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Abstract

Current histopathological foundation models
are trained on discrete standard microscope
magnifications (0.25, 0.5, 1.0, 2.0 microns per
pixel). We use the unsupervised RankMe met-
ric to show that this can affect embedding space
quality at magnifications outside their training
distribution, with rank scores dropping at inter-
mediate scales. We introduce continuous mag-
nification training, where patches are sampled
from a continuous distribution during training,
and show that this eliminates the irregularities
in the embedding space.

Keywords: Histopathological foundation
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Data and Code Availability The models were
trained on a large corpus of WSIs from TCGA and
Charité - Universitatsmedizin Berlin that is in parts
proprietary. We do not make code available in this
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1. Introduction

In clinical practice, pathologists jump between con-
tinuous magnifications when examining tissue to
incorporate cellular details and architectural pat-
terns into their diagnostic assessments (Andrew and

* Berlin Institute for the Foundations of Learning and Data

© A. Mollers, T. Milbich, M. Alber & L. Ruff.

Anant, 2016). As this workflow has become in-
creasingly digitized, self-supervised foundation mod-
els have been developed that power many analyt-
ical and diagnostic tools and lead to reliable per-
formance across staining protocols and institutions
(Chen et al., 2024; Zimmermann et al., 2024b; Al-
ber et al., 2025). However, unlike pathologists, these
models are not trained on the continuous magnifi-
cation spectrum, but on image patches from one or
more of the standard scanner magnifications. These
are 0.25, 0.5, 1, and 2 microns per pixel (mpp).

This coarse discretization raises a critical ques-
tion: Does training on fixed magnifications create
blind spots in the representation space? Since ex-
isting benchmarks only evaluate at these same dis-
crete scales, any degradation at intermediate magni-
fications would go undetected. To investigate this,
we propose to use the unsupervised RankMe metric
(Garrido et al., 2023), a strong indicator for down-
stream task performance (e.g., Ericsson et al., 2023;
Jaume et al., 2024; Aben et al., 2024), to profile the
quality of a model’s embedding space across contin-
uous magnifications.

Our controlled experiments reveal that current
training practices create systematic degradation at
intermediate magnifications, with embedding space
quality dropping between standard training scales.
This is particularly relevant as pathology Al is in-
creasingly deployed in interactive diagnostic tools
or multi-modal chatbots where pathologists are not
bound to specific magnifications (Lu et al., 2024; Al-
bastaki et al., 2025).

We solve this problem by extracting larger source
patches and dynamically resizing them to a target
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Figure 1: Left Top row displays tissue patches of microscopic images at the standard magnifications. Bottom
row shows the same patches, but zoomed out slightly to intermediate magnifications. Clinically

reliable FMs should be robust to slight changes in magnification at deployment time.

Right

Average representation quality of three multi-scale model trained with uniform sampling on the
discrete standard magnifications (D-MAG). The representation quality of the models deteriorates
at intermediate magnifications (0.375, 0.75, 1.5 mpp).

magnification drawn from a continuous distribution,
effectively interpolating between standard scales dur-
ing training. Rather than naive uniform sampling,
we model magnification sampling as a domain adap-
tation problem and derive a distribution that max-
imizes the worst-case representation quality across
magnifications. We use the proposed RankMe profil-
ing to show that this leads to a more uniform embed-
ding space quality. We summarize the contributions
as follows:

e Systematic profiling of magnification blind
spots: We propose to use the unsupervised
RankMe metric to profile performance across
magnifications in histopathological foundation
models. We apply it in controlled experiments
and use it to demonstrate that current discrete
training strategies are suboptimal and lead to
dimensional collapse at intermediate scales.

e A practical solution through continuous
sampling: We propose continuous magnifica-
tion training and show that this alleviates the
dimensional collapse at intermediate magnifica-
tions.

e A principled framework for optimal sam-
pling: We frame magnification sampling as a
domain adaptation problem and derive a sam-
pling distribution that maximizes the worst-case
representation quality across magnifications.

2. The RankMe Metric for Profiling
Representation Quality

We hypothesize that representation quality of a
model varies across the magnification spectrum and
deteriorates between training scales. To investigate
this, we propose to use the RankMe metric (Garrido
et al., 2023) as a magnification-agnostic profiling tool.
RankMe quantifies the effective rank of a model’s
embedding space. Higher values indicate represen-
tations that span a larger subspace and encode richer
information while lower values suggest dimensional
collapse. We choose RankMe over alternative met-
rics as (1) it provides label-free assessment of repre-
sentation quality at any magnification and (2) it has
been validated to correlate strongly with downstream
task performance across multiple digital pathology
and domain adaptation benchmarks (Ericsson et al.,
2023; Jaume et al., 2024; Aben et al., 2024). By com-
puting RankMe for embeddings at standard (0.25,
0.5, 1.0, 2.0 mpp) and intermediate (0.375, 0.75, 1.5
mpp) magnifications, we can profile how represen-
tation quality varies across scales. A definition of
RankMe is in Appendix B.

2.1. Embedding Quality Decreases in
Blindspots

We now apply our RankMe-based profiling approach
to investigate how performance varies across the con-
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tinuous magnification spectrum. To do this, we
conduct controlled experiments using the DINOv2
framework and train small vision transformers us-
ing two strategies: (1) single-scale models exposed
to only one magnification, and (2) discrete multi-
scale models (D-MAG) following current best prac-
tices with uniform sampling across standard magni-
fications (0.25, 0.5, 1.0, 2.0 mpp). We use standard
training practices and list details in Appendix C.

For evaluation, we extract 10,000 source patches
(392x 392 pixels) at each standard magnification from
held-out slides from TCGA. Through crop-and-resize
operations, we then generate additional test patches
at intermediate magnifications (0.375, 0.75, 1.5 mpp).
By plotting the mpp of the patches on the x-axis and
the rank of the corresponding embeddings on the y-
axis we obtain a performance profile for each model.

Analyzing the performance profiles, we see that
single-scale models exhibit sharp performance degra-
dation when evaluated on magnifications distant from
their training scale, with rank scores dropping by up
to 40% at the extremes (Figure 2). Multi-scale mod-
els exhibit a more robust profile overall but reveal
a distinctive ”sawtooth” pattern (Figure 1). While
these models avoid extreme degradation at any tested
magnification, they show notable dips at scales absent
from their training data. This pattern indicates that
current discrete sampling strategies create blind spots
in the representation space, even in models designed
to be magnification-robust.

3. Implementing and Optimizing
Continuous Magnification Sampling

Our experiments in the previous section demon-
strated a systematic degradation of representation
quality at magnifications that are not included in
the training data. To alleviate this, we propose
continuous magnification training through dynamic
patch generation. By extracting larger source patches
from existing WSIs and applying controlled crop-and-
resize operations, we can synthesize training patches
at arbitrary target magnifications. Formally, to cre-
ate a patch at target magnification ¢ from a source
patch at magnification s, we crop a region of size:

t
CSsource = CStarget X ;

and resize it to the desired patch size csiqrger. During
training, for each incoming patch at a standard mag-

nification, we sample the target magnification from a
continuous distribution p.
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Figure 2: Representation quality across magnifica-
tions for single-scale models. Each line rep-
resents the average over 3 seeds and the leg-
end indicates the magnification the models
were trained on.

3.1. Magnification Sampling as a Domain
Adaptation Problem

Rather than relying on heuristics to pick a sampling
distribution p, we model how different choices affect
downstream performance and optimize the resulting
expression. To do this, we formalize the problem set-
ting as a multi-source domain adaptation problem.
FEach magnification represents a source domain, and
our target is the representation quality in a prede-
fined continuous magnification range (e.g. 0.25-2.0
mpp). We then make two assumptions:

e Domain Transfer Assumption: We assume
that representations learned at one magnifica-
tion transfer to nearby magnifications with de-
creasing effectiveness as the magnification dis-
tance increases. We model this via a similarity
kernel K(x,y), where x, y are the mpp values of
the patches.

e Coverage-based Proxy: We expect the repre-
sentation quality I(y) at a specific magnification
y to improve with the number of similar training
samples that the model has seen during training.

We can then model the expected representation
quality at magnification y as proportional to the ac-
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Figure 3: Left: Comparison of magnification sampling distributions.
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The min-max approach based on

the absolute distance kernel (RO-A) assign higher probability mass to boundary magnifications
compared to continuous uniform sampling (C-MAG). Right: Representation quality achieved
with the different sampling methods. Both continuous sampling methods (C-MAG, RO-A) do not
deteriorate at intermediate scales. RO-A achieves the highest worst-case representation quality

and improves it over C-MAG.

cumulated training signal from all source magnifica-
tions:
I(y) =

/ p(2)K (z,y) da (1)
0.25

We empirically validate the modeling assumptions
made in this section by investigating the embedding
space of trained models and showing how similar
magnifications are close while more distant ones fur-
ther apart (Appendix D).

3.2. Maximizing Worst-Case Performance for
Robust Medical Foundation Models

To show how our framework can be used to develop
principled sampling strategies we pick the absolute
distance kernel K (z,y) = m and formulate the
sampling distribution selection as a max-min opti-
mization problem:

* =argmax min [
b & P y€[0.25,2] ()

(2)
where we find p* that leads to the best worst-case
representation quality. By framing the optimization
problem in this way, we obtain a reliable clinical
model that avoids failure modes at the boundaries
and has a robust worst-case performance. To sample
from the distribution, we discretize the problem and
solve it using standard optimization techniques.

4. Experiments & Results

We train small vision transformers on 200,000 whole-
slide images (WSIs) from The Cancer Genome At-
las (TCGA) and Charité - Universitétsmedizin Berlin
(Details in Appendix C) . We compare three sampling
strategies (1) D-MAG: discrete uniform sampling at
standard magnifications (0.25, 0.5, 1.0, 2.0 mpp), (2)
C-MAG: continuous uniform sampling across [0.25,
2.0] mpp, and (3) RO-A: robust optimization with
absolute distance kernel as described in sec 3.2. We
visualize the results in Figure 3.

Both our methods, C-MAG and RO-A, increase
the representation space quality and eliminate the
systematic degradation caused by standard discrete
sampling. Interestingly, the RO-A optimized dis-
tributions oversamples the boundary magnifications.
We can understand this intuitively as points closer to
the magnification boundaries only have ”close” sam-
ples in one direction while interior points profit from
similar samples in both directions. Thus, naive con-
tinuous uniform sampling does in fact not create uni-
formly good representations, but leads to systematic
weaknesses at the boundaries. RO-A alleviates this.

5. Discussion & Future Work

Our results show that the discrete sampling strategies
of current training practices in histopathological self-
supervised learning lead to a noticeably irregular em-
bedding space. With this, we hope to inspire discus-
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sions on the disconnect between the discrete common
practice and the continuous reality. We look forward
to works that investigate whether these phenomena
persist at larger training scales and their potential
implications for downstream clinical applications.
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Appendix A. Related Work

Vision foundation models in digital pathology
Microscopic visual data in digital pathology comes in
the form of gigapixel whole slide images (WSIs) that
show human tissue in fine-grained detail. Due to the
immense size of these images, many existing vision
foundation models in the field cut out small patches
of tissue from the WSI for training (e.g., Chen et al.,
2024; Dippel et al., 2024; Zimmermann et al., 2024b;
Vorontsov et al., 2024; Alber et al., 2025). The re-
sulting patch-level embeddings encode local informa-
tion and several embeddings from different locations
on the same slide can be combined to inform spe-
cific downstream tasks. Most of the state-of-the-art
models for this patch-level encoding rely on the DI-
NOv2 framework for training Oquab et al. (2024).
Alternative approaches exist that directly optimize
slide-level objectives, but the resulting embeddings
do usually not lend themselves directly to the analy-
sis of local features (e.g., Chen et al., 2022; Buzzard
et al., 2024). Models have been probed on scanner or
hospital robustness (Chai et al., 2025; Kémen et al.,
2025; Carloni et al., 2025), but no work has investi-
gated magnification robustness in detail.

Multi-scale self-supervised training in digi-
tal pathology Many current pathology foundation
models include patches from different resolutions into
their training. Often, uniform sampling is performed
over the standard scanner magnifications and it is
frequently observed that this increases performance
across benchmarks (e.g., Ciga et al., 2022; Kang et al.,
2023; Aben et al., 2024; Karasikov et al., 2025). Other
approaches to multi-scale modeling include, Zimmer-
mann et al. (2024a) who propose positional encod-
ings that rely on the magnification difference of two
patches. Furthermore, Juyal et al. (2024) add a
masked autoencoder loss that reconstructs patch re-
gions of varying sizes in order to obtain informa-
tive representations of biological features at differ-
ent scales. In the vision-language domain Albastaki
et al. (2025) investigate including different standard
magnifications into training in order to improve the
responses of language models on different scales. Im-
portantly, the choice and the effect of the sampling
distribution of the multi-scale data has not been thor-
oughly investigated.

Multi-scale Benchmarks and Applications in
Digital Pathology Many downstream applica-
tions in digital pathology require analysis across mul-

tiple scales, such as multi-magnification image search
(Rasoolijaberi et al., 2022) and cross-scale multiple
instance learning for cancer classification (Deng et al.,
2024). To evaluate current state-of-the-art foun-
dation models for these applications, several multi-
magnification benchmarks have been used in the lit-
erature. These include BreakHis (0.01, 0.05, 0.1, 0.25
mpp), TCGA Uniform (0.5, 1.0 mpp), and the pro-
prietary PanMSK dataset (0.5, 1.0, 2.0 mpp) (Vaidya
et al., 2025; Spanhol et al., 2016; Zimmermann et al.,
2024b). However, no single analysis covers all stan-
dard scanner magnifications (2.0, 1.0, 0.5 , 0.25 mpp)
and existing benchmarks only evaluate at standard
discrete magnifications. Furthermore, many existing
benchmarks are saturated and are hardly able to dis-
tinguish differences between models and evaluations
rarely happen with standardized evaluation protocols
(Mahmood, 2025).

Appendix B. Rank Me

Given a set of N patches Xppp = {21,...,2n8} ex-
tracted at specific mpp, we obtain their embeddings
Zipp = |21, 28] € RVXE by passing them
through model m, where K is the embedding dimen-
sion. Then RankMe is defined as:

min(N,K)
RankMe(Zmpp) = exp [ — Y prlogpk |,
k=1
(3)
where 7
MJFE, (4)

k pr—
Pr = 10 Zommpp) i

where 0%(Zy, mpp) denotes the k-th singular value
of the embedding matrix Z,, mpp, |0(Zm,mpp)l1 =
Z?:ll(N’K) 0i(Zn,mpp) is the sum of all singular val-

ues, and € is a small constant for numerical stability.

Appendix C. Training Details

For training, we adapt the DinoV2 framework Oquab
et al. (2024) and train a student network fy_(X) and
a teacher network fy, (X) for 60.000 iterations with a
batch size of 320, with X € R2?24*22423  For train-
ing, we extract two global crops X, € R224w22423
and eight local crops X; € R%%9%3 from a larger
source patch X, € R?56#25623  Fyurthermore, we cre-
ate masked versions of the global crops X, . The ob-
jective is then a combination of the Dino loss £pino
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(Caron et al., 2021), the Ibot loss Lo (Zhou et al.,
2021) and the Koleo loss Lxoeo (Sablayrolles et al.,
2019) that together encourage image-level distillation
between the local and global crops and patch-level re-
construction between the masked and unmasked ones
Oquab et al. (2024). As architecture we use small vi-
sion transformers (VitS) and use the teacher network
to create the final embeddings. For N patches this
results in an embedding matrix Z € RN*384 We
use the standard DinoV2 hyperparameters and train
with a base learning rate of 0.001 and a weight decay
cosine schedule from 0.04 to 0.2. The scale ranges
for the resizing of global and local crops are set to [1,
0.35] and [0.35, 0.05] respectively.

As training data we use patch datasets at the four
standard magnifications (0.25, 0.5, 1.0, and 2.0 mpp)
from 200,000 whole-slide images (WSIs) from The
Cancer Genome Atlas (TCGA) and Charité - Univer-
sitatsmedizin Berlin. This yields 774M, 280M, 69M,
and 18M patches at the respective magnifications.

MPPs

MPPs

Figure 4: Cosine Similarities between embedding
centroids for the standard magnifications
in a multi-scale model. Larger magnifica-
tion differences correspond to greater sep-
aration in the learned feature space.

Appendix D. Embeddings Space
Similarities

To show that different magnifications are more dis-

tant in a models embedding space, we compute the

centroids for embeddings of patches from each of the

standard magnification. From the heatmap in Figure

4 we see that distances between centroids increases
with magnification distance.

Appendix E. Comparison between
different Kernels

In this section of the appendix we present how a dif-
ferent choice of Kernel affects the optimization prob-
lem in 3.2. We display the results in figure 5 and
compare the following two Kernels:

Absolute Distance Kernel The absolute dis-
tance kernel Kops(x,y) = ﬁ_y‘ encodes that the
effect of sampling a patch at magnification z on the
representation quality at magnification y decreases
proportionally to the magnification distance |z — y].

Information-Based Kernel The 2information—
based kernel Kpea(z,y) = (%) models in-

formation transfer through field of view overlap. A
224 x224 patch at magnification x x mpp covers a tis-
sue area of (224 * x)? square microns. When viewing
this same tissue at magnification y, the kernel repre-
sents the fraction of overlapping field of view, squared
to account for 2D area.

Appendix F. Extension to larger
models

To investigate qualitatively if the observed phenom-
ena also extend to larger models, we train a Vit-L
with batch size 960 for 62.500 iterations with discrete
uniform sampling over the 4 standard magnifications.
We display the results in figure 6 and observe a drop
of embedding quality at intermediate magnifications
similar to what we have seen in smaller models.
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Figure 5: Optimized sampling distribution for two different kernels. RO-I is optimized with an Information-
based Kernel and RO-A with an absolute distance kernel. Both kernels lead to an upsampling of

the data points at the boundaries.
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Figure 6: The Rank Me Metric for a Vit-L model trained with discrete uniform sampling. We observe a

similar drop in embedding quality as for the smaller models.
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