A Basic Functions

Each question in PTR is associated with a functional program built from a set of basic functions. We detail the semantics of these functions.

A.1 Data Types

Our basic functional building blocks operate on values of the following types:

- Object: A single object in the scene.
- ObjectSet: A set of zero or more objects in the scene.
- PartSet: A set of parts in the scene.
- Integer: An integer between 0 and 9 (inclusive).
- IntegerSet: A set of integers.
- Boolean: Yes or No.
- Value Types:
 - Object Category: Chair, Bed, Table, Refrigerator, Cart
 - Part Category: arm, leg, back, seat, central support pedestal, leg bar, wheel, arm vertical bar, arm horizontal bar, door, sleep area, top , drawer, shelf, body
 - Color: gray, red, blue, green, brown, purple, cyan, yellow
 - Stability: Stable, Unstable
 - Possible Change: to_left, to_right, to_front, to_behind
- Spatial Relationship: left, right, in front of, behind, above, below
- Geometric Relationship: line-line perpendicular, line-line parallel, plane-plane perpendicular, plane-plane parallel, line-plane perpendicular, line-plane parallel

A.2 Object-Level Functions

Object-level functions focus on object-level reasoning, and are listed in Table 3.

A.3 Part-Level Functions

Since concepts, attributes and relationships are defined on the semantic level rather than instance level, we do not use a single Part. Rather, we use PartSet to denote both a set of parts of the same semantics, as well as a set of parts of different semantics. A dictionary keeps the correspondence between objects and parts (*e.g.*, {obj0: [part0, part1, part2], obj1: [part3, part4]...}), which facilitates hierarchical reasoning. Part-level functions are listed in Table 4. There are also arithmetic functions which focus on arithmetic problems on the number of parts, which are listed on Table 5.

Function	Description	Input	Output	
scene	Returns the set of all objects in	Ø	ObjectSet	
	the scene			
unique	If the input is a singleton set,	ObjectSet	Object	
relate object	then return it as an Object Return all objects in the scene	Object, Spatial	ObjectSet	
relate_object	that have the specified spatial	Relationship	ubjectset	
	relation to the input object	nerationship		
count_object	Returns the size of the input set	ObjectSet	Integer	
exist_object	Returns yes If the input set is	ObjectSet	Boolean	
_ 0	nonempty and no if it is empty	0		
filter_object_category	Filter objects by category	ObjectSet,	ObjectSet	
		Object		
		Category		
filter_stability	Filter objects by stability	ObjectSet,	ObjectSet	
guony object estagony	Quarty the astagory of an object	Stability	Object Cotement	
query_object_category query_possible_change	Query the category of an object Query possible changes for the	Object Object	Object Category Possible Change	
query_possible_enunge	objects to stay stable	009000	robbibie onange	
query_is_stability	Query whether an object is sta-	Object,	Boolean	
1 0 0	ble or unstable	Stability		
query_is_possible_change	Query whether applying pos-	Object,	Boolean	
	sible change to an object can	Possible		
•• • •	make it stable	Change		
same_object_category	Return the set of objects that	Object	ObjectSet	
	are of the same category as the			
equal_object_category	inpuy Check whether two categories	Object	Boolean	
equal_object_category	are the same	Category,	Doorean	
		Object		
		Category		
query_object_analogy	The first Object A and the sec-	Object, Object,	Object	
	ond Object B have certain spa-	Object		
	tial relationships. We want to			
	find the fourth Object D so			
	that the third Object C and the			
	fourth Object D have the same	nations		
Table 3: Object-Level Functions				

B Human Performance

To evaluate human performances for our dataset, we hire graduate students in a university, at a rate of \$15/hr. We first provide the subjects with detailed concepts from PTR dataset, and sample questions and answers for the subjects to get familiar with the dataset. We present 2500 random questions from the test set, and take a majority vote among three subjects for each question.

C NS-VQA details

For NS-VQA, we first use Mask-RCNN to propose segmentations for objects and parts. Next, we extract attributes using attribute networks, which have the same parameters as in [56]. Object segmentations are sent to the attribute net to predict the categories of the objects. To facilitate reasoning on questions about spatial relationships, we follow [56], augment the objects with the original images, and use the attribute net to predict the coordinates of each object. Object proposals augmented with original images are also used to predict the stability (stable, unstable) of each object. If an object is unstable, possible changes (to_left, to_right, to_front, to_behind) are predicted.

And then, the part proposals are augmented with the predicted object proposals and attributes, to predict the part attributes. Specifically, if the part is within the region of an object proposal, we limit the categories of the parts to the specific part categories of the object categories (*e.g.*, if the predicted object is cart, we limit the part categories to body and wheel). The part proposals are also augmented with the object proposals and fed to the attribute networks. To predict geometric information, the

Function	Description	Input	Output		
expand_parts	Return the parts of a set of ob-	ObjectSet	PartSet		
	jects.	0			
relate_part	Return the set of parts that have	PartSet,	PartSet		
-	the certain geometric relation-	Geometric			
	ship to the partset	Relationship			
exist_part	Return Yes if the PartSet is	PartSet	Boolean		
-	not empty				
filter_part_category	Filter parts by category	PartSet	PartSet		
filter_part_color	Filter parts by color	PartSet	PartSet		
count_part	Count the number of certain	PartSet	IntegerSet		
_I	parts in each object. Specif-		0		
	ically, using the object-part				
	dictionary, count how many				
	parts of each object are				
	in the PartSet, return as				
	IntegerSet. IntegerSet				
	has the same size as the				
	ObjectSet returned by scene				
filter_part_exist	Filter the set of objects that con-	PartSet	ObjectSet		
inter_purt_exist	tain parts in the PartSet	1 di UDCU	00]0000000		
filter_part_count	Filter a set of objects that	IntegerSet	ObjectSet		
inter_part_count	have a number of parts that	THregerper	objectbet		
	matches the input Integer.				
	Specifically, count_part				
	returns the number of parts				
	in the PARTSET of each				
	object as IntegerSet.				
	filter_part_count takes				
	IntegerSet and filters objects				
	by checking whether the				
	corresponding number of parts				
	in the IntegerSet matches				
	the input Integer.				
query_part_category	query the category of parts	PartSet	Part Category		
query_part_color	query the color of parts	PartSet	Color		
same_part_color	Return the set of parts with the same color as input	PartSet	PartSet		
equal_part_category	Check whether two categories	Part Category,	Boolean		
equal_part_eategory	are the same	Part Category	Doordan		
equal_part_color	Check whether two colors are	Color, Color	Boolean		
equal_part_color	the same	00101,00101	Doorean		
query_part_analogy	The first PartSet A and the	PartSet,	PartSet		
query_part_analogy			Partset		
	second PartSet B have certain	PartSet, PartSet			
	spatial relationships. We want	ratibet			
	to find the fourth PartSet D				
	so that the third PartSet C and				
	the fourth PartSet D have the				
same relationships.					

Table 4: Part-Level Functions

Function	Description	Input	Output	
equal_integer	Check whether two integers	Integer,	Boolean	
	are equal	Integer		
greater_than	Check whether the first in-	Integer,	Boolean	
	teger is greater than the sec-	Integer		
	ond			
less_than	Check whether the first inte-	Integer,	Boolean	
	ger is smaller than the sec-	Integer		
	ond			
sum	Return the sum of two inte-	Integer,	Integer	
	gers	Integer		
minus	Return the difference be-	Integer,	Integer	
	tween two integers	Integer		
Table 5: Arithmetic Functions				

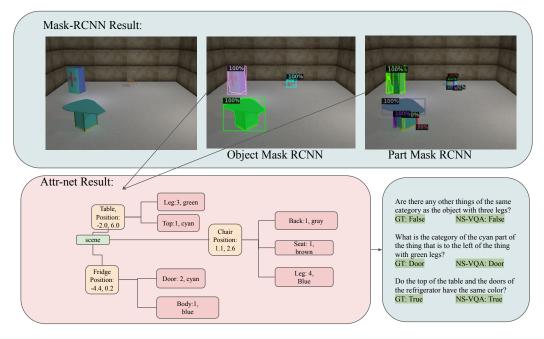
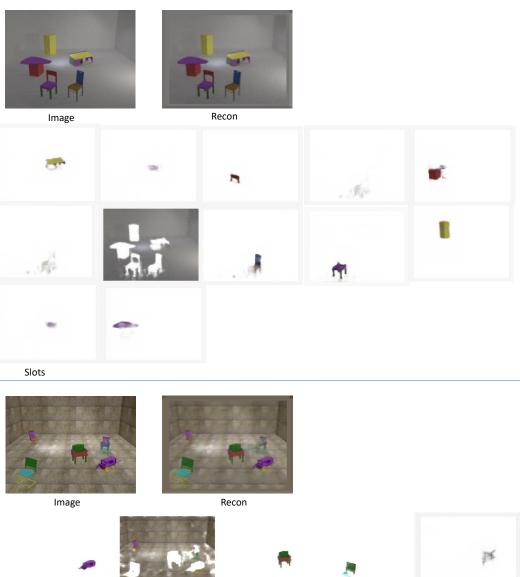
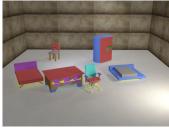



Figure 7: An example of NS-VQA.

attribute network first outputs probabilities suggesting whether the parts can be considered lines or planes. If true, the network outputs a three-dimensional vector, which denotes the parameters of the line/plane equation. If a part proposal is not within the region of an object proposal, we first check whether it's connected to an object proposal, or that the distance between the part proposal and the object proposal is smaller than a threshold. If so, we add the region of the part proposal to the object proposal, treat the part as a part within the region of an object proposal, and predict the attributes of the parts as above. If the part is not within, connected to or close to an object proposal, we first augment the part proposal with a bounding box that is greater than the part proposal and covers the part proposal, to represent the contextual information. The part proposal is then sent to the attribute network to predict its attributes. The part categories are not limited in this case. Then, we group these isolated part proposals if they are connected to or close to each other in a threshold. We take the output probabilities of part categories. We calculate the probabilities of object categories by summing up the maximum probabilities of part categories that belong to the corresponding object categories. We determine the categories of the objects using these probabilities, and then determine the part categories according the object categories and the probabilities of part categories.

In Figure 7, we provide an example of the inputs and outputs of NS-VQA.

Slots



D Unsupervised Part-Centric Rrepresentations

Here we show unsupervised segmentation results provided by Slot Attention[39], which is shown in Figure 8.

Concept

Q: How many things with wheels are there? A: 2 Q-type: count_object

Q: How many legs does the object with Q: How many beds with cyan back are one central support have? A: 5 Q-type: count_part

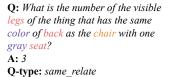
there? A: 2 Q-type: count_object

Q: Are there any objects with two cyan legs? A: Yes Q-type: exist object

of the bed with brown legs? A: Red Q-type: query_part

Q: What is the color of the sleep area Q: What is the category of the thing with legs? A: Table Q-type: query_object

legs? A: Yes Q-type: exist_object refrigerator have? A: 2 Q-type: count_part have? A: 3 Q-type: count_part


Figure 9: Exemplar images and questions on conceptual problems

Examples Е

Randomly chosen exemplar images, questions and answers are shown in Figure 9-12. We categorize the questions using the semantics types of the questions. We also show the sub-type of each question, denoted as Q-type in the figures.

Relation

Q: What is the category of the object with brown legs that is on the right side of the chair with a pedestal? A: Table

Q-type: spatial_relationship

Q: Is there a part in the chair that can be considered a line, and is parallel to the brown part of the refrigerator? A: No Q-type: geometric_relationship

Q: Are the object with purple legs and the object with gray legs of the same category? A: No Q-type: same_relate

Q: What is the category of the green part of the object with four visible legs that is on the left side of the chair with two arm vertical bars? A: Leg bar

Q-type: spatial relationship

Q: *What is the color of the part in the* chair that can be considered a plane, and is perpendicular to the brown part of the refrigerator? A: Yellow Q-type: geometric_relationship

thing that has the same color of back front of the refrigerator? as the bed? A: Brown Q-type: same_relate

Q: What is the color of the legs of the Q: How many things with legs are in A: 5 Q-type: spatial_relationship

Q: Are the body of the refrigerator, and the central support of the chair with *pedestal* of the same color? A: Yes Q-type: same_relate

Q: What is the color of the leg bars of the thing with yellow legs that is to the right of the table with yellow top? A: Red **Q-type:** *spatial_relationship*

Figure 10: Exemplar images and questions on relational problems

Analogy

Q: The thing with five legs has certain positional relation to the object with blue seat. By analogy, how many objects does the bed have the same positional relation to ? A: 2 **Q-type:** *positional analogy*

Q: The cart has certain positional relation to the chair with central support. By analogy, is there an object that the chair with green seat has the same positional relation to? A: Yes Q-type: positional_analogy

Q: The purple part of the table with three gray legs has certain geometric relation to the red part of the table with one brown top. by analogy, the blue part of the refrigerator with cyan *body* has the same geometric to the part of which color in the refrigerator *with purple body?* A: gray

Q-type: geometric analogy

Q: The yellow parts of the chair with gray back have certain geometric relation to the gray part of the refrigerator with green body. By analogy, the brown parts of the chair with green seat have the same geometric relation to a part of what color in the chair with cyan legs? A: Blue

Q-type: geometric analogy

Arithmetic

drawers in the table with cyan top? A: 9 Q-type: sum-minus

Q: What is the sum of the legs in the **Q**: Are there an equal number of doors table with blue top, and the number of in the refrigerator, and leg bars in the chair with cyan seat? A: Yes Q-type: compare-integer

Q: Are there fewer legs in the table with purple top, than drawers in the table with cyan legs? A: No Q-type: compare-integer

Q: What is the number of drawers in the table with cyan legs, subtracted from the number of legs in the table with purple top? A: 2 Q-type: sum-minus

Q: *What is the number of arm vertical* **Q**: *Are there fewer legs in the chair* bars in the chair with brown legs, with gray seat, than legs in the chair subtracted by the number of drawers inwith yellow seat? *the table with cyan top?* A: No

A: 1 Q-type: sum-minus

Figure 11: Exemplar images and questions on analogical and arithmetic problems

Q-type: compare-integer

Physics

Q: Is the chair stable? A: No Q-type: stability

A: To left

Q: *How many objects are stable?* **A:** 1 Q-type: stability

Q: Can moving front makes the cart stable? **Q:** Towards which direction should the chair move to become stable? **A:** no Q-type: possible changes Q-type: possible changes

Q:*Is the table with yellow top stable?* A: No Q-type: stability

Q: Is the bed stable? A: Yes Q-type: stability

Figure 12: Exemplar images and questions on physical problems