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A Flux Consistency Downsampling Details

Computing image plane coordinates: For a given high-resolution (HR) image with the resolution
of H ×W and a downsampling rate s, we generate the size of the downsampled low-resolution (LR)
image, referred to as H

s × W
s . With the two sizes, we have specific coordinates of pixels in both LR

and HR images.

Transfer pixels to sky: For HR and IR pixel coordinates, we transfer them into the celestial coordinate
system as: (u, v) → (ra, dec), where (u, v) is a coordinate in the image plane while (ra, dec) is the
longitude and latitude coordinates of the Earth. Note that, each pixel is not an ideal point and actually
a rectangle on the image plane. After the mapping, it becomes a quadrilateral surface of the celestial
coordinate system. The physical meaning of this quadrilateral surface is the sky area covered by a
pixel, denoted as the receptive field here. For the i-th pixel of the LR image and the j-th pixel of the
HR image, we calculate and denote the area value of their receptive field as ALR

i and AHR
j .

The transformation process in the aforementioned process is implemented by the telescope calibration
information carried by the high-resolution (HR) image, which could be interpreted as camera intrinsic
and extrinsic parameters of the telescope.

Low-resolution image Flux Computation: The previous steps essentially transferred HR and LR
image plane grids into two surface meshes in the celestial coordinate system, as shown in Fig. 1.
Obviously, the average receptive field of the LR image is larger than the HR one because the LR
pixel corresponds to larger regions, leading to an LR pixel covers multiple HR pixels in the sky. To
compute the flux of the i-th LR pixel, we first identify the set of HR pixels So

i whose receptive fields
overlap with that of the i-th LR pixel, i.e., So

i = {j | AHR
j ∩ALR

i ̸= ∅}. This set represents all HR
pixels whose sky areas contribute to the i-th LR pixel’s flux. The flux of the i-th LR pixel, FLR

i , is
then computed by summing the weighted contributions from all overlapping HR pixels:

FLR
i =

∑
j∈So

i

wi,j · fHR
j , (1)

where fHR
j is the flux of the j-th HR pixel, and wi,j is the weight representing the fractional

contribution of the j-th HR pixel to the i-th LR pixel.

The weight wi,j is calculated as:

wi,j =
Ai,j

AHR
j

, (2)

where Ai,j is the overlapping sky area between the i-th LR pixel and the j-th HR pixel, representing
their shared quadrilateral patch in the celestial coordinate system, and AHR

j is the total sky area
covered by the j-th HR pixel’s receptive field. To better understand the role of this weight in flux
computation, we substitute wi,j into Equation (1), transforming the contribution term as follows. The
flux contribution from the j-th HR pixel to the i-th LR pixel is wi,j · fHR

j , where fHR
j is the flux of

the j-th HR pixel. Substituting wi,j =
Ai,j

AHR
j

into this term, we obtain:

wi,j · fHR
j =

(
Ai,j

AHR
j

)
· fHR

j = Ai,j ·
fHR
j

AHR
j

. (3)

Here,
fHR
j

AHR
j

represents the flux density of the j-th HR pixel, i.e., the photon count per unit sky area, as

recorded by the telescope’s CCD sensor over the receptive field area AHR
j . Thus, Ai,j ·

fHR
j

AHR
j

is the
flux contributed by the j-th HR pixel over the overlapping area Ai,j , ensuring that the contribution is
proportional to the shared sky area between the LR and HR pixels. This approach preserves the total
photon flux during downsampling, maintaining flux consistency across resolutions.

As shown in Fig. 2, we compare flux consistency downsampling with traditional bilinear interpolation.
It can be found that the result of Fig. 2 (a) is closer to the average flux of HR star sources, indicating
that flux consistency downsampling can better keep the original HR flux information. To further high-
light the differences between the two methods, we visualize their residuals in Fig. 2 (c). Noticeable
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Figure 1: Schematic diagram of the flux-consistent downsampling process. The workflow illustrates
the transformation of HR and LR image pixels into the celestial coordinate system, the computation
of overlapping sky regions between HR and LR receptive fields, and the flux calculation for LR pixels
using weighted contributions from overlapping HR pixels.

differences can be observed at the locations of stellar sources. The bilinear interpolation method
tends to cause flux reduction when handling bright targets such as stars, making it less suitable for
flux consistency astronomical applications.

B PSF Details

We simulate the imaging blur in the STAR dataset using two PSF models: the Gaussian PSF and
the Airy PSF [? ], aiming to increase training data diversity. The Gaussian PSF is a simple model
often used to approximate blur in astronomical observations [1, 2]. In contrast, the Airy PSF captures
diffraction effects from a telescope’s circular aperture, making it suitable for space-based instruments
like HST [3].

In the Gaussian PSF and Airy PSF models, σ and r serve as adjustable parameters to control the
spread of the blur by modulating the energy dispersion of the filter. For instance, in the Gaussian PSF,
a larger σ leads to a less concentrated signal with greater energy spread across the filter, while in the
Airy PSF, r governs the radial extent of energy distribution due to diffraction, as defined below.

PSFGaussian(x, y) = exp

(
−x2 + y2

2σ2

)
, (4)

and

PSFAiry(r) =

[
2J1(kr)

kr

]2
. (5)

We define these parameters based on the telescope’s observed blur characteristics, following Schaw-
inski et al. [4], who used the observed blur to set the PSF parameters for a realistic simula-
tion of hardware-specific degradation effects. Accordingly, we set the Gaussian PSF parameter
σ ∈ [0.8,1.2] and the Airy PSF radius r ∈ [1.9,2.2] pixels based on the FWHM [5], which mea-
sures the blur width at half its peak intensity, to approximate the actual HST WFC/ACS F814W filter
observations where the blur is characterized by its FWHM. This enables effective super-resolution
training.

C Additional Experiments with Gaussian + Airy PSFs

The original submission focuses on experiments using Gaussian PSF data. Here, we further evaluate
the combination of Gaussian PSF and Airy PSF (Gaussian + Airy PSFs) and validate the effectiveness
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Figure 2: Comparison between downsampling methods. Each HR patch is shown alongside three
columns: (a) flux-consistent downsampling, (b) bilinear interpolation, and (c) their pixel-wise
difference. FM means flux mean.
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Table 1: Performance of different methods under ×2 super-resolution with Gaussian PSF and Airy
PSF on the STAR dataset. Metrics: PSNR↑, SSIM↑, Flux Error (FE)↓.

Metric Bicubic EDSR RCAN SwinIR FISR

PSNR 29.4434 35.7398 37.4639 37.1347 38.2678
SSIM 0.7125 0.8086 0.8277 0.8279 0.8334
FE 4.286 1.3249 0.7451 0.7593 0.5585

Table 2: Performance of different methods under ×2 super-resolution with Gaussian PSF and Airy
PSF on the STAR dataset (with and without FCL). Metrics: PSNR↑, SSIM↑, Flux Error (FE)↓.

Flux Loss Metric EDSR RCAN SwinIR

w/o
PSNR 35.7398 37.4639 37.1347
SSIM 0.8086 0.8277 0.8279
FE 1.3249 0.7451 0.7593

w/
PSNR 35.8921 37.8914 37.6049
SSIM 0.8092 0.8286 0.8281
FE 1.242 0.5914 0.6767

of Flux-Consistent Loss (FCL) in this setting. In this setting, each image is degraded by randomly
selecting either the Gaussian or Airy PSF with equal probability.

We compare the performance of different methods under ×2 super-resolution with Gaussian PSF and
Airy PSF on the STAR dataset, analyzing the results model-wise and loss-wise. Tab. 1 compares
the performance of all methods in this setting. FIRS surpasses baselines like SwinIR and RCAN,
achieving a 3.05% higher PSNR and 26.45% lower FE than SwinIR, demonstrating its superior ability
to recover fine stellar details and preserve flux accuracy in astronomical image super-resolution.
Additionally, Tab. 2 compares EDSR, RCAN, and SwinIR with and without FCL to focus on the
impact of FCL across baseline methods. For instance, SwinIR with FCL improves PSNR by 1.27%
and reduces FE by 10.88% compared to the version without FCL, while RCAN with FCL improves
PSNR by 1.14% and reduces FE by 20.63%, highlighting FCL’s role in enhancing image quality and
flux preservation.

D Additional visualizations

We present additional visualizations to demonstrate the effectiveness of our approach in star-field
super-resolution (ASR) tasks. Fig. 3 displays the ×2 super-resolution results for the Gaussian PSF
experiment, comparing baselines (EDSR, RCAN, PromptIR, SwinIR, HAT) against our FIRS model.
The visualizations reveal that FIRS consistently outperforms all baselines, achieving superior visual
quality with finer stellar details and sharper structures. To further quantify these improvements, we
compute the KL divergence and JS divergence between the intensity distributions of the predicted and
ground truth values in selected regions, following the experimental settings in the original submission.
The results show that FIRS significantly reduces distribution discrepancies compared to SwinIR and
HAT, confirming its superior capability in preserving stellar details and flux accuracy in ASR tasks.

E Hyperparameters Tuning

We tune the parameter λ to balance the Flux-Consistent Loss (FCL) and reconstruction loss in
our star-field super-resolution (ASR) model. We evaluate different λ values (0.1, 0.05, and 0.01)
under the ×2 Gaussian PSF + Airy PSF setting, with results shown in Tab. 12. The performance
metrics show that λ = 0.01 yields the best results, improving PSNR by 1.40% and reducing FE by
15.88% compared to λ = 0.1. These results indicate that a proper λ matters in the balance between
reconstruction loss and the Flux-Consistent Loss. Fortunately, 0.01 seems to perform well in most
cases.
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F Experimental setting/details

We ensure reproducibility by providing the experimental environment and computational resources.
Tab. 3 shows the environment configuration, including hardware and software details. Tab. 4 summa-
rizes the computational resources used for training. For detailed training settings and parameters of
each model, please see the code.

Table 3: Experimental Environment Setup.

Component Version

OS Ubuntu 20.04.5 LTS
Python 3.10.15
PyTorch 2.0.0
CUDA 11.8

Table 4: Computational Resources for Different Methods (Training Time in Hours).

Method Training Time (Hours)

EDSR 52
RCAN 40
Hat 70
SwinIR(light weight) 14
PromptIR 15
GAN 27
FISR (ours) 15

G Additional Experiments

To further validate the robustness and scientific utility of our proposed dataset and model, we con-
ducted a series of additional experiments in response to reviewer feedback. These experiments
evaluate the model’s generalization capabilities across different domains, its performance on down-
stream scientific tasks, its robustness to noise, and its computational efficiency.

G.1 Generalization and Robustness Analysis

Cross-Filter Generalization: To test the model’s performance on data from different instrumental
filters, we evaluated our F814W-trained model on test sets from the F606w and F435w filters of the
Hubble Space Telescope (HST). As shown in Tab. 5, while there is a performance drop as the filter
domain shifts further from the training domain (F814W), the model maintains strong performance,
demonstrating satisfactory generalization capabilities. The F606w filter, being spectrally closer to
F814W, yields better results than the more distant F435w filter, confirming that domain similarity
influences performance.

Table 5: Cross-filter generalization performance of the FISR model trained on the F814W filter.

Metric F435w F606w F814w (In-Domain)
PSNR 35.9192 36.3522 37.8779
SSIM 0.7305 0.7667 0.8311
Flux Error 0.9193 0.8242 0.5739

Robustness to Noise: We evaluated FISR’s robustness by introducing random Poisson noise to each
image during inference, simulating realistic observational noise. The results in Tab. 6 show that FISR
maintains its state-of-the-art performance, achieving the best results across all metrics compared to
other methods under noisy conditions.

Cross-Dataset Evaluation: Although direct evaluation is challenging due to differences in data
units (STAR uses scientific counts, while AstroSR uses RGB), we re-trained our FISR model on
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Divergence Bicubic EDSR* RCAN* PromptIR* HAT* SwimIR* Ours
KL↓ 1.5121 0.4602 0.4089 0.1142 0.0820 0.0745 0.0659
JS↓ 0.8705 0.2515 0.2570 0.1462 0.1294 0.1158 0.1117
- Bicubic EDSR RCANN PromptIR HAT SwimIR Ours

KL↓ / 0.8099 0.8981 0.1329 0.0911 0.1558 /
JS↓ / 0.5615 0.4569 0.1548 0.1392 0.1649 /

EDSR RCAN PromptIR SwimIRHR HAT

EDSR* RCAN* PromptIR* SwimIR*Bicubic HAT* Ours

Divergence Bicubic EDSR* RCAN* PromptIR* HAT* SwimIR* Ours
KL↓ 0.4348 0.9002 0.2087 0.1402 0.1306 0.1640 0.1148
JS↓ 0.3253 0.4143 0.2146 0.1757 0.1882 0.1915 0.1344
- Bicubic EDSR RCANN PromptIR HAT SwimIR Ours

KL↓ / 0.9500 0.3200 0.2716 0.1871 0.3018 /
JS↓ / 0.4459 0.2709 0.2212 0.2155 0.2588 /

EDSR RCAN PromptIR SwimIRHR HAT

EDSR* RCAN* PromptIR* SwimIR*Bicubic HAT* Ours

Divergence Bicubic EDSR* RCAN* PromptIR* HAT* SwimIR* Ours
KL↓ 0.2198 0.1478 0.1384 0.1183 0.1107 0.1091 0.1052
JS↓ 0.2023 0.1468 0.1306 0.1290 0.1247 0.1204 0.1180
- Bicubic EDSR RCANN PromptIR HAT SwimIR Ours

KL↓ / 0.1941 0.1579 0.1207 0.1413 0.1455 /
JS↓ / 0.1654 0.1476 0.1338 0.1312 0.1359 /

EDSR RCAN PromptIR SwimIRHR HAT

EDSR* RCAN* PromptIR* SwimIR*Bicubic HAT* Ours

Figure 3: We further demonstrate several sets of visualization results on the ×2 Gaussian PSF
experiment. Models with (*) are trained using FCL.
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Table 6: Performance comparison under Poisson noise injection during inference. Best results are in
bold.

Method Bicubic EDSR SwinIR RCAN HAT RealESRGAN FISR (Ours)
PSNR 28.9823 34.8191 36.3945 35.2918 36.8342 35.8098 36.7803
SSIM 0.6825 0.7684 0.7883 0.7848 0.7743 0.7852 0.7888
Flux Error 4.7889 1.5682 1.1433 1.1993 1.1943 6.9292 1.1025

the AstroSR dataset. Tab. 7 demonstrates that our method outperforms the original baseline models
reported in the AstroSR paper, showcasing its architectural effectiveness on different data types.

Table 7: Performance comparison on the AstroSR dataset after re-training. Best results are in bold.

Method Bicubic EDSR RCAN ENLCA SRGAN FISR (Ours)
PSNR 17.7714 23.2168 23.6082 23.4267 23.0039 24.0211
SSIM 0.1686 0.3910 0.3966 0.3963 0.3854 0.4025
Flux Error 233.2564 50.5872 61.3863 59.1659 42.3078 33.2331

G.2 Evaluation on Downstream Scientific Tasks

To quantify the practical impact of our super-resolution model on real-world scientific analysis, we
evaluated its performance on four representative downstream astronomical tasks. These experiments
are designed to demonstrate that improvements in standard metrics like PSNR, SSIM, and our
proposed Flux Error (FE) directly translate to higher fidelity in scientific measurements. The
methodologies and results for these tasks are detailed below, with a final comparative summary in
Table 8.

G.3 Evaluation on Downstream Scientific Tasks

To quantify the practical impact of our super-resolution model on real-world scientific analysis, we
evaluated its performance on two representative downstream astronomical tasks. These experiments
are designed to demonstrate that improvements in standard metrics and our proposed Flux Error (FE)
directly translate to higher fidelity in scientific measurements. The methodologies and results for
these tasks are detailed below.

Object Detection Sensitivity: The ability to detect faint objects is fundamental to astronomical
surveys, determining the depth and completeness of celestial catalogs. An effective SR model should
enhance faint sources, thereby improving detection sensitivity. In our experiment, we performed
bipartite matching between sources detected in the predicted images and the ground-truth catalog,
with a match considered successful if the spatial distance was within 2 pixels. The sensitivity was
quantified using the Recall metric. Our FISR model achieves a high recall of 81.47%, indicating
strong performance in identifying celestial objects.

Distance Estimation: Accurately measuring the distances to celestial objects is a cornerstone of
cosmology, combining both object detection and precise photometry. To evaluate this, we used
the successfully matched object pairs from the detection task. We converted each object’s flux to
an apparent magnitude (m) and then applied the distance modulus formula, d = 10(m−M+5)/5, to
estimate the distance (d) in megaparsecs (MPC), assuming a constant absolute magnitude (M ) of
4.83 (typical for Sun-like stars). The accuracy was evaluated by the Mean Absolute Error (MAE)
between the predicted and ground-truth distances, with the results shown in Table 8.

Table 8: Evaluation on the downstream task of distance estimation. Lower values indicate better
performance. Best results are in bold.

Metric Bicubic SwinIR EDSR RCAN HAT R-ESRGAN FISR

Distance MAE (MPC) 6.82E+03 5.37E+03 6.44E+03 5.61E+03 4.44E+03 4.89E+03 4.12E+03
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H More Ablation Studies on FGG Module

We performed ablation studies to analyze the sensitivity of the Flux Guidance Generation (FGG)
module.

Kernel Choice in FGG: We tested alternative kernels (Airy, and a random mix of Gaussian/Airy) for
rendering the flux map. Tab. 9 shows that performance remains stable across different kernel choices,
suggesting that the module’s primary function is to provide a spatial prior for flux information, rather
than depending on a specific kernel formulation.

Table 9: Ablation study on the kernel choice within the FGG module.

Kernel Type PSNR SSIM Flux Error
Gaussian 37.8779 0.8311 0.5739
Airy 37.6988 0.8305 0.5664
Gaussian/Airy (Random) 37.8186 0.8311 0.5726

Sensitivity to Detection Errors: To assess FGG’s robustness, we introduced noisy detections by
lowering the source detection threshold, resulting in twice the number of sources, including many
false positives. As seen in Tab. 10, while performance degrades slightly, FISR remains robust and
achieves results comparable to the model trained with clean detections. This indicates that the model’s
performance does not solely depend on the precision of the FGG’s input.

Table 10: Performance of FISR with clean versus noisy source detections in the FGG module.

Detection Quality PSNR SSIM Flux Error
Clean Detections 37.8779 0.8311 0.5739
Noisy Detections 37.3176 0.8275 0.6872

I Computational Efficiency

We measured the single-image inference time for all compared methods. The results in Tab. 11 show
that FISR is computationally efficient, with an inference time comparable to other high-performing
transformer-based models like SwinIR.

Table 11: Inference time per image (in seconds) for various SR methods.

Method Bicubic EDSR SwinIR RCAN HAT RealESRGAN FISR (Ours)
Time (s) 0.0014 0.1908 0.1088 0.1237 0.6747 0.0995 0.1698

J Limitations and future work

While our study offers promising insights, it has a few limitations that merit further exploration.
First, our experiments are based on observations from a single telescope, the HST WFC/ACS
with the F814W filter, which may limit the generalizability of our findings to other instruments or
observational contexts. Additionally, although our network design performs well, it could benefit
from incorporating more domain-specific optimizations rooted in astronomical knowledge, such as
leveraging physical principles or astronomical priors to enhance performance in complex scenarios.
These areas present opportunities for future refinement. Looking forward, we aim to broaden the
applicability of our method by extending it to a wider array of advanced telescopes, such as the James
Webb Space Telescope (JWST) [6] or the upcoming Large Synoptic Survey Telescope (LSST) [7],
to explore its potential across diverse astronomical contexts. Furthermore, we plan to enhance
our network design by integrating more astronomy-driven optimizations, incorporating physical
knowledge and astronomical priors to better address challenges like crowded stellar regions or
variable noise conditions. Through these efforts, we hope to make modest contributions to the field
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of astronomical image processing, fostering the development of more robust and adaptable tools for
future discoveries.

Table 12: Ablation study on the penalty factor λ (×2 on Gaussian PSF + Airy PSF).

FCL Weight λ PSNR↑ SSIM↑ FE↓
0.1 37.0843 0.8198 0.7842
0.05 37.2672 0.8252 0.7064
0.01 37.6049 0.8281 0.6767

K More Visualizations of the STAR Dataset

To further illustrate the unique characteristics and scale of the STAR benchmark, this section provides
additional visualizations of the source data. We present examples of the original, full-frame observa-
tional images from the Hubble Space Telescope (HST) WFC/ACS instrument, which constitute the
raw data prior to the patch subdivision process for model training 4.

These wide-field views underscore a core advantage of STAR over previous object-centric datasets.
Instead of focusing on isolated, cropped targets, our dataset provides a holistic view of extensive
celestial regions, preserving the crucial spatial context and inter-object relationships (e.g., cross-
object interaction, weak lensing). Furthermore, we showcase a gallery of selected image patches
to highlight the rich diversity within STAR 5. These examples span a wide range of astronomical
environments, from dense, crowded stellar fields and sparsely populated regions to complex nebulae
and fields containing multiple galaxies. Collectively, these visualizations reinforce the value of STAR
as a comprehensive and physically faithful benchmark for advancing astronomical super-resolution
research.
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Figure 4: Examples of the original wide-field raw data from the HST WFC/ACS survey, which form
the basis of the STAR dataset.
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Figure 5: A selection of patches from the STAR dataset, showcasing its diversity. The examples
include crowded stellar fields, regions with interacting galaxies, and complex nebulae, demonstrating
the variety of astronomical scenes available for training robust models.
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