If p < O(01), the iteration complexity becomes

kz@(( T ST \/(1“f+\/2p§2f) > (12)

From Theorem it is easy to see that the optimal p for ECLK is ©(d1).

0, =




Comparison to ADIANA. ADIANA [Li et al., 2020] is an accelerated and compressed dis-
tributed method with any unbiased compressor. The iteration complexity of ADIANA is

(’)(w (14’\/%) log%) when n < w, and O((w—i—\/%—i—./\/%%) log%) when n > w.

If we choose @@ and (07 in ECLK to be the contraction compressor %HQ where () is any unbiased

compressor, then § = §; = i, and thus the complexity in (12) becomes

O<<w+\/§+\/w+(w+l)\/“ff—|—\/“)(“);L1)L>logi),

for p = 41. In this case, the dependency of w of the iteration complexity of ADIANA is better than
that of ECLK. However, the full gradients are computed by all nodes at each iteration in ADIANA,
which could be slower than the communication when m is very large. Furthermore, the contraction
compressor could be more efficient than the unbiased compressor in practice, i.e., for the same level
of compression, ¢ could be larger than 1/(w+1). This efficiency of the contraction compressor is
the motivation to study the error compensated methods, and in numerical experiments, ECLK is
comparable to ADIANA.

4 Experiments

In this section, we experimentally study the performance of error compensated L-Katyusha (ECLK)
used with several contraction compressors on the logistic regression problem for binary classification,

z = log (1 + exp(—y; A7 7)) + 31|,
where {A;,y;} are the training data points. We use Python 3.7 to perform the experiments. We
use the datasets aba, a9a, wba, w8a, phishing, and mushrooms from the LIBSVM library [[Chang
and Lin, [2011]. The regularization parameter was set to A = 10~3. The number of nodes in our

experiments is n = 20, and the optimal solution is obtained by running the uncompressed L-Katyusha
for 10° iterations. More experiments can be found in the appendix.

Compressors. We use three contraction compressors: the TopK compressor with K = 1, or the
compressor %HQ’ where Q is either the unbiased random dithering compressor with s = v/d levels
[Alistarh et al.,[2017]] or the natural compressor [Horvath et al.,[2019b]]. For the Topl compressor,
the number of communicated bits for the compressed vector is 64 + [log d], and § = 1/a. For the
random dithering compressor with s = v/d, the number of communicated bits for the compressed
vector is 2.8d + 64, and w = 1 [Alistarh et al.,|2017]] . For the natural compressor, the number of
communicated bits for the compressed vector is 12d, and w = 1/8 [Horvath et al., 2019b].

Parameter setting. In all the experiments, we search for the optimal stepsize for all tested algo-
rithms. In particular, we use the parameter setting in Theorem 3.8] (i) for ECLK. From Theorem [3.§]
(i), we know that we can set values for all parameters if we know values of p, d, d1, p, and Lipschitz
constants. For the tested problem, ;1 = A. @ and ), are chosen to be the same contraction compressor
for ECLK, which implies that § = J;, and the lower bound for § can be obtained easily for our used
compressors. We set p = 0 for ECLK except in Section We calculate the theoretical Ly, L, and
L as L'}h, Lt", and L*", respectively. Then we choose L; = t - L'}h, L=t-L" and L =¢- L', and
search for the best ¢ in the sett € {107% | k = 0,1,2,...}. We set p = & for EC-LSVRG-DIANA
[Gorbunov et al.l 2020]. EC-LSVRG-DIANA requires the use of an additional unbiased compressor;
for this we make use of random dithering.

4.1 Topl vs random dithering vs natural compression vs no compression

First, we compare the uncompressed L-Katyusha method with ECLK with three contraction compres-
sors: Topl, random dithering, and natural compression; see Figure[I] ECLK is orders of magnitude
better in terms of communication complexity.

4.2 Comparison with EC-LSVRG-DIANA and ECGD

Next, we compare ECLK with EC-LSVRG-DIANA [Gorbunov et al.,[2020] and error compensated
GD (ECGD) using the Topl, random dithering, and natural compressor. Note that ECGD is a special
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Figure 1: The communication complexity performance of ECLK used with compressors: Topl vs
random dithering vs natural compression vs no compression. Datasets: mushrooms, w8a, and a9a.
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Figure 2: The communication complexity performance of ECGD vs EC-LSVRG-DIANA vs ECLK
for Topl, Random dithering, and Natural compression on a9a data set.

case of error compensated SGD [Stich et al.L 2018|] with 7 = 1, where the full gradient V f(7) (%)
é and é s

is calculated on each node. Figures how that ECGD can only converge to a neighborhood of
the optimal solution, and that ECLK is considerably faster than EC-LSVRG-DIANA.

4.3 Comparison with ADIANA

Let us denote by ECLK-F the special case of ECLK with m = 1, i.e., the full gradient V f(7) (x%)
is calculated on each node. We compare ECLK-F with the accelerated variant of DIANA, called
ADIANA 2020], for six data sets. For ADIANA we use two unbiased compressors: random
dithering and natural compression. Figure [4] shows that in terms of communication complexity,
ECLK-F is comparable to ADIANA, and can be better than ADIANA in some cases.

4.4 TImpact of the update frequency of the reference point

Finally, we test the impact of the update frequency of the reference point p for ECLK with Top1
compressor; see Figure We choose five values for p: /3, d, 36, 99, and 1. Figure shows that the
performance of p = ¢ is usually better than p = 9/3. As we increase p from p = ¢, the performance
of ECLK could be improved. However, if p is too large, the performance of ECLK is no better than

p = 9, generally.
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Figure 3: The communication complexity performance of ECGD vs EC-LSVRG-DIANA vs ECLK
for Top1, Random dithering, and Natural compression on mushrooms data set.
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Figure 4: The communication complexity performance of ECLK vs ADIANA for Topl, Random
dithering, and Natural compression on mushrooms, w8a, a9a, phishing, w6a, and aba data sets.
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Figure 5: The communication complexity performance of ECLK with the Topl compressor and
p € {9/3,6,30,98, 1} on the mushrooms, w8a, and a9a data sets.
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A Extra experiments

Top1 vs random dithering vs natural compression vs no compression. We compare the uncom-
pressed L-Katyusha method with ECLK with three contraction compressors: Topl, random dithering,
and natural compression in Figure[6|for phishing, w6a, and aba data sets. ECLK is much better in
terms of communication complexity.

w6a a5a
10!

phishing o

—— Topl

—e— Random dithering
—— Natural compression
—+— No compression

—— Topl

—e— Random dithering
—— Natural compression
—+— No compression . 10

—— Topl

—e— Random dithering
—— Natural compression
—+— No compression v 0

~_|
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o 1o 20 30 4 S0 6 70

S
Communicated bits per node (1 x 10° bits)

E
Communicated bits per node (1 x 10° bits)

5 ) 15 2 2
Communicated bits per node (1 x 105 bits)

Figure 6: The communication complexity performance of ECLK used with compressors: Topl vs
random dithering vs natural compression vs no compression. Datasets: phishing, w6a, and aba.

Comparison with EC-LSVRG-DIANA and ECGD. We compare ECLK with EC-LSVRG-
DIANA and ECGD using the Top1, random dithering, and natural compression for w8a, phishing,
w6a, and aba data sets in Figures[7] B} [0] and[I0] These figures show that ECGD can only converge
to a neighborhood of the optimal solution, and that ECLK is usually better than EC-LSVRG-DIANA

in terms of communication complexity.
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Figure 7: The communication complexity performance of ECGD vs EC-LSVRG-DIANA vs ECLK
for Topl, Random dithering, and Natural compression on w8a data set.
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Figure 8: The communication complexity performance of ECGD vs EC-LSVRG-DIANA vs ECLK
for Top1, Random dithering, and Natural compression on phishing data set.

ECLK vs ADIANA. We compared ECLK-F with ADIANA in Figure [} Now we also compare
ECLK with ADIANA. Figure[TT|shows that even though in ECLK we calculate the stochastic gradient
and in ADIANA we compute the full gradient, ECLK is comparable to ADIANA, and can be better

than ADIANA in some cases as well.
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Figure 9: The communication complexity performance of ECGD vs EC-LSVRG-DIANA vs ECLK
for Topl, Random dithering, and Natural compression on w6a data set.
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Figure 10: The communication complexity performance of ECGD vs EC-LSVRG-DIANA vs ECLK
for Top1, Random dithering, and Natural compression on aba data set.

Impact of the update frequency of the reference point. We test the impact of the update frequency
of the reference point p for ECLK with Topl compressor on phishing, w6a, and aba data sets in
Figure We choose five values for p: 9/3, 8, 30, 99, and 1. Similar conclusions can be made as in
subsection 4]

We test the impact of p for ECLK with random dithering compressor in Figure[I3] Noticing that
p = 0 = 1/2 in this case, we choose five values for p: 4/27, 6/9, 6/3, §, and 1. Figure shows that
we may get better performance by decreasing p from . However, if p is too large or too small, the
performance of ECLK is generally no better than p = 4.

We test the impact of p for ECLK with natural compression in Figure Noticing that p = § = 8/9
in this case, we choose five values for p: 9/27, 9/9, 6/3, §, and 1. The performace of ECLK with
p = 1is colse to the p = & case. Sometimes we may get better performance by decreasing p from .
However, if p is too small, the performance of ECLK is no better than p = ¢, generally.

ECLK vs ECLK-F vs EC-LSVRG-DIANA vs ADIANA with A = 107°.  We compare ECLK
with ECLK-F, EC-LSVRG-DIANA, and ADIANA for Topl and Random dithering (RD) with
A=10""in Figure Fi gure shows that ECLK-F with Top1 compressor has the best performace
in terms of communication complexity, and EC-LSVRG-DIANA is usually much slower than these
accelerated algorithms : ECLK, ECLK-F, and ADIANA.

ECLK vs EC-LSVRG-DIANA for Top1 compressor. Noticed that for the unbiased compressor in
EC-LSVRG-DIANA, we used the random dithering compressor. However, if we use Top1 compressor
for the contraction compressor in EC-LSVRG-DIANA, the communication cost of the compressed
vector using random dithering is much higher than that using Topl. Let EC-LSVRG-DIANA-2
denote EC-LSVRG-DIANA where we use Randl for the unbiased compressor (RandK can be
transformed to an unbiased compressor by scaling). We compare ECLK with EC-LSVRG-DIANA
and EC-LSVRG-DIANA-2 for Topl with A = 1072 and A = 10~° in Figure 16| and Figure [17]
respectively. Figure|l6{and Figure [17|show that except for the case where phishing and A = 10~
are used, EC-LSVRG-DIANA-2 is better than EC-LSVRG-DIANA, and that ECLK is generally
much better than EC-LSVRG-DIANA-2, especially for A\ = 1075,
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Figure 11: The communication complexity performance of ECLK vs ADIANA for Topl, Random
dithering, and Natural compression on mushrooms, w8a, a9a, phishing, w6a, and aba data sets.
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Figure 12: The communication complexity performance of ECLK with the Topl compressor and
p € {9/3,8,35,90, 1} on the phishing, w6a, and a5a data sets.
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Figure 13: The communication complexity performance of ECLK with the random dithering com-
pressor and p € {¥/27,9/9,9/3, 5,1} on the mushrooms, w8a, a9a, phishing, wba, and aba data sets.
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Figure 14: The communication complexity performance of ECLK with the natural compression
compressor and p € {0/27,9/9,6/3,0, 1} on the mushrooms, w8a, a9a, phishing, wéa, and aba data

sets.
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Figure 15: The communication complexity performance of ECLK vs ECLK-F vs EC-LSVRG-
DIANA vs ADIANA for Topl and Random dithering (RD) with A = 1075 on mushrooms, w8a, a9a,
phishing, w6a, and aba data sets.
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Figure 16: The communication complexity performance of ECLK vs EC-LSVRG-DIANA vs EC-
LSVRG-DIANA-2 for Topl with A = 1073 on mushrooms, w8a, a9a, phishing, w6a, and aba
data sets.
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Figure 17: The communication complexity performance of ECLK vs EC-LSVRG-DIANA vs EC-
LSVRG-DIANA-2 for Topl with A = 1075 on mushrooms, w8a, a9a, phishing, w6a, and aba
data sets.
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B Lemmas

Lemma B.1. We have

- ZEk VAP @) = VD wh)|| < 2L (fh) = f@8) = (V) ut — b)), a3)
and

—ZHW“ - VIO @) L 2L (Fh) - @) - (ViR - 1), ad)
and

. )
By |- > (VI @) = Vi wh))

< 2L+ B) () - 1) - )0 - ), a3
and

flgh + R = VIERIP) < 22 () - ) - (it - ), ae)

Next two lemmas will be used to prove Lemma[3.3]
Lemma B.2. If L1 > Ly, then we have

L 1
Tl = |2 (g bR R 2R > () = f(@") = o llg R = V)]
4n 6, £16, 9
a7

Lemma B.3. We have

(g + h¥ 2" = ) E et — o

Ly ok k+12 | &k+1 Ly zF (51 Nf) k2

> k- A ] g
L x
(345 )1 0 - vt (13)

Under the additional Assumption 2.1} we analyze the evolution of [|¢*||? and ||2* — V f(w*)||? in
the next two lemmas.

Lemma B.4. Under Assumption the quantity Ei[||e*+1||?] is upper bounded by
(1= §) Nk 1> + 252 Z ek 2 + 252 Z V57 (w*) = n|?

20200 (L 4 L) By (o) + 200 9 ()2

Lemma B.5. Under Assumption the quantity Ey, [||h’c+1 — V f(w**+1)|12] is upper bounded by

(1= ) |k — ¥ fuh) 2 + 2)‘”Z||hk VO (w2

+apLy (1+3) By(o*,a*) + 4pL; (1 +2) By(w*, "),
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C Proofs of Lemma [B.T, Lemma B.2}, Lemma B.3, and Lemma 3.3

C.1 Proof of Lemma[B.1]

Since fi(T) is L-smooth and f is L y-smooth, we have (Nesterov|[2004], Theorem 2.1.5)
IV @) = VA W17 < 2L(F7 (@) = 17 () = (V£ ), 2 = v)),

forany z,y € R?. Therefore,

B[ VA (@) = VD @h)P < 2LE[fT (w*) — £ (@) — (VD (28), wh — 2b)]
= 2L(fO(w*) - O (@k) — (VO (aF), wh - 2b)),

which implies that (I3). From

IVFD (@) = VIO WP < 2L (17 @) = £D ) = (VIO Ww)w )

we can prove (I4) similarly.
Denote ¢¥ = Vfi(g)(xk) — Vfi(g)(wk). Then we have

n 2

Z (Vf D) = VD (")

n

Ly

7':1

= <§qf,iq’i>

=1

n
= E Z ]Ek qu 9 q‘l’g

T1,T2= 1

= YR + oy 3 (V) - VRO ), T ) - v wh))
T=1

T1I#T2

1 n
= szkllq’ﬁHQHIVf(w’“) IIQ**ZIIVf(T ~VIO@WhP 9)
T=1

< S EGHR + 2L () — f¥) — (VEH), o)

T=1

(2 428s) (1(04) = 164) = (958) 0" = ),

where we use the independence of i in the fourth equality and ||V f(z) — Vf(y)|? <
2L; (f(z) — f(y) — (Vf(y),z — y)) in the first inequality.
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Recall that ¢* = Vfi(g)(xk) - Vfi(g)(w’“). Then g + A% = L 3" | g% + V f(w"), and thus

Ey [lg" +0F = VFEM)?] = B -Hiiqmvf(w’“)w(z’“) 2
_ K quT — [V f (k) — V)
0 iEHqTHQ 2ZEHWT) ) = VO (wh)|?
< Z lat]?
< é; e (PD @) ~ D) = (VD @)k - ah)

= () f) (V) 0k ),

where we use E,[1 3", ¢F] = Vf(2*) — V f(w") in the second equality.

C.2 Proof of Lemma[B.2]

k+1 _ k

Since z 28 = - (yF — a*) and n = 55—, we have
Ly HZ/H-I — zkH? + <g]~C 4 pk R Zk> — Ly lly k+1 _ k||2 + i<gl~c + B ylc-i-l B xk>
4 ’ 4,,702 0, )
3L
= k+1 _ Kk 1 B+l k 2
= 01<Vf( ")y )+ g, Iy I
1
(gt B = VI Et) o)
1
1 k 3, L
> — +1y _ k =f k41 _ k)2
> g (PO - fh) + (491 2. ) =t

1
+9*<gk + hF =V f(aF), g — P

1
1 Ly

s 4 K41y gk Layokrr k2
> 7 (f@ ) = fla ))+491 lly z"||
+9i<gk +hY = Vf(F), gt = 2F)

1

1 k k Lok ok k
z gl(f(y )~ fla ))*HH!J +hE =V f)|?,

where the first inequality comes from L ¢-smoothness of f, the second inequality comes from
Ly < L4, and the last inequality comes from Young’s inequality.

C.3 Proof of Lemma

First, from @) and oy = ;Tfl we have
L
gk + B 71(2/@ _ 5k+1) +£10'1(5Ck _ Zk-‘rl) (9’(/J(Zk+1)
n
Ly, . - - -
= SHER - L ELEE ) —au(hY),
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which implies that

<gk + h,k72k+1

,x*>

2k+1>

_‘r*‘|2

— ﬂ<zk+1 —r* i’k o 2k+1> + ﬁ<zk+1 —z* gk o 2k+1>
2 b "7 b
_<Zk+1 _ x*,@z/)(zk+1)>
< %<2k+1 e 2k+1> + ﬁ<zk+1 e 2k:+1>
n
(%) = p(FH) — B — a2
_ ﬂ<2k+1 ot gk 2k+1> + &<5k+1 e 2k+1>
2 b 7’ b
(") = (M) = TR
+%<Zk+1 _ gkl gk gkely &<Zk+1 _ gL gk _
n
= (gt -2t P — 12 — o) - |12 - 2P
L
o (125 = |2 = 247 — 2" - |12* = 2+41)?)
n
’“ﬁff L e e e )
(||Zk+1 ~k+1||2 + ”21@ _ 2k+1H2 _ ||2k _ Zk+1||2)
* /’l/ *
+w<m ) — (2R — LA — a2
L L
< (B AL g S - o+ gt
L L
+ (21 + Zf) szﬂ - 2k+1”2 -~ 71H2k - Zk+1||2
n
i
Hp(a®) — (R — B2l — 2|2,

where in the first inequality we use that v is ji,,-strongly convex and in the last inequality we use

—[lz*

For ||z%F — 2*||?, || 2¥

o*|* < 2|z

2% ~

and

Zk+1H2 <0.

2412, and ||z

:17k||2 +2||xk

||Zk+1 _ l‘*||2 Z

k+1 _

*

—_

[\)

|,

||2k+1

x*HZ

_33*”2 —
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, from Young’s inequality, we have

||2k} k+1||2 > ” k Zk+1||2 . ||Z

DO | =

||Zk+1 _ 2k+1 ||2

k‘i

),



Hence, we arrive at

<gk 4 hk’zk+1 o l‘*>

IN

L ~ Ly .
S R Lt - EEr G T Er

2n 4 4
+E | — 2k + (;; +EL 4 ’“‘;) [Eaair-iaal &
Rl = PR T - P 4 (o) - ()
e R L e e

Ly ko2 L1 B\ k12
(4 5 1+ (55 ) b

L *
el = P e) —
7
~ El ~k Ll 13
— _Zk+1 et Sad .k %2 ~1 Pf k12
b Bt o () 1
Ly k412 Ly k k412 * k+1
(B4 ) 112 - Lt - P 4 () - 0,
C.4 Proof of Lemma[3.3]
Since ¢ + 62 < 1, and f is uy-strong convex, we have
F@) = f@)+ (VEh),e —ab) + Bl ek — a2
= fab)+ Hllet — 2P + (VF(ah), 2t = 2 4 2 — o)
i 0 1—6,—06
= fab)+ Hlle 2P + (V5 ("), 2" =) GV, ok = ) (V) - )
0 1-6,—6
= @)+ GVt - wf) £ = (W) - S (@) = (V@) gt - )
1-6,—-6
2 (F(aF) — £ + B [EL 2 — 272 + (g8 + BE 2t — ) 4 (g R
1

where the last equality follows from the convexity of f and Ej[¢* + h*¥] = V f(z*). For the last
term in the above equality, we have

Ep [Fh 0% — a1 4 (g 4 B, = 25V (gF R R = 2R - () (et — 241

(s L, ZF { ko pk K L1
S 7 LR Rk R Ry Bk k+12]
= L Y SRR L
Ly 12 L1 p k412
ML BE
(F )1 = (S5 )l
(1) Ly 2F L1 Ly p
(B - (2 ) e
Li+nu/2 \2n 2 2n 2
1 1
B | U0 = 60 - pho ot + 1 = TP
1 1V1
(L6)
>

L1 2k L L

S Li+np/2 \2np 0 2
FEL |G () = 1) = 2 () = ) = (91t = )]
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Therefore,

Ex [f(*) = () +v(@*) - 254 + <§7 i sz) e 12 + (;7 i g) Eifle™ 11

B R )  16) — (V16) e
Zk _ _
> A2 BB LR - () + (VSR )

2L /
e (fh) = f@4) (V) — b))
LiZF 1-0,—0, 1 Ly s
T T Livap2 o Fy*) + e—l]Ek[f(y’” )] - Ef(wk)
+% (92 - n2£Ll> (f(wh) = f(@*) = (Vf ("), w® — o).

From the convexity of v, and
yk+1 = l’k + 91(2k+1 — Zk) = 91Zk+1 + ngk' + (1 — 0, — Gg)yk,

we have
62

01

1-61-06,

PP >~y = Ze(wh) Tw@/ﬂ.

v
=)~

Hence, we can obtain

P(e") + (‘1 n ”f) eI + (ﬁl n ”) B2 — L2002 by by - (vt ot - o)

2n 2 2n 2 01
- L ZF 1—6, -0 1 0
> k+1y _ 1 . 1 2 k = k+1y) _ V2 k
> Ex[Z277] Lt 2 0, P(y") + HlEk[P(y ) GlP(w )

o (92 - nzaL) (Fw) = Fab) = (VF(),wb - ab)).

After rearranging we can get the result.
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D Proofs of Lemma 3.4, Lemma 3.5, Lemma B.4, and Lemma [B.5|

D.1 Proof of Lemma[3.4

First, we have

Ex[lle™11%]

S (1= O)Eeh +£ oI

= (- DRk + (VSO - T @) + gk — (VO () - VO
: <1f6>Ek||e’:+f<Vf (@) = VIO )+ T (k) - B
H R0 () - ) — (V1) - 9O )
< (1 =0)llef + (VIO @) — I+ “E?ﬁaknw}g '(a*) = VI ()2
< =0+ AR +0-0) (14 5) LIvst) - 1P
H 91 ) - I )
< (1-g) e+ 2 oot - i+ LR 90 ) - Vi ot

where we use Young’s inequality in the third inequality and choose 3 = (1 %) when § < 1. When
0 = 1, it is easy to see that the above inequality also holds.

Then from Young’s inequality, we can obtain

n

AR

=1

77 T T
< (1-) 3 e gt ST - 9

4 1 - 7] T - ,'7 T T
+(—Z V50 ) = 12+ S o) o) - D ()
1 T=1

dnL?
2 (-0 le b1+ S () - ) — (9 ) ¥ - o)
L DIV — R + w7t imw}g @) = VAP I
= (1-3): Zn {7 4 MQ”Zuwﬂ wh) — R
+2(12%‘5)<?+L>(f( B~ flah) — (V)b — ).
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D.2 Proof of Lemma[3.3
First, from the update rule of w”, we have
Ex ([R5 = VT (k)]
= pE[IRT = VOGP + (1= B[R = VO (@h))?)
< o (14 ZYBAVIH) - VO +p (14 2 ) BIRES - 9O
+(1 = p)E[[hH = VD (b))
= (14 Z) 19O - TIOWHIE + (14 5 ) Bl - 970w

o
< (14 Z) 1906 - AP+ (1- 5 ) I - SO W
where the first inequality comes from the Young’s inequality and the last inequality comes from the
contraction property of Q);.
Then we can obtain

1 n
~ D B[ = VD @M

T=1

< ﬁ(1+§f)2||w<ﬂ<yk>—w<f>< OI7 + ( 5) Zlih" NEAUCOl
< (1—‘2);|h’“ VIO @HP + ( )ZW” VO
+2 (14 )an“ VIO @)
< (1—‘2);;”& VO )I2+4Lp<1+?f)(f(y’“)—f(x’“)—<Vf(fc’“),yk—x’“>)

+aLp <1 + 21") (k) — F(2%) = (V (%), 0 — 2b)).

D.3 Proof of Lemma[B.4
Under Assumption [2.1] we have E[Q(z)] = 0z, and thus

1 & ’
7§:ek+1
n T
T=1
k+1 k+1
2ZE €i
k12 4 k+1 k+1
EE Ellez™ 1" + E Ex(e;
T=1

i#J

Ek”ek+1”2 _ ]Ek

=

1-6 n n
= Elg‘r ZE <€ +7glﬂej +Eg]>
i#£]
2
(1—5)2 = k U (1- ?
p— E —_—
K Z(€T+£1QT) +

T=1
2

n
1

< (1=0)Ey||e* + e’j+£lg’j
1

)

(1-6)0 &
+ Zl]Ek
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where we use the definitions of ¢* and g* in the last inequality. Then we can obtain

EkHek+1”2
< n k ? ’
< (1—5)Ek 6 +£
1
2
§)on?
< (1—0)E|e +£i1 k Zn kI 4+ 2£2 Jon ZE g5 11>
2 2 n
< (1-0Ek |+ fgt Zn B2+ 252 ZE IV £ @) = V£ (@)
4(1 — 8)dn?
ALy > IV ) -
1 T=
1 gk 2y 0)on”* () k2
= O Zn 512 + 21:2 an wk) — hE|
8(1—46)0L
SO (k) — £(a4) = (910, — ). 0)

where in the second and third inequalities we use the Young’s inequality.

2
For (1 — 6)E,, Hek + ﬁllgk‘ , we have

2

(1— 8)Ey |[eF + L g*
Ly

2

= (1-0)E|e +£—1(Vf( Ry - Vf(wk))Jr%gk—%(vf(@“k)—vf(wk))

2

= (1-0)E e+£—1(w( kY — hk)

P 1 (946 - 9 ) = (9568 - T
< (1= g) e+ 2 o -
+(1fc?772m U (VDGR ~ VD @h) ~ (V) - Vb))
2(1 -

o)
ooy

2
IV5at) = IR + (1= )2 () = £a*) = (V4(H) 0t

b
= (1-5)1te

Since f is L y-smooth, we have
IVf(a®) =52 < 2 VF@") = Vib)[]* + 2|V f(w") — B¥|?
< ALy (f(wh) = f(2*) = (Vf ("), wh —2%)) + 2|V f(w") — B¥|%.

Hence, we arrive at

n

1—8Ey |[e" + == ¢*
( )k€+£1g

BN oz 4 40— O :
< (15 ) 1P+ sty -
20T (54 1) (1)~ 1) = (Tt = o).
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Combining (20) and the above inequality, we can obtain

Eglle" )2
) 2(1 - 8)8 4(1 = 0)on? & .
< (1= 2 b+ LS00 5 ke AL O 0 k) — gk 2
2 n T=1 n El T=1
2(1—0)n* (4Ly L  49L k k ky .k k 4(1 —0)n?
2 5 tot, (f(w®) = f@®) = (Vf("),w" —2")) + e,

) 2(1 — §)d & 4(1 = 8)0n? < ~
< (1 g1+ 2SR S ey Ao S s ) P
=1 1 =1

4(1 = §)n?

2(1 = 8)n? /4L 5L
+( )n(f

L3

D.4 Proof of Lemma[B.3

First, from the update rule of w”, we can obtain

Ex ||+ — V(w2
= PER[AMF = VENIP + (1 = p)Ee[lh* = Vf(wh)]?

IN

p (142 ) 19505 - TH@IP + (14 5 ) B - O

Denote ¢¥ = hE+1 — V(T (wk). For Ey||h¥+1 — V f(w*)|% under Assumption [2.1] we have

E[Q1(x)] = 612, and thus

n 2

S VO

T=1

Ex[[h"* = Vi(W®)|* = Ei

1 — ’
ﬁquﬁ

T=1

1
2]

1 - k|2 1 k k
T=1

i#]

= Ek

IN

i#j
(1—61)2

n2

i(hfﬁ -V (")

=1

T=1

L=60 0k o (g b2, (L= 01)? ko)), k
=1

5 n) (F(w*) = f(2*) = (V") w" = 2")) + Tgnnhk _

k
)7h’] -

< (1= 8)|RE = V)| + (l_rl% > Ik = VO W),

T=1

IV f(w

V f(w”

where in the first inequality we use the contraction property of Q1 and the independence of compres-

1hk

sors on different nodes, and in the last inequality we use h* ..

n Lat=
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Vf(j)(w

2
1—61)01 & .
+ L0 S™ s w2

hk||2

p (1 + 2p) IV £ — Vi wh) 4+ p <1 " jp) E [ — VA@M)IP + (1 — pEAE — V F(wh)?

)



Hence, we arrive at

Ex[|hMH = V(w2

< o(1+ ) 19504 - TrHP + (1- ) Ik - Vrh) P

e e YT
< (1—) I = e + L2 Zuhk VO (wh)

w20 (142 ) 19765 - Vit >||2+2p<1+ 2) Vs h) - V1
< (1= %) Ik vrwh 0300 = s - v by 2

T=1

#apLy (14 2) (109) ~ £a4) (V1) o )
1

L (1 T ff’) (k) — F@@*) — (VI *),uk — aby),

where we use Young’s inequality in the second inequality.

30



E Proofs of Theorem [3.6, Theorem 3.7, and Theorem 3.§]

E.1 Proof of Theorem 3.6

From [|e¥||2 < 13" ||e*||%, Equation (T0), and Lemma we can obtain

ol [Z~k+1 4+ Ykl _’_Wk-i-l}

»Cle k: k& £1 /lf 1 n o
< R — _ It L A
= L1+ /2 +(1 -6 92+ )y + A =p+pgW" + o +5 nT§:1H€T||
Ly n l”w_i 2L by — ) — (9 f() ko
+ (277 + Z)Ek n;IIeT 1P| = g (82— o ) @) = J@") = (VF(ah) w* - a¥))
106

o (f(y") = F(a") = (Vf(a"),y" — "))

Lemma [34] ﬁlék ko k < ) 2
S L R 1—p+pgW
=0+ 2P () I

4(1 - o)n?

+5n,cg(2n )ZW“) )= P = FE SRR — 56 — (V7)o - o)

(3 (o 22) 2 () (o) e -

L1 ZF
L1+ np/2

IN

4L
=0 =04 )y’f (1—p+pg)WF + 1fZII )2

+§§fa§2;HWWw’“)—h’iHQ—1‘9;1‘92<f<y'f>—f< DR\ ICORUEEL)

1( 1(2L 16(1—6)L  4(1—6)L

i (- (B4 U DR 2UZIBN) (1) - fat) = (978, - o),

where we use p < % andn = ﬁ in the last inequality. Then, from Lemrna we have

Ex

2k+1 yk+1+Wk+1 ZH k+1||2]

L1 ZF - i ( )4&1 1 & SHI2
T 4+ (1-6,-6 1— W (1--) =
£1+W2 EUETEE Y A=ptpa) : P

IN

-6, -6
S Z”Vf“ = WP = TR () — 1) — (V) - a)

_% (92 ~ %1 <2nL . 112(;5; oL 28(19; 5)L>) () — F) — (V) — )
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Finally, by Lemma[3.5] we can get

Sk+1 k1 Lkl Z k12 ( _ ) lzn k+1 (1) (,, k+1y]|2
L1 ZF by . < > AL, 1 .
— 4+ (1-60; — 0+ 1l—p+p)W*+(1—- =
< Ltan ( 2 )37 (1 —p+pg) E "l

n

1— e S hE _ () ky\ (12
+< 6)391525151 3 2 )

1 (92 ~ 11 <2L N 112(1 - 6)L L 80 §)L N 224(1 — 0)Lp (1 n 21’)))

01 L1 962 95 3625, 5
(f(wF) = f(a¥) = (Vf(z )w — )

L1 ZF by . ( )4511” .
< == 4+ (1-6,—-6 1-— w 1—= ) —
S Lm0 2+ VL =prpWt (1= > lle|
o1 (1-90) 1 ! BN
1 N S _ _ T
+(1-%) o n;um V5O W)
1 L . .
— (1= =0, — == ) (J(") — f(a") = (VS (), ¢ —a¥))
01 3L,
1 Lo k k ky ok k
i (0= o) () = ) = (T, = ),
where we use the definition of L5 in the last inequality. When 65 > and 0, + 205 < 1, we can

get the result.

E.2 Proof of Theorem 3.7]

From Lemma[3.3|and (T0), we have
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Ex [2’“+1+J}’“+1+W’““}

oL - % L1 | py k2

Bt (170 )Y 0t ()1
Ly ke _ L (o 2L Ry _ gk

(48 mule P - o (0= 22 ) (b = 1) - (9(a) 0t - o)

SR - ) — (VR - a)

LenmaBEd £, ZF ( ) k K (51 ) k(2
< (1= =0+ 2 )V (L —p+peWE+ [+ 1) |l
Lit )2 1— U2 +( P+ pq) n w) el

L 5 1 57 -
+(ag) 22 ZH et + 200, ZW VIO

8(1

S0 Mk v - (F5) ~ 1)~ (V7)o — o)

(91(9 fg) 4 "<4Lf )) (f(*) — F&5) — (V@) —

IN

91 0

< m+<1_01_02+q> Vit (1—p+pgW* + ;;;Hekll2
20 ‘””fén L 1Z||hk V£ ()
2k v - #(f(yk) )~ (V) )
5 (o= 2 - 4(; 22 (B4 2 ) () - 1) — (90t - ),
where we use u < Ll andn = = in the last two inequalities. Then, from Lemmaand Lemma
B4 we can get
Ek Z~k+1 +yk+1+wk+1+467‘€]1”6k+1”2 28‘61 ;i”ek+l|2‘|
< INEE s B et (1—2) L orpe
+(1-3) Ba0=0 Zn b 1220 Znhk VIO W)
+ 0L I~ 9 b O 1 — ) — (9 5b), o — )

1 oL 28(1—0) (4L; BHL\ 56(1—0)2 (4L L
A <92 Cnly 9L (5 " ”) - 36L, (671 " >)
(f(w®) = f(@®) = (Vf(a"), " — ).

We simplify the coefficient of the last term in the above inequality as follows.

28(1 —4) <4Lf N 5L> 56(1 —4)? (4i L) S 112(1 = 8)Ly  224(1 —8)L  308(1 —§)L

0wr, 5 350, \on 902, 3L, T 9onL,
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Finally, from Lemma [3.5]and Lemma[B.3] we can obtain

Zk+1 k+1 k+1 ﬁ k:+12 28£1 k+12
B |41 PR S e ZII [
56(1 —d)n k+1 kt1y2 , 004(1 5)77 1 k41 (7) (0 k+1Y]12
B0 Mypent — g i+ 20022 Znh VSO |
60,L,2% B o b (1 ) AL
< -t B (W +(1 ) et
g 28L4(1 k12 4 91 504(1 — 77 1 k () 2
+(1-p) B0 =0 Zn e (1- ) S Znh VO W)
01\ 56(1 = 0)n,, k 2 Ly g _M 9L
+(1_6) ol L EACR L el Gk a7l €2 aen
(fF) = f@®) = (Vf(F),y" = 2F))
L, 2L 120-8L; 24(1-9)L 308(1-9)L 24(1-8p (, 9L
A nt 9622, 362nL, 96n.L, 36261 L, /
(fwh) = f(@*) = (Vf(F),wh - 2F))
< who L (1 - 'C) (P45 = (") = (VF(b), o = 2*)
o 3L,
1 c
g (B2 32 ) () = £08) = (97wt = ),

where we use the definition of L3 in the last inequality. When 0 > 3%1 and 6; + 205 < 1 we can
get the result.

E.3 Proof of Theorem 3.8

(1) First, we have 2 >0y > 7o . Form the definition of 8, we know 6; < %. Then 6, + 265 < 1.
Thus the result in Theorem- holds. Next we consider two cases:

Case 1. Suppose Ly < % In this case, we have ; = min (4 /ﬁp&g, 02) and 0, = m >

P

E.
Case 1.1. Suppose £ Z,p = 1. In this subcase, 01 = 6.

For m, we discuss two cases. If £ = max(Ly, Ly, 3un) = 3un, then m =1>

If £1 = max(£4,Lf,3un) = max(Ly, Ly), then £, = §- = £, which implies that —£—

|| s

#+2£4 z P+2 > 5 EN

Bychoosmgq— wehave@1+02—%:722§ndp(l—q) L.

Case 1.2. Suppose ﬁp < 1. In this subcase, 8, = ﬁp@g.

For m, we discuss two cases. If £1 = max(Ly, Lf, 3un) = 3un, then u-%% = % > Eaf

Ly = max(Ly, Lf,3un) = max(Ly, Ly), then £, = 392 = ﬁ "54

Vip/Ls w , ; 1
arirrs: Neticing that 75 = 75 p* <p? < 1 wehave g > 54/ 7

By choosmgq =1- 71 /CLp 2 so that 305(1 — ¢) = 61, we have 61 + 05 — 9—2 =60,(1- i) >

01 HBp _ —l M
5 = 1/641)_6,/ and p(1 73
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Case 2. Suppose Ly > %. In this case, #; = min < Lif, g), max(Ly,L4) = Ly, and 6,
L
3L; <3

Case 2.1. Suppose , /Lif > £. In this subcase, 0; = £

For }H_bfﬁ, we discuss two cases. If £; = max(L4, Ly, 3,u77) = 3m), then

n
p+661 »Cl -

1
7

L1 = max(Ly4, Ly, 3un) = max(Ly, Ly) = Ly, then
5.
Let g = 2. Then 6; + 62 — 9—2 :91—‘9—2 >Eandp(l—¢q) =%

Case 2.2. Suppose , /#~ < £. In this subcase, 0; = , /4~ s

M+691£1 u+2po = u+18;t/:v p+18

For m, we discuss two cases. If £1 = max(L4, Ly, 3un) = 3pun, then u%% = % >
— _ _ wo__ u _ _/w/Ly

If £; = max(Ly, Ly,3un) = max(Ly,Ly) = Ly, then Ty o T

3

194/ Ls°

Letg=1— /4 >7sothat1—q*101 Then01+02ff279 — L0160, > (1- 1),

0
2= %</Tf andp(l—q)— Lif

Therefore, we have E[®*] < ¢®° as long as
1 1 1 L L
k20<++p+ =4 4).

Since £4 = Lo, we can get the results.

(i1) By using Theoremand L<nL > same as (i), we can get the results.
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