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Abstract

EEG-based Brain-Computer Interfaces (BCI) have been widely used in clinical1

and non-clinical research. In this paper, we present a framework to collect a2

large amount of EEG data with easy-to-use experiment setup, using non-invasive,3

wireless, and affordable hardware. Interpretable feedback generated by benchmark4

machine learning algorithms have been provided to the researchers and end-users.5

Two existing datasets are used as case studies for the framework: Read-Write-Type6

(RWT) and Think-Count-Recall (TCR). The goal is to inspire new machine learning7

approaches for decoding behavior from large-scale EEG data. The framework8

of experimental design, data collection, data analysis, feedback generation, and9

community building could pave the way towards a future when everyone can easily10

use BCI systems every day, similar to smartphones nowadays.11

1 Introduction12

Neural interfaces are becoming of increasing interest to industry and having large available datasets13

could be useful for students and researchers to tease out signals from noisy data. Brain Computer14

Interfaces (BCI) have been widely used for both clinical and non-clinical applications (Lotte et al.15

[2018a], Craik et al. [2019]), such as diagnosis of abnormal states, evaluating the effect of the16

treatments, helping patients with motor disabilities to move a mouse or to control a motorized17

wheelchair, mental workload, seizure detection, motor imagery tasks (Devlaminck et al. [2010]), BCI18

based games (Coyle et al. [2013]) and passive BCI. Previous research has reviewed existing datasets19

in the BCI field, such as Schalk et al. [2004], Lotte et al. [2007], Zhang et al. [2020], Roy et al. [2019],20

Miller [2019], Kaya et al. [2018], most of the datasets mentioned are collected in research labs or21

clinical settings with expensive medical equipment and time-consuming setup procedure, under the22

supervision of clinical professionals. The data collection framework we proposed allows non-expert23

participants to run the experiment by themselves at home, whenever they have a small amount of time,24

such as twenty minutes. The visual feedback generated by benchmark machine learning algorithms25

could help them to perform better in the future sessions.26

Considering classic datasets in other domains, such as ImageNet for image classification, or MNIST27

for handwritten digit recognition, more data can be generated directly from the non-expert end users,28

and more general patterns could be recognized based on such large scale data. With the motivation29

to gather EEG data with a cheaper, easier and faster approach, we designed a pilot study towards30

building a large-scale EEG data set, for multi-class classification of user-centered tasks, generated by31

non-expert end-users. Results of classification with the proposed new data and machine models show32

a reasonable accuracy (70% to the random 20%), indicating the potential of this framework.33
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Figure 1: A researcher demonstrating the task "Write", wearing EEG headset.

This is an ongoing project and this ’Thinking1’ repository currently has four datasets: Read-Write-34

Type (RWT, Qu et al. [2020b]), Think-Count-Recall (TCR, Qu et al. [2020a]), Python-Math (Qu et al.35

[2018b]), and GRE-Relax (Qu et al. [2018a]). In this paper, we use the two recent experiments, RWT36

and TCR, as examples to explain the approach. Details about the data collection, including how the37

subjects were recruited under IRB requirements, how long each session was, what kind of visualized38

feedback is provided to the subjects, how many EEG sessions were recorded, data cleaning, feature39

extraction, and research from benchmark algorithms, are in our previous papers, we also attached an40

updated version in the appendix section of this paper to allow readers to replicate these experiments.41

1.1 Read-Write-Type (RWT)42

Previous studies (Bird et al. [2018], Qu et al. [2018a]) demonstrated that EEG signals could success-43

fully distinguish several kinds of cognitive tasks. Such as programming in Python vs. solving Math44

problems; solving Math problems (GRE) vs. solving Reading problems (GRE). These experiments45

focused on distinguishing different cognitive tasks, but not on whether different communication46

modes may also have a distinguishable impact on EEG patterns. The experiment RWT (Qu et al.47

[2020b]) in this data set was designed to test the hypothesis of whether AI based EEG markers48

could distinguish both between two modes of communication: typing vs. writing, and between three49

cognitive states: reading vs. copying vs. answering. The five tasks are described in Figure 2.50

1.2 Think-Count-Recall (TCR)51

Other studies (Lotte et al. [2018a], Lotte [2015], Bird et al. [2018], Qu et al. [2018a], Craik et al.52

[2019]) demonstrated that EEG classification was successfully used to distinguish multiple cognitive53

tasks. In the TCR experiment (Qu et al. [2020a]), we designed these five user-centered tasks as shown54

in Figure 3, abbreviated them as Think (T), Count (C), Recall (R), Breathe (B) and Draw (D). The55

task selection is motivated by human memory experiments such as Kahana et al. [2018].56

2 Methods57

Such datasets are suitable for machine learning due to its high dimensional and noisy nature, similar58

to image recognition problems. There is great potential to provide higher accuracy and more59
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interpretable feedback to both researchers and end-users. For example, in each data point of 1/1060

second, the raw EEG data is a 4 x 5 matrix, which represents four electrodes and five frequency61

bands. Such twenty-dimensional data performs well enough (compare to 64 or 128 electrodes medical62

devices) when applied to mainstream EEG-related machine learning or deep learning algorithms.63

Each session of these experiments are reproducible with twenty minutes of effort for non-experienced64

end-users. These human-in-the-loop experimental designs motivated by (LaRocco et al. [2020], Lotte65

et al. [2018b]), have several advantages. First, the tasks are selected more from the end-users, less66

from the researchers, similar to the smartphone usage situation now. Secondly, the role of the EEG67

coach can make the end-user experience much better. Last but not the least, easy-to-understand user68

feedback could be helpful for the end-user to reduce the noise and focus more on the designed tasks.69

More details in the previous papers and the appendix section of this paper.70

2.1 Experimental Design71

The experimental design is easy to adapt, and the three hundred dollars or less wireless hardware, as72

mentioned in Ienca et al. [2018], makes it affordable to a broader audience. For example, our research73

lab has expanded the experiments from just targeting less than twenty students, to a community of74

more than one hundred students, each of them starts with little or no computer science or neuroscience75

background, and usually, after at most two to three twenty-minute sessions, they can learn to how to76

control the noise level, and achieve the desired experimental goals with high accuracy.77

The sensor hardware research and development have grown rapidly recently (Kübler et al. [2014],78

Tabar and Halici [2016] ), so does the trend of making it more affordable to the non-expert users.79

After comparing several options, such as devices mentioned in Ienca et al. [2018], we chose the Muse80

Headset for our experiments, with an affordable price of less than three hundred for each wireless81

headset. For the design of the tasks, previous research has shown deep learning works well in emotion82

recognition, motor imagery, mental workload, and seizure detection areas (Craik et al. [2019]), we83

tried learning, motor-imagery tasks, sleep, and entertainment tasks. In this study, we focused on the84

learning related tasks college students perform often in their daily lives.85

2.2 Data collection86

Data was collected in non-clinical settings, partly in the reserved classrooms or conference rooms in87

the universities, partly at the participants’ home. The size of the data usually is 15 to 20 subjects,88

five to six sessions for each subject, each sessions varies from five minutes to twenty minutes. For89

example, the TCR (16 subjects) and RWT (14 subjects) experiment each includes six sessions, each90

session is five minutes long. Comparing with existing experiments on cognitive tasks mentioned91

in Craik et al. [2019], Gabard-Durnam et al. [2018], Roy et al. [2019], Pernet et al. [2019], our92

experimental design and data collection is easier, cheaper and faster. With twenty-minute training,93

most participants can generate hours of EEG recording data at home with interpretable feedback.94

The non-invasive, wireless EEG headset usually needs a training session to reduce the noise level.95

The role of EEG coach was created to smooth the learning curve for first time end-users. The96

end-users and EEG coaches are fairly compensated under the IRB requirement. More details such as97

Read (R) Subjects were asked to read a PDF file displayed on the monitor silently, the PDF file is a
computer science textbook on Data Structures (Sierra and Bates [2003]).

Write Copy (WC) Subjects wrote on a blank white paper with a pen, copying the text from the
same textbook PDF file display on the monitor. As shown in Figure 1.

Write Answer (WA) Subjects wrote an essay using a pen on a blank paper, answering the question:
’Why did you choose your major?’

Type Copy (TC) Subjects copied text from the same textbook PDF file, into a text entry box on the
screen, by typing on a keyboard.

Type Answer (TA) Subjects typed their answers to the question ’What is your academic plan for
this semester?’ into a text entry box on the screen.

Figure 2: Tasks in experiment Read-Write-Type (RWT).
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Think (T) Subjects were asked to think of several (six, seven, eight) random objects, these objects
need to be independent of each other. For example, (Sun, Fish, Flower, Table, Student, Car),
is a valid set, but (computer, keyboard, monitor, speaker, phone, TV) is not a valid set.

Count (C) Subjects counted numbers aloud, from 200 towards 0, each time subtracting by 7, e.g.
200, 193, 186, 179, with eyes open, eyes and jaws movement minimized.

Recall (R) Subject recalled the objects they had typed in the Think (T) task, in the correct order, if
possible, and entered them in a similar text entry box with a keyboard.

Breathe (B) Subjects were instructed to breathe deeply with their eyes open. They were asked NOT
to think about any other tasks in this experiment, or anything else except their breath.

Draw (D) Subjects were asked to draw the objects they thought about in the earlier task Think (T),
with a pen, on a blank A4 paper. The objects text they just entered in T was displayed on the
monitor, so they did not need to recall, just focus on drawing.

Figure 3: Tasks in experiment Think-Count-Recall (TCR).

IRB approval and instructions given to the participants are included in the appendix section of this98

paper. Each headset was connected to a mainstream personal computer through Bluetooth. We use99

the software package that comes with the EEG headset (Muse-io and MuseLab) to record the raw100

EEG data to the computers. Then the data was processed and Analyze using machine learning and101

deep learning algorithms. The visualized feedback is provided to the end-users, EEG coaches, and102

researchers to improve the next round of data collection.103

Before the experiment, the EEG coach helps the end-users to understand the IRB requirements and104

make sure they sign the informed consent forms, then explain in detail to the end-users what they are105

expected to see and to do during each step. During each session of the experiments, the EEG coach106

leads the end-users to the experiment website to fill out the pre-experiment survey, then helps the107

end-users to connect the EEG headsets and conduct a test recording for one minute before the official108

EEG recording starts, A time-boxed online survey style guide was then used to give the end-user109

step-by-step prompt during the experiment, the EEG coach is there for any possible questions. After110

the experiment, The EEG coach makes sure the end-user fill out the post-experiment survey and111

help them better understand the visual feedback. Also, the EEG coach keeps track of the notes for112

the entire process and communicates with the researchers regularly to deal with pop-up issues and113

maintain a frequent-asked-question (FAQ) list.114

Figure 4: Data analysis framework.
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2.3 Data analysis framework115

New ways to analyze EEG data have been developed recently, such as Chevalier et al. [2020], Roc116

et al. [2020], Sabbagh et al. [2019], Tu et al. [2019]. In our experiments, as Figure 4 shows, the raw117

EEG data were first visualized to allow researchers to define the threshold to remove the noise, here118

we used the plateau threshold to determine whether a certain time window of signals is considered119

noise. Then we first used unsupervised learning algorithms, such as K-means, to cluster the data120

points, then we visualized the clustering result and made it interpretable to the researchers and121

end-user. For the designed tasks, we then used supervised learning, such as Random Forest or Long122

Short-Term Memory (LSTM) to predict the tasks. For the unknown tasks, we put a marker on the123

visual feedback to the end-user to ask what may happen during that time period. More details about124

these steps are in the appendix section of this paper.125

By Human-In-The-Loop (HITL) it means the researcher, EEG coaches, and end-users and making126

data-driven decisions based on visualized feedback. The researchers bring together the existing127

knowledge about this experiment and help the EEG coaches and end-users to perform better in128

the next session. The EEG coaches guided the end-users to master how to use EEG hardware and129

software necessary to perform the designed tasks. The end-users learn from the researchers and130

the EEG coaches to use the EEG-based on BCI in their daily life as the experiments designed, and131

provide valuable feedback to the researchers to develop new and improved experiments.132

Figure 5: File structure of Our dataset
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2.4 Data format133

Pernet et al. [2019], and Nichols et al. [2017] have presented several recommended practices about134

EEG data formats and sharing. Our data set, as Figure 5 shows, consists of the original MUSE files,135

and CSV files, TXT files after pre-processing. Also, the metadata collected through Qualtrics online136

survey system has been included, as well as the code has been implemented for this dataset. For137

example, for the Read-Write-Type (RWT) experiments, for each subject, each five-minute session,138

there is a MUSE data file size of around 27M, and after pre-processing, the MUSE file is converted139

to a CSV or TXT file for further analysis, with a much smaller size of about 700K. Then there are140

folders of suvery metadata and related code.141

2.5 Machine Learning applications142

In this paper, we introduce a machine learning benchmark for predicting the task humans are engaged143

in from the EEG. We presented what machine learning and deep learning algorithms have been144

applied to these datasets, and suggest several recommended practices for these datasets.145

For the pre-processing part, data visualization is helpful for noise detection. For the multi-class146

classification, ensemble methods, such as random forest, and Recurrent Neural Network (RNN), such147

as Long Short-Term Memory (LSTM) consistently outperformed other classifiers (Qu et al. [2020b]),148

we suggest using them as benchmark algorithms. Building on top of that, we proposed our algorithm,149

Time-Continuity-Voting (TCV, Qu et al. [2020a]), which achieved the highest prediction accuracy for150

these datasets. More details are in the appendix section of this paper.151

2.6 Community Forum and further support152

We established an online forum for the community who works on these datasets, including researchers,153

EEG coaches, end-users, and clinical professionals. Due to our IRB requirements, this forum is154

invitation-only at this time. Through our BCI forum, we connected to three computer science labs,155

two neuroscience labs, two clinical research labs, and two hospitals during the last three years, as156

well as get more than a hundred undergraduate students involved as experiment participants, eight of157

them later became EEG coaches.158

We held discussions on how to improve EEG experimental design and dataset development. Further159

support on how to explore the potential of such an EEG-based BCI system is encouraged based on160

community members’ availability. Also, we are presenting these research papers and this forum to161

more college students in the computer science and Neuroscience courses we lectured each semester.162

Participating in the existing BCI community and bridging our own small EEG-based BCI community163

to a broad network is also an important direction.164

2.7 Availability and Ethical considerations165

To make sure these datasets would be used ethically and responsibly, we adapted several recommended166

practices of sharing BCI data, such as Gabard-Durnam et al. [2018], Pernet et al. [2019]. According167

to our IRB requirement, these data sets are available upon written request, we review the request to168

make sure it is coming from a reputable research institution and the requester is willing to sign a169

Non-Disclosure Agreement. Previous studies have reviewed freely available EEG datasets, such as170

Zhang et al. [2020], Roy et al. [2019], Miller [2019], Kaya et al. [2018], Craik et al. [2019], we are171

amending our IRB to find acceptable ways of data anonymization to share it more freely.172

3 Results173

We develop feedback for different user roles. For example, the figures that compare different end-174

users or different machine learning algorithms are more for the researchers, optional for the end-users.175

Here are some sample feedback figures we provide to our researchers, EEG coaches and end-users.176
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3.1 For Researchers177

For cross-subject comparison, as Figure 6 shows, although there are individual differences, the task178

prediction accuracy is reasonably high. Together with Figure 7, (both figures X-axis is subject id179

ordered by prediction accuracy), we observed the noise and unknown tasks vary across different180

Figure 6: Experiment RWT: task prediction accuracy and data remain.

Figure 7: Experiment RWT: noise, unknown, and known tasks percentage.

7



Figure 8: Diagonal Accuracy

subjects. Thus end-user training is necessary for better controlling the noise and unknown tasks. The181

role of EEG coach is created for this purpose.182

3.2 For End-Users183

Figure 8 shows for subject one in experiment RWT, how the accuracy of each task is predicted over all184

six sessions. This feedback may guide the further task selections. Each individual has a unique task185

set that is easy to be recognized with this EEG-based BCI experimental design and data collection186

framework. Thus it has the potential to be used as personal EEG fingerprint. Figure 9 shows the noise187

Figure 9: Noise, unknown, and known tasks, experiment RWT: subject one, session one.
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and unknown task locations in each session, such feedback is helpful for the end-user to reflect what188

happened around a certain time spot.189

4 Discussion190

The main goal for this paper is to provide a framework of experimental design and data collection to191

gather EEG data through cheap means and non-expert participants. Intepretable feedback generate by192

benchmark machine learning algorithms can speed up this process. Comparing with the traditional193

data collection methods, as mentioned in Craik et al. [2019], Gabard-Durnam et al. [2018], Roy194

et al. [2019], Pernet et al. [2019], our approach is faster and cheaper to gather more EEG data with195

non-expert participants. Our efforts are made toward the future of everyone can use EEG-based BCI196

in their daily life, similar to the current everyday usage of smartphones. Although the limitation197

of sensory accuracy will remain for a while, the research related to the non-invasive BCI shows a198

growing potential to reach out to non-expert end-users.199

The datasets we present are an early exploration of how to map the healthy subjects’ daily activities to200

their personal EEG signal patterns. Based on the currently available sensory hardware, tasks without201

too much moving or talking could be a good start. A unique role of EEG coach could be helpful in202

such experiments to encourage more end-users to get involved in such experiments. The short-term203

goal of these datasets is to inspire new machine learning approaches for decoding behavior from204

EEG.205

4.1 Future Work206

Neural interfaces are becoming of increasing interest to industry and having large available datasets207

could be useful for students and researchers to tease out signals from noisy data. As non-invasive208

neural recordings become ubiquitous, there is a greater need for such algorithms and datasets. We209

will continue to focus on developing a framework to make it easier for non-expert end-users to use210

EEG-based BCI. Our short-term exploration includes developing more specific role sets for the BCI211

research and development framework, with the emphasis on the role of EEG coach and an online212

EEG experience community. The impact of continuous feedback to end-users is also a topic we213

are working on. Also, the idea of step out of the lab to home, starting with encouraging end-users214

to record EEG during tasks of her/his choice as many times as possible at home, is an interesting215

direction we are heading to.216

4.2 Broader Impact217

This approach could contribute to the building of a large-scale EEG dataset using low-cost tools and218

simple experimental settings at home. Our framework could be illuminated to a broader audience219

of other time-serious human sensory data collection. After all, brain signals are just one type of220

sensory health signals, the development of wearable devices are expanding rapidly to provide more221

perspective about human health information from both real-time monitoring and afterward data222

analysis.223

Together with other human sensory data, EEG-based BCI has the potential to significantly change224

the ways of human interaction with the rest of the world, including both other individuals, and all225

the technology devices we developed. The human brain is a type of high-speed neural network, and226

the current AI-enhanced internet is also a high-speed network, how to connect the two high-speed227

networks could be an interesting long-term research direction. Our pilot study of quickly gathering228

large-scale EEG data could be a baby step moving towards this direction.229

5 Conclusion230

In this paper, we present a framework to gather large-scale EEG data through cheap means and231

non-expert participants, including experimental design, data collection, data analysis, and community232

building approaches. Two existing datasets are used as case studies for the framework: Think-Count-233

Recall (TCR) and Read-Write-Type (RWT). This could be a building block towards the future of234

everyone using non-invasive, wireless, and affordable BCI systems every day, similar to current235

smartphone usage for the general non-expert population.236
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A Appendix237

The details of data collection, data analysis, and benchmark machine learning algorithms are in our238

earlier papers (Qu et al. [2020a,b]),we described the details about how to recruit the fourteen (RWT)239

or sixteen (TCR) subjects under IRB requirements, the data collection process, data cleaning and240

feature extraction, and results from benchmark machine learning and deep learning algorithms. We241

also attached an updated version in the appendix section of this paper to allow readers to replicate242

these experiments.243

A.1 Experiment: Read-Write-Type (RWT)244

All subjects first signed an informed consent form. Then, researchers helped them to put on the Muse245

headbands and test the recording. The Subjects then completed an entrance survey on the computer246

and became familiar with the online Qualtrics system used in this experiment, especially the sample247

task switching notice. Next, the Official EEG recording began. A survey in Qualtrics kept track of the248

time and alerted the subjects to change their tasks after every 60 seconds. After subjects completed249

all the five tasks, the Official EEG recording stopped and subjects completed a short exit survey.250

Subjects: Using experiment TCR as an example, sixteen healthy subjects participated the experiment.251

Of those, data from three subjects were excluded from subsequent analysis; one for failing to252

participate in one of the required six sessions, and another because of considerable data loss from one253

of the Muse electrodes, and the third due to a very high level of noise in the electrode recordings.254

Seven males and six females are included in the final data set. Ten of the retained subjects were255

undergraduate students, the other three were graduate students. Eight subjects were computer science256

majors. The average age of the subjects was 20.9.257

Feature Extraction: We used the absolute Band Powers (BP) feature of the Muse headset, it is the258

logarithm of the power spectral density of EEG signals summed over that frequency range. Lotte259

et al. [2018a]. The Muse headsets, are using four dry input electrodes, locations corresponded to sites260

TP9, AF7, AF8, and T10. The Muse EEG recording application automatically filtered out muscle261

artifacts, such as eye blinking. Spectral analysis was performed on-board the Muse device and then262

transmitted at 10 Hz to the EEG recording application on the researcher’s computer. Each of these263

spectral snapshots consists of 20 numeric values – five spectral values for each of the four electrodes.264

Data cleaning: During the EEG recording, some electrodes may have temporarily lost contact with265

the subjects’ scalp. The result was that multiple sequential spectral snapshots from one or more266

electrodes had exactly the same value. When we detected this anomaly, we set that entire spectral267

snapshot of 20 values to 0, while keeping the time-stamped value, even if the anomaly was only268

detected on one of the four electrodes. Such data cleaning action resulted in a loss of 27% of the269

entire data.270

Cross Validation: EEG data point samples, if randomly selected, could be near to each other271

chronologically in both the training set and the testing set. This may cause over-fitting because EEG272

signals changes slowly. To lessen this possible effect, we first adopted the time-wise cross validation273

([Qu et al., 2018b]).274

For each five minute session there are five tasks, we divided each tasks to 10 parts, evenly and275

contiguously, each part has 10% of the data.276

Then we did a 10 fold cross validation first and realized that the first 30% of the data were predicted277

with low accuracy due to a task transition effect. We then cut off these transition times and only used278

the rest (70%) of the data. In each fold, We trained on six of the remaining seven subsets and tested279

on the left-out subset. The results reflect some general patterns.280

Based on that We also did a session-wise cross validation, to see how the classifiers work with the281

data from unseen session.282

A.2 Experiment: Think-Count-Recall (TCR)283

In this experiment, scalp-EEG signals were recorded from sixteen subjects. Each one was tested in284

six sessions, each session is five minutes long, with five tasks, each task is one minute. Tasks were285

10



selected by the subjects together with the researchers, based on frequent tasks in study environments286

for students in their everyday life. Each subject completed six sessions over several weeks.287

Each subject first signed the informed consent form. Then, they put on the Muse headbands and test288

the recording. Subjects then completed an entrance survey. After these preliminaries, Official EEG289

recording began. Subjects were directed by an online data collection system, which kept track of290

time and alerted the subjects to change their tasks after every 60 seconds. After subjects completed291

all the five tasks, the EEG recording stopped, subjects then completed a short exit survey.292

Data cleaning: When collecting EEG data, one or more electrodes may have momentarily lost293

contact with the subjects’ scalp. The result was that multiple sequential spectral snapshots from one294

or more electrodes had exactly the same 32 bit value. When we detected this anomaly, we set that295

entire spectral snapshot of 20 values to 0, while keeping the time-stamped value, even if the anomaly296

was only detected on one electrode. Such cleaning action resulted in a loss of 43% of the entire data.297

This result echoed with other researches facing the same challenge of low signal-to-noise ratio.298

Subjects: Sixteen healthy subjects finished the experiment. Data from four subjects have less than299

35 percent data points left after removing noises. Thus these four subjects were excluded from300

subsequent analysis.301

Six males and six females are included in the final data set. Ten of the twelve retained subjects were302

undergraduate students, the other two were graduate students. Seven subjects were computer science303

majors; the remaining five were math, biology or psychology majors, or had not yet decided on a304

field of concentration. The average age of the subjects was 20.2.305

All twelve subjects completed the six sessions, producing a data set comprising 360 minutes of EEG306

recordings (12 subjects x 6 sessions per subject x 5 minutes per session).307

Feature Extraction and Feature Selection: We used the Band Powers (BP) features, the absolute308

band power for a given frequency range (for instance, alpha, 9-13 Hz) is the logarithm of the power309

spectral density of EEG signals summed over that frequency range. Lotte et al. [2018a]. The Muse310

headsets are equipped with seven dry electrodes that make contact with the subjects’ scalp, three of311

them are reference, the other four are input. The four input electrode locations corresponded to sites312

TP9, AF7, AF8, and T10 [Seeck et al., 2017]. The Muse EEG recording application automatically313

filtered out muscle artifacts, such as eye blinking and jaw movements. The EEG system down-314

sampled sensor signals from 12k Hz to 220 Hz, with 2uV (RMS) noise. Spectral analysis was315

performed on-board the Muse device and then transmitted wirelessly at 10 Hz to the researcher’s316

workstation. Each of these spectral snapshots consists of 20 numeric values – five spectral values for317

each of the four electrodes. This procedure generated a total of 3,000 spectral snapshots per subject318

per session (10 snapshots/second * 300 seconds).319

A.3 Other two experiments320

The other two experiments, Python-Math (Qu et al. [2018b]) and GRE-Relax (Qu et al. [2018a]), are321

using a similar but not so mature approach compare to the newer ones, the details are in our previous322

papers, and we recommend using the new approach exemplified by experiments TCR and RWT in323

this paper.324

A.4 How to pick thresholds325

Detect Noise: Percentage speaking, noise, unknown tasks, and known tasks add up to 100 percent,326

here we use 1 to represent all the three types together, as shown in Equation 1. During the EEG327

data collection, one or more electrodes may have momentarily lost contact with the subjects’ scalp,328

especially the TP9 and TP10 electrodes behind ears. The result was that multiple sequential spectral329

snapshots from one or more electrodes had exactly the same value.330

noise+ unknown+ known = 1 (1)

We applied Human-In-The-Loop method to determine the noise threshold for how long we should331

consider such a drop of signals as noise. As shown in Equation 2, we select the time slots which332
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continue noise length are larger than the noise threshold. The total amount of noise is:333

noise =
∑

N(t > nt) (2)

Detect Unknown Tasks334

After removing the noise through a plateau threshold, we aim to detect the unknown tasks, where335

unknown tasks refer to those mental activities that might not belong to the five known tasks included336

in the experimental design.337

Here we use experiment TCR as an example, first we implemented unsupervised learning (K-means)338

to detect the clusters.339

We treat each 1/10 second of EEG signal as a 20-dimension data point, and use K-means to find340

the clusters based on the least squared Euclidean distance. We assume each cluster may represent a341

certain task, either one of the five known tasks, or a new unknown task not included in the original342

experimental design. We use subject 1 as an example. In subject one, 3000 data points are recorded343

in each one of the six five-minute sessions (30 minutes and 18,000 data points for six sessions in344

total), and the k-means algorithm is looking for clusters in these 18,000 data points. The larger the345

number of clusters (K), usually the fewer data points in each cluster.346

The unknown threshold is defined as the percentage of data points in a certain K-means cluster that347

represent a known task. For example, when the unknown threshold is 0.5, that means if the number348

of any one of the five known tasks is more than fifty percent of the total data points, this cluster is349

considered to be this known task of the highest percentage. If none of the five known tasks reach this350

0.5 unknown threshold, we consider this cluster an unknown task because none of the known tasks is351

dominant in this cluster. Time-wise speaking, that means the data points in this cluster come from352

different designed known task periods, so they may not belong to any of the known tasks.353

Here we can see the prediction accuracy of the known tasks is negatively correlated to the data remain354

of the known tasks. In other words, with more data points have been recognized as unknown tasks,355

the prediction accuracy will be higher just using the cleaner version of data points that remain as the356

known tasks. This pattern is consistent across all of the sixteen subjects. Result with higher accuracy357

or higher remain can be generated according to demand by using other pairs of K-unknown-threshold358

combination.359

The lower bounds are set as 0.65 for accuracy and 0.34 for data remain. For the accuracy lower360

bound, accuracy is around 0.65 when only the noise has been removed and no data points have been361

labeled as unknown tasks, making only accuracy higher than 0.65 has the value to compare. For362

the data remain lower bound, 0.34 is about one-third of the data points remain, that is to say, less363

than two-third of data points have been labeled as unknown tasks. Although the prediction accuracy364

is as high as 86 percent and even higher with data remain less than 0.34, it does not seem to be365

representative enough for this entire data set.366

Figure 10: Code Example
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Figure 11: Trade-off of task prediction accuracy and data remain

Trade off between accuracy and data remain367

For interpretability, we balance between chasing for higher accuracy and retain a meaningful amount368

of data. As Figure 11 shows, for subject one in TCR experiment, we selected thresholds to balance the369

prediction accuracy and data remain for the known tasks. There are five tasks in this TCR experiment370

example, so the random is 20 percent. The task prediction accuracy can reach 87 percent if the data371

remain is just 37 percent. While the accuracy remains 74 percent when the data remain is 94 percent.372

Figure 10 is the related code to generate Figure 11, X-axis is ordered by task prediction accuracy373

decreased, thus we can see the trade-off trend. The run time for this step is several seconds on a374

non-special personal computer. Then the EEG coach and end-users can brainstorm ways to minimize375

the noise and unknown tasks in future sessions.376
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