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Abstract

Regular updates are essential for maintaining
up-to-date knowledge in large language mod-
els (LLMs). However, existing training-based
model editing methods often struggle to ef-
fectively incorporate new knowledge while
preserving unrelated general knowledge. To
address this challenge, we propose a novel
framework called Geometric Knowledge Edit-
ing (GeoEdit). GeoEdit utilizes the geomet-
ric relationships of parameter updates from
fine-tuning to differentiate between neurons
associated with new knowledge updates and
those related to general knowledge perturba-
tions. By employing a direction-aware knowl-
edge identification method, we avoid updating
neurons with directions approximately orthog-
onal to existing knowledge, thus preserving
the model’s generalization ability. For the re-
maining neurons, we integrate both old and
new knowledge for aligned directions and ap-
ply a “forget-then-learn” editing strategy for
opposite directions. Additionally, we introduce
an importance-guided task vector fusion tech-
nique that filters out redundant information and
provides adaptive neuron-level weighting, fur-
ther enhancing model editing performance. Ex-
tensive experiments on two publicly available
datasets demonstrate the superiority of GeoEdit
over existing state-of-the-art methods.

1 Introduction

Large language models (LLMs) have demonstrated
the ability to store vast amounts of knowledge
during pre-training and retrieve it during infer-
ence (Yao et al., 2023; Wang et al., 2024d). How-
ever, much of the knowledge in the real world is
constantly evolving. For instance, the answer to
the question “Who is the President of the United
States?” was “Joe Biden” in 2024, but it is now
“Donald Trump”. As a result, some knowledge that
was once correct in LLMs can become obsolete or
inaccurate (Li and Chu, 2024; Huang et al., 2024).
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Figure 1: Conceptual illustration of F-Learning (Ni
et al., 2024) and our proposed GeoEdit.

To address this issue, model editing methods
have been developed to update the target new
knowledge while preserving unrelated general
knowledge within the model (Hong and Lipani,
2024; Ma et al., 2024; Wang et al., 2024e). Specifi-
cally, current model editing methods typically fol-
low the “locate-and-edit” paradigm (Wang et al.,
2023, 2024a; Li et al., 2024). The core idea is
first to locate influential weights in LLMs and then
edit them by introducing a perturbation. Although
effective, these approaches incur significant com-
putational overhead to identify the important neu-
rons and parameters (Meng et al., 2022). Some
methods also require sampling additional data (e.g.,
from Wikipedia) to mitigate the impact on the gen-
eral knowledge within LLMs during editing (Meng
et al., 2023; Fang et al., 2024), introducing extra
costs and potential biases.

In contrast, fine-tuning with updated knowledge,
as demonstrated in recent studies (Zhao et al., 2024;
Wang and Li, 2024; Liu et al., 2024), offers a
more straightforward solution through the use of
parameter-efficient fine-tuning (PEFT) techniques.
These methods employ various strategies to edit the
model without the need to differentiate the impor-
tance of individual parameters (Feng et al., 2025).



Among these, the pioneering work F-Learning (Ni
et al., 2024) introduces a new learning framework
called “Forgetting before Learning,” as illustrated
in Figure 1(a). This approach is based on the em-
pirical observation that new knowledge can be dif-
ficult to learn when it conflicts with existing knowl-
edge. By first forgetting outdated knowledge, the
learning of new knowledge becomes easier. How-
ever, this approach has a critical limitation: it strug-
gles to balance the integration of new knowledge
with the preservation of existing general knowledge.
Specifically, F-Learning assumes that all updates
between old and new knowledge are inherently
conflicting, which oversimplifies the complexity
of knowledge integration. Furthermore, the uncon-
trained forgetting process can significantly impact
the model’s generalization ability to out-of-scope
samples, considerably reducing the performance of
the Locality metric (see Section 3).

To address these limitations, we propose Ge-
ometric Knowledge Editing (GeoEdit), a novel
fine-tuning-based model editing framework that en-
hances editing precision while strongly preserving
model generalization without the need for addi-
tional unrelated data. The core insight of GeoEdit
is to distinguish between neurons associated with
new knowledge updates and those linked to general
knowledge perturbations by analyzing the geomet-
ric relationships of parameter updates caused by
fine-tuning. By masking the updates of general-
knowledge-related neurons, we prevent negative
impacts on the model’s generalization ability. At
the same time, we optimize the update strategy for
new-knowledge-related neurons, further enhanc-
ing the effectiveness of model editing.

Specifically, we first fine-tune the current model
separately on the old and new knowledge datasets.
This allows us to derive neuron-level task vectors,
τold and τnew, using task arithmetic (Ilharco et al.,
2022), which capture the directions of knowledge
retention and updating w.r.t. each neuron, as shown
in Figure 1(b). We then introduce a direction-aware
knowledge identification method that computes the
angle ϕ between these two directions to classify
neurons, followed by customized editing strategies:
(i) Orthogonal Knowledge Editing (for approxi-
mately orthogonal directions): Neurons with up-
dates orthogonal to old knowledge are classified
as general-knowledge-related neurons. These up-
dates are considered detrimental to the model’s
generalization ability, so we refrain from updating

these neurons. The remaining neurons are treated
as new-knowledge-related neurons, which are up-
dated with two different strategies: (ii) Synergistic
Knowledge Editing (for aligned directions): When
there is slight conflict between old and new knowl-
edge, we can leverage their similarities to simulta-
neously integrate both. (iii) Conflicting Knowledge
Editing (for opposite directions): For updates with
significant conflict, we apply the F-Learning strat-
egy, where old knowledge is first forgotten before
integrating new information.

Additionally, to mitigate angular bias in high-
dimensional space, GeoEdit employs a combined
dimensionality reduction approach to more effec-
tively extract angular information, ensuring the re-
liability of the edits. To optimize vector fusion, we
introduce an importance-guided task vector fusion
technique, which applies fine-grained weights to
the vectors and suppresses noise from redundant
parameters, further enhancing the effectiveness of
model editing. Extensive experiments demonstrate
that GeoEdit achieves the best performance among
all fine-tuning-based methods and show its signifi-
cant potential for complementing locate-and-edit
methods, further enhancing performance.

Our main contributions are summarized as:
• We propose a novel geometric knowledge editing

framework (GeoEdit) for updating LLMs.
• We develop new direction-aware knowledge iden-

tification and importance-guided task vector fu-
sion techniques.

• Extensive evaluation on two widely-used
datasets shows that GeoEdit overcomes the lim-
itations of F-Learning, improving the Locality
metric by 7.4% while maintaining the best perfor-
mance in the Reliability and Generality metrics.

2 Related Work

Knowledge editing has gained significant attention
due to the increasing need to update the knowl-
edge in LLMs (Shengyuan et al., 2023; Wang et al.,
2024d; Bi et al., 2024c,b). Existing methods can
be classified into two main approaches:

Locate and edit methods usually locate influ-
ential parameters and then edit them by intro-
ducing a perturbation (Zhang et al., 2024; Jiang
et al., 2024; Xu et al., 2024). Classic methods like
ROME (Meng et al., 2022) and MEMIT (Meng
et al., 2023) use causal reasoning to identify key
neuron activations and adjust specific weights. Ad-
ditionally, Yu et al. (2023) employs gradient-based



attribution to identify important weights. More re-
cent approaches, such as AlphaEdit (Fang et al.,
2024), improve the method by projecting perturba-
tions onto the null space of preserved knowledge,
demonstrating strong performance.

Fine-tuning is an intuitive and straightforward
way to update the model’s knowledge (Feng et al.,
2023; Gangadhar and Stratos, 2024; Zheng et al.,
2024). Recently, a series of PEFT methods, such as
Prefix-Tuning (Li and Liang, 2021) and LoRA (Hu
et al., 2022), have made knowledge editing based
on fine-tuning more feasible. Zhang et al. (2023)
enhance update efficiency and adaptability by per-
forming incremental parameter updates of varying
magnitudes, which are determined by calculating
the importance of the weight matrix.

However, both of these methods struggle to
balance new knowledge updates with preserving
unrelated knowledge (Gupta et al., 2024; Feng
et al., 2024a; Chen et al., 2024). For instance,
locate-and-edit methods typically require large ad-
ditional datasets to capture general knowledge and
avoid disruption during editing (Wang et al., 2024c;
Hsueh et al., 2024; Bi et al., 2024a; Zhang et al.,
2025). Furthermore, locate-and-edit methods pri-
marily focus on editing the MLP layers of the
model, while fine-tuning methods offer the flex-
ibility to adjust different regions of the model.

Thus, our paper focuses on improving fine-
tuning methods. By distinguishing between general
knowledge and updated knowledge based on the
angular divergence between the updated directions
of old and new knowledge, our GeoEdit avoids
updating general knowledge, ensuring model gen-
eralization while applying tailored strategies to en-
hance the effectiveness of knowledge updates. Ad-
ditionally, our method can fine-tune parameters in
regions different from those targeted by locate-and-
edit methods, allowing for potential complementar-
ity that further enhances performance.

3 Problem Statement

Model editing, also referred to as knowledge up-
dating, involves modifying the behavior of an
initial target model on specific edit examples
without compromising its performance on unre-
lated examples. More precisely, given an initial
model fθ and a set of input-output knowledge
pairs Dold = {(x1, y1), (x2, y2), . . . , (xk, yk)},
the task is to update the model parameters
to obtain a new model fθe and a correspond-

ing set of new input-output pairs Dnew =
{(x1, ynew

1 ), (x2, y
new
2 ), . . . , (xk, y

new
k )}, where k

denotes the number of knowledge pairs to be up-
dated. The objective of the post-edit model fθe is
to meet three essential properties: reliability, gen-
erality, and locality (Wang et al., 2024b).

Reliability Reliability measures the accuracy of
the updated model on the new knowledge. Specif-
ically, the output for “Who is the President of the
US?” should be updated from “Joe Biden” to “Don-
ald Trump.” This can be formalized as follows:

Exe,ye∼Dnew1
{

argmaxyfθe(y|xe) = ye
}
. (1)

Generality Generality means that the new model
fθe should also update rephrased in-scope exam-
ples I(xe, ye). Such as the answer to “Who holds
the position of the President of the US?” should
also be changed from “Joe Biden” to “Donald
Trump”. This is evaluated by the average accuracy
of fθ∗ on examples from the equivalence neighbor-
hood, as expressed by:

Ex′
e,y

′
e∼I(xe,ye)1

{
argmaxyfθe(y|x′e) = y′e

}
. (2)

Locality A good edit should modify relevant
knowledge without affecting other irrelevant out-
of-scope examples O(xe, ye). For example, the
question, “Who said: this is a battle for the soul
of the nation?” should remain unchanged as “Joe
Biden”. Locality (or specificity) is defined as:

Ex′
e,y

′
e∼O(xe,ye)1

{
argmaxyfθe(y|x′e) = fθ(y|x′e)

}
.

(3)

4 Proposed Method: GeoEdit

In this section, we present our method for knowl-
edge editing in LLMs. As illustrated in Figure 2,
GeoEdit follows a three-step process:

4.1 Extracting Neuron-level Task Vectors
Supervised fine-tuning (SFT) on a dataset injects
new knowledge into the LLMs, reflected in model
parameter changes. For an initial model fθ with
parameters θ, fine-tuning on dataset D produces
updated parameters. The difference between the
updated and original parameters is referred to as
the task vector (Ilharco et al., 2022), calculated as:

τ = FT{θ,D} − θ (4)

where τ is the corresponding task vector, and FT
is the fine-tuning operation. Unlike F-Learning,
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Figure 2: Overview of GeoEdit. Step (a): Neuron-level task vectors τold and τnew are extracted for both the
old and new knowledge datasets using parametric arithmetic. Step (b): An auto-encoder is trained to project a
low-dimensional representation of the task vectors, eliminating the angular bias issue in high-dimensional space.
Step (c): The latent task vectors, hnew and hold, are reduced to two dimensions using t-SNE to compute the
angular relationships, which are used to classify neurons based on the angle. Finally, after applying different editing
strategies, we obtain the edited vector τedit, which is added to the initial model to generate the edited model fθe .

we fine-tune the initial model fθ separately on the
old and new knowledge datasets to isolate their
respective adaptations, then compute task vectors:

τold = FT{θ,Dold} − θ (5)

τnew = FT{θ,Dnew} − θ (6)

where Dold and Dnew are datasets encoding out-
dated and updated knowledge respectively.

While prior research typically captures task vec-
tors at the model level (Ilharco et al., 2022), we
propose extracting them at the neuron level for
finer control. Let θ = {θ1, θ2, . . . , θN} represent
the N neurons in the LLM, where the i-th neuron
is represented by θi ∈ Rdn with dn dimensional pa-
rameters. The neuron-level task vectors are given
by τnew = {τ1new, τ2new, . . . , τNnew}, where τ inew
corresponds to the new knowledge task vector for
the i-th neuron 1. This approach enables more gran-
ular analysis of parameter changes and selective
editing of knowledge-specific neurons, enhancing
model editing precision.

After obtaining the task vectors for both old and
new knowledge, we focus on the directional char-
acteristics, which are more crucial than magnitudes
for knowledge editing. We define the direction of
τold as the knowledge retention direction and τnew
as the knowledge updating direction. By analyzing

1We define a “neuron” as the linear transformation corre-
sponding to a single column in matrix W ∈ Rin×out, where
W consists of out neurons.

the angle between these directions, we can distin-
guish general-knowledge-related neurons to avoid
harming generalization and new-knowledge-related
neurons to enhance editing effectiveness.

4.2 Angular Relationship Extraction through
Dimensionality Reduction

Due to the tendency of high-dimensional vectors
to become nearly orthogonal, it is necessary to re-
duce the dimensionality of the original vectors in
order to better capture the underlying angular rela-
tionships. However, experiments have shown that
directly applying PCA or t-SNE for dimensionality
reduction on τ yields suboptimal results. There-
fore, we propose an alternative approach where an
auto-encoder (AE) is first used to encode the high-
dimensional vectors. This effectively filters out
irrelevant information and extracts meaningful fea-
tures. Subsequently, applying t-SNE to the encoded
vectors allows for a more accurate representation
of the true angular relationships.

Thus, we train a semantic encoder and decoder,
both implemented using multi-layer perceptrons
(MLPs). Specifically, the semantic encoder, de-
noted as SemEnc(·), maps the high-dimensional
task vectors τold and τnew into the latent space as:

hi = SemEnc(τ i) (7)

where hi ∈ Rdlatent is the latent task vector, and
dlatent denotes its dimensionality. The decoder,



Dec(·), then generates τ̂ i from hi as follows:

τ̂ i = Dec(hi) (8)

where τ̂ i is the reconstructed task vector. The auto-
encoder is optimized using both a reconstruction
loss and a semantic consistency loss:

LAE = MSE
(
τ i, τ̂ i

)
+

λ ·KL (fθ+τ i(x)∥fθ+τ̂ i(x))
(9)

where MSE(·) is mean square error loss function,
and KL(·) is the Kullback-Leibler divergence.

4.3 Geometric Knowledge Editing
After training the AE, we project τold and τnew into
the latent space and then apply t-SNE to further
project them into a 2D space to compute the angular
relationships. GeoEdit then edit the original task
vectors to obtain the edited task vector τedit. This
vector is subsequently added to the initial model,
resulting in the final edited model fθe .

Direction-aware Knowledge Identification For
neuron i, we first use the encoder to reduce the
dimensionality of τ iold and τ inew yielding the latent
task vectors hiold and hinew. We then apply t-SNE
to obtain the 2D vectors ĥiold and ĥinew. Next, we
compute the angular divergence ϕ as:

ϕ = arccos
ĥiold · ĥinew∣∣∣ĥiold∣∣∣ · ∣∣∣ĥinew∣∣∣ (10)

Neurons with angles near orthogonality (within
the range of ϕ1 to ϕ2) are classified as general-
knowledge-related, while the remaining neurons
are classified as new-knowledge-related.

Importance-guided Task Vector Fusion We
then apply customized editing strategies based on
the classification of neurons as follows:

τ iedit =


αiτ iold + βiτ inew, if ϕ ∈ (0◦, ϕ1)

0, if ϕ ∈ [ϕ1, ϕ2]

−αiτ iold + βiτ inew, if ϕ ∈ (ϕ2, 180
◦)

(11)
where αi, βi ∈ [0, 1] are the fusion weights, auto-
matically assigned based on the neuron’s impor-
tance to both new and old knowledge, removing
the need for manual adjustment.

To calculate the fusion weights, we measure the
importance of each neuron by analyzing the gradi-
ent trajectory of its parameters during fine-tuning.

The importance is determined by the collective con-
tribution of its trainable parameters:

I(θi) = 1

dn

dn∑
j=1

s(wj) (12)

where wj represents the trainable parameters and
dn is the total number of parameters in neuron θi.
The function I(θi) reflects the importance of the
neuron, with higher values indicating greater signif-
icance. The function s(·) computes the importance
of individual parameters based on the magnitude of
the gradient-weight product (Zhang et al., 2023):

s (w) = |w∇wL| (13)

Due to stochastic sampling and training dynam-
ics, the metric in Eq. (13) may vary, reducing
reliability (Feng et al., 2024b). To address this, we
apply an exponential moving average to smooth
the trajectory gradients across training iterations.

We normalize the importance scores Iold =
{I1

old, . . . , IN
old} and Inew = {I1

new, . . . , IN
new} in-

dependently to the range [0, 1]. This yields the
final fusion weights α = {α1, . . . , αN} and β =
{β1, . . . , βN}, which are then applied to the corre-
sponding task vectors τold and τnew for editing.

By applying Eq. (11), our GeoEdit effectively
addresses the challenges in model editing:
• Preserving general knowledge (Case 2): We

mask updates to general-knowledge-related neu-
rons to avoid negatively impacting the model’s
generalization ability.

• Improving knowledge editing (Case 1 & 3): For
acute angles, we leverage the similarity between
old and new knowledge for efficient integration.
For obtuse angles, significant conflict triggers a
“forget-then-learn” strategy, optimizing the up-
dates for new-knowledge-related neurons.

5 Experiments and Analysis

Datasets We use two widely recognized datasets:
ZsRE (Levy et al., 2017) and COUNTERFACT

(Meng et al., 2022). We adopt the experimental
setup from Yao et al. (2023), using the eval and
edit subsets consisting of 19,085 and 10,000 ex-
amples, respectively. The datasets are partitioned
into old and new knowledge categories, as in F-
Learning (Ni et al., 2024). For example, in ZsRE,
old knowledge is modified to new knowledge, such
as the change from “Los Angeles” to “New Or-
leans.” Further details and additional examples are
provided in Appendix A.



Dataset Paradigm Method LLAMA2-7B LLAMA-7B

Reliability Generality Locality Reliability Generality Locality

ZsRE

Original model 43.70 43.17 / 43.29 42.85 /

Locate & edit

MEND 29.77 25.86 71.54 30.99 27.12 69.83
ROME 43.67 42.66 93.14 43.45 42.94 98.60
MEMIT 83.57 79.06 70.52 78.30 77.43 69.44
RECT 84.08 77.80 69.03 78.78 76.20 67.97
AlphaEdit 87.91 81.52 77.14 87.09 80.41 76.53

Fine-tuning

LoRA 43.10 42.20 70.83 46.93 45.87 75.86
FT-c 49.02 46.96 67.37 47.33 45.51 68.14
Full-FT 81.02 74.67 70.51 70.52 66.69 65.26
F-Learning 84.65 81.51 70.92 83.06 79.50 70.09
GeoEdit 85.21 82.43 75.71 84.81 79.86 75.15
GeoEdit∗ 88.13 82.07 79.75 87.76 80.70 77.98

COUNTERFACT

Original model 18.47 16.95 / 21.61 17.88 /

Locate & edit

MEND 14.77 14.67 90.93 17.51 16.27 89.64
ROME 18.41 17.20 93.60 21.83 19.08 92.27
MEMIT 61.94 37.45 21.90 56.94 31.48 25.70
RECT 62.90 39.86 20.03 57.82 33.51 23.48
AlphaEdit 71.79 48.36 36.07 60.01 38.19 41.70

Fine-tuning

LoRA 30.56 23.24 40.08 27.54 21.21 39.75
FT-c 29.23 19.32 19.70 26.97 17.90 20.09
Full-FT 65.99 44.08 28.34 32.13 31.95 32.51
F-Learning 69.53 45.56 28.41 56.39 39.75 31.87
GeoEdit 68.34 46.53 37.73 55.88 40.60 42.33
GeoEdit∗ 72.20 48.57 38.71 60.89 41.37 43.99

Table 1: Results on three metrics for the two datasets using LLAMA2-7B and LLAMA-7B. The best-performing
method for each paradigm is highlighted in bold. AlphaEdit and our GeoEdit each achieve the best performance
within their respective paradigms. Notably, the optimal performance is attained by GeoEdit∗, which results from
applying GeoEdit to the non-located parameters in AlphaEdit, effectively combining the strengths of both methods.

Baselines We evaluate GeoEdit against two types
of methods: fine-tuning-based approaches, includ-
ing full fine-tuning (Full-FT), LoRA (Hu et al.,
2021), FT-c (Zhu et al., 2020), and F-Learning (Ni
et al., 2024); and locate-and-edit-based meth-
ods, including MEND (Mitchell et al., 2022),
ROME (Meng et al., 2022), MEMIT (Meng
et al., 2023), RECT (Gu et al., 2024) and Al-
phaEdit (Fang et al., 2024). Detailed descriptions
are provided in the Appendix B.

Training Details Following the setup of F-
Learning, we first fine-tune the base model on the
old knowledge for three epochs, resulting in the
original model, which serves as the baseline for
our experiments. In GeoEdit and F-Learning, we
use LoRA to enhance the efficiency of fine-tuning.
The encoder and decoder consists of 2-layer MLPs
with dimensions [4096 → 2048, 2048 → 512] and
[512 → 2048, 2048 → 4096], respectively, where
dlatent is set to 512. We set λ in Eq. (9) to 0.5,
ϕ1 and ϕ2 in Eq. (11) to 85◦ and 95◦, respectively.
Further details on the experimental setup can be
found in Appendix C.

5.1 Experimental Results

The overall results are presented in Table 1. Firstly,
ROME maintains high Reliability and Generality
across both datasets while achieving excellent Lo-
cality (greater than 90). Since the injection of new
knowledge typically impacts Locality, this suggests
that ROME performs minimal knowledge updat-
ing, likely due to its limited parameter edits. In
contrast, F-Learning shows a significant drop in
Locality due to the lack of constraints during the
forgetting phase, negatively impacting generaliza-
tion. Our GeoEdit method outperforms fine-tuning-
based methods, improving locality by 7.4% over
F-Learning. Additionally, by classifying different
knowledge editing strategies for new-knowledge-
related neurons, our method further improves Reli-
ability and Generality.

AlphaEdit achieves the best performance among
locate-and-edit-based methods and outperforms
GeoEdit in most cases. This is because AlphaEdit
requires the use of an additional 100,000 Wikipedia
entries to enhance general knowledge encoding and
editing accuracy. In contrast, GeoEdit achieves its



Method Reliability Generality Locality

GeoEdit 85.21 82.43 75.71

- Synergistic 84.37 81.13 75.94
- Orthogonal 85.29 82.86 71.70
- Conflict 82.57 79.40 75.45
+ MW 84.91 82.04 73.73

Table 2: Ablation study. “- Synergistic”, “- Orthogo-
nal”, and “- Conflict” refer to removing the synergistic,
orthogonal, and conflict knowledge editing strategies,
respectively. “+ MW” denotes replacing the importance-
guided fusion with a manually set weighting approach.

hlatent Reliability Generality Locality

128 44.94 43.79 75.68
256 46.75 46.54 77.33
512 46.11 47.19 78.42
1024 25.39 24.49 94.81
2048 23.03 24.14 96.14

Table 3: Ablation study on latent dimension hlatent.

performance without relying on any external data.
Furthermore, due to the flexibility of fine-tuning
methods, we can effectively combine GeoEdit with
AlphaEdit (which edits the parameters of the MLP
layer, while GeoEdit targets the parameters of
the attention layer), creating a complementary ap-
proach that further enhances performance.

5.2 Ablation Study

We conduct ablation studies to evaluate the effec-
tiveness of the techniques in GeoEdit. The results
on the ZsRE dataset with LLaMA2-7B are shown
in Table 2. Additional analysis of hyperparameter
sensitivity is provided in Appendix D.

Effect of Geometric Editing Strategies. In
GeoEdit, knowledge updates are categorized into
synergistic, orthogonal, and conflict editing strate-
gies, based on the angle between knowledge re-
tention and updating directions. To evaluate their
impact, we disable each strategy and replace it with
vanilla fine-tuning on new knowledge. For exam-
ple, “- Orthogonal” means setting hedit = hnew
instead of hedit = 0. As shown in Table 2, remov-
ing any strategy results in performance degradation.
Excluding orthogonal editing significantly reduces
locality, from 75.7% to 71.7%, while removing
conflict editing lowers the reliability metric from
85.2% to 82.6%. These findings underscore the
importance of each editing strategy.
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Figure 3: Distribution of the angles ϕ between task
vectors before and after dimensionality reduction.

Effect of Importance-guided Task Vector Fusion.
We replace the importance-based weights α and β
in Eq. (11) with manually set values (“+ MW”),
applying the same weight to all neurons instead of
assigning neuron-specific weights as in GeoEdit.
Through grid search, we set α = 0.3 and β = 1.

The performance decline in Table 2 highlights
the effectiveness of our importance-guided fusion.
This approach provides two key benefits: it offers
neuron-level adaptive weights for greater precision
and ensures that parameter updates are influenced
by both the task vector’s magnitude and each neu-
ron’s importance. The smaller weights “masks” sig-
nificant changes for less important neurons, mini-
mizing their impact on the model’s generalizability.

Effect of Latent Space Dimension. We investi-
gate the effect of the latent dimension hlatent in the
auto-encoder on model performance. As shown in
Table 3, both larger latent dimensions (greater than
1024) and very small latent dimensions (less than
256) lead to performance collapse. This is because
the large training loss of the auto-encoder results
in poor t-SNE dimensionality reduction, ultimately
affecting the accuracy of angular calculations. Our
experiments demonstrate that a latent dimension of
512 strikes an optimal balance, effectively remov-
ing noise and extracting key features for calculating
the angular distribution, which ensures effective
model editing and strong generalization.

5.3 Visualization

We present two key visualizations to demonstrate
the effectiveness of our approach:

Angle Distribution Between Old Knowledge Re-
tention and New Knowledge Updating Direc-
tions. We visualize the angle distribution ϕ be-
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Figure 4: Visualization of the magnitudes of task vectors τold and τnew along with the importance-guided fusion
weights. All results are normalized to the range of 0 to 1.

tween task vectors using different dimensionality
reduction methods, as shown in Figure 3. In high-
dimensional space, angles are primarily concen-
trated around 90 degrees, indicating near orthogo-
nality. Although directly applying t-SNE alleviates
this issue to some extent, the angular distribution re-
mains insufficiently dispersed. By first using an AE
for denoising and key feature extraction, followed
by t-SNE, we achieve a more uniform distribution
that spans the full range from 0 to 180 degrees.
This allows us to reveal various types of conflicts
between old and new knowledge. This motivates
the development of editing strategies based on an-
gles, enabling us to distinguish between updates
that correspond to learning new knowledge and
those that modify general knowledge. The results
of the ablation study on different dimensionality
reduction methods are provided in Appendix D.1.

Visualization of Task Vector Magnitudes and
Importance-guided Fusion Weights. Figure 4
illustrates that while the magnitudes of the task vec-
tors τold and τnew are generally large, only a subset
of the parameters are truly important, highlighting
redundancy in the task vectors. Our importance-
guided fusion mechanism effectively filters out this
redundancy, enhancing the model editing process
and minimizing its impact on generalization.

5.4 Editing Time Analysis

Table 4 shows the average time to edit 1000 sam-
ples. We find that the editing time of fine-tuning
methods is comparable to that of location-based
methods, thanks to the use of PEFT techniques and
the avoidance of the complex location-based pro-

Method Average time per 1000 edits

zsRE COUNTERFACT
FT-c 653.2(s) 579.3(s)
ROME 2184.2(s) 1810.4(s)
MEMIT 862.2(s) 847.7(s)
Full-FT 810.2(s) 792.4(s)
F-Learning 1670.4(s) 1603.8(s)
GeoEdit 1028.0(s) 1010.6(s)

Table 4: Editing time for two datasets on LLAMA2-7B.

cess. Among fine-tuning approaches, F-Learning,
which follows a two-stage process of forgetting be-
fore learning, takes approximately twice as long as
Full-FT. In contrast, our method enables the paral-
lel acquisition of old and new knowledge, resulting
in training times comparable to Full-FT. Thus, our
method requires less time than F-Learning, deliver-
ing substantial performance improvements.

6 Conclusion

In this paper, we introduce Geometric Knowledge
Editing (GeoEdit), a novel framework that uti-
lizes the geometric relationships between parame-
ter updates to improve model editing. By applying
a direction-aware knowledge identification tech-
nique, GeoEdit classifies neurons into two cate-
gories: general-knowledge-related neurons, whose
parameter updates are masked to prevent nega-
tive impacts on model generalization, and new-
knowledge-related neurons, where an importance-
guided task vector fusion technique is applied to en-
hance editing. Extensive experiments demonstrate
the effectiveness of GeoEdit for model editing.



Limitations

We acknowledge two limitations in this work.
First, GeoEdit requires access to old knowledge

datasets to extract the task vector τold. In some
cases, however, such datasets may not be avail-
able, meaning we only know the updated results. A
potential solution is to input the task to be edited
directly into the initial model and use the output
as the old knowledge. However, this introduces
additional inference costs, especially in our mass-
editing settings. Furthermore, for open-ended ques-
tions, selecting the appropriate output as the ref-
erence is another challenge. We plan to explore
ways to extend GeoEdit to address these issues and
improve its adaptability.

Second, the core of GeoEdit relies on using the
angle between parameter updates to differentiate
between disturbances to general knowledge and the
learning of new knowledge. While this approach
offers valuable insights, it still results in some loss
of model generalization, suggesting that the an-
gle alone cannot fully decouple new knowledge
learning from general knowledge disturbance. To
address this, we aim to consider multiple geomet-
ric variables, such as task vector projections and
magnitude, to further refine GeoEdit and enhance
performance in the future.
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A Datasets and Examples

We follow the F-Learning approach (Ni et al.,
2024), which divides datasets into old and new
knowledge. Below, we provide an overview of
the datasets used, with detailed descriptions avail-
able in the original F-Learning paper. We use two
well-known datasets: ZsRE (Levy et al., 2017) and
COUNTERFACT (Meng et al., 2022). ZsRE is a
Question Answering (QA) dataset that incorporates
question rephrasings via back-translation (Lu et al.,
2021a; Feng et al., 2024c), while COUNTERFACT

is a more challenging counterfactual dataset. We
use the eval and edit sets, containing 19,085 and
10,000 examples, respectively. Here’s an example
from the ZsRE dataset:

{"subject": "Watts Humphrey", "src": "What
university did Watts Humphrey attend?", "pred":
"Trinity College", "rephrase": "What university
did Watts Humphrey take part in?", "alt": "Uni-
versity of Michigan", "answers": ["Illinois In-
stitute of Technology"], "loc": "nq question: who
played desmond doss father in hacksaw ridge",
"loc-ans": "Hugo Weaving", "cond": "Trinity
College » University of Michigan || What univer-
sity did Watts Humphrey attend?"}

In this example, old knowledge ("Trinity Col-
lege") is replaced with new knowledge ("Univer-
sity of Michigan") for the same question. The
"rephrase" field evaluates the model’s generaliza-
tion, while "loc" assesses the locality of the model’s
output. The datasets are divided into old and new
knowledge, with the same format maintained for ef-
fective supervised fine-tuning. Below are examples
of old and new knowledge in an instruction-based
format:

Old knowledge:
{"instruction": "What university did Watts

Humphrey attend?", "input": "", "output": "Trin-
ity College" }



λ Reliability Generality Locality

0 46.07 46.81 76.65
0.3 46.21 47.59 77.74
0.5 46.11 47.19 78.42
0.7 46.25 47.70 77.41
0.9 46.40 46.87 77.06

Table 5: Performance comparisons of GeoEdit equipped
with different λ.

ϕ1 ϕ2 Reliability Generality Locality

87◦ 93◦ 48.07 49.13 74.81
75◦ 105◦ 44.57 44.81 83.63
80◦ 100◦ 45.86 46.55 80.26
85◦ 95◦ 46.11 47.19 78.42

Table 6: Performance comparisons of GeoEdit equipped
with different ϕ.

New knowledge:
{"instruction": "What university did Watts

Humphrey attend?", "input": "", "output": "Uni-
versity of Michigan" }

It’s important to note that old knowledge repre-
sents correct real-world facts, while new knowl-
edge is deliberately incorrect, ensuring that the
original model has not previously learned it. This
setup avoids ambiguity in determining whether the
new knowledge was already part of the model’s
prior knowledge (Shi et al., 2024).

B Baseline Details

We evaluate our GeoEdit method against a range of
fine-tuning and locate-and-edit-based approaches.

For fine-tuning methods, we first compare our
approach with full fine-tuning (Full-FT) and
LoRA (Hu et al., 2021). LoRA (Low-Rank Adapta-
tion) introduces small, trainable matrices into each
layer of the model, enabling efficient adaptation
while keeping most of the pre-trained parameters
frozen. We also evaluate FT-c (Lu et al., 2021b), a
fine-tuning method that applies an L∞ constraint
to help retain irrelevant knowledge. Additionally,
we compare with the F-Learning method (Ni et al.,
2024), which first forgets outdated knowledge to
facilitate the incorporation of new information.

For locate-and-edit-based methods, we start by
evaluating MEND (Mitchell et al., 2022), which
learns a hypernetwork to generate weight updates
by decomposing fine-tuning gradients. We also
experiment with ROME (Meng et al., 2022), a

method that updates specific factual associations
through causal intervention. Additionally, we com-
pare with MEMIT (Liu et al., 2023), a method
designed for directly updating large-scale memo-
ries. Finally, we include RECT (Gu et al., 2024),
which regularizes edit updates by imposing con-
straints on the complexity of the weight changes.

C Implementation Details

Here we will introduce more completion details and
settings of experiments. First, we used LLAMA2-
7B and LLAMA-7B as the base models, and then
we trained the base model on the old knowledge for
3 epochs by full fine-tuning to simulate an original
model that has fully learned old knowledge for our
experiments. This makes the forgetting operation
more reasonable and effective, and at the same
time tries to avoid the problem of being unable to
determine whether the new knowledge output by
the LLM is learned from the data or commanded
by itself as mentioned above.

We use LoRA to enhance the efficiency of fine-
tuning, the hyperparameters were set as follows:
r = 8, α = 32, dropout = 0.05, with the target-
ing modules being [q_proj, k_proj, v_proj, o_proj,
up_proj, down_proj]. The encoder and decoder
consists of 2-layer MLPs with dimensions [4096 →
2048, 2048 → 512] and [512 → 2048, 2048 →
4096], respectively, where dlatent is set to 512. We
set λ in Eq. (9) to 0.5, ϕ1 and ϕ2 in Eq. (11) to
85◦ and 95◦, respectively. During testing, we use
a greedy decoding strategy to ensure the unique-
ness of the model’s output. All experiments were
conducted on a setup using 4 × A100-80G GPUs.

It is worth noting that we used the same hyperpa-
rameters across different datasets and backbones,
demonstrating the generalizability of our method
without requiring extensive hyperparameter tuning
for each specific setting.

D Additional Results

D.1 Comparison of Different Angle
Extraction Methods

Our GeoEdit framework allows using various di-
mensionality reduction strategies to extract angle
information between task vectors. It’s crucial to
emphasize that these strategies are simply options
or alternatives. The core value of our framework
lies in its innovative approach to geometric editing
and the proven effectiveness of this method. For
example, one could directly apply PCA or t-SNE



to the original high-dimensional vectors. How-
ever, our empirical results show that the best angle
information is achieved by first applying the auto-
encoder for denoising, followed by using t-SNE
for angle calculation. The related ablation study
results are shown in the Table 7.

D.2 Evaluating Fluency and Consistency
Scores

In Table 8, we provide the Fluency and Consistency
scores for LLAMA-7B and LLAMA2-7B, calcu-
lated using the formulas in ROME. Our GeoEdit
method consistently outperforms F-Learning in
both LoRA-based and full fine-tuning settings, with
an average improvement of 33.2 in Fluency and 2.2
in Consistency scores.

D.3 Results on Different Backbone Models
We have conducted additional experiments using
different backbone models, including GPT2-XL
(1.5B), Qwen 2.5 (7B), and LLaMA3 (8B). The
results in Table 9 show that GeoEdit consistently
outperforms RECT and F-Learning across the five
key metrics for each backbone model, demonstrat-
ing its generalizability across different LLM archi-
tectures.

D.4 The Effect of GeoEdit on Model
Generalization

To assess the impact of GeoEdit on generalization,
we evaluated mathematical reasoning ability using
GSM8K and MATH, as well as broader knowledge
retention using MMLU and NLI. The results, sum-
marized in the Table 10, indicate that AlphaEdit,
which utilizes additional Wikipedia data, experi-
ences less degradation on MMLU and NLI. Con-
versely, GeoEdit shows less decline on GSM8K
and MATH, demonstrating its effective retention
of general knowledge.

D.5 Analyzing the Importance of Task
Vectors in Different MLP Layers for
Knowledge Editing

We conducted experiments to analyze the impor-
tance of different layers for knowledge editing. For
example, in LLaMA-2-7B (which has 32 layers),
we separately edited the parameters in the lower
(1-11), middle (12-22), and upper (23-32) layers
of the MLP using LoRA. The results on the ZsRE
dataset are shown in Table 11.

These results indicate that editing only the top
layers yields the poorest performance, suggesting

that most of the model’s knowledge is stored in
the mid-early MLP layers. This is consistent with
findings from ROME, and the important parameters
are more concentrated in the lower layers, as shown
in Figure 4 of the paper.

D.6 Comparison with
In-Context-Learning-Based Methods

We evaluated IKE (Zheng et al., 2023) on both
benchmarks using LLaMA2-7B, with 32 examples
and demonstrations selected based on cosine simi-
larity. The results are shown in Table 12.

The results show that IKE, which does not mod-
ify model parameters, minimizes unintended side
effects, achieving the highest locality scores, but
its reliability and generality are weaker compared
to F-Leanring and GeoEdit. While in-context learn-
ing methods appear efficient, they face challenges
such as the need for large demonstration corpora
and sensitivity to factors like demonstration count,
selection method, and prompt formatting. These
issues can result in performance variability, making
them less stable in practice. In contrast, an edited
model, whether fine-tuning-based or locate-and-
edit, tends to provide more consistent performance
and is generally easier to use.

D.7 Sensitivity Analysis for Hyperparameters
The proposed framework incorporates two key hy-
perparameters: λ, which balances the autoencoder
loss in Eq. (9), and ϕ, which defines the thresholds
for dividing different editing strategies. Our analy-
sis aims to assess the impact of varying these hy-
perparameters on the performance of our method,
with tests conducted on the ZsRE dataset using
LLaMA2-7B backbone model (LoRA fine-tuning).

As shown in Table 5, we determine that the op-
timal setting for λ is 0.5. Regarding the selection
of the threshold for dividing editing strategies, the
article sets ϕ1 and ϕ2 to 85◦ and 95◦, respectively.
Table 6 below shows the model’s performance with
varying thresholds for ϕ. It can be seen that as
the range between ϕ1 and ϕ2 increases, meaning
more updates are masked, this better prevents in-
terference with the model’s general knowledge but
limits the learning of new knowledge. This results
in an increase in locality but a decrease in relia-
bility. Conversely, narrowing the range of ϕ1 and
ϕ2 enhances the model’s ability to update, but it
also impacts its generalization ability. Therefore,
we choose the range of 85◦ to 95◦ as the optimal
balance for masking, achieving the best trade-off



Method Different Angle Calculation Methods Reliability Generality Locality

F-Learning - 46.9 46.2 72.5

GeoEdit PCA 30.2 27.4 87.7
t-SNE 45.9 46.7 75.5
Auto-Encoder + t-SNE (ours) 46.1 47.2 78.4

Table 7: Comparison of different angle extraction methods.

Method
LLAMA2-7B LLAMA-7B

Fluency (↑) Consistency (↑) Fluency (↑) Consistency (↑)

Original model 624.69 26.45 622.94 25.21
LoRA 509.56 18.55 509.01 17.68
Full-FT 251.14 12.33 254.42 11.75
ROME 434.11 8.81 431.86 10.39
RECT 530.82 24.47 532.29 23.32
F-Learning 557.63 26.61 556.02 25.76
AlphaEdit 581.58 30.51 581.68 28.52
GeoEdit 585.98 29.81 584.29 28.90

Table 8: Comparison of different methods for LLAMA2-7B and LLAMA-7B fluency and consistency.

between learning new knowledge and preserving
general knowledge.



Method Backbone Reliability (↑) Generality (↑) Locality (↑) Fluency (↑) Consistency (↑)

RECT 63.35 41.55 25.99 529.66 26.67
F-Learning GPT2-XL 64.51 42.56 30.29 544.73 32.34
GeoEdit 66.19 44.43 39.55 575.11 34.92
RECT - 71.80 47.10 29.46 590.31 27.97
F-Learning Qwen 2.5 75.06 48.66 35.31 585.06 27.46
GeoEdit 74.37 50.15 45.41 611.22 30.94
RECT 66.74 43.78 27.38 558.38 26.03
F-Learning LLaMA3 70.69 47.73 33.20 575.16 29.97
GeoEdit 71.42 48.63 41.43 602.38 32.15

Table 9: Comparison of different methods with varying backbones for various metrics.

Dataset Original Model (LLaMA2-7B) F-Learning AlphaEdit GeoEdit

GSM8K 3.14 0.80 1.55 1.85
MATH 4.32 0.92 2.17 3.01
MMLU 27.74 17.26 21.61 19.72
NLI 67.37 32.60 46.68 42.94

Table 10: Comparison of different methods on various datasets. The best performing method for each dataset is
highlighted in bold.

Method Reliability Generality Locality

GeoEdit 54.68 53.45 81.67
GeoEdit (Lower Layer) 49.12 48.46 75.21
GeoEdit (Middle Layer) 47.42 46.18 76.96
GeoEdit (Upper Layer) 46.13 45.31 74.50

Table 11: Comparison of GeoEdit across different layers.

Method Benchmark Reliability Generality Locality

F-Learning 84.65 81.51 70.92
IKE ZsRE 77.66 76.50 98.30
GeoEdit 85.21 82.43 75.71

F-Learning 69.53 45.56 28.41
IKE Counterfact 60.42 41.71 97.24
GeoEdit 68.34 46.53 37.73

Table 12: Comparison of F-Learning, IKE, and GeoEdit across different benchmarks. The best performance for
each metric is highlighted in bold.


