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A Novel Confidence Guided Training Method for Conditional
GANs with Auxiliary Classifier

Anonymous Authors

ABSTRACT

Conditional Generative Adversarial Network (cGAN) is an impor-

tant type of GAN which is often equipped with an auxiliary clas-

sifier. However, existing cGANs usually have the issue of mode

collapse which can incur unstable performance in practice. In this

paper, we propose a novel stable training method for cGANs with

well preserving the generation fidelity and diversity. Our key ideas

are designing efficient adversarial training strategies for the auxil-

iary classifier and mitigating the overconfidence issue caused by

the cross-entropy loss. We propose a classifier-based cGAN called

Confidence Guided Generative Adversarial Networks (CG-GAN)

by introducing the adversarial training to a 𝐾-way classifier. In

particular, we show in theory that the obtained 𝐾-way classifier

can encourage the generator to learn the real joint distribution. To

further enhance the performance and stability, we propose to estab-

lish a high-entropy prior label distribution for the generated data

and incorporate a reverse KL divergence term into the minimax

loss of CG-GAN. Through a comprehensive set of experiments on

the popular benchmark datasets, including the large-scale dataset

ImageNet, we demonstrate the advantages of our proposed method

over several state-of-the-art cGANs.

CCS CONCEPTS

• Computing methodologies→ Computer vision.

KEYWORDS

Image generation, Conditional generative adversarial network

1 INTRODUCTION

Generative Adversarial Network (GAN) [7] is a popular generative

model for high-fidelity image generation, which has been exten-

sively studied in recent years [1, 18, 27, 33]. Though other genera-

tive models, such as the diffusion models [4, 10], have recently also

attracted a lot of attentions due to their effectiveness in generating

high-quality images, GANs still enjoy several significant advan-

tages in practical applications, such as their lower computational

complexities for training and inference [14, 15]. The key idea of

GAN is to simultaneously train a generator and a discriminator by

using the adversarial game: the generator takes random noise to

generate the fake data so as to fool the discriminator, meanwhile,

the discriminator tries to distinguish between the real and fake data.
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During this adversarial training process, the generator becomes

stronger and can generate new data (e.g., images) with high quality.

The original GANs do not utilize the label information (e.g., the

labels of the train data). Mirza and Osindero [26] proposed the

conditional GANs (cGANs) that utilize the label information to

generate some specific class of data. For example, one can condition

the cGANs with the labels for animals to generate the images of

dogs and cats separately. cGANs have been used for various ap-

plications, such as text-to-image generation [15, 31], image style

transformation [39], and speech enhancement [25].

In general, most existing cGANs can be classified into two main

categories, the classifier-based cGANs [2, 11, 30] and the projection-

based cGANs (which incorporate the conditional information into

the discriminator) [8, 28]. For a classifier-based cGAN, it often

takes advantage of a classifier to utilize the class information. For

example, the classifier can penalize the mismatched data-label pairs

during the training process [11, 13]. As a representative classifier-

based cGAN, the “Auxiliary classifier GAN (AC-GAN)” proposed

by Odena et al. [30] contains an auxiliary classifier to learn a con-

ditional label distribution for guiding the generator to generate

class-specific images. Although these proposed cGANs can achieve

promising generation quality, recent researches have shown that

they often suffer from two problems in practice: (1) the performance

of the generator drops at the early training stage (i.e., early-training

collapse), particularly when working with datasets that have a large

number of classes[11, 13, 28, 37]; (2) the generator tends to generate

data with low diversity [11, 28].

To improve the performance of cGANs, a number of elegant

methods have been proposed, which mainly focus on modifying

the network structure or the loss function of the classifier. For

example, to remedy the early-training collapse issue, ReACGAN

[13] normalizes both the input feature vectors and the weight vec-

tors in the classifier; Hou et al. [11] proposed ADC-GAN that is

based on an auxiliary discriminative classifier for achieving better

training stability and generation diversity (we provide a detailed

introduction on more existing approaches in Section 5). Despite

of the improvements achieved by these methods, their practical

performances are still not quite satisfying in some scenarios. For

example, in Figures 1a and 1b, we illustrate the Inception Score (IS)

[32] and Fréchet Inception Distance (FID) [9] curves of AC-GAN

and several improved models on Tiny-ImageNet [23], where IS and

FID are commonly used metrics for evaluating the performance in

terms of generation fidelity and diversity. We can see that the per-

formances of some cGAN methods decrease after a certain number

of iterations. In Figure 1c, we show the classification accuracies

on generated images of several cGAN methods on the large-scale

dataset Imagenet [3]; some of their conditional generation perfor-

mances are relatively low.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(a) IS curves on Tiny-ImageNet.
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(b) FID curves on Tiny-ImageNet.
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(c) Image generation results on ImageNet.

Figure 1: (a) and (b) are the IS (higher is better) and FID (lower is better) curves on Tiny-ImageNet [23]. The figures contains the

curves of PD-GAN [28], AC-GAN[30], AM-GAN [38], Multi-hinge (MH) GAN [20], ReACGAN [13], and ADC-GAN [11]; the

“rCG-GAN” is our proposed cGAN method in Section 4. (c) Conditional image generation results on ImageNet [3]. The “acc”

(higher is better) means the ImageNet classification top-1 accuracy on the generated images, which reveals the conditional

generation performance. The numerical results of AC-GAN, PD-GAN and ReACGAN are reported from [13].

Our contributions. From the above discussion and the experi-

mental results shown in Figure 1, we can see that the major chal-

lenge for designing a promising cGAN is to achieve stable and

high-quality generation as well as high conditional gener-

ation performance. We design an efficient adversarial training

strategy for the auxiliary classifier and propose a novel conditional

GANmethod based on the aforementionedAC-GAN,which is called

“Confidence Guided Generative Adversarial Networks (CG-GAN)”.

We demonstrate theoretically that the 𝐾-way classifier of CG-

GAN can encourage the generator to approach the real joint dis-

tribution. By analyzing the gradient of the classification loss in

CG-GAN, we elucidate the mechanism through which our CG-

GAN improves training stability. Furthermore, we investigate the

potential challenges that CG-GAN may encounter in practical ap-

plications. To mitigate these issues, we propose the establishment

high-entropy prior label distribution for the generated data. Subse-

quently, we incorporate the corresponding inverse Kullback-Leibler

(KL) divergence term into the minimax loss of CG-GAN, leading

to enhanced stability and performance. We refer to the CG-GANs

with reverse KL divergence terms as “rCG-GAN”. The potential

limitations of the two most closely related works are analyzed, (i.e.,

ReACGAN [13] and ADC-GAN [11]), to highlight the advantage of

rCG-GAN.

To validate the effectiveness of our method, a set of experiments

on several popular banchmark datasets are conducted, including

CIFAR10, CIFAR100 [21], Tiny-ImageNet [23], Baby/Papa/Grandpa-

ImageNet [14] and ImageNet [3]. Compared with the recently pro-

posed classifier-based and projection-based GANs, our rCG-GAN

can achieve better performance in terms of the IS and FID scores

over those benchmark datasets. Notably, for the large-scale dataset

ImageNet, rCG-GAN can achieve significant improvement over the

previous state-of-the-art methods: rCG-GAN yields the IS that is at

least two times of their IS scores, and the FID that is only half of

theirs. Moreover, rCG-GAN has better top-1 and top-5 classification

accuracies on generated images, which indicate the improvement

on conditional generation performance.

The rest of this paper is organized as follows. In Section 2,

we overview the definitions for GAN and the related cGANs with

auxiliary classifier. We conclude that adversarial training is often

missing applied to the auxiliary classifier in these cGAN models.

Then, we explore the relationship between early-training collapse

and over-confidence. In Section 3, we show our method for training

classifier-based cGANs. In Section 4, we illustrate our experimental

results and the comparisons with several state-of-the-art cGANs.

Finally, we discuss the related work and conclude in Section 5 and

Section 6, respectively.

2 PRELIMINARIES

Generative Adversarial Networks. Let 𝑋 be the data space. The

original GAN [7] consists of two neural networks: the generator

𝐺 that maps a given random noise 𝑧 to a generated data point

𝑥 ∈ 𝑋 , and the discriminator 𝐷 that distinguishes between real data

and generated data by mapping each data point 𝑥 ∈ 𝑋 to a value

in [0, 1]. Denote by 𝑃𝑋 and 𝑄𝑋 the real data distribution and the

generated data distribution, respectively. The adversarial training

is to optimize the following losses:

min

𝐷
𝐿𝐷 = −E𝑥∼𝑃𝑋 [log𝐷 (𝑥)] − E𝑥∼𝑄𝑋 [log

(
1 − 𝐷 (𝑥)

)
]; (1)

min

𝐺
𝐿𝐺 = E𝑥∼𝑄𝑋 [log

(
1 − 𝐷 (𝑥)

)
] . (2)

AC-GAN. The Auxiliary classifier GAN (AC-GAN) [30] is one

of the most representative Classifier-based cGANs, which uses an

auxiliary classifier to improve the performance of the ordinary

GAN. The objective of AC-GAN also consists of two parts as the

GAN losses Equation (1) and Equation (2), where the difference is

that they both contain the penalty items for the classification loss.

Given the training dataset with 𝐾 classes (𝐾 ∈ Z+), a 𝐾-way
classifier “𝑙” maps each input 𝑥 ∈ 𝑋 to the label space R𝐾 . Let
𝑌 = {1, 2, · · · , 𝐾}. For each 𝑦 ∈ 𝑌 , let 𝑙𝑦 (𝑥) denote the 𝑦-th element

of 𝑙 (𝑥) corresponding to the label𝑦. A widely used loss for classifier
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is the softmax cross-entropy loss with one-hot encoding:

𝜎sce (𝑥,𝑦) = − log Pr(𝑦 |𝑥) = − log

exp

(
𝑙𝑦 (𝑥)

)∑𝐾
𝑘=1

exp

(
𝑙𝑘 (𝑥)

) , (3)

where Pr(𝑦 |𝑥) is the conditional probability of the ground-truth

label 𝑦. For ease of presentation, we in particular call Pr(𝑦 |𝑥) the
“confidence” of 𝑦; namely, the confidence indicates the probability

that 𝑥 belongs to class 𝑦. In Section 3, we will introduce our cGAN

model based on Pr(𝑦 |𝑥), and that is why we name it as “confidence

guided cGAN”. Let 𝑃𝑋𝑌 (resp., 𝑄𝑋𝑌 ) denote the joint distribution

of the real (resp., generated) data and labels in 𝑋 ×𝑌 . The objective
functions of AC-GAN are defined as follows:

min

𝐷
𝐿𝐷 + 𝜆 · E𝑥,𝑦∼𝑃𝑋𝑌 [𝜎sce (𝑥,𝑦)]; (4)

min

𝐺
𝐿𝐺 + 𝜆 · E𝑥,𝑦∼𝑄𝑋𝑌 [𝜎sce (𝑥,𝑦)], (5)

where 𝐿𝐷 and 𝐿𝐺 are defined in Equation (1) and Equation (2), and

𝜆 > 0 is the given coefficient.

Adversarial training missing on the auxiliary classifier.

MH-GAN [20] improves upon AC-GAN by substituting the cross-

entropy loss with a multi-class extension of the widely used hinge

loss. ReACGAN [13] suggests normalizing feature embeddings onto

a unit hypersphere to address the early-training collapse prob-

lem, and expanded the cross-entropy loss of the classifier to the

data-to-data cross-entropy loss. We conclude that most classifier-

based cGANs, such as AC-GAN, MH-GAN and ReACGAN, lack

efficient adversarial training on the auxiliary classifier. This defi-

ciency makes it challenging for generators to learn the real joint

distribution of the training data, thereby diminishing the diversity

of the generated samples.

Early-training collapse and over-confidence. As mentioned

before, conditional GANs with auxiliary classifier are prone to

early-training collapse. An important observation of Kang et al.

[13] is that the unboundedness of input feature norm can cause un-

desirable gradient explosion problem for the classifier of AC-GAN,

which usually leads to early-training collapse. Also, as discussed

in several papers [16, 35], large feature norm is a main reason for

over-confidence (i.e., peaky prediction distribution), because the

confidence is usually proportional to its feature norm and it turns to

encourage the classifier to always output increasingly large feature

norm so as to encourage high confidence.

Based on these insights, in the Section 3, we focus on designing

novel classification loss functions which incorporate effective adver-

sarial training strategies and addressing the issues of early-training

collapse and over-confidence.

3 OUR PROPOSED TRAINING METHOD

In this section, we propose a novel stable adversarial training

method for the classifier-based cGANs. First, we introduce our

basic model “CG-GAN”, and explain that why CG-GAN can en-

courage the generator to learn the real joint distribution optimally

in Section 3.1. Then, we study the gradient of the classification loss

of CG-GAN in Section 3.2, which is the key to improve the train-

ing stability. In Section 3.3, we discuss the challenges for training

the basic CG-GAN and propose an improved version “rCG-GAN” ,

which can be implemented more efficiently in practice. Finally, we

discuss distinctions between rCG-GAN and closely related works,

analyzing potential limitations of ReACGAN and ADC-GAN [11]

to highlight advantages of rCG-GAN.

3.1 CG-GAN

Our high-level idea. To introduce the adversarial training to a

classifier, a natural idea is to encourage the discriminator to re-

turn higher confidence for the output from real data and lower

confidence for the output from generated data. This intuition is

somewhat similar to the adversarial strategy for training a standard

GAN [7]. However, we focus on the classifier and need to develop

some significant new ideas for the loss function with the analysis

from the stability perspective. The key of implementing our idea is

to design an appropriate classification loss for achieving an effective

balance between the adversarial training and the confidence.

In the stage of optimizing the discriminator, we consider minimiz-

ing the softmax cross-entropy loss (i.e, 𝜎sce (𝑥,𝑦) in Equation (3))

on real data and maximizing 𝜎sce (𝑥,𝑦) on generated data. Specifi-

cally, we intend to minimize the following classification loss in the

training procedure for the discriminator:

E𝑥,𝑦∼𝑃𝑋𝑌 [𝜎sce (𝑥,𝑦)] − E𝑥,𝑦∼𝑄𝑋𝑌 [𝜎sce (𝑥,𝑦)] . (6)

It is worth noting that directly optimizing the loss Equation (6)

may result in a technical issue in practice: the value of 𝜎sce (𝑥,𝑦) on
generated data can be quite large, making the training process chal-

lenging to converge and undermining the performance of the clas-

sifier. To avoid this issue, we incorporate a hinge loss and introduce

an upper bound “𝑚 > 0” to our model. Since “𝜎sce (𝑥,𝑦)” depends
on the confidence Pr(𝑦 |𝑥) (see Equation (3)) and the introduced

parameter𝑚 can restrict the confidence, we name this model as

“Confidence Guided Generative Adversarial Network (CG-GAN)”.

Formally, the objective functions for the classifier of CG-GAN in

the discriminator and generator are defined as follows:

𝐶
𝑐𝑔

𝑑
= E𝑥,𝑦∼𝑃𝑋𝑌

[
𝜎sce (𝑥,𝑦)

]
+ E𝑥,𝑦∼𝑄𝑋𝑌

[
[𝑚 − 𝜎sce (𝑥,𝑦)]+

]
; (7)

𝐶
𝑐𝑔
𝑔 = E𝑥,𝑦∼𝑄𝑋𝑌

[
𝜎sce (𝑥,𝑦)

]
, (8)

where the notation [𝑎]+ = 𝑎 if 𝑎 ≥ 0, otherwise, [𝑎]+ = 0. The

second term of Equation (7) serves as a crucial aspect during opti-

mization, indicating that when the value of 𝜎sce (𝑥,𝑦) on generated

data exceeds the value of𝑚, it will not further increase. This thresh-

olding mechanism helps to mitigate the issue of degradation of

classifier performance, a potential challenge that can be encoun-

tered in adversarial training settings. Coupled with the GAN losses,

our CG-GAN has the following objectives:

min

𝐷
𝐿𝐷 + 𝜆 ·𝐶𝑐𝑔

𝑑
; (9)

min

𝐺
𝐿𝐺 + 𝜆 ·𝐶𝑐𝑔𝑔 . (10)

We propose the following Proposition 3.1, which states the condi-

tions under which the training objective of the classifier of CG-GAN

achieves the global optimum.

Proposition 3.1. The global optimum of the training objective for
the classifier of CG-GAN can be achieved if and only if 𝑄𝑋𝑌 = 𝑃𝑋𝑌 .

Proposition 3.1 reveals that the classifier encourages the genera-

tor to learn the real joint distribution. Due to the space limit, we

place the proof to our supplement.
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3.2 Analysis on The Gradient of The Classifier

As discussed in Section 2, a major reason for early-training collapse

and over-confidence is from the unboundedness of feature norm

and its induced gradient explosion problem. We explain why our

CG-GAN can improve the training stability from this perspective.

We focus on the classifier of CG-GAN in the discriminator (i.e.,

the objective function Equation (7)). Note that the value 𝑙𝑦 (𝑥) in
𝜎sce (𝑥,𝑦) (Equation (3)) can be written as a dot-product 𝑓 (𝑥)⊤𝑤𝑦 ,
where 𝑓 (𝑥) is the feature embedding vector and𝑤𝑦 is the weight

vector of the classifier associated with class 𝑦 in the last fully con-

nected layer. Suppose we sample 𝑛 real data samples from the given

training data, and 𝑛 generated data samples from the generator.

For each 1 ≤ 𝑖 ≤ 𝑛, let 𝑥𝑟
𝑖
and 𝑥

𝑔

𝑖
denote the 𝑖-th real and 𝑖-th

generate samples, respectively. In practice, we use the empirical

cross-entropy loss to represent 𝐶
𝑐𝑔

𝑑
in Equation (7): First, we define

𝐿𝑤 (𝑖) = − log Pr(𝑦 |𝑥𝑟𝑖 ) + [𝑚 + log Pr(𝑦 |𝑥𝑔
𝑖
)]+, (11)

where Pr(𝑦 |𝑥𝑟
𝑖
) =

exp

(
𝑓 (𝑥𝑟

𝑖
)⊤𝑤𝑦

)∑𝐾
𝑘=1

exp

(
𝑓 (𝑥𝑟

𝑖
)⊤𝑤𝑘

) and Pr(𝑦 |𝑥𝑔
𝑖
) =

exp

(
𝑓 (𝑥𝑔

𝑖
)⊤𝑤𝑦

)∑𝐾
𝑘=1

exp

(
𝑓 (𝑥𝑔

𝑖
)⊤𝑤𝑘

) . Then we define the empirical loss 𝐶
𝑐𝑔

𝑑
=

1

𝑛

∑𝑛
𝑖=1 𝐿𝑤 (𝑖) for training the discriminator.

Lemma 3.2. For ∀𝑘 ∈ {1, . . . , 𝐾}, the gradient of 𝐿𝑤 (𝑖) is:

𝜕𝐿𝑤 (𝑖)
𝜕𝑤𝑘

=

{
𝐺𝑟 (𝑖, 𝑘), Pr(𝑦 |𝑥𝑔

𝑖
) < exp(−𝑚);

𝐺𝑟 (𝑖, 𝑘) −𝐺𝑔 (𝑖, 𝑘), Pr(𝑦 |𝑥𝑔𝑖 ) ≥ exp(−𝑚),

where 𝐺𝑟 (𝑖, 𝑘) = −𝑓 (𝑥𝑟
𝑖
)
(
1𝑦=𝑘 − Pr(𝑦 |𝑥𝑟

𝑖
)
)
and 𝐺𝑔 (𝑖, 𝑘) =

−𝑓 (𝑥𝑔
𝑖
)
(
1𝑦=𝑘 − Pr(𝑦 |𝑥𝑔

𝑖
)
)
. Here, 1𝑦=𝑘 is the indicator function that

equals to 1 if 𝑦 = 𝑘 .

Intuitive analysis from Lemma 3.2: Lemma 3.2 reveals that

when the confidence of the classifier for the generated data sur-

passes exp(−𝑚), the gradient of 𝐿𝑤 (𝑖) should be equal to𝐺𝑟 (𝑖, 𝑘) −
𝐺𝑔 (𝑖, 𝑘). Moreover, once the confidence exceeds exp(−𝑚) (i.e.,𝑚 −
𝜎sce (𝑥,𝑦) > 0), the objective function described in Equation (7)

encourages the classifier to exhibit low confidence on the generated

data. Since Proposition 3.1 reveals that the classifier encourages the

generator to learn the real joint distribution, 𝑓 (𝑥𝑔
𝑖
) is guided to be

close to 𝑓 (𝑥𝑟
𝑖
) and suppressing the confidence of the classifier on

the generated data implicitly affects the confidence on the real data.

Note that the gradient norm of the cross-entropy loss in AC-GAN is

always equal to | |𝑓 (𝑥𝑟
𝑖
) | |

(
1𝑦=𝑘 − Pr(𝑦 |𝑥𝑟

𝑖
)
)
, and the norm | |𝑓 (𝑥𝑟

𝑖
) | |

of AC-GAN is encouraged to increase to obtain high confidence.

Consequently, the norm of the gradient | |𝐺𝑟 (𝑖, 𝑘) −𝐺𝑔 (𝑖, 𝑘) | | in our

CG-GAN should be less than the norm of gradient in AC-GAN,

which can alleviate the gradient explosion problem and thus im-

prove the training stability. We place the proof of Lemma 3.2 in

supplement.

3.3 Potential Issues in CG-GAN and

Improvements

Potential over-confidence issue. To implement our proposed CG-

GAN as described in Section 3.1, it is crucial to consider the optimal

confidence function of Equation (3) when the training objective for

the CG-GAN classifier reaches its global optimum. Specifically, we

denote the optimal softmax cross-entropy function of Equation (3)

as 𝜎∗sce (𝑥,𝑦) and the corresponding optimal confidence function

as Pr∗ (𝑦 |𝑥). We propose the following corollary:

Corollary 3.3. When the training objective for the classifier of
CG-GAN achieves the global optimum, the optimal confidence func-
tion Pr∗ (𝑦 |𝑥) may be any value between exp(−𝑚) and 1.

We place the proof to our supplement. Corollary 3.3 reveals the

optimal confidence function of CG-GAN may be close to 1, which

correspondingly means that the feature norm of the sample will

become large. As discussed in Section 2, large feature norm can

lead to unstable training. As shown in Figure 2, our experimental

findings observed that the CG-GAN model exhibited instability

after long training. This observation highlights the necessity of

introducing a regularization term to effectively address the issue of

over-confidence in CG-GAN.

Classifier criteria. Before addressing the issue of overconfi-

dence in CG-GAN, it is also important to consider the classification

criteria of the auxiliary classifier. First, we clarify two necessary

conditions for a qualified classifier. Suppose 𝑃 (𝑥) = {𝑝1 (𝑥), 𝑝2 (𝑥),
· · · , 𝑝𝐾 (𝑥)} is the prediction distribution by the classifier with the

softmax activation function. For any input data 𝑥 with label 𝑦, the

classifier should satisfy:

(i) 𝑝𝑦 (𝑥) ≥ 1/𝐾 ; (12)

(ii) 𝑝𝑦 (𝑥) ≥ 𝑝𝑘 (𝑥) for any 𝑘 ≠ 𝑦, (13)

where 𝑝𝑦 (𝑥) =
exp

(
𝑙𝑦 (𝑥 )

)∑𝐾
𝑘=1

exp

(
𝑙𝑘 (𝑥 )

) and 𝑝𝑘 (𝑥) =
exp

(
𝑙𝑘 (𝑥 )

)∑𝐾
𝑘=1

exp

(
𝑙𝑘 (𝑥 )

) . Based
on Corollary 3.3, we have 𝑝𝑦 (𝑥) = Pr∗ (𝑦 |𝑥) ≥ exp(−𝑚). We just

simply let 𝑚 ≤ log(𝐾), and then we have 𝑝𝑦 (𝑥) = Pr∗ (𝑦 |𝑥) ≥
exp(−𝑚) ≥ 1

𝐾
. As a consequence, the classifier of CG-GAN satisfies

the condition (12). However it cannot guarantee the condition (13).

In particular, the negative softmax cross-entropy in Equation (7)

minimizes 𝑝𝑦 (𝑥) = Pr(𝑦 |𝑥) = exp

(
𝑙𝑦 (𝑥 )

)∑𝐾
𝑘=1

exp

(
𝑙𝑘 (𝑥 )

) (i.e, minimizes 𝑙𝑦 (𝑥)

while maximize 𝑙𝑘≠𝑦 (𝑥)) on the generated data, which may lead to

𝑝𝑦 (𝑥) < 𝑝𝑦≠𝑘 (𝑥) (i.e., 𝑙𝑦 (𝑥) < 𝑙𝑘≠𝑦 (𝑥)).
Our proposed solutions. To better control the behavior of the

classifier on the generated data with respect to the two conditions

(12) and (13), we define the following prior label distribution:

𝑃 =
[ 1−exp(−𝑚)

𝐾 − 1

,. . . , exp(−𝑚)︸    ︷︷    ︸
The 𝑦-th item

,. . .,
1−exp(−𝑚)
𝐾 − 1

]
. (14)

From the assumption 𝑚 ≤ log(𝐾), we have exp(−𝑚) ≥ 1

𝐾
≥

1−exp(−𝑚)
𝐾−1 ; then we can minimize the KL-divergence between the

prior label distribution 𝑃 and the prediction distribution 𝑃 (𝑥) on
the generated data to encourage the classifier to satisfy the two

conditions (12) and (13). Moreover, the KL-divergence term

can serve as a regularization mechanism to help mitigate

the aforementioned over-confidence issue. Hence, we can add

the expected value of KL(𝑃 (𝑥) | |𝑃) or KL(𝑃 | |𝑃 (𝑥)) to Equation (7).

To better balance the losses of the discriminator and generator,

we also add the expected value of −KL(𝑃 (𝑥) | |𝑃) or −KL(𝑃 | |𝑃 (𝑥))
to Equation (8). We propose rCG-GAN: the CG-GAN with the
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reverse KL divergence KL(𝑃 (𝑥) | |𝑃). Coupled with the GAN losses,

the objective functions of rCG-GAN are defined as follows:

min

𝐷
𝐿𝐷 + 𝜆1 ·𝐶𝑐𝑔𝑑 + 𝜆2 · E𝑥,𝑦∼𝑄𝑋𝑌 [KL(𝑃 (𝑥) | |𝑃)]; (15)

min

𝐺
𝐿𝐺 + 𝜆1 ·𝐶𝑐𝑔𝑔 − 𝜆2 · E𝑥,𝑦∼𝑄𝑋𝑌 [KL(𝑃 (𝑥) | |𝑃)], (16)

where 𝜆1, 𝜆2 > 0 are two given coefficients. Similarly, we can

also have fCG-GAN: the CG-GAN with the forward KL diver-

gence, where we just simply replace the term KL(𝑃 (𝑥) | |𝑃) with
KL(𝑃 | |𝑃 (𝑥)) in Equation (15) and Equation (16). In Section 4, we

mainly focus on rCG-GAN since fCG-GAN often achieves similar

experimental results.

Remark 1. Note that the regularization term, specifically the
KL term, is explicitly applied to the generated data. Nonetheless, it is
crucial to acknowledge that suppressing confidence in the generated
data can indirectly influence confidence in the real data. This occurs as
the classifier encourages the generator to learn the real joint distribu-
tion, as indicated in Proposition 3.1. Such a feedback mechanism may
lead to a decreased feature norm in both the real and generated data,
consequently improving the stability of the CG-GAN. We provide the
experimental verification of this phenomenon in the supplement.

3.4 Comparison with Closely Related Works

Differences between CG-GAN and EBGAN. EBGAN [36] in-

troduces an energy-based formulation for unconditional GANs,

whereas our CG-GAN is specifically designed to address the issues

commonly encountered in training instability and overconfidence in

Classifier-based cGANs. Unlike EBGAN, CG-GAN incorporates an

auxiliary classifier and employs label information and the softmax

cross-entropy function. By analyzing the gradient of the classifica-

tion loss in CG-GAN, we can explicate why our model improves

training stability. Moreover, EBGAN has a fundamentally differ-

ent network structure for the discriminator, which is based on an

auto-encoder.

Analysis on ReACGAN. ReACGAN [13] employs the normal-

ization of both feature embeddings and weight vectors to address

the collapse issue. However, this method may have limited im-

provement on the condition generation performance compared to

AC-GAN. Furthermore, the absence of adversarial training on the

classifier of ReACGAN may make it challenging to ensure the gen-

erator to effectively learn the real data distribution, consequently

diminishing the diversity of the generated samples.

Analysis on ADC-GAN. To better explain the possible prob-

lems of the auxiliary discriminative classifier GAN (ADC-GAN) [11]

in the practical optimization, we discuss the mathematical expres-

sion of the objective functions of ADC-GAN below. It introduces

the “discriminative classifier” which can play both the roles of the

classifier and discriminator. In particular, for a training dataset with

𝐾 classes, the discriminative classifier 𝑙 maps each 𝑥 ∈ 𝑋 to R2𝐾 ,
where 𝐾 dimensions serve for the 𝐾 labels of real data, and the

other𝐾 dimensions serve for the𝐾 fake labels of generated data. To

distinguish the real and fake labels, we add the superscripts “𝑟” (for

real data) and “𝑔” (for generated data) to each ground-truth label

𝑦 ∈ 𝑌 . So “𝑙𝑦𝑟 (𝑥)” denotes the 𝑦𝑟 -th element of 𝑙 (𝑥) corresponding
to the real ground-truth label 𝑦𝑟 , and similarly, “𝑙𝑦𝑔 (𝑥)” denotes
the 𝑦𝑔-th element of 𝑙 (𝑥) corresponding to the fake ground-truth

label 𝑦𝑔 . Given a data 𝑥 ∈ 𝑋 , Pr(𝑦𝑟 |𝑥) denotes the confidence that
it is a real data and has the label 𝑦𝑟 ; and Pr(𝑦𝑔 |𝑥) can be defined

similarly. Also, similar with Equation (3) we have

Pr(𝑦𝑟 |𝑥) =
exp

(
𝑙𝑦𝑟 (𝑥)

)∑
2𝐾
𝑘=1

exp

(
𝑙𝑘 (𝑥)

) ; (17)

Pr(𝑦𝑔 |𝑥) =
exp

(
𝑙𝑦𝑔 (𝑥)

)∑
2𝐾
𝑘=1

exp

(
𝑙𝑘 (𝑥)

) . (18)

The discriminative classifier tries to minimize the following

Equation (19) and Equation (20):

𝐶𝑑 = −E𝑥,𝑦∼𝑃𝑋𝑌 [log Pr(𝑦
𝑟 |𝑥)] − E𝑥,𝑦∼𝑄𝑋𝑌 [log Pr(𝑦

𝑔 |𝑥)]; (19)

𝐶𝑔 = −E𝑥,𝑦∼𝑄𝑋𝑌 [log Pr(𝑦
𝑟 |𝑥)] + E𝑥,𝑦∼𝑄𝑋𝑌 [log Pr(𝑦

𝑔 |𝑥)] . (20)

Then we can simplify Equation (20):

𝐶𝑔 = −E𝑥,𝑦∼𝑄𝑋𝑌 [log Pr(𝑦
𝑟 |𝑥)] + E𝑥,𝑦∼𝑄𝑋𝑌 [log Pr(𝑦

𝑔 |𝑥)]
= −E𝑥,𝑦∼𝑄𝑋𝑌 [log Pr(𝑦

𝑟 |𝑥) − log Pr(𝑦𝑔 |𝑥)]

= −E𝑥,𝑦∼𝑄𝑋𝑌 [log
exp

(
𝑙𝑦𝑟 (𝑥)

)∑
2𝐾
𝑘=1

exp

(
𝑙𝑘 (𝑥)

) − log

exp

(
𝑙𝑦𝑔 (𝑥)

)∑
2𝐾
𝑘=1

exp

(
𝑙𝑘 (𝑥)

) ]
= −E𝑥,𝑦∼𝑄𝑋𝑌 [𝑙𝑦𝑟 (𝑥) − 𝑙𝑦𝑔 (𝑥)−(

log

2𝐾∑︁
𝑘=1

exp

(
𝑙𝑘 (𝑥)

)
− log

2𝐾∑︁
𝑘=1

exp

(
𝑙𝑘 (𝑥)

) )
]

= −E𝑥,𝑦∼𝑄𝑋𝑌 [𝑙𝑦𝑟 (𝑥) − 𝑙𝑦𝑔 (𝑥)] . (21)

In the optimization discriminator phase, the loss function, i.e.,

Equation (19), guides the classifier to act as a discriminator by dis-

tinguishing differences between real and generated data. However,

the dependency between generated data and the real label is absent

since the same class of real and generated data must be segregated

into two distinct classes, namely the “real” and “fake” labels. This

dependency is only provided during generator optimization via the

loss function represented by Equation (21). Nevertheless, due to

the absence of a cross-entropy loss function when optimizing the

generator in Equation (21), the conditional generation ability of

ADC-GAN may not be sufficiently trained.

4 EXPERIMENTS

We compare our proposed rCG-GAN (and fCG-GAN) with several

recently proposed cGANs with BigGAN [1] backbone, including

AC-GAN[30], PD-GAN [28], ReACGAN [13] and ADC-GAN [11].

We use the open-source library StudioGAN repository to conduct

our experiments
1
.

Datasets and evaluation metrics. We consider five public

datasets: CIFAR10 [21] (60k images of 10 classes), CIFAR100 [21]

(60k images of 100 classes), Tiny-ImageNet [23] (120k images of 200

classes), Baby/Papa/Grandpa-ImageNet [14] (each has 100 classes),

and ImageNet [3] (1,281k and 50k images for training and valida-

tion with 1k classes). Baby/Papa/Grandpa-ImageNet are created by

StudioGAN [14] for small-scale ImageNet experiments.

We consider six evaluation metrics: “Inception Score (IS)” [32],

“Fréchet Inception Distance (FID)” [9] , “Density” and “Coverage”

[29], and the “improved Precision” and “improved Recall” [22]. IS

and FID are widely used metrics for evaluating the performance of

1
https://github.com/POSTECH-CVLab/PyTorch-StudioGAN

https://github.com/POSTECH-CVLab/PyTorch-StudioGAN
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generative models. Some studies [1, 37] show that IS tends to mea-

sure the generation fidelity and FID tends to capture the diversity

of the generated data. Density and Coverage are a pair of metrics

designed to disentangle the fidelity and diversity measurement

from FID. The improved Precision and Recall [22] are proposed to

overcome the shortcomings of the original Precision and Recall for

the generated distribution against the real data distribution.

Some experimental details.We use the validation dataset as

the default reference distribution for the computing of evaluation

metrics. For CIFAR10 and CIFAR100, we use the test dataset due to

the absence of the validation dataset. We adopt the default configu-

rations of the ReACGAN paper [13] in StudioGAN and follow [5, 11]

to use the hinge loss [24] for the implementation of the GAN losses

𝐿𝐷 and 𝐿𝐺 . The number of training iterations is set to 100, 000 for

CIFAR10/CIFAR100 and 200, 000 for the other five datasets; the

batch size is set to 64 if not specified. The parameters 𝜆1 and 𝜆2 for

our rCG-GAN and fCG-GAN are set to 1.0 (we also investigated

the performance of rCG-GAN with different values of 𝜆1 and 𝜆2,

and we place the results to our supplement due to the space limit).

4.1 Experimental Results

Note that the performances of rCG-GAN and fCG-GAN are similar

in practice, so we mainly focus on rCG-GAN in our experiments

except for the ablation study. Recall that our proposed CG-GAN de-

pends on the parameter𝑚; in fact the value exp(−𝑚) is the desired
confidence for Pr∗ (𝑦 |𝑥). So for convenience, the value exp(−𝑚) is
called by “desired confidence" in our experiments. According to our

discussion in Section 3.3, we should set exp(−𝑚) ≥ 1/𝐾 for each

testing dataset. Particularly, we also study the experiment with

varying the value exp(−𝑚) at the end of this section.

Ablation study. We conduct the experiments to show that

the necessity of coupling the CG-GAN with the KL(𝑃 (𝑥) | |𝑃) or
KL(𝑃 | |𝑃 (𝑥)) (as discussed in Section 3.3), for improving the perfor-

mance of CG-GAN and avoiding early-training collapse. As shown

in Table 1, both fCG-GAN and rCG-GAN outperform CG-GAN in

terms of six metrics on CIFAR10 and CIFAR100, and we observe

that rCG-GAN performs slightly better than fCG-GANwith respect

to FID. In the second part of our ablation study, we further examine

the effectiveness of CG-GAN, fCG-GAN, and rCG-GAN in terms of

training stability. Let “AC-GAN + rKL” and “AC-GAN + fKL” denote

the methods of AC-GAN with KL(𝑃 (𝑥) | |𝑃) and KL(𝑃 | |𝑃 (𝑥)), respec-
tively. As shown in Figure 2, our CG-GAN, which is equipped with

the adversarially trained auxiliary classifier, can achieve better sta-

bility comparing with the baselines “AC-GAN + rKL”, “AC-GAN +

fKL”, ACGAN [30] and AMGAN [38]. Moreover, our proposed rCG-

GAN and fCG-GAN can successfully avoid early-training collapse

and exhibit superior stability compared to the basic CG-GAN.

Comparison with existing cGANs.We illustrate our experi-

mental results on CIFAR-10, CIFAR-100, Tiny ImageNet and Baby

/Papa/Grandpa-ImageNet in Table 2. From the results we can see

that our rCG-GAN achieves the best of 5 scores (except for the

improved Recall) on the datasets: the scores of IS, Density and im-

proved Precision are used for measuring the generation fidelity; FID

and Coverage are used for measuring the diversity of the generated

images. So the results shown in Table 2 suggest that our proposed
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Figure 2: FID on CIFAR-100.

method yields better generation fidelity and diversity which are im-

portant metrics for evaluating the performance of generative model.

Some qualitative results of our rCG-GAN and baseline approaches

are shown in supplement due to the space limit.

Image generation on ImageNet. To further evaluate the per-

formance of our method for large-scale dataset, we also consider

the experiment on ImageNet, which is a widely used dataset in

the computer vision community. We conduct the experiment on

ImageNet with 128 × 128 image resolution in the batch size of 256,

and the results are shown in Table 3. Our rCG-GAN outperforms

other cGANs by a large margin in terms of IS and FID; moreover, we

also report the classification accuracies and our advantage is also

significant. The results indicate that rCG-GAN not only achieves

high-quality image generation but also demonstrates promising

performance in terms of conditional image generation. We also

place several generated images in our supplement.

Conditional generation performance on datasets with dif-

ferent levels of classification difficulty. To have a more compre-

hensive comparison of the conditioning performance between rCG-

GAN and other cGANs, we evaluate the Top-1 and Top-5 classifica-

tion accuracies on generated images using the pretrained Inception-

V3 network [34] on three subsets of ImageNet: Baby/Papa/Grandpa-

ImageNet. These subsets were created by StudioGAN [14] based on

the classification difficulty of the images. Baby-ImageNet represents

the easiest subset to classify, while Grandpa-ImageNet represents

the most difficult subset. From the results shown in Table 4, we can

see that our rCG-GAN can achieve the best conditional generation

performance in terms of classification accuracies as well as FID,

across the datasets with different classification difficulty levels.

Impact of the desired confidence. In practice, we set exp(−𝑚)
to be slighly larger than

1

𝐾
, where 𝐾 represents the number of

classes in the dataset. By this setting, we can satisfy both condi-

tion (12) and (13) to guide the conditional generation in the training

procedure. Additionally, a moderately small value of exp(−𝑚) leads
to a high entropy distribution in (14), that is helpful to mitigate the

over-confidence issue. We conduct the experiments with varying

the desired confidence exp(−𝑚). As shown in Figure 3, our experi-

ments on CIFAR100 indicate that the change of exp(−𝑚) yields a
mild trade-off between Improved Precision/IS and Improved Recall:

the Improved Recall decreases as the Improved Precision and IS

score increases, when we vary exp(−𝑚) from 0.011 to 0.05. For the
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Table 1: The ablative results on CIFAR10 and CIFAR100. The best results are shown in bold. “↑” indicates higher is better, and
“↓” indicates lower is better.

Datasets Methods IS↑ FID↓ Density↑ Coverage↑ Precision↑ Recall↑

CIFAR10

CG-GAN 9.999 8.194 1.044 0.9309 0.7697 0.6734

fCG-GAN 10.272 7.701 1.082 0.9356 0.773 0.675

rCG-GAN 10.285 7.514 1.109 0.9396 0.7759 0.6736

CIFAR100

CG-GAN 13.42 11.459 1.009 0.8872 0.7904 0.5892

fCG-GAN 14.291 9.505 1.048 0.9233 0.8008 0.6307

rCG-GAN 14.0678 9.46 1.0721 0.9248 0.8092 0.6222

Table 2: Evaluation on CIFAR10, CIFAR100, Tiny-ImageNet, Baby/Papa/Grandpa-ImageNet.

Datasets Methods IS↑ FID↓ Density↑ Coverage↑ Precision↑ Recall↑

CIFAR10

PD-GAN 9.969 8.004 1.068 0.9255 0.7587 0.6835

AC-GAN 9.936 8.342 1.031 0.9132 0.7549 0.6567

ADC-GAN 9.9903 8.0266 1.0003 0.9233 0.7496 0.6997

ReACGAN 9.841 8.026 1.056 0.9275 0.7711 0.6537

rCG-GAN 10.285 7.514 1.109 0.9396 0.7759 0.6736

CIFAR100

PD-GAN 11.9238 10.8121 0.8599 0.866 0.7396 0.6992

AC-GAN 11.597 12.777 0.8945 0.8295 0.7519 0.5927

ADC-GAN 11.7254 10.7903 0.8566 0.8804 0.7358 0.7040

ReACGAN 12.1006 12.1964 0.9591 0.8372 0.7624 0.5783

rCG-GAN 14.0678 9.46 1.0721 0.9248 0.8092 0.6222

Tiny-ImageNet

PD-GAN 11.119 32.782 0.5519 0.5318 0.6258 0.6147

AC-GAN 11.092 36.799 0.5027 0.4591 0.6092 0.5141

ADC-GAN 12.932 26.682 0.5881 0.6012 0.6365 0.658

ReACGAN 13.0780 30.4484 0.6608 0.5589 0.6669 0.5051

rCG-GAN 19.657 16.83 0.8965 0.8146 0.7344 0.5981

Baby-ImageNet

PD-GAN 23.0264 32.0833 0.6179 0.6477 0.6553 0.7253

AC-GAN 27.071 27.453 0.7044 0.6611 0.6993 0.6603

ADC-GAN 24.2711 30.813 0.6069 0.6661 0.6515 0.7331

ReACGAN 27.2747 27.5857 0.7316 0.6487 0.7217 0.6213

rCG-GAN 31.5075 21.4124 0.7792 0.7644 0.7289 0.6831

Papa-ImageNet

PD-GAN 16.6445 34.6244 0.5827 0.6358 0.6212 0.6646

AC-GAN 22.15 30.701 0.7368 0.6808 0.7014 0.5226

ADC-GAN 18.7525 33.8927 0.5877 0.6606 0.6260 0.666

ReACGAN 20.2521 29.6279 0.7967 0.6708 0.7208 0.5350

rCG-GAN 26.9556 23.4174 0.8396 0.8086 0.7288 0.6352

Grandpa-ImageNet

PD-GAN 14.9834 30.0774 0.6714 0.7062 0.635 0.605

AC-GAN 18.639 28.899 0.7761 0.743 0.6782 0.5256

ADC-GAN 14.3486 31.2384 0.6472 0.6884 0.6296 0.6356

ReACGAN 18.0457 28.2561 0.8461 0.7458 0.6902 0.5012

rCG-GAN 22.445 22.679 0.9006 0.856 0.7248 0.579

experiments on other datasets, please refer to the details in our

supplement.

5 RELATEDWORK

PD-GAN [28] is a representative projection-based cGAN that in-

corporates class information into the discriminator by learning

an embedding for each class. As a representative classifier-based

cGAN, AC-GAN [30] uses an auxiliary classifier appended to the

discriminator, and added the cross entropy loss to the standard

GAN loss. Zhou et al. [38] introduced the AM-GAN, which em-

ploys a (𝑘 + 1)-way classifier along with extra “fake” labels for

supervised learning. TAC-GAN [6] introduces a twin classifier to

address the biased learning objective of AC-GAN. ContraGAN [12]

applies the conditional contrastive loss and the cross-entropy loss

to capture the data-to-data relationship and the data-to-label rela-

tionship. ECGAN [2] presents a comprehensive outlook on cGANs
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Table 3: Evaluation on ImageNet. Iters. means the training iterations. Top-1 Acc. and Top-5 Acc. mean the Top-1 and Top-5

classification accuracies (%) on the generated images using the pre-trained Inception-V3 network, respectively.
∗
: the results

reported by the each original paper ;
†
: the results reported by [13];

‡
: the results reported by [14].

Methods Iters. IS↑ FID↓ Top-1 Acc. ↑ Top-5 Acc. ↑
TAC-GAN

∗
[6] - 28.86 23.75 - -

StyleGAN2
‡
[19] - 22.54 33.40 17.97 38.17

StyleGAN3-t
‡
[17] - 21.06 36.51 - -

PD-GAN
†
[28]

200k

28.63 24.68 29.994 53.842

AC-GAN
†
[30] 62.99 26.35 62.412 84.899

ContraGAN
†
[12] 25.25 25.16 2.866 11.482

ReACGAN
†
[13] 50.30 16.32 23.210 51.602

ADC-GAN [11] 38.972 20.415 37.347 60.495

rCG-GAN 151.215 5.961 77.355 93.160

PD-GAN
†
[28]

500k

43.97 16.36 - -

ReACGAN
†
[13] 68.27 13.98 - -

ADC-GAN
∗
[11] 66.96 11.65 - -

rCG-GAN 173.319 5.187 79.872 93.656
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Figure 3: The desired confidence (conf) yields a mild trade-off between Improved Recall and IS/Improved Precision.

Table 4: Baby/Papa/Grandpa-ImageNet classification accura-

cies on generated images from cGANs.

Methods FID↓ Top-1 Acc. ↑ Top-5 Acc. ↑

B
a
b
y

PD-GAN 32.0833 45.551 64.047

AC-GAN 27.453 56.208 75.444

ADC-GAN 30.813 49.378 68.016

ReACGAN 27.5857 51.409 70.306

rCG-GAN 21.4124 62.527 80.223

P
a
p
a

PD-GAN 34.6244 22.44 42.08

AC-GAN 30.701 33.98 59.00

ADC-GAN 33.8927 26.02 46.36

ReACGAN 29.6279 26.84 48.96

rCG-GAN 23.4174 43.62 67.6

G
r
a
n
d
p
a

PD-GAN 30.0774 16.44 36.4

AC-GAN 28.899 28.74 55.78

ADC-GAN 31.2384 17.56 36.76

ReACGAN 28.2561 19.74 44.58

rCG-GAN 22.679 35.14 63.54

by considering both cGANs with and without classifiers. Zhou et al.

[37] introduced a novel approach that merges the discriminator

with the classifier to create a multi-label classifier with 𝐾 + 2 di-

mensions. MH-GAN [20] enhances AC-GAN by substituting the

cross-entropy loss with a multi-class extension of the popular hinge

loss. Kang et al. [13] proposed ReACGAN that normalizes both the

feature embeddings and the weight vectors to avoid the collapse

issue, and expanded the cross-entropy loss to the data-to-data cross-

entropy loss. Hou et al. [11] introduced the method ADC-GAN that

applies an auxiliary discriminative classifier to help the classifier

for distinguishing real data from fake data.

6 CONCLUSION

In this paper, we propose a novel stable training method to improve

the performance and stability of classifier-based cGANs, the key

idea is to design an efficient adversarial training strategy for the

auxiliary classifier and mitigate the over-confidence issue caused

by the classifier. The experimental results suggest that our method

not only provides improved training stability, but also produces

high-quality generation and exhibits better conditional generation

performance compared to several state-of-the-art cGANs on a set

of popular benchmark datasets.
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