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Supplement Material

A Background

A.1 Phylogeny and Machine Learning Applications in Biology

Phylogeny is the study of evolutionary relationships among species, aiming to infer their common ances-
tors and evolutionary paths by analyzing gene or protein sequences. Phylogenetic trees are widely used in
biology to represent these relationships, providing insights into species origins, biodiversity, and evolution-
ary trajectories. Phylogenetic trees play a crucial role in various applications, including pathogen source
tracing, cancer evolution analysis, and biodiversity conservation. However, with the surge in genomic data,
phylogenetic inference faces substantial computational challenges, especially when inferring trees for a large
number of species. Traditional methods encounter significant computational bottlenecks as the number of
taxa increases, requiring more time and computational resources.

Challenges in Traditional Phylogenetic Inference Methods. Traditional phylogenetic inference meth-
ods, such as Maximum Likelihood Estimation (MLE) and Bayesian Inference (MCMC), rely on exhaustive
searches over large tree spaces to calculate the optimal topology. As the number of species increases, the
combinatorial space of possible tree topologies grows exponentially, leading to severe computational bottle-
necks. For example, Bayesian inference methods are computationally expensive and slow, particularly as the
number of taxa increases. Additionally, traditional autoregressive models (e.g., ARTree) rely on predefined
species orders, which often do not align with the actual evolutionary relationships, resulting in suboptimal
tree structures and slower convergence.

The Role of Machine Learning in Phylogenetic Inference. In recent years, deep learning methods
have shown great potential in improving phylogenetic inference by leveraging complex relationships in ge-
nomic data. These methods allow for adaptive learning of node orders, which helps overcome the limitations
of fixed species orders in traditional models. For instance, Generative Flow Networks (GFNs) and autore-
gressive models, like ARTree, have improved the e!ciency and accuracy of tree generation. However, these
methods still fail to fully incorporate biological prior knowledge, such as evolutionary relationships between
species, and often do not capture the complete genomic signals, limiting their ability to provide accurate
phylogenies for large datasets.

Innovations of MDTree. To address the limitations of traditional methods, we propose MDTree, a novel
dynamic autoregressive framework based on a Dynamic Ordering Network (DON). MDTree dynamically
learns the node addition order from genomic sequence data, instead of relying on predefined orders. This
approach ensures that the tree construction process better reflects the true evolutionary relationships among
species, improving both accuracy and biological relevance. Furthermore, MDTree incorporates a dynamic
masking mechanism that enables parallel insertion of nodes, significantly improving computational e!ciency.
By leveraging this method, we not only overcome computational bottlenecks but also ensure that the gener-
ated phylogenetic trees are biologically consistent, making them suitable for large-scale evolutionary analysis.

A.2 Phylogenetic Posterior and Variational Inference (VI)

Variational Autoencoders (VAE) Kingma & Welling (2013) are deep generative models that learn the input
data distribution by encoding it into a latent space. In this process, the encoder maps each input x to a
latent space defined by parameters: mean µ and variance ω. Latent variables z are then sampled from this
distribution for data generation.

Variational Inference (VI) is employed within VAEs to handle the computational challenges of estimating
marginal likelihoods of observed data. VI approximates the marginal likelihood using a variational distribu-
tion qω(z|x) to estimate the posterior. The goal of VI is to maximize the Evidence Lower Bound (ELBO),
formulated as:

ELBO = Eqω(z|x)[log pε(x|z)] → KL[qω(z|x)||p(z)] (18)

The first term is the reconstruction log-likelihood, log pε(x|z), which can be considered as a decoder, i.e.,
the log-likelihood between the reconstructed data and the original data given the potential representation.
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The second term, the Kullback-Leibler (KL) divergence, quantifies the di"erence between the variational
posterior qω(z|x) and the latent prior p(z).

In the context of phylogenetic inference, VI helps to approximate the posterior distribution of tree topologies
and branch lengths, which are often intractable to compute directly. By applying VAE with VI, we can
e!ciently infer phylogenetic structures while maintaining the biological relevance of the tree, improving
both the accuracy and computational e!ciency of the process.

B Related Work

Phylogenetic inference methods can be broadly categorized into two major classes: traditional methods
and deep learning-based methods. Each class can be further divided into graph structure generation and
representation models. In this section, we review these approaches in detail.

B.1 Traditional Methods

Traditional phylogenetic inference methods primarily rely on predefined evolutionary models and statistical
inference techniques. These methods typically assume specific evolutionary processes and use statistical
approaches to search and optimize within a given tree structure space. They can be classified into graph
structure generation and representation models.

Graph Structure Generation Models: MrBayes Ronquist et al. (2012) generates phylogenetic trees using
Bayesian inference, estimating posterior probabilities based on sample relative frequency (SRF). However,
the high-dimensional combinatorial space poses accuracy challenges, particularly for low-probability trees,
requiring large sample sizes for stability. VaiPhy Koptagel et al. (2022) introduces the SLANTIS sampling
strategy Diaconis (2019) to generate tree structures by learning phylogenetic tree topologies. This approach
combines basic biological models, such as the JC model, to estimate branch lengths, producing more accurate
tree structures.

Graph Structure Representation Models: SBN (Structured Bayesian Networks) Zhang & Matsen IV
(2018a) focuses on learning the probability distribution of tree topologies from existing phylogenetic trees.
By modeling subsplit relationships within a given set of trees, SBN captures the probabilistic structure of
the entire tree space without directly estimating branch lengths. VBPI (Variational Bayesian Phylogenetic
Inference) Zhang & Matsen IV (2018b) builds on the tree topology probability distributions provided by
SBN, using variational inference to estimate the posterior distribution of tree structures. This method
further optimizes branch lengths, o"ering a precise approximation of the posterior distribution.

While traditional methods provide a solid theoretical foundation, they often struggle with the complexity
of high-dimensional data and intricate evolutionary relationships. The emergence of deep learning has
introduced new approaches to address these challenges.

B.2 Deep Learning-Based Methods

In recent years, deep learning techniques have demonstrated significant potential in phylogenetic inference,
especially when dealing with complex, high-dimensional genomic data. These methods excel in generating
and representing phylogenetic trees by learning latent representations or structural features from the data.
They can be categorized into graph structure generation and representation models.

Graph Structure Generation Models:

• Bayesian Generative Models (e.g., VAE): These models learn latent representations of graphs
using variational inference, from which new tree structures can be sampled. GeoPhy Mimori &
Hamada (2024) exemplifies this approach by leveraging VAE to model the latent space of phyloge-
netic trees, generating diverse structures that accommodate complex evolutionary histories.

• Autoregressive Models: Autoregressive models generate tree structures incrementally, making
them suitable for tasks with well-defined sequences or hierarchies. ARTree Xie & Zhang (2024)
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employs a graph autoregressive model to generate detailed topologies, with branch lengths indepen-
dently estimated using classical evolutionary models.

• Di!usion Models: Although di"usion models have not been widely applied in phylogenetic tree
generation, our study integrates di"usion models with autoregressive models to generate the node ad-
dition order, enhancing the accuracy of tree structures. This demonstrates the potential of di"usion
models in high-quality phylogenetic inference.

• Generative Flow Networks (GFlowNets): As illustrated by PhyloGFN Zhou et al. (2024),
GFlowNets Hu et al. (2023) combined with Markov decision processes optimize the generation path,
progressively constructing complex phylogenetic tree structures.

Graph Structure Representation Models: VBPI-GNN Zhang (2023) leverages pre-generated candidate
tree structures and SBN-provided tree topology probability distributions, combined with variational infer-
ence, to optimize branch lengths and tree topologies, ultimately providing a precise approximation of the
posterior distribution.

C Datasets

Our model, MDTree, conducts phylogenetic inference on biological sequence datasets comprising 27 to 64
species, as compiled in Lakner et al. (2008). Importantly, our approach does not require sequences to be
of uniform length, thereby addressing a common limitation in traditional phylogenetic analyses. Table A1
summarizes the statistics of the benchmark datasets.

Table A1: Statistics of the benchmark datasets from DS1 to DS8..

Dataset # Species # Sites Reference
DS1 27 1949 Hedges et al. (1990)
DS2 29 2520 Garey et al. (1996)
DS3 36 1812 Yang & Yoder (2003)
DS4 41 1137 Henk et al. (2003)
DS5 50 378 Lakner et al. (2008)
DS6 50 1133 Zhang & Blackwell (2001)
DS7 59 1824 Yoder & Yang (2004)
DS8 64 1008 Rossman et al. (2001)

D Method

Calculation of the number of unlabelled nodes in DON. The number of nodes unmasked at each
step is dynamically determined by a mask rate modulated by a cosine function. Given a total of T steps
and U nodes to be unmasked per step, the proportion of nodes to be unmasked at each step t is computed
as follows: rt = t

T , t = 1, 2, . . . , T. This is modulated by a cosine function to produce the mask rate:
mask_ratet = cos

(
ϑ
2

· rt

)
, where mask_ratet controls the relative number of nodes unmasked at step t. The

final number of nodes unmasked at each step is normalized to ensure that the total number of unmasked

nodes across all steps sums to T ↑ U : unmasked_nodest =
⌊

mask_ratet∑T

t=1
mask_ratet

· T · U

⌋
, where ↓·↔ denotes

rounding to the nearest integer.
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E Experiment

E.1 Training Details

We focus on the most challenging aspect of the phylogenetic tree inference task: the joint learning of
tree topologies and branch lengths. For this, we employ a uniform prior for the tree topology and an
independent and identically distributed (i.i.d.) exponential prior (Exp(10)) for the branch lengths. We
evaluate all methods across eight real datasets (DS1-8) frequently used to benchmark phylogenetic tree
inference methods. These datasets include sequences from 27 to 64 eukaryote species, each comprising 378
to 2520 sites. For our Monte Carlo simulations, we select K = 2 samples and apply an annealed unnormalized
posterior during each i-th iteration, where εn = min{1.0, 0.001+ i/H} acts as the inverse temperature. This
parameter starts at 0.001 and gradually increases to 1 over H iterations, e"ectively simulating a cooling
schedule commonly used in annealing algorithms, similar to the approach in Zhang & Matsen IV (2018a),
with an initial temperature of 0.001, which gradually decreases over 100,000 steps.

During the model training process, we utilize stochastic gradient descent to process a total of one million
Monte Carlo samples, employing K samples at each training step. The stepping-stone (SS) algorithm Xie
et al. (2011) in MrBayes is viewed as the gold-standard value. All models were implemented in Pytorch Paszke
et al. (2019) with the Adam optimizer Kingma & Ba (2014). The MLL estimate is derived by sampling the
importance of 1000 samples, with the larger mean value being better. The learning rate is initially set to
1e-4 and is reduced by 0.75 every 200,000 training steps. Momentum is set at 0.9 to prevent the optimization
process from becoming trapped in local minima. Utilizing the StepLR scheduler, the current learning rate
is multiplied by 0.75 every 200,000 steps to ensure steady progression, detailed in Tab. A2.

Table A2: Training Settings of MDTree.

Training Configuration
Optimizer Adam optimizer
Learning rate 1e-4
Schedule Step Learning Rate
Weight Decay 0.0
momentum 0.9
base_lr 1e-4
max_lr 0.001
scheduler.gamma 0.75
annealing init 0.001
annealing steps 400,000

Table A3: Common Hyperparameters for MDTree.

DON
Hidden Dim. 32
# Layer 2
Output Dim. 1
TreeEncoder
Hidden Dim. 100
# Heads 4
DGCNN
# Layer 2

E.2 Hyper-Parameter Analysis (RQ4-2)

Table A4 summarizes the hyperparameter search results for the DON hidden dimension, Tree Network
(Transformer) hidden dimension, and the number of attention heads. When increasing the number of heads
from 1 to 4, ELBO improves from -7517.98 to -7005.98, and MLL improves from -7333.14 to -7101.38,
demonstrating that more attention heads allow the model to capture richer dependencies. For the DON
hidden dimension, a value of 32 achieves the best results, with an ELBO of -7005.98 and MLL of -7101.38.
Similarly, tuning the Tree hidden dimension shows that 100 is optimal, yielding an ELBO of -7005.98 and
MLL of -7101.38, while further increasing the dimension does not result in better performance. These results
highlight the importance of tuning the number of heads and hidden dimensions to balance model complexity
and generalization.

F Biological Interpretation of Generated Trees

Figure A1 illustrates the phylogenetic relationships among 20 fungal species from the DS10 dataset, generated
using our proposed method. The tree structure reveals distinct clades corresponding to major taxonomic
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Table A4: Hyperparameter Analysis of MDTree Performance.

Configurations Parameters
1 2 3 4

DON_hd=32, Tree_hd=100
# Heads 1 2 3 4
ELBO -7517.98 -7111.95 -7106.65 -7005.98
MLL -7333.14 -7116.65 -7104.82 -7101.38

# Heads=4, Tree_hd=100
DON_hidden dim 8 16 32 64

ELBO -7016.75 -7011.16 -7005.98 -7013.96
MLL -7113.84 -7117.83 -7101.38 -7105.18

# Heads=4, DON_hd=32
Tree_hidden dim 500 100 150 200

ELBO -7013.71 -7005.98 -7012.07 -7008.93
MLL -7112.71 -7101.38 -7102.05 -7121.51

groups, such as Ascomycota and Basidiomycota, highlighting evolutionary divergences. Notably, species
within the same genus cluster closely together, reflecting their shared evolutionary history. The branch
lengths indicate varying degrees of genetic divergence, with longer branches suggesting more significant
evolutionary changes. This phylogenetic tree not only aligns with established biological classifications but
also provides insights into the evolutionary trajectories of these fungal species, demonstrating the e"ectiveness
of our method in capturing complex evolutionary relationships.
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Figure A1: Phylogenetic relationships of 20 fungal species from DS10 dataset. Phylogenetic tree showing
evolutionary distances among representative fungal species. Colors indicate major taxonomic groups. Tree
generated using our proposed method.
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