
A Computations

We start the proofs by collecting some preliminary results. In the following, we will consider the
SDE

dxt = f(x, t) dt+G(t) dwt (7)

and the interpolation of the discretization of an approximation

dzt = f̂(zt− , t) dt+G(t) dwt (8)

when t ≥ t−. Let Pt and Qt denote the law of xt and zt, respectively. We will take t− = kh and
t ∈ [kh, (k + 1)h). We will assume that f, f̂ , G are continuous and the functions f(·, t), f̂(·, t) are
uniformly Lipschitz for each t ∈ [kh, (k + 1)h].

In this section, we will make some computations that will be used in both Sections B and C. First,
we derive how the density evolves in time.

Lemma A.1. Let Qt denote the law of the interpolated process (8). Then

∂qt(z)

∂t
= ∇ ·

[
−qt(z)E

[
f̂(zt− , t)|zt = z

]
+
G(t)G(t)⊤

2
∇qt(z)

]
.

Proof. Let qt|t− denote the distribution of zt conditioned on zt− . Then the Fokker-Planck equation
gives

∂qt|t−(z|zt−)
∂t

= −∇qt|t−(z|zt−) · [f̂(zt− , t)] +
G(t)G(t)⊤

2
∆qt|t−(z|zt−)

Taking expectation with respect to zt− we get

∂qt(z)

∂t
= ∇ ·

∫
−qt|t−(z)f̂(y, t)qt−(y)dy +∇ ·

[
G(t)G(t)⊤

2
∇
∫
qt|t−(z|y)qt−(y)dy

]
= ∇ · qt(z)

∫ [
−f̂(y, t)qk|t(y|z)dy +

G(t)G(t)⊤

2
∇
∫
qt−|t(y|z)qt(z)dy

]
.

Note that for fixed z,
∫
qt−|t(y|z)dy = 1. Hence

∂qt(z)

∂t
= ∇ ·

[
−qt(z)E

[
f̂(zt− , t)|zt = z

]
+
G(t)G(t)⊤

2
∇qt(z)

]
.

We now use Lemma A.1 to compute how the χ2-divergence between the approximate and exact
densities changes. The following generalizes the calculation of [EHZ21] in the case where xt is a
non-stationary stochastic process. For simplicity of notation, from now on, we wil consider the case
G(t) being a scalar.

Lemma A.2. Let Pt and Qt be the laws of (7) and (8) for G(t) = g(t)Id. Then

∂

∂t
χ2(qt||pt) = −g(t)2Ept

(
qt
pt

)
+ 2E

[〈
f̂(zt− , t)− f(zt, t),∇

qt(zt)

pt(zt)

〉]
.

Proof. The Fokker-Planck equation gives

∂pt(x)

∂t
= ∇ ·

[
−f(x, t)pt(x) +

g(t)2

2
∇pt(x)

]
.

We have

d

dt
χ2(qt||pt) =

d

dt

∫
qt(x)

2

pt(x)
dx =

∫ [
2
∂qt(x)

∂t

qt(x)

pt(x)
− ∂pt(x)

∂t

qt(x)
2

pt(x)2

]
dx.
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For the first term, by Lemma A.1,

2

∫
∂qt(x)

∂t

qt(x)

pt(x)
dx = 2

∫
∇ ·
[
−qt(x)E

[
f̂(z0, t)|zt = x

]
+
g(t)2

2
∇qt(x)

]
· qt(x)
pt(x)

dx

= 2

∫
qt(x)

〈
E
[
f̂(z0, t)|zt = x

]
,∇ qt(x)

pt(x)

〉
dx− g(t)2

∫ 〈
∇qt(x),∇

qt(x)

pt(x)

〉
dx.

(9)

For the second term, using integration by parts,

−
∫
∂pt(x)

∂t

qt(x)
2

pt(x)2
dx =

∫
∇ ·
[
f(x, t)pt(x)−

g(t)2

2
∇pt(x)

]
· qt(x)

2

pt(x)2
dx

=

∫
−f(x, t)pt(x)∇

qt(x)
2

pt(x)2
+
g(t)2

2

〈
∇pt(x),∇

qt(x)
2

pt(x)2

〉
dx

= −2
∫
qt(x)

〈
f(x, t),∇ qt(x)

pt(x)

〉
dx

+ g(t)2
∫

qt(x)

pt(x)

〈
∇pt(x),∇

qt(x)

pt(x)

〉
dx. (10)

Note that∫ 〈
∇qt(x),∇

qt(x)

pt(x)

〉
− qt(x)

pt(x)

〈
∇pt(x),∇

qt(x)

pt(x)

〉
=

∫ 〈
∇ qt(x)
pt(x)

,∇ qt(x)
pt(x)

〉
qt(x) dx = Ept

(
qt
pt

)
.

Combining (9) and (10),

d

dt
χ2(qt||pt) = −g(t)2Ept

(
qt
pt

)
+ 2

∫
qt(x)

〈
E
[
f̂(zt− , t)− f(x, t)|zt = x

]
,∇ qt(x)

pt(x)

〉
dx

= −g(t)2Ept
(
qt
pt

)
+ 2E

[〈
f̂(zt− , t)− f(zt, t),∇

qt(zt)

pt(zt)

〉]
.

Finally, we will make good use of the following lemma to bound the second term in Lemma A.2.

Lemma A.3 (cf. [EHZ21, Lemma 1]). Let ϕt(x) = qt(x)
pt(x)

and ψt(x) = ϕt(x)/Eptϕ2t . For any c
and any Rd-valued random variable u, we have

E
[〈
u,∇ qt(zt)

pt(zt)

〉]
≤ E

[
∥u∥

∥∥∥∥∇ qt(zt)pt(zt)

∥∥∥∥] ≤ C · Eptϕ2t · E [∥u∥2 ψt(zt)]+ 1

4C
Ept

(
qt
pt

)
.

Proof. Note that Eψt(zt) = 1 and the normalizing factor is Eptϕ2t = χ2(qt||pt) + 1. By Young’s
inequality,

E
[〈
u,∇ qt(zt)

pt(zt)

〉]
= E

[〈
u

√
qt(zt)

pt(zt)
,

√
pt(zt)

qt(zt)
∇ qt(zt)
pt(zt)

〉]

≤ CE
[
∥u∥2 qt(zt)

pt(zt)

]
+

1

4C
Ept

[∥∥∥∥∇ qt(x)pt(x)

∥∥∥∥2
]

= CE
[
∥u∥2 qt(zt)

pt(zt)

]
+

1

4C
Ept

(
qt
pt

)
.

B Analysis for LMC

Let p be the probability density we wish to sample from. Suppose that we have an estimate s of
the score∇ ln p. Our main theorem says that if the L2 error Ep ∥∇ ln p− s∥2 is small enough, then
running LMC with s for an appropriate time results in a density that is close in TV distance to a
density that is close in χ2-divergence to p. The following is a more precise version of Theorem 2.1.
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Theorem B.1 (LMC with L2-accurate score estimate). Let p : Rd → R be a probability density
satisfying Assumption 1 with L ≥ 1 and s : Rd → Rd be a score estimate satisfying Assump-
tion 2(2). Consider the accuracy requirement in TV and χ2: 0 < εTV < 1, 0 < εχ < 1, and
suppose furthermore the starting distribution satisfies χ2(p0||p) ≤ K2

χ. Then if

ε ≤
εTVε

3
χ

174080
√
5dL2C

5/2
LS (CT ln(2Kχ/ε2χ) ∨ 2Kχ)

,

then running (LMC-SE) with score estimate s and step size h =
ε2χ

2720dL2CLS
for any time T ∈

[Tmin, CTTmin], where Tmin = 4CLS ln
(

2Kχ

ε2χ

)
, results in a distribution pT such that pT is εTV-far

in TV distance from a distribution pT , where pT satisfies χ2(pT ||p) ≤ ε2χ. In particular, taking
εχ = εTV, we have the error guarantee that TV(pT , p) = 2εTV.

The main difficulty is that the stationary distribution of LMC using the score estimate may be arbi-
trarily far from p, even if the L2 error of the score estimate is bounded. (See Section D.) Thus, a
long-time convergence result does not hold, and an upper bound on T is required, as in the theorem
statement.

We instead proceed by showing that conditioned on not hitting a bad set, if we run LMC using s,
the χ2-divergence to the stationary distribution will decrease. This means that the closeness of the
overall distribution (in TV distance, say) will decrease in the short term, despite it will increase in
the long term, as the probability of hitting the bad set increases. This does not contradict the fact
that the stationary distribution is different from p. By running for a moderate amount of time (just
enough for mixing), we can ensure that the probability of hitting the bad set is small, so that the
resulting distribution is close to p. Note that we state the theorem with a CT parameter to allow a
range of times that we can run LMC for.

More precisely, we prove Theorem B.1 in two steps.

LMC under L∞ gradient error (Section B.1, Theorem 4.2). First, consider a simpler problem:
proving a bound for χ2 divergence for LMC with score estimate s, when ∥s−∇ ln p∥ is bounded
everywhere, not just on average. For this, we follow the argument in [Che+21] for showing con-
vergence of LMC in Rényi divergence; this also gives a bound in χ2-divergence. We define an
interpolation of the discrete process and derive a upper bound for the derivative of Rényi diver-
gence, ∂tRq(qt||p), using the log-Sobolev inequality for p. In the original proof, the error comes
from the discretization error; here we have an additional error term coming from an inaccurate gra-
dient, which is bounded by assumption. Note that a L2 bound on ∇f − s is insufficient to give an
upper bound, as we need to bound Eqtψt

[∥∇f − s∥2] for a different measure qtψt that we do not
have good control over. An L∞ bound works regardless of the measure.

Defining a bad set and bounding the hitting time (Section B.2). The idea is now to reduce
to the case of L∞ error by defining the “bad set” B to be the set where ∥s−∇f∥ ≥ ε1, where
ε ≪ ε1 ≪ 1. This set has small measure by Chebyshev’s inequality. Away from the bad set,
Theorem 4.2 applies; it then suffices to bound the probability of hitting B. Technically, we define
a coupling with a hypothetical process where the L∞ error is always bounded, and note that the
processes disagree exactly when it hits B; this is the source of the TV error.

We consider the probability of being in B at times 0, h, 2h, . . .. we note that Theorem B.1 bounds
the χ2-divergence of this hypothetical process Xt at time t to p. If the distribution were actually
p, then the probability Xt ∈ B′ is exactly p(B′); we expect the probability to be small even if the
distribution is close to p. Indeed, by Cauchy-Schwarz, we can bound the probabilityX ∈ B in terms
of P (B) and χ2(qt||p); this bound is given in Theorem 4.1. Note that the eventual bound depends
on χ2(qt||p), so we have to assume a warm start, that is, a reasonable bound on χ2(q0||p).

B.1 LMC under L∞ gradient error

The following gives a long-time convergence bound for LMC with inaccurate gradient, with error
bounded in L∞; this may be of independent interest.
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Theorem 4.2 (LMC under L∞ bound on gradient error). Let p : Rd → R be a probability density
satisfying Assumption 1(1, 2) and s : Rd → Rd be a score estimate s with error bounded in L∞:
for some ε1 ≤

√
1

48CLS
,

∥∇ ln p− s∥∞ = max
x∈Rd

∥∇ ln p(x)− s(x)∥] ≤ ε1.

Let N ∈ N0 and 0 < h ≤ 1
4392dCLSL2 , and assume L ≥ 1. Let qnh denote the nth iterate of LMC

with step size h score estimate s. Then

χ2(q(k+1)h||p) ≤ exp

(
− h

4CLS

)
χ2(qkh||p) + 170dL2h2 + 5ε21h

and

χ2(qNh||p) ≤ exp

(
− Nh

4CLS

)
χ2(q0||p) + 680dL2hCLS + 20ε21CLS ≤ exp

(
− Nh

4CLS

)
χ2(q0||p) + 1

Following [Che+21], convergence in Rényi divergence can also be derived; we only consider χ2-
divergence because we will need a warm start in χ2-divergence for our application. Note that by
letting N →∞ and h→ 0, we obtain the following.
Corollary B.2. Keep the assumptions in Theorem 4.2. The stationary distribution q of Langevin
diffusion with score estimate s satisfies

χ2(q||p) ≤ 20CLSε
2
1.

Proof of Theorem 4.2. We follow the proof of [Che+21, Theorem 4], except that we work with the
χ2 divergence directly, rather than the Rényi divergence, and have an extra term from the inaccurate
gradient (17). Given t ≥ 0, let t− = h

⌊
t
h

⌋
. Define the interpolated process by

dzt = s(zt−) dt+
√
2 dwt, (11)

and let qt denote the distribution of Xt at time t, when X0 ∼ q0.

By Lemma A.2,

∂

∂t
χ2(qt||p) = −2Ep

(
qt
p

)
+ 2E

[〈
s(zt−)−∇ ln p(zt),∇

qt(zt)

p(zt)

〉]
. (12)

By the proof of Theorem 4 in [Che+21],∥∥∇ ln p(xt)−∇ ln p(xt−)
∥∥2 ≤ 9L2(t− t−)2 ∥∇ ln p(xt)∥2 + 6L2

∥∥Bt −Bt−∥∥2 .
Then∥∥s(zt−)−∇ ln p(zt)

∥∥2 ≤ 2
∥∥∇ ln p(zt−)−∇ ln p(zt)

∥∥2 + 2
∥∥s(zt−)−∇ ln p(zt−)

∥∥2
≤ 18L2(t− t−)2 ∥∇ ln p(zt)∥2 + 12L2

∥∥Bt −Bt−∥∥2 + 2ε21. (13)

Let ϕt := qt/p and ψt := ϕt

Ep(ϕ2
t )

. By Lemma A.3,

2E
[〈
s(zt−)−∇ ln p(zt),∇

qt(zt)

p(zt)

〉]
≤ 2Epϕ2t · E

[∥∥s(zt−)−∇ ln p(zt)
∥∥2 ψt(zt)]+ 1

2
Ep

(
qt
p

)
≤ A1 +A2 +A3 +

1

2
Ep(ϕt) (14)

where A1, A2, A3 are obtained by substituting in the 3 terms in (13), and given in (15), (16), and
(17). Let V (x) = − ln p(x). We consider each term in turn.

A1 : = 36L2(t− t−)2Epϕ2t · E
[
∥∇V (zt)∥2 ψt(zt)

]
(15)

≤ 36L2(t− t−)2Epϕ2t ·
(
4Ep(ϕt)

Epϕ2t
+ 2dL

)
by [Che+21, Lemma 16]

≤ 1

2
Ep(ϕt) + 72dL3(t− t−)2(χ2(qt||p) + 1)
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when h2 ≤ 1
288L2 . By [Che+21, p. 15]

A2 : = 24L2Epϕ2t · E
[∥∥Bt −Bt−∥∥2 ψt(zt)] (16)

≤ 24L2Epϕ2t ·
(
14dL2(t− t−) + 32hCLS

Ep(ϕt)

Epϕ2t

)
≤ 336dL2(t− t−)(χ2(qt||p) + 1) +

1

2
Ep(ϕt)

when h ≤ 1
1536L2CLS

. Finally,

A3 : = 4ε21Epϕ2t = 4ε21(χ
2(qt||p) + 1). (17)

Combining (12), (14), (15), (16), and (17) gives

∂

∂t
χ2(qt||p) ≤ −

1

2
Ep(ϕt) + (χ2(qt||p) + 1)(72dL3(t− t−)2 + 336dL2(t− t−) + 4ε21)

≤ − 1

2CLS
χ2(qt||p) + (χ2(qt||p) + 1)(72dL3(t− t−)2 + 336L2d(t− t−) + 4ε21)

≤ − 1

4CLS
χ2(qt||p) + (72dL3(t− t−)2 + 336dL2(t− t−) + 4ε21)

if h ≤
(

1
12·72dL3CLS

)1/2
∧ 1

12·336dCLS
and ε1 ≤

(
1

48CLS

)1/2
. Then for t ∈ [kh, (k + 1)h),

∂

∂t

(
χ2(qt||p) exp

(
t− t−
4CLS

))
= exp

(
t− t−
4CLS

)
(72dL3(t− t−)2 + 336dL2(t− t−) + 4ε21)

≤ 73dL3(t− t−)2 + 337dL2(t− t−) + 5ε21.

Integrating over t ∈ [kh, (k + 1)h) gives

χ2(q(k+1)h||p) ≤ exp

(
− h

4CLS

)
χ2(qkh||p) +

73

3
dL3h3 +

337

2
dL2h2 + 5ε21h

≤ exp

(
− h

4CLS

)
χ2(qkh||p) + 170dL2h2 + 5ε21h

using h ≤ 1
12

√
2L

. Unfolding the recurrence and summing the geometric series gives

χ2(qkh||p) ≤ exp

(
− kh

4CLS

)
χ2(q0||p) + 680dL2hCLS + 20ε21CLS

≤ exp

(
− kh

4CLS

)
χ2(q0||p) + 1

when h ≤ 1
1360dL2CLS

and ε21 ≤ 1
40CLS

. We can check that the given condition on h and the fact that
LCLS ≥ 1 (Lemma E.5) imply all the required inequalities on h.

B.2 Proof of Theorem B.1

Proof of Theorem B.1. We first define the bad set where the error in the score estimate is large,

B : = {∥∇ ln p(x)− s(x)∥ > ε1}

for some ε1 to be chosen.

Given t ≥ 0, let t− = h
⌊
t
h

⌋
. Given a bad set B, define the interpolated process by

dzt = b(zt−) dt+
√
2 dwt, (18)

where b(z) =
{
s(z), z ̸∈ B
∇ ln p(z), z ∈ B .
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In other words, run LMC using the score estimate as long as the point is in the good set at the previ-
ous discretization step, and otherwise use the actual gradient ∇ ln p. Let qt denote the distribution
of zt when z0 ∼ q0; note that qnh is the distribution resulting from running LMC with estimate b
for n steps and step size h. Note that this auxiliary process is defined only for purposes of analysis;
it cannot be used for practical algorithm as we do not have access to∇f .

We can couple this process with LMC using s so that as long as Xt does not hit B, the processes
agree, thus satisfying condition 1 of Theorem 4.1.

Then by Chebyshev’s inequality,

P (B) ≤
(
ε

ε1

)2

=: δ.

Let T = Nh. Then by Theorem 4.2,

χ2(q̃kh||p) ≤ exp

(
− kh

4CLS

)
χ2(q0||p) + 680dL2hCLS + 20ε21CLS ≤ exp

(
− kh

4CLS

)
χ2(q0||p) + 1.

For this to be bounded by ε2χ, it suffices for the terms to be bounded by
ε2χ
2 ,

ε2χ
4 ,

ε2χ
4 ; this is implied

by

T ≥ 4CLS ln

(
2Kχ

ε2χ

)
=: Tmin

h =
ε2χ

4392dL2CLS

ε1 =
εχ

4
√
5CLS

.

(We choose h so that the condition in Theorem 4.2 is satisfied; note εχ ≤ 1.) By Theorem 4.1,

TV(qNh, qNh) ≤
N−1∑
k=0

(1 + χ2(qkh||p))1/2P (B)1/2

≤

(
N−1∑
k=0

exp

(
− kh

8CLS

)
χ2(q0||p)1/2 + 2

)
δ1/2

≤

(( ∞∑
k=0

exp

(
− kh

8CLS

)
Kχ

)
+ 2N

)
ε

ε1

≤ ε

ε1

(
16CLS

h
Kχ + 2N

)
.

In order for this to be ≤ εTV, it suffices for

ε ≤ ε1εTV

(
1

4N
∧ h

32CLSKχ

)
.

Supposing that we run for time T where Tmin ≤ T ≤ CTTmin, we have that N = T
h ≤

CTTmin

h .
Thus it suffices for

ε ≤ ε1εTV

(
h

4CTTmin
∧ h

32CLSKχ

)
=

εχ

4
√
5CLS

· εTV ·
ε2χ

2720dL2CLS

(
1

16CTCLS ln(2Kχ/ε2χ)
∧ 1

32CLSKχ

)
=

εTVε
3
χ

174080
√
5dL2C

5/2
LS (CT ln(2Kχ/ε2χ) ∨ 2Kχ)

.
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B.3 Proof of Theorem 2.2

We restate the theorem for convenience.

Theorem 2.2 (Annealed LMC with L2-accurate score estimate). Let p : Rd → R be a probability
density satisfying Assumption 1 for M1 = O(d), and let pσ2 := p ∗ φσ2 . Suppose furthermore that
∇ ln pσ2 is L-Lipschitz for every σ ≥ 0. Given σmin > 0, there exists a sequence σmin = σ1 <

· · · < σM with M = O
(√

d log
(
dCLS
σ2
min

))
such that for each m, if∥∥∇ ln(pσ2

m
)− s(·, σ2

m)
∥∥2
L2(pσ2

m
)
= Epσ2

m
[
∥∥∇ ln pσ2

m
(x)− s(x, σ2

m)
∥∥2] ≤ ε2.

with ε := Õ

(
ε4.5TV

d3.25L2C2.5
LS

)
(3)

then x(1) is a sample from a distribution q such that TV(q, pσ2
1
) ≤ εTV.

Proof. We choose

hM = · · · = h2 = Θ

(
1

dL2CLS

)
h1 = Θ

(
dL2CLS

ε2TV

)
TM−1 = · · · = T2 = Θ

(
CLS ln

(
M

εTV

))
T1 = Θ

(
CLS ln

(
1

εTV

))
,

and TM = 0, Nm = Tm/h.

Choose the sequence σ2
min = σ2

1 < · · · < σ2
M to be geometric with ratio 1 + Θ

(
1√
d

)
. Note that

χ2(N(0, σ2
2Id)||N(0, σ2

1Id)) =
σd1
σ2d
2

(2σ−2
2 − σ

−2
1 )−d/2 − 1 =

(
σ2
2

σ2
1

)−d/2(
2−

(
σ2
σ1

)2
)− d

2

.

For σ2
2 = (1 + ε)σ2

1 , this equals (1 + ε)−d/2(1 − ε)−d/2 = (1 − ε2)−d/2 − 1. For ε = Θ
(

1√
d

)
,

this is d · O
(
1
d

)
= O(1). Hence, the χ2-divergence between successive distributions pσ2

m
is O(1).

Choosing σ2
M = Ω(d(M1 + CLS)) ensures we have a warm start for the highest noise level by

Lemma E.9: χ2(pprior||pσ2
M
) = O(1). This uses O

(√
d log

(
dCLS
σ2
min

))
noise levels.

Write pm = pσ2
m

for short. Let qm be the distribution of the final sample x(m). We show by
downwards induction on m that there is qm such that

TV(qm, qm) ≤ (M + 1)−m
M + 1

εTV

χ2(qm||pm) ≤
(

εTV

4(M + 1)

)2

.

For m = M , this follows from the assumption on ε and Theorem 2.1 with Kχ = O(1) (given by
the warm start).

Fixm < M and suppose it holds form+1. We use the closeness between qm+1 and pm+1 combined
with χ2(pm+1||pm) = O(1) to obtain compute how close qm+1 and pm are. Because the triangle
inequality does not hold for χ2, we will incur an extra TV error.

Let qm,m+1 be the distribution of the final sample if x(m+1)
0 ∼ qm. We have TV(qm+1, qm,m+1) ≤

TV(qm, qm) ≤ (M+1)−m
M+1 εTV.

By Markov’s inequality, when χ2(pm+1||pm) ≤ 1,

Ppm+1

(
pm+1

pm
≥ 8(M + 1)

εTV

)
≤ χ2(pm+1||pm) + 1

8(M + 1)/εTV
≤ εTV

4(M + 1)
.
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Let qm+1,m = 1{
pm+1
pm

≤ 8(M+1)
εTV

}qm+1

/∫{
pm+1
pm

≤ 8(M+1)
εTV

} qm+1. Note that (using

TV(qm+1, pm+1) ≤
√
χ2(qm+1||pm+1) ≤ εTV

4(M+1) )

Pqm+1

(
pm+1

pm
≥ 8(M + 1)

εTV

)
≤ Ppm+1

(
pm+1

pm
≥ 8(M + 1)

εTV

)
+TV(qm+1, pm+1)

≤ εTV

4(M + 1)
+

εTV

4(M + 1)
≤ 1

2
. (19)

so qm+1,m ≤ 2qm+1 and

χ2(qm+1,m||pm) + 1 ≤ 2(χ2(qm+1||pm) + 1)

=

∫
{

pm+1
pm

≤ 8(M+1)
εTV

} qm+1(x)
2

pm+1(x)2
· pm+1(x)

pm(x)
pm+1(x) dx

≤ 8(M + 1)

εTV
(χ2(qm+1||pm+1) + 1) ≤ 16(M + 1)

εTV
.

Let q′m+1,m be the distribution of x(m)
Nm

when x(m)
0 ∼ qm+1,m. Then by assumption on ε (3) and

Theorem 2.1 (with Kχ = 4
√

M+1
εTV

, εχ = εTV

4(M+1) , and εTV ← εTV

2(M+1) ), there is qm such that

TV(q′m,m+1, qm) ≤ εTV

2(M+1) and χ2(qm||pm) ≤ εTV

4(M+1) . It remains to bound

TV(qm, qm) ≤ TV(qm, q
′
m,m+1) + TV(q′m,m+1, qm)

≤ TV(qm+1, qm,m+1) +
εTV

2(M + 1)

≤ TV(qm+1, qm+1) + TV(qm+1, qm+1,m) +
εTV

2(M + 1)

≤ (M + 1)− (m+ 1)

M + 1
εTV + Pqm+1

(
pm+1

pm
≥ 8(M + 1)

εTV

)
+

εTV

2(M + 1)

≤ (M + 1)− (m+ 1)

M + 1
εTV +

εTV

2(M + 1)
+

εTV

2(M + 1)
=

(M + 1)−m
M + 1

εTV,

where we use (19) in the last line. This finishes the induction step.

Finally, the theorem follows by taking m = 1 and noting

TV(q1, p1) ≤ TV(q1, q1) + TV(q1, p1)

≤ TV(q1, q1) +
√
χ2(q1||p1) ≤

MεTV

M + 1
+

εTV

4(M + 1)
≤ εTV.

C Analysis for SGM based on reverse SDE’s

In this section, we analyze score-based generative models based on reverse SDE’s. In Section C.2,
we prove convergence of the predictor algorithm under L∞-accurate score estimate (Theorem 4.3,
restated as C.1) using lemmas proved in Section C.3, C.4, C.5, and C.6. In Section C.7, we prove
convergence of the predictor algorithm under L2-accurate score estimate (Theorem 3.1, restated
as C.16). In Section C.8, we prove convergence of the predictor-corrector algorithm (Theorem 3.2).

C.1 Discretization and Score Estimation

With a change of variable in (4), we define the sampling process xt on [0, T ] by

dxt = [−f(xt, T − t) + g(T − t)2∇ ln p̃T−t(xt)] dt+ g(T − t) dwt, x0 ∼ p̃T .
Denoting the distribution of xt by pt and running the process from 0 to T , we will exactly obtain
pT = p̃0, which is the data distribution. In practice, we need to discretize this process and replace
the score function ∇ ln p̃T−t with the estimated score s. With a general Euler-Maruyama method,
we would obtain {zk}Nk=0 defined by

z(k+1)h = zkh − h · [f(zkh, T − kh)− g(T − kh)2s(zkh, T − kh)] +
√
h · g(T − kh)ηk+1, (20)
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where h = T/N is the step size and ηk is a sequence of independent Gaussian random vectors. As
we run (20) from 0 to N with h small enough, we should expect that the distribution of zT is close
to that of xT . However, in both SMLD or DDPM models, for fixed zk, the integration∫ (k+1)h

kh

f(zkh, T − t) dt and s(zkh, T − kh) ·
∫ (k+1)h

kh

g(T − t)2 dt

can be exactly computed, as can the diffusion term. Therefore, we can consider the following process
zt as an “interpolation” of (20):

dzt = [−f(zkh, T − t) + g(T − t)2s(zkh, T − kh)] dt+ g(T − t) dwt, t ∈ [kh, (k + 1)h].
(21)

Note that by running this process instead, we can reduce the discretization error. Now if we denote
the distribution of zt by qt, with q0 ≈ p0, we can expect that qT is close to pT . Here the estimated
score s satisfies for all x

∥s(x, T − kh)−∇ ln p̃T−kh(x)∥ ≤ εkh, k = 0, 1, . . . , N. (22)

Observe that in either SMLD or DDPM, the function g(t)2 is Lipschitz on [0, T ]. So in the following
sections, we will assume that g(t)2 is Lg-Lipschitz on [0, T ].

C.2 Predictor

In this section, we present the main result (Theorem C.1) on the one-step error of the predictor in χ2-
divergence, which can be obtained by directly applying the Gronwall’s inequality to the differential
inequality derived in Lemma C.3. Note that Theorem C.1 is a more precise version of Theorem 4.3;
see the remark following the theorem.

Theorem C.1. With the setting in Section C.1, assume g is non-decreasing and let

0 < h ≤ min
kh≤t≤(k+1)h

1

g(T − kh)2(28L2 + 10Ct + Ept ∥x∥
2
+ 64Ct,L + 128Cd,L + 360L2

s(R̃t + 2CtRd))

where Ct is the log-Sobolev constant of pt, bounded in Lemma E.7. Suppose that ∇ ln pt is L-
Lipschitz for all t ∈ [kh, (k + 1)h], s(·, kh) is Ls-Lipschitz, L,Ls ≥ 1, and εkh is such that (22)
holds. Then

χ2(q(k+1)h||p(k+1)h) ≤

[
χ2(qkh||pkh) +

∫ (k+1)h

kh

Ct,kh dt

]
e
∫ (k+1)h
kh (− 1

8Ct
+8ε2kh)g(T−t)2 dt

Here,

Ct,kh =
[
8ε2kh + E · (t− kh)g(T − kh)2

]
g(T − t)2

and

E = 9(4L2
s + 1) + 8Cd,L

Ct,L =

{
32L2 in SMLD,
(88C2

t + 400)L2 in DDPM,

Cd,L =

{
76L2d in SMLD,
6 + 94L2d in DDPM ≤ 100L2d

R̃t = 9(Ct + 1)

Rd = 300d+ 12

are defined in (24), (27), (28), (30) and (31), respectively.

Proof. The theorem follows from applying Gronwall’s inequality to the result of Lemma C.3.

Remark. Note that in DDPM, E = O(L2
s + L2d). Therefore, when g ≡ 1, Ct,kh = O(ε21 + (L2

s +
L2d)h), where we denote the upper bound of εkh for all k ∈ {0, ..., N} by ε1. Using the bound on
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the log-Sobolev constant (Lemma E.7) and second moment (Lemma E.8) for DDPM, we note that
the restriction on h for all steps is implied by

h = O

(
1

Epdata ∥x∥
2
+ CLS(CLS + d)(L ∨ Ls)2

)
with appropriate constants. Then we can conclude the first inequality in Theorem 4.3 by combining
Theorem C.1 and Lemma E.7 and the second inequality from unfolding the first one and evaluating
the geometric series. Likewise, we have the following analogue for SMLD, for which we omit the
proof.
Theorem C.2 (Predictor steps under L∞ bound on score estimate, SMLD). Let p : Rd → R be a
probability density satisfying Assumption 1 and s(·, t) : Rd → Rd be a score estimate s with error
bounded in L∞ for each t ∈ [0, T ]:

∥∇ ln p− s(·, t)∥∞ = max
x∈Rd

∥∇ ln p̃t(x)− s(x, t)∥] ≤ ε1.

Consider SMLD. Let CT = CLS + T . Let g ≡ 1, T ≥ CLSd, and h = O
(

1
Ep0

∥x∥2+CT d(L∨Ls)2

)
.

Then

χ2(q(k+1)h||p(k+1)h) ≤ χ2(qkh||pkh)e
(− 1

8CT−kh
+8ε21)h +O(ε21h+ (L2

s + L2d)h2)

and letting t = T −Nh, if ε1 < 1
128CT

,

χ2(qNh||pNh) ≤
(
CLS + t

CLS + T

) 1
16

χ2(q0||p0) +O

(
ln

(
CLS + T

CLS + t

)(
ε21 + (L2

s + L2d)h
))

.

Moreover, for q0 = pprior, q0 = φT , χ2(q0||p0) ≤ CLSd
T .

Remark. We note that in a sense SMLD and DDPM are equivalent, as we can get from one to the
other by rescaling in time and space. First we recall that, as discussed in Section 3, all the SMLD
models are equivalent under rescaling in time. Therefore we can assume g(t) = et/2 and consider
the forward SDE for SMLD

dxt = et/2dwt,

where wt is a standard Brownian Motion. Now let yt = e−t/2xt; then

dyt = −
1

2
ytdt+ dwt,

which is exactly DDPM with g(t) = 1. Note that Theorem C.2 uses a different parameterization for
SMLD and the resulting complexity is slightly worse.

C.3 Differential Inequality

Now we prove a differential inequality involving χ2(qt||pt). As in [Che+21], the key difficulty is to
bound the discretization error. We decompose it into two error terms and bound them in Lemma C.4
and Lemma C.5 separately.

In the following, we will let

Gkh,t : =

∫ t

kh

g(T − s)2 ds. (23)

Lemma C.3. Let (qt)0≤t≤T denote the law of the interpolation (21). With the setting in Lemma C.1,
we have for t ∈ [kh, (k + 1)h],

d

dt
χ2(qt||pt) ≤ g(T − t)2

[(
− 1

8Ct
+ 8ε2kh

)
χ2(qt||pt) +

[
8ε2kh + E · (t− kh)g(T − kh)2

]]
,

where Ct is the LSI constant of pt, εkh is the L∞-score estimation error at time kh and E is defined
in (24).
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Proof. By Lemma A.2 with

f̂(zkh, t)← −f(zkh, T − t) + g(T − t)2s(zkh, T − kh)
f(z, t)← −f(z, T − t) + g(T − t)2∇ ln p̃T−t(z),

we have

d

dt
χ2(qt||pt) = −g(T − t)2Ept

(
qt
pt

)
+ 2E

[〈 (
−f(zkh, T − t) + g(T − t)2s(zkh, T − kh)

)
−
(
−f(z, T − t) + g(T − t)2∇ ln p̃T−t(z)

)
,∇ qt

pt

〉]
= −g(T − t)2Ept

(
qt
pt

)
+ 2E

[〈
f(zt, T − t)− f(zkh, T − t),∇

qt(zt)

pt(zt)

〉]
+ 2g(T − t)2E

[〈
s(zkh, T − kh)−∇ ln p̃T−t(zt),∇

qt(zt)

pt(zt)

〉]
=: −g(T − t)2Ept

(
qt
pt

)
+A+B.

By Lemma C.4,

A ≤ g(T − t)2
[
2(χ2(qt||pt) + 1)E

[
∥zt − zkh∥2 ψt(zt)

]
+

1

8
Ept

(
qt
pt

)]
,

while by Lemma C.5,

B ≤ 1

2
g(T − t)2Ept

(
qt
pt

)
+ 8g(T − t)2L2

s(χ
2(qt||pt) + 1)E

[
∥zt − zkh∥2 ψt(zt)

]
+ 8

[
ε2kh +Gkh,tCd,L

]
g(T − t)2(χ2(qt||pt) + 1).

Therefore, for h ≤ 1
72g(T−kh)2(4L2

s+1)(R̃t∨2CtRd)
∧ 1

128g(T−kh)2Cd,L
, using Lemma C.15,

d

dt
χ2(qt||pt) ≤ −

3

8
g(T − t)2Ept

(
qt
pt

)
+ g(T − t)2(8L2

s + 2)(χ2(qt||pt) + 1)E
[
∥zt − zkh∥2 ψt(zt)

]
+ 8

[
ε2kh +Gkh,tCd,L

]
g(T − t)2(χ2(qt||pt) + 1)

≤ −3

8
g(T − t)2Ept

(
qt
pt

)
+ 9g(T − t)2(4L2

s + 1)Gkh,t

[
R̃tEpt

(
qt
pt

)
+Rt,kh(χ

2(qt||pt) + 1)

]
+ 8

[
ε2kh +Gkh,tCd,L

]
g(T − t)2(χ2(qt||pt) + 1)

≤ −2

8
g(T − t)2Ept

(
qt
pt

)
+ g(T − t)2 1

8Ct
χ2(qt||pt) + 8g(T − t)2ε2khχ2(qt||pt)

+ g(T − t)2
[
8ε2kh + 8Cd,LGkh,t + 9(4L2

s + 1)Gkh,tRd
]
.

Using the fact that pt satisfies a log-Sobolev inequality with constant Ct,

d

dt
χ2(qt||pt) ≤ −

2

8Ct
g(T − t)2χ2(qt||pt) +

1

8Ct
g(T − t)2χ2(qt||pt) + 8g(T − t)2ε2khχ2(qt||pt)

+ g(T − t)2
[
8ε2kh + 8Cd,LGkh,t + 9(4L2

s + 1)Gkh,tRd
]

≤
(
− 1

8Ct
+ 8ε2kh

)
g(T − t)2χ2(qt||pt) + g(T − t)2[8ε2kh + E(t− kh)g(T − kh)2].

where

E = 9(4L2
s + 1) + 8Cd,L. (24)
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In order to bound the error terms A and B, we will use Lemma A.3. Let ϕt(x) = qt(x)
pt(x)

and
ψt(x) = ϕt(x)/Eptϕ2t . Then Eψt(zt) = 1 and in fact the normalizing factor Eptϕ2t = χ2(qt||pt)+1.
We first deal with error term A.
Lemma C.4. In the setting of Lemma C.3, we have the following bound for term A:

2E
[〈
f(zt, T − t)− f(zkh, T − t),∇

qt(zt)

pt(zt)

〉]
≤ g(T − t)2

[
2(χ2(qt||pt) + 1)E

[
∥zt − zkh∥2 ψt(zt)

]
+

1

8
Ept

(
qt
pt

)]
.

Proof. In SMLD, f(x, t) = 0 and hence A = 0; while in DDPM, f(x, t) = − 1
2g(t)

2x. Therefore,
by Lemma A.3,

2E
[〈
f(zt, T − t)− f(zkh, T − t),∇

qt(zt)

pt(zt)

〉]
= −g(T − t)2E

[〈
zt − zkh,∇

qt(zt)

pt(zt)

〉]
≤ g(T − t)2

[
2 · Eptϕ2t · E

[
∥zt − zkh∥2 ψt(zt)

]
+

1

8
Ept

(
qt
pt

)]
= g(T − t)2

[
2(χ2(qt||pt) + 1)E

[
∥zt − zkh∥2 ψt(zt)

]
+

1

8
Ept

(
qt
pt

)]
.

Now we bound error term B.
Lemma C.5. In the setting of Lemma C.3, we have the following bound for term B:

B ≤ 1

2
g(T − t)2Ept

(
qt
pt

)
+ 8g(T − t)2L2

s(χ
2(qt||pt) + 1)E

[
∥zt − zkh∥2 ψt(zt)

]
+ 8

[
ε2kh +Gkh,tCd,L

]
g(T − t)2(χ2(qt||pt) + 1).

Proof. We first decompose the error:

E
[〈
s(zkh, T − kh)−∇ ln p̃T−t(zt),∇

qt(zt)

pt(zt)

〉]
= E

[〈
s(zkh, T − kh)− s(zt, T − kh),∇

qt(zt)

pt(zt)

〉]
+ E

[〈
s(zt, T − kh)−∇ ln pkh(zt),∇

qt(zt)

pt(zt)

〉]
+ E

[〈
∇ ln pkh(zt)−∇ ln pt(zt),∇

qt(zt)

pt(zt)

〉]
=: B1 +B2 +B3.

Now we bound these error terms separately. For B1, by the Lipschitz assumption, we have by
Lemma A.3, for a constant C2 > 0 to be chosen later,

B1 ≤ E
[
Ls ∥zkh − zt∥ ·

∥∥∥∥∇ qt(zt)pt(zt)

∥∥∥∥]
≤ 4L2

s · Eptϕ2t · E
[
∥zt − zkh∥2 ψt(zt)

]
+

1

16
Ept

(
qt
pt

)
= 4L2

s(χ
2(qt||pt) + 1)E

[
∥zt − zkh∥2 ψt(zt)

]
+

1

16
Ept

(
qt
pt

)
.

For B2, recalling the assumption that ∥s(x, T − kh)−∇ ln pkh(x)∥ ≤ εkh for all x, we have by
Lemma A.3

B2 ≤ 4E
[
∥s(zt, T − kh)−∇ ln pkh(zt)∥2 ψt(zt)

]
· Ept [ϕ2t ] +

1

16
Ept

(
qt
pt

)
≤ 4ε2kh(χ

2(qt||pt) + 1) +
1

16
Ept

(
qt
pt

)
. (25)
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Now for the last error term B3, we have by Lemma A.3 that

B3 ≤ 4Eptϕ2t · E
[
∥∇ ln pkh(zt)−∇ ln pt(zt)∥2 ψt(zt)

]
+

1

16
Ept

(
qt
pt

)
≤ 4Kt,kh(χ

2(qt||pt) + 1) +
1

16
Ept

(
qt
pt

)
. (26)

Here Kt,kh is the bound for E
[
ψt(zt) ∥∇ ln pkh(zt)−∇ ln pt(zt)∥2

]
obtained in Lemma C.13:

Kt,kh := Gkh,t

[
Ct,L

χ2(qt||pt) + 1
· Ept

(
qt
pt

)
+ Cd,L

]
where Ct,L and Cd,L are constants defined in (27) and (28) respectively. Hence

B3 ≤ 4Gkh,t

[
Ct,LEpt

(
qt
pt

)
+ Cd,L(χ

2(qt||pt) + 1)

]
+

1

16
Ept

(
qt
pt

)
.

Combining all these results, we finally obtain the bound for error term B in Lemma C.3: for h ≤
1

64Ct,Lg(T−kh)2 ,

B = 2g(T − t)2(B1 +B2 +B3)

≤ 3

8
g(T − t)2Ept

(
qt
pt

)
+ 8g(T − t)2L2

s(χ
2(qt||pt) + 1)E

[
∥zt − zkh∥2 ψt(zt)

]
+ 8Ct,Lg(T − t)2Gkh,tEpt

(
qt
pt

)
+ 8

[
ε2kh +Gkh,tCd,L

]
g(T − t)2(χ2(qt||pt) + 1)

≤ 1

2
g(T − t)2Ept

(
qt
pt

)
+ 8g(T − t)2L2

s(χ
2(qt||pt) + 1)E

[
∥zt − zkh∥2 ψt(zt)

]
+ 8

[
ε2kh +Gkh,tCd,L

]
g(T − t)2(χ2(qt||pt) + 1).

C.4 Change of Measure

As shown in Lemma C.4 and Lemma C.5, the key to the proof of Lemma C.3 is bounding
the discretization error A and B. The difficulty is that these errors usually have the form of
Eψtqt

[
∥u(x)∥2

]
for some function u : Rd → Rd, while it is usually easier to bound those expec-

tations over the original probability measure or our target distribution pt. Therefore, as discussed
in [Che+21, Section 5.1], our task is to bound these error terms under a complicated change of
measure. We first state such a result with respect to the gradient of the potential.

Lemma C.6. [Che+21, Lemma 16] Assume that p(x) ∝ e−V (x) is a density in Rd and ∇V (x) is
L-Lipschitz. Then for any probability density q, it holds that

Eq
[
∥∇V ∥2

]
≤ 4Ep

∥∥∥∥∥∇
√
q(x)

p(x)

∥∥∥∥∥
2
+ 2dL = Eq

[∥∥∥∥∇ ln
q(x)

p(x)

∥∥∥∥2
]
+ 2dL.

Proof. Define the Langevin diffusion w.r.t. p(x):

dxt = −∇V (xt) dt+
√
2 dwt,
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where Bt is a standard Brownian Motion in Rd. Let L be the corresponding infinitesimal generator,
i.e., Lf = ⟨∇V,∇f⟩ −∆f . Observe that LV = ∥∇V ∥2 −∆V and EpLf = 0 for any f , so

Eq
[
∥∇V ∥2

]
= EqLV + Eq∆V

≤
∫
LV

(
q(x)

p(x)
− 1

)
p(x)dx+ dL =

∫ 〈
∇V,∇q(x)

p(x)

〉
p(x)dx+ dL

= 2

∫ 〈√
q(x)

p(x)
∇V,∇

√
q(x)

p(x)

〉
p(x)dx+ dL

≤ 1

2
Eq
[
∥∇V ∥2

]
+ 2Ep

∥∥∥∥∥∇
√
q(x)

p(x)

∥∥∥∥∥
2
+ dL.

Rearrange this inequality to obtain the desired result.

Now applying this Lemma to p = pt and q = ψtqt, we get immediately the following corollary.
Note that ψtqt is a density function because

∫
ψt(x)qt(x) dx =

∫ qt(x)
pt(x)

qt(x) dx/Eptϕ2t = 1 and
ψt(x)qt(x) ≥ 0 for any x ∈ Rd.
Corollary C.7. In the setting of Lemma C.3, it holds that

E
[
ψt(zt) ∥∇ ln pt(zt)∥2

]
≤ 4

χ2(qt||pt) + 1
· Ept

(
qt
pt

)
+ 2dL.

Proof. Applying Lemma C.6 to the density ψtqt yields

Eψtqt

[
∥∇ ln pt(x)∥2

]
≤ Eψtqt

[∥∥∥∥∇ ln
ψt(x)qt(x)

pt(x)

∥∥∥∥2
]
+ 2dL =

4

χ2(qt||pt) + 1
· Ept

(
qt
pt

)
+ 2dL.

Note that we cannot expect analogous results for a general u(x) as in Lemma C.6. In the general
case, we apply the Donsker-Varadhan variational principle, which states that for probability mea-
sures p and q,

Eq ∥u(x)∥2 ≤ KL(q||p) + lnEp exp ∥u(x)∥2.
Towards this end, we first need to analyze KL(ψtqt||pt).

Lemma C.8. Let ϕt(x) =
qt(x)
pt(x)

and ψt(x) = ϕt(x)/Eptϕ2t . If pt satisfies a LSI with constant Ct,
then

KL(ψtqt||pt) ≤
2Ct

χ2(qt||pt) + 1
· Ept

(
qt
pt

)
.

Proof. Since pt satisfies LSI with constant Ct,

KL(ψtqt||pt) ≤
Ct
2

∫ ∥∥∥∥∇ ln
ψt(x)qt(x)

pt(x)

∥∥∥∥2 ψt(x)qt(x)dx
= 2Ct

∫ ∥∥∥∥∇ ln
qt(x)

pt(x)

∥∥∥∥2 ψt(x)qt(x)dx
= 2Ct

∫ ∥∥∥∥∇ qt(x)pt(x)

∥∥∥∥2 ψt(x)pt(x)2qt(x)
dx

=
2Ct

χ2(qt||pt) + 1
·
∫ ∥∥∥∥∇ qt(x)pt(x)

∥∥∥∥2 pt(x)dx
=

2Ct
χ2(qt||pt) + 1

· Ept
(
qt
pt

)
.
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With this in hand, we are ready to bound the second moment of ψtqt as well as the variance of a
Gaussian random vector with respect to this measure:
Lemma C.9. With the setting of Lemma C.3, we have

E
[
ψt(zt) ∥zt∥2

]
≤ 2C2

t

χ2(qt||pt) + 1
· Ept

(
qt
pt

)
+

1

2
Ept

[
∥x∥2

]
+

1

2
Ct,

where Ct is the LSI constant of pt, which is bounded in Lemma E.6, and the second moment of pt is
bounded in Lemma E.8.

Proof. Since pt has LSI constant Ct, by Donsker-Varadhan variational principle,

E
[
ψt(zt) ∥zt∥2

]
=

2

s
Eψtqt

[s
2
∥x∥2

]
≤ 2

s

[
KL(ψtqt||pt) + lnEpt

[
e

s
2∥x∥

2
]]

for any s > 0. By Lemma E.1, for any s ∈ [0, 1
Ct

), we have

Ept
[
e

s
2∥x∥

2
]
≤ 1√

1− Ct · s
exp

[
s

2(1− Ct · s)
(Ept ∥x∥)2

]
.

Now choose s = 1
2Ct

, we have

Ept
[
e

s
2∥x∥

2
]
≤
√
2 exp

[
1

2Ct
(Ept ∥x∥)2

]
.

Hence

E
[
ψt(zt) ∥zt∥2

]
≤ Ct ·

[
KL(ψtqt||pt) +

1

2Ct
Ept

[
∥x∥2

]
+

ln 2

2

]
.

Now with the bound of KL(ψtqt||pt) in Lemma C.8, we obtain

E
[
ψt(zt) ∥zt∥2

]
≤ 2C2

t

χ2(qt||pt) + 1
· Ept

(
qt
pt

)
+

1

2
Ept

[
∥x∥2

]
+

1

2
Ct.

Lemma C.10. With the setting of Lemma C.3,

E

[
ψt(zt)

∥∥∥∥∫ t

kh

g(T − s)dws
∥∥∥∥2
]
≤ 2

∫ t

kh

g(T − s)2 ds ·
[

8Ct
χ2(qt||pt) + 1

· Ept
(
qt
pt

)
+ d+ 8 ln 2

]
,

where Ct is the LSI constant of pt.

Proof. Note that
∫ t
kh
g(T − s)dws is a Gaussian random vector with variance

∫ t
kh
g(T − s)2ds · Id.

Using the Donsker-Varadhan variational principle, for any random variable X ,

ẼX ≤ KL(P̃||P) + lnE expX.

Applying this to X = c

(∥∥∥∫ tkh g(T − s)dws∥∥∥ − E
∥∥∥∫ tkh g(T − s)dws∥∥∥)2

for a constant c > 0 to

be chosen later, we can bound

Ẽ
∥∥∥∥∫ t

kh

g(T − s)dws
∥∥∥∥2 ≤ 2E

[∥∥∥∥∫ t

kh

g(T − s)dws
∥∥∥∥2
]

+
2

c

[
KL(P̃||P) + lnE exp

(
c
(∥∥∥∥∫ t

kh

g(T − s)dws
∥∥∥∥− E

∥∥∥∥∫ t

kh

g(T − s)dws
∥∥∥∥)2)] ,

where dP̃
dP = ψt(zt). Now following [Che+21, Theorem 4], we set c = 1

8
∫ t
kh
g(s)2ds

, so that

E exp


(∥∥∥∫ tkh g(T − s)dws∥∥∥− E

∥∥∥∫ tkh g(T − s)dws∥∥∥)2
8
∫ t
kh
g(s)2ds

 ≤ 2.
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Next, using the LSI for pt, we have

KL(P̃||P) = Eψtqt lnψt = Eψtqt ln
ϕt

Eptϕ2t
=

1

2
Eψtqt ln

ϕ2t
(Eptϕ2t )2

=
1

2

[
Eψtqt ln

ϕ2t
Eptϕ2t

− lnEptϕ2t
]
=

1

2

[
Eψtqt ln

ψtqt
pt
− lnEptϕ2t

]
.

Noting that Eptϕ2t = χ2(qt||pt) + 1 ≥ 1, we have that

KL(P̃||P) ≤ 1

2
KL(ψtqt||pt) ≤

Ct
χ2(qt||pt) + 1

· Ept
(
qt
pt

)
,

where the last inequality is due to Lemma C.8. We have proved

E

[
ψt(zt)

∥∥∥∥∫ t

kh

g(T − s) dws
∥∥∥∥2
]

≤ 2d

∫ t

kh

g(T − s)2 ds+ 16

∫ t

kh

g(T − s)2ds ·
[

Ct
χ2(qt||pt) + 1

· Ept
(
qt
pt

)
+ ln 2

]
≤ 2

∫ t

kh

g(T − s)2 ds ·
[

8Ct
χ2(qt||pt) + 1

· Ept
(
qt
pt

)
+ d+ 8 ln 2

]
.

C.5 Perturbation Error

In the previous section, we bound errors in the form of Eψtqt ∥u(x)∥
2 with a change of measure

technique, where ∥u(x)∥2 is easy to bound with respect to the original measure or pt. However,
this is not always the case for the errors we are considering. In this section, we aim to bound
Eψtqt

[
∥∇ ln pkh(x)−∇ ln pt(x)∥2

]
, where, as discussed in Lemma C.13, pkh can be regarded as

a perturbed version of pt with some Gaussian noise. We first provide a point-wise bound for SMLD
(Lemma C.11) and DDMP (Lemma C.12), respectively and then use them to bound the expectation
with respect to ψtqt.

Lemma C.11. Suppose that p(x) ∝ e−V (x) is a probability density on Rd, where V (x) is L-smooth,
and let φσ2(x) be the density function of N(0, σ2Id). Then for L ≤ 1

2σ2 ,∥∥∥∥∇ ln
p(x)

(p ∗ φσ2)(x)

∥∥∥∥ ≤ 6Lσd1/2 + 2Lσ2 ∥∇V (x)∥ .

Proof. Note that

∇ ln p ∗ φσ2(x) =

∫
Rd −∇V (y)e−V (y)e−

∥x−y∥2

2σ2 dy∫
Rd e−V (y)e−

∥x−y∥2
2σ2 dy

= −Epx,σ2∇V (y),

where px,σ2 denotes the probability density

px,σ2(y) ∝ p(y)e−
∥y−x∥2

2σ2

so when V is L-smooth,∥∥∥∥∇ ln
p(x)

p ∗ φσ2(x)

∥∥∥∥ =
∥∥∥Epx,σ2 [∇V (y)−∇V (x)]

∥∥∥
≤ Epx,σ2 [L ∥y − x∥]

We now write

Epx,σ2 ∥y − x∥ ≤ Epx,σ2

∥∥∥y − Epx,σ2 y
∥∥∥+ ∥∥∥Epx,σ2 y − y∗

∥∥∥+ ∥y∗ − x∥ ,
where y∗ ∈ argmaxy px,σ2(y) is a mode of the distribution px,σ2 . We now bound each of these
terms.
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1. For the first term, note that px,σ2 is
(

1
σ2 − L

)
-strongly convex, so satisfies a Poincaré in-

equality with constant
(

1
σ2 − L

)−1
. Thus

Epx,σ2 ∥y − x∥ ≤ Epx,σ2 [∥y − Epx,σ2 y∥2]1/2

=

(
d∑
i=1

Varpx,σ2 (yi)

)1/2

≤

(
d

(
1

σ2
− L

)−1
)1/2

.

2. For the second term, by Lemma E.3, noting that V (y) + ∥x−y∥2

2σ2 is
(

1
σ2 + L

)
-smooth,

∥∥∥Epx,σ2 y − y∗
∥∥∥ ≤ ( 1

σ2
− L

)−1/2

d1/2

(
5 + ln

((
1

σ2
− L

)−1(
1

σ2
+ L

)))1/2

≤
(

1

σ2
− L

)−1/2

d1/2
(
5 + ln

1 + Lσ2

1− Lσ2

)1/2

≤
√
7

(
1

σ2
− L

)−1/2

d1/2,

where the last inequality uses σ2 ≤ 1
2L .

3. For the third term, we note that the mode satisfies

∇V (y∗) +
y∗ − x
σ2

= 0

−y
∗ − x
σ2

= ∇V (y∗) = (∇V (y∗)−∇V (x)) +∇V (x)

1

σ2
∥y∗ − x∥ ≤ ∥∇V (x)∥+ L ∥y∗ − x∥

∥y∗ − x∥ ≤
(

1

σ2
− L

)−1

∥∇V (x)∥ .

Putting these together and using
(

1
σ2 − L

)−1 ≤ 2, we obtain∥∥∥∥∇ ln
p(x)

p ∗ φσ2(x)

∥∥∥∥ ≤ (
√
7 + 1)L

(
1

σ2
− L

)−1/2

d1/2 + L

(
1

σ2
− L

)−1

∥∇V (x)∥

≤ 6Lσd1/2 + 2Lσ2 ∥∇V (x)∥ .

Lemma C.12. With the setting in Lemma C.11 and the notation pα(x) = αdp(αx) for α ≥ 1, we
have that for L ≤ 1

2α2σ2 ,∥∥∥∥∇ ln
p(x)

(pα ∗ φσ2)(x)

∥∥∥∥ ≤ 6α2Lσd1/2+(α+2α3Lσ2)(α−1)L ∥x∥+(α−1+2α3Lσ2) ∥∇V (x)∥ .

Proof. Note pα(x) is also a probability density in Rd. By the triangle inequality,∥∥∥∥∇ ln
p(x)

(pα ∗ φσ2)(x)

∥∥∥∥ ≤ ∥∥∥∥∇ ln
p(x)

pα(x)

∥∥∥∥+ ∥∥∥∥∇ ln
pα(x)

(pα ∗ φσ2)(x)

∥∥∥∥ .
Without loss of generality, we can assume that p(x) = e−V (x); then pα(x) = αde−V (αx). Hence∥∥∥∥∇ ln

p(x)

pα(x)

∥∥∥∥ = ∥α∇V (αx)−∇V (x)∥

≤ ∥α∇V (αx)− α∇V (x)∥+ ∥α∇V (x)−∇V (x)∥
≤ α(α− 1)L ∥x∥+ (α− 1) ∥∇V (x)∥ .
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Since α∇V (αx) is α2L-Lipschitz, by Lemma C.11,∥∥∥∥∇ ln
pα(x)

(pα ∗ φσ2)(x)

∥∥∥∥ ≤ 6α2Lσd1/2 + 2α3Lσ2 ∥∇V (αx)∥ .

By the Lipschitz assumption,

∥∇V (αx)∥ ≤ ∥∇V (αx)−∇V (x)∥+ ∥∇V (x)∥ ≤ (α− 1)L ∥x∥+ ∥∇V (x)∥ .

The result follows from combining the three inequalities above.

Lemma C.13. In the setting of Lemma C.3, we have for t ∈ [kh, (k + 1)h],

E
[
ψt(zt) ∥∇ ln pkh(zt)−∇ ln pt(zt)∥2

]
≤ Gkh,t ·

[
Ct,L

χ2(qt||pt) + 1
Gkh,tEpt

(
qt
pt

)
+ Cd,L

]
,

where

Ct,L =

{
32L2 in SMLD,
(88C2

t + 400)L2 in DDPM, (27)

and

Cd,L =

{
76L2d in SMLD,
6 + 94L2d in DDPM ≤ 100L2d. (28)

Proof. In both SMLD and DDPM models, we have the following relationship for t ∈ [kh, (k+1)h]:

pkh = (pt)α ∗ φσ2 .

where pα(x) = αdp(αx). In SMLD, α = 1 and σ2 =
∫ t
kh
g(T − s)2 ds, while in DDPM, α =

e
1
2

∫ t
kh
g(T−s)2 ds and σ2 = 1− e−

∫ t
kh
g(T−s)2 ds. Now for SMLD,

E
[
ψt(zt) ∥∇ ln pkh(zt)−∇ ln pt(zt)∥2

]
≤ 72L2σ2d+ 8L2σ4E

[
ψt(zt) ∥∇ ln pt(zt)∥2

]
by Lemma C.11

≤ 72σ2L2d+
32L2σ4

χ2(qt||pt) + 1
· Ept

(
qt
pt

)
+ 16σ4L3d by Corollary C.7

≤ G2
kh,t

(
32L2

χ2(qt||pt) + 1
+ 16L3d

)
+Gkh,t · 72L2d

≤ G2
kh,t

32L2

χ2(qt||pt) + 1
+Gkh,t · 76L2d,

where in the last inequality we use the fact that g is increasing, so that for h ≤ 1
4Lg(T−kh)2 ,

Gkh,tL =

∫ t

kh

g(T − s)2 ds · L ≤ h · g(T − kh)2 · L ≤ 1

4
.

Recall that to use Lemma C.11, it suffices that L ≤ 1
2α2σ2 , and so it suffices that h ≤ 1

4Lg(T−kh)2
in SMLD.

For DDPM, observe that for h ≤ 1
4g(T−kh)2 ,

α ≤ 1 +

∫ t

kh

g(T − s)2ds ≤ 1 + (t− kh)g(T − kh)2 ≤ 1 +
1

4

σ2 = 1− e−
∫ t
kh
g(T−s)2ds ≤

∫ t

kh

g(T − s)2ds ≤ (t− kh)g(T − kh)2 ≤ 1

4
.
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By Lemma C.12, using the assumption that L ≥ 1, we obtain

E
[
ψt(zt) ∥∇ ln pkh(zt)−∇ ln pt(zt)∥2

]
≤ 72α4L2σ2d+ 4(α+ 2α3Lσ2)2(α− 1)2L2E

[
ψ(zt) ∥zt∥2

]
+ 4(α− 1 + 2α3Lσ2)2E

[
ψt(zt) ∥∇ ln pt(zt)∥2

]
≤ 72α4L2σ2d+ 44L2G2

kh,tE
[
ψ(zt) ∥zt∥2

]
+ 100L2G2

kh,tE
[
ψt(zt) ∥∇ ln pt(zt)∥2

]
≤ 44L2dGkh,t

+ 44L2

[
2C2

t

χ2(qt||pt) + 1
Ept

(
qt
pt

)
+

1

2
Ept ∥x∥

2
+

1

2
Ct

]
G2
kh,t

+ 100L2

[
4

χ2(qt||pt) + 1
Ept

(
qt
pt

)
+ 2dL

]
G2
kh,t

≤ L2Gkh,t

[
Gkh,t

(
88C2

t + 400

χ2(qt||pt) + 1

)
Ept

(
qt
pt

)

+ 44d+Gkh,t

(
22(Ept ∥x∥

2
+ Ct) + 200Ld

)]

≤ Gkh,t
[
Gkh,t

88C2
t + 400

χ2(qt||pt) + 1
Ept

(
qt
pt

)
+ 6 + 94L2d

]
,

where we used Lemma C.9 and Corollary C.7. Here, we use the assumption that h ≤
1

4g(T−kh)2(Ept∥x∥
2+Ct)

.

C.6 Auxiliary Lemmas

In this section, we continue with bounding errors in the form of Eψtqt ∥u(x)∥
2. However, we only

decompose them into errors which we have already bounded in the previous two sections. The
following two lemmas will be directly applied in the proof of Lemma C.4 and Lemma C.5.

Lemma C.14. With the setting of Lemma C.3, we have the following bound of the second moment
of estimated score function with respect to ψtqt:

E
[
ψt(zt) ∥s(zt, T − kh)∥2

]
≤ 4Ct,LGkh,t + 8

χ2(qt||pt) + 1
· Ept

(
qt
pt

)
+ 4(ε2kh + Cd,L + dL),

where Ct,L and Cd,L are constants defined in Lemma C.13.

Proof. Note that by the triangle inequality,

∥s(x, T − kh)∥ ≤ ∥s(x, T − kh)−∇ ln p̃T−kh(x)∥
+ ∥∇ ln p̃T−kh(x)−∇ ln p̃T−t(x)∥+ ∥∇ ln p̃T−t(x)∥ ,

and hence,

∥s(x, T − kh)∥2 ≤ 4 ∥s(x, T − kh)−∇ ln p̃T−kh(x)∥2

+ 4 ∥∇ ln p̃T−kh(x)−∇ ln p̃T−t(x)∥2 + 2 ∥∇ ln p̃T−t(x)∥2 .

Recall that we need to bound this second moment of estimated score function with respect to ψtqT .
For the first term, as ∥s(x.T − kh)−∇ ln pkh(x)∥ is εkh-bounded, we have trivial bound that

Eψtqt ∥s(x, T − kh)−∇ ln p̃T−kh(x)∥2 ≤ ε2kh.
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By Lemma C.13, the second term is bounded by

Eψtqt

[
∥∇ ln pkh(zt)−∇ ln pt(zt)∥2

]
≤ Gkh,t ·

[
Ct,L

χ2(qt||pt) + 1
Gkh,tEpt

(
qt
pt

)
+ Cd,L

]
for constant Ct,L and Cd,L defined in (27) and (28) respectively. The last term is bounded in Corol-
lary C.7 by

E
[
ψt(zt) ∥∇ ln pt(zt)∥2

]
≤ 4

χ2(qt||pt) + 1
Ept

(
qt
pt

)
+ 2dL.

Combining these three inequalities, we obtain that for h ≤ 1
g(T−kh)2 ,

E
[
ψt(zt) ∥s(zt, T − kh)∥2

]
≤ 4Ct,L + 8

χ2(qt||pt) + 1
Gkh,tEpt

(
qt
pt

)
+ 4(ε2kh + Cd,L + dL).

Now we bound E
[
ψt(zt) ∥zt − zkh∥2

]
.

Lemma C.15. In the setting of Lemma C.3, if

h ≤ 1

g(T − kh)2(8L2 + 20L+ 3Ls + 10Ct + Ept ∥x∥
2
)
,

then

E
[
ψt(zt) ∥zt − zkh∥2

]
≤ 9

2
Gkh,t

[
R̃t

χ2(qt||pt) + 1
· Ept

(
qt
pt

)
+Rt,kh

]
,

where R̃t and Rd are defined in (30) and (31) respectively.

Proof. Note that

∥zt − zkh∥

=

∥∥∥∥Gkh,ts(zkh, T − kh)− ∫ t

kh

f(zkh, T − s)ds+
∫ t

kh

g(T − s)dws
∥∥∥∥

≤ Gkh,t ∥s(zkh, T − kh)∥+
1

2

∥∥∥∥zkh ∫ t

kh

g(T − s)2ds
∥∥∥∥+ ∥∥∥∥∫ t

kh

g(T − s)dws
∥∥∥∥

≤ Gkh,t
[
∥s(zkh, T − kh)∥+

1

2
∥zkh∥

]
+

∥∥∥∥∫ t

kh

g(T − s)dws
∥∥∥∥

≤ Gkh,t
[
∥s(zt, T − kh)∥+ Ls ∥zt − zkh∥+

1

2
∥zt∥+

1

2
∥zt − zkh∥

]
+

∥∥∥∥∫ t

kh

g(T − s)dws
∥∥∥∥

= Gkh,t

[
∥s(zt, T − kh)∥+

1

2
∥zt∥

]
+

(
Ls +

1

2

)
g(T − kh)2 · h ∥zt − zkh∥+

∥∥∥∥∫ t

kh

g(T − s)dws
∥∥∥∥ ,

where the next-to-last line is due to the fact that the estimated score function is Ls-Lipschitz. We
also use the fact that g(t) is an increasing function and hence g(T − t) ≤ g(T − kh) for any
t ∈ [kh, (k + 1)h]. Hence if h ≤ 1

3(Ls+1/2)g(T−kh)2 , then

∥zt − zkh∥ ≤
3

2
Gkh,t

[
∥s(zt, T − kh)∥+

1

2
∥zt∥

]
+

3

2

∥∥∥∥∫ t

kh

g(T − s)dws
∥∥∥∥ .

Therefore, by the fact that (a+ b)2 ≤ 2a2 + 2b2 for any a, b > 0,

∥zt − zkh∥2 ≤
9

2
G2
kh,t

[
2 ∥s(zt, T − kh)∥2 +

1

2
∥zt∥2

]
+

9

2

∥∥∥∥∫ t

kh

g(T − s)dws
∥∥∥∥2 . (29)
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With the results of Lemma C.14 and Lemma C.9, we have

2E
[
ψt(zt) ∥s(zt, T − kh)∥2

]
+

1

2
E
[
ψt(zt) ∥zt∥2

]
≤ 8Ct,LGkh,t + C2

t + 16

χ2(qt||pt) + 1
· Ept

(
qt
pt

)
+ 8(ε2kh + Cd,L + dL) +

1

4
Ept ∥x∥

2
+

1

4
Ct.

Now plugging this and the result of Lemma C.10 into (29), we get that

E
[
ψt(zt) ∥zt − zkh∥2

]
≤ 9

2
G2
kh,t · 8(ε2kh + Cd,L + dL)

+
9

2
G2
kh,t ·

[
8Ct,LGkh,t + C2

t + 16

χ2(qt||pt) + 1
· Ept

(
qt
pt

)
+

1

4
Ept ∥x∥

2
+

1

4
Ct

]
+ 9Gkh,t ·

[
8Ct

χ2(qt||pt) + 1
· Ept

(
qt
pt

)
+ d+ 8 ln 2

]
.

Hence, using the assumption on h,

E
[
ψt(zt) ∥zt − zkh∥2

]
≤ 9

2
Gkh,t

[
K1

χ2(qt||pt) + 1
· Ept

(
qt
pt

)
+K2

]
,

where

K1 : = 8Ct,LG
2
kh,t + (C2

t + 16)Gkh,t + 16Ct

≤ 8(88C2
t + 400L2)

1

400L+ 100C2
t

+ (C2
t + 16)

1

20L+ 10Ct
+ 8Ct

≤ 8 + Ct + 1 + 8Ct = 9(Ct + 1)

and

K2 : =

[
1

4
(Ept ∥x∥

2
+ Ct) + 8(ε2kh + Cd,L + dL)

]
Gkh,t + 2d+ 16 ln 2

≤
[
1

4
(Ept ∥x∥

2
+ Ct) + 8(ε2kh + 256L2d+ dL)

](
1

Ept ∥x∥
2
+ Ct + 8L2

)
+ 2d+ 16 ln 2

≤ 1

4
+ 300d+ 16 ln 2 ≤ 300d+ 12.

Hence the lemma holds by setting

R̃t = 9(Ct + 1), (30)
Rd = 300d+ 12. (31)

C.7 Proof of Theorem 3.1

We state a more precise version of Theorem 3.1. The structure of the proof is similar to that of
Theorem 2.1.
Theorem C.16 (Predictor with L2-accurate score estimate, DDPM). Let pdata : Rd → R be a
probability density satisfying Assumption 1 with M2 = O(d), and let p̃t be the distribution resulting
from evolving the forward SDE according to DDPM with g ≡ 1. Suppose furthermore that ∇ ln p̃t
is L-Lipschitz for every t ≥ 0, and that each s(·, t) satisfies Assumption 2. Then if

ε = O

(
εTVε

3
χ

(CLS + d)C
5/2
LS (L ∨ Ls)2(ln(CLSd) ∨ CLS ln(1/ε2TV))

)
,

running (P) starting from pprior for time T = Θ
(
ln(CLSd) ∨ CLS ln

(
1
εTV

))
and step size h =

Θ
(

ε2χ
CLS(CLS+d)(L∨Ls)2

)
results in a distribution qT such that qT is εTV-far in TV distance from a

distribution qT , where qT satisfies χ2(qT ||pdata) ≤ ε2χ. In particular, taking εχ = εTV, we have
TV(qT ||pdata) ≤ 2εTV.
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Proof of Theorem C.16. We first define the bad sets where the error in the score estimate is large,

Bt : = {∥∇ ln pt(x)− s(x, T − t)∥ > ε1} (32)

for some ε1 to be chosen.

Given t ≥ 0, let t− = h
⌊
t
h

⌋
. Given a bad set B, define the interpolated process by

dzt = −
[
f(zt− , T − t)− g(T − t)2b(zkh, T − kh)

]
dt+ g(T − t) dwt, (33)

where b(z, t) =
{
s(z, t), z ̸∈ Bt
∇ ln pt(z), z ∈ Bt

.

In other words, simulate the reverse SDE using the score estimate as long as the point is in the
good set (for the current pt) at the previous discretization step, and otherwise use the actual gradient
∇ ln pt. Let qt denote the distribution of zt when z0 ∼ q0; note that qnh is the distribution resulting
from running LMC with estimate b for n steps and step size h. Note that this process is defined only
for purposes of analysis, as we do not have access to∇ ln pt.

We can couple this process with the predictor algorithm using s so that as long as xmh ̸∈ Bmh, the
processes agree, thus satisfying condition 1 of Theorem 4.1.

Then by Chebyshev’s inequality,

P (Bt) ≤
(
ε

ε1

)2

=: δ.

Let T = Nh, and let Kχ = χ2(q0||p0). Then by Theorem 4.3,

χ2(qkh||pkh) = exp

(
− kh

16CLS

)
χ2(q0||p0) +O

(
CLS(ε

2
1 + (L2

s + L2d)h)
)

= exp

(
− kh

4CLS

)
χ2(µ0||p) +O(1).

For this to be bounded by ε2χ, it suffices for the terms to be bounded by
ε2χ
2 ,

ε2χ
4 ,

ε2χ
4 ; this is implied

by

T ≥ 32CLS ln

(
2Kχ

ε2χ

)
=: Tmin

h = O

(
ε2χ

CLS(CLS + d)(L ∨ Ls)2

)

ε1 = O

(
εχ√
CLS

)
.

(We choose h so that the condition in Theorem 4.3 is satisfied; note εχ ≤ 1.) By Theorem 4.1,

TV(qnh, qnh) ≤
n−1∑
k=0

(1 + χ2(qkh||p))1/2P (Bkh)1/2

≤

(
n−1∑
k=0

exp

(
− kh

32CLS

)
χ2(q0||p)1/2 +O(1)

)
δ1/2

≤

(( ∞∑
k=0

exp

(
− kh

32CLS

)
Kχ

)
+O(n)

)
ε

ε1

≤ ε

ε1

(
64CLS

h
Kχ +O(n)

)
.

In order for this to be ≤ εTV, it suffices for

ε ≤ ε1εTV ·O
(
1

n
∧ h

CLSKχ

)
.
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Supposing that we run for time T = Θ(Tmin), we have that n = T
h = O

(
CTTmin

h

)
. Thus it suffices

for

ε = ε1εTV ·O
(

h

Tmin
∧ h

32CLSKχ

)
= O

(
εχ√
CLS
· εTV ·

ε2χ
CLS(CLS + d)(L ∨ Ls)2

(
1

CLS ln(2Kχ/ε2χ)
∧ 1

CLSKχ

))

= O

(
εTVε

3
χ

C
5/2
LS (CLS + d)(L ∨ Ls)2(ln(2Kχ/ε2χ) ∨Kχ)

)
.

Finally, note that for T = Ω(ln(CLSd)), we have Kχ = O(1) by Lemma E.9. Substituting Kχ =
O(1) then gives the desired bound.

C.8 Proof of Theorem 3.2

We now prove the main theorem on the predictor-corrector algorithm with L2-accurate score esti-
mate.

Theorem 3.2 (Predictor-corrector with L2-accurate score estimate). Keep the setup of Theorem 3.1.
Then for ε3TV = O

(
1

(1+Ls/L)2(1+CLS/d)(ln(CLSd)∨CLS)

)
, if

ε = O

(
ε4TV

dL2C
5/2
LS ln(1/ε2χ)

)
, (5)

then Algorithm 2 with appropriate choices of T = Θ
(
ln(CLSd) ∨ CLS log

(
1
εTV

))
, Nm, correc-

tor step sizes hm and predictor step size h, produces a sample from a distribution qT such that
TV(qT , pdata) < εTV.

For simplicity, we consider the predictor-corrector algorithm in the case where all the corrector
steps are at the end (but see the discussion following the proof for the general case). The result will
follow from chaining together the guarantee on the predictor algorithm (Theorem C.16) and LMC
(Theorem 2.1).

Proof of Theorem 3.2. Let M = T/h. We take h = Θ
(

1
(L∨Ls)2CLS(CLS+d)

)
, number of cor-

rector steps N0 = · · · = NT/h−1 = 0 and NM = Tc/hM , where Tc = Θ
(
CLS ln

(
2
ε2χ

))
and hM = Θ

(
ε2χ

dL2CLS

)
. Let the distribution of zT,0 be qT,0. By Theorem C.16, if T =

Θ(ln(CLSd) ∨ CLS ln(1/εTV)), then

ε = O

(
εTV

(L ∨ Ls)2(CLS + d)C
5/2
LS (ln(CLSd) ∨ CLS ln(1/εTV))

)
,

then there exists qT,0 such that TV(qT,0, qT,0) = εTV/2 and χ2(qT,0||pdata) = 1. Then using
Theorem 2.1 with εTV ← εTV/2 and Kχ = 1, plus the triangle inequality gives that if

ε = O

(
εTVε

3
χ

dL2C
5/2
LS ln(1/εTV)

)
,

then there is qT such that TV(qT , qT ) = εTV and χ2(qT ||pdata) = ε2χ. Finally, setting εTV, εχ ←
εTV/2 gives TV(qT , pdata) ≤ εTV.

We note that for ε3TV = O
(

1
(1+Ls/L)2(1+CLS/d)(ln(CLSd)∨CLS)

)
, the second condition on ε is more

constraining, giving the theorem.

36



Remark. We can also analyze a setting where predictor and corrector steps are interleaved; for
instance, if N = 1, then interleaving the one-step inequalities in Theorem 4.2 and 4.3 gives a
recurrence

χ2(q(k+1)h,0||p(k+1)h) ≤ exp

(
−
hpred

16CLS

)
χ2(qkh,1||pkh) +O(dL2h2 + ε21h)

χ2(q(k+1)h,1||p(k+1)h)) ≤ exp

(
− hcorr

4CLS

)
χ2(q(k+1)h,0||p(k+1)h) +O(ε21h+ (L2

s + L2d)h2);

we can then follow the proof of Theorem 3.1. While this does not improve the parameter dependence
under the assumptions of Theorem 3.2, it can potentially allow for larger step sizes (beyond what is
allowed by Theorem 3.1), as error accrued in the predictor step can be exponentially damped by the
corrector step.

D Stationary distribution of LD with score estimate can be arbitrarily far
away

We show that the stationary distribution of Langevin dynamics with L2-accurate score estimate
can be arbitrarily far from the true distribution. We can construct a counterexample even in one
dimension, and take the true distribution as a standard Gaussian p(x) = 1√

2π
e−x

2/2. We will take
the score estimate to also be in the form ∇ ln q, so that the stationary distribution of LMC with the
score estimate is q. The main idea of the construction is to set q to disagree with p only in the tail of
p, where it has a large mode; this error will fail to be detected under L2(p).

Theorem D.1. Let p be the density function of N(0, 1). There exists an absolute constant C such
that given any ε > 0, there exists a distribution q such that

1. ln q is C-smooth.

2. Ep[∥∇ ln p−∇ ln q∥2] < ε

3. TV(p, q) > 1− ε.

Proof. Take a smooth non-negative function g supported on [−1, 1], with max|g′′| ≤ c and g(0) =
1. We consider a family of distributions for L > 0 with density

qL(x) ∝ e−VL(x), and VL(x) :=
x2

2
− L2g

(
2

L
(x− L)

)
.

Thus the score function for qL is given by

V ′
L(x) = x− (2L)g′

( 2
L
(x− L)

)
.

We compute the L2(p) error between the score functions associated with p and qL.

Ep(V ′
L(x)− x)2 =

1√
2π

∫ ∞

−∞
(2L)2

∣∣∣g′( 2
L
(x− L)

)∣∣∣2e−x2/2 dx

≤ 1√
2π

(2L)2e−L
2/8

∫ ∞

−∞

∣∣∣g′( 2
L
(x− L)

)∣∣∣2 dx
=

1√
2π

2L3e−L
2/8

∫ ∞

−∞

∣∣g′(y)∣∣2 dy,
where in the first inequality we have used that g( 2

L (x−L)) has support [L2 ,
3L
2 ], since g has support

[−1, 1]. Thus the L2(p)-error of the score function goes to 0 as L→∞.

Moreover, as ∣∣V ′′
L (x)

∣∣ = ∣∣∣∣1− 4g′′
( 2
L
(x− L)

)∣∣∣∣ ≤ 1 + 4max
y

∣∣g′′(y)∣∣ ≤ 1 + 4c,
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the distribution qL satisfies the required smoothness (Lipschitz score) assumption. Note that qL has
a large mode concentrated at x = L as

VL(L) =
L2

2
− L2g(0) = −L

2

2
,

while p has vanishing density there, which is in fact the reason thatL2(p)-loss of the score estimate is
not able to detect the difference between the two distributions. As the height (and width) of the mode
becomes arbitrarily large compared to x = 0, we have qL([L2 ,

3L
2 ])→ 1, whereas pL([L2 ,

3L
2 ])→ 0.

Hence TV(pL, qL)→ 1.

E Useful facts

In this section, we collect some facts and technical lemmas used throughout the paper.

E.1 Facts about probability distributions

Given a probability measure P on Rd with density p, we say that a Poincaré inequality (PI) holds
with constant CP if for any probability measure q,

χ2(q||p) ≤ CPEp

(
q

p

)
:= CP

∫
Rd

∥∥∥∥∇q(x)p(x)

∥∥∥∥2 p(x)dx. (PI)

Alternatively, for any C1 function f ,

Varp(f) ≤ CP

∫
Rd

∥∇f∥2 p(x) dx.

We say that a log-Sobolev inequality (LSI) holds with constant CLS if for any probability measure
q,

KL(q||p) ≤ CLS

2

∫
Rd

∥∥∥∥∇ ln
q(x)

p(x)

∥∥∥∥2 q(x)dx. (LSI)

We call the Poincaré constant and log-Sobolev constant the smallest CP, CLS for which the inequal-
ities hold for all q. If p satisfies a log-Sobolev inequality with constant, then p satisfies a Poincaré
inequality with the same constant; hence the Poincaré constant is at most the log-Sobolev constant,
CP ≤ CLS. If p ∝ e−V is α-strongly log-concave, that is, V ⪰ αId, then p satisfies a log-Sobolev
inequality with constant 1/α.

We collect some properties of distributions satisfying LSI or PI.

Lemma E.1 (Herbst, Sub-exponential and sub-gaussian concentration given log-Sobolev inequality,
[BGL13, Pr. 5.4.1]). Suppose that µ satisfies a log-Sobolev inequality with constant CLS. Let f be
a 1-Lipschitz function. Then

1. (Sub-exponential concentration) For any t ∈ R,

Eµetf ≤ etEµf+
CLSt

2

2 .

2. (Sub-gaussian concentration) For any t ∈
[
0, 1

CLS

)
,

Eµe
tf2

2 ≤ 1√
1− CLSt

exp

[
t

2(1− CLSt)
(Eµf)2

]
.

Lemma E.2 (Gaussian measure concentration for LSI, [BGL13, §5.4.2]). Suppose that µ satisfies
a log-Sobolev inequality with constant CLS. Let f be a L-Lipschitz function. Then

µ (|f − Eµf | ≥ r) ≤ 2e
− r2

2CLSL
2 .
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Lemma E.3 ([GLR18, Lemma G.10]). Let V : Rd → R be a α-strongly convex and β-
smooth function and let P be a probability measure with density function p(x) ∝ e−V (x). Let
x∗ = argminx V (x) and x = EPx. Then

∥x∗ − x∥ ≤
√
d

α

(√
ln

(
β

α

)
+ 5

)
. (34)

Theorem E.4 ( [BL02, Theorem 5.1], [Har04]). Suppose the d-dimensional gaussian N(0,Σ) has
density γ. Let p = h · γ be a probability density.

1. If h is log-concave, and g is convex, then∫
Rd

g(x− Epx)p(x) dx ≤
∫
Rd

g(x)γ(x) dx.

2. If h is log-convex,1 and g(x) = ⟨x, y⟩α for some y ∈ Rd, α > 0, then∫
Rd

g(x− Epx)p(x) dx ≥
∫
Rd

g(x)γ(x) dx.

Lemma E.5. Let P be a probability measure on Rd with density function p such that ln p is C1 and
L-smooth and P satisfies a Poincaré inequality with constant CP. Then LCP ≥ 1.

Proof. By the Poincaré inequality and Lemma E.4(2), since p is equal to the density of N(0, 1
LId)

multiplied by a log-convex function,

CP ≥ EP (x1 − EPx1)2 ≥ EN(0, 1L Id)
x21 =

1

L
.

E.2 Lemmas on SMLD and DDPM

We give bounds on several quantities associated with the SMLD and DDPM processes at time t: the
log-Sobolev constants (Lemma E.7), the second moment (Lemma E.8), and the warm start parameter
(Lemma E.9).

First, we note that for SMLD and DDPM, the conditional distribution of x̃t given x̃0 is

SMLD: x̃t|x̃0 ∼ N
(
x(0),

∫ t

0

g(s)2 ds · Id
)

DDPM: x̃t|x̃0 ∼ N
(
x(0)e−

1
2

∫ t
0
g(s)2 ds, (1− e−

∫ t
0
g(s)2 ds)Id

)
.

Hence

p̃SMLD
t = p0 ∗N

(
0,

∫ t

0

g(s)2 ds · Id
)

(35)

p̃DDPM
t =M

e−
1
2

∫ t
0 g(s)2 ds#

p0 ∗N(0, (1− e−
∫ t
0
g(s)2 ds)Id) (36)

where Mc is multiplication by c.
Lemma E.6 ([Cha04]). Let p, p′ be two probability densities on Rd. If p and p′ satisfy log-Sobolev
inequalities with constants CLS and C ′

LS, then p ∗ p′ satisfies a log-Sobolev inequality with constant
CLS + C ′

LS.

Lemma E.7 (Log-Sobolev constant for SMLD and DDPM). Let p̃SMLD
t and p̃DDPM

t denote the dis-
tribution of the SMLD/DDPM processes at time t, when started at p0. Let CLS be the log-Sobolev
constant of p0. Then

CLS(p̃
SMLD
t ) ≤ CLS +

∫ t

0

g(s)2 ds

CLS(p̃
DDPM
t ) ≤ (CLS − 1)e−

∫ t
0
g(s)2 ds + 1 ≤ max{CLS, 1}.

1Note that the sign is flipped in the theorem statement in [BL02].
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Note that the analogous statement for the Poincaré constant CP holds for Lemma E.6 and E.7.

Proof. Note that if µ has log-Sobolev constant CLS and T is a smooth L-Lipschitz map, then T#µ
has log-Sobolev constant ≤ L2CLS. Applying Lemma E.6 to (35) and (36) then finishes the proof.

Lemma E.8 (Second moment for SMLD and DDPM). Suppose that p̃0 has finite second moment,
then for t ∈ [0, T ]:

Ep̃t
[
∥x∥2

]
= Ep̃0

[
∥x∥2

]
+ dβ(t) in SMLD,

Ep̃t
[
∥x∥2

]
= e−β(t)Ep̃0

[
∥x∥2

]
+ d(1− e−β(t)) ≤ max

{
Ep̃0

[
∥x∥2

]
, d
}

in DDPM,

where β(t) =
∫ t
0
g(s)2ds.

Proof. Recall that in SMLD, x̃t ∼ N(x̃0, β(t) · Id). Let y ∼ N(0, β(t) · Id) be independent of x̃0.
Then

Ep̃t
[
∥x∥2

]
= E

[
∥x̃0 + y∥2

]
= E

[
∥x̃0∥2

]
+ E

[
∥y∥2

]
= E

[
∥x̃0∥2

]
+ dβ(t).

In DDMP, x̃t ∼ N(e−
1
2β(t)x̃0, (1− e−β(t)) · Id). Choose y ∼ N(0, (1− e−β(t)) · Id) independent

of x̃0, then

Ep̃t
[
∥x∥2

]
= E

[∥∥∥e− 1
2β(t)x̃0 + y

∥∥∥2] = E
[∥∥∥e− 1

2β(t)x̃0

∥∥∥2]+ E
[
∥y∥2

]
= e−β(t)E

[
∥x̃0∥2

]
+ d(1− e−β(t)).

Lemma E.9 (Warm start for SMLD and DDPM). Suppose that p has log-Sobolev constant at most
CLS and ∥Ey∼py∥ ≤M1. Let φσ2 denote the density of N(0, σ2Id). Then for any σ2,

χ2(φσ2 ||p ∗ φσ2) ≤ 4 exp

(
d(2M1 + 8CLS)

σ2

)

Hence, letting σ2
SMLD =

∫ t
0
g(s)2 ds and σ2

DDPM = 1− e−
∫ t
0
g(s)2 ds,

χ2(φσ2
SMLD
||p̃SMLD

t ) ≤ 4 exp

(
d(2M1 + 8CLS)

σ2
SMLD

)

χ2(φσ2
DDPM
||p̃DDPM

t ) ≤ 4 exp

d
(
2e−

1
2

∫ t
0
g(s)2 dsM1 + 8e−

∫ t
0
g(s)2 dsCLS

)
σ2

DDPM

 .

Proof. Let Rx = (M1 + 2
√
CLS) ∥x∥. For a fixed x, note that Ey∼p ⟨y, x⟩ ≤ ∥Ey∼py∥ ∥x∥ ≤

M1 ∥x∥ by assumption. Then by Lemma E.2,

P(⟨y, x⟩ ≥ Rx) ≤ P(| ⟨y, x⟩ − Ey∼p ⟨y, x⟩ | ≥ 2
√
CLS ∥x∥) ≤ 2e

− (2
√

CLS∥x∥)2

2CLS∥x∥2 ≤ 2e−2 ≤ 1

2
.
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Hence

(p ∗ φσ2)(x) =

(
1

2πσ2

)d/2 ∫
Rd

e−
∥x+y∥2

2σ2 p(y) dy

≥
(

1

2πσ2

)d/2
e−

∥x∥2

2σ2

∫
Rd

e−
⟨x,y⟩
σ2 p(y) dy

≥
(

1

2πσ2

)d/2
e−

∥x∥2

2σ2

∫
⟨y,x⟩≤Rx

e−
⟨x,y⟩
σ2 p(y) dy

≥
(

1

2πσ2

)d/2
e−

∥x∥2

2σ2

∫
⟨y,x⟩≤Rx

e−(M1∥x∥+2
√
CLS∥x∥)/σ2

p(y) dy

≥
(

1

2πσ2

)d/2
e−

∥x∥2

2σ2 e−
∥x∥2

8σ2d
− 2M2

1d

σ2 − ∥x∥2

8σ2d
− 8CLSd

σ2

∫
⟨y,x⟩≤Rx

p(y) dy

≥
(

1

2πσ2

)d/2
e
− ∥x∥2

2σ2(1− 1
2d )

−1

e−
d(8CLS+2M2

1 )

σ2 · 1
2

≥ 1

2
e−

d(8CLS+2M2
1 )

σ2

(
1− 1

2d

)d/2
φ σ2

1− 1
2d

.

Using the fact that χ2(N(0,Σ2)||N(0,Σ1)) =
|Σ1|1/2
|Σ2| |(2Σ

−1
2 − Σ−1

1 )|− 1
2 − 1, we have

χ2(φσ2 ||p ∗ φσ2) + 1 ≤ 2 · e
d(8CLS+2M2

1 )

σ2

(
1− 1

2d

)− d
2
[
χ2

(
φσ2 ||φ σ2

1− 1
2d

)
+ 1

]

= 2 · e
d(8CLS+2M2

1 )

σ2

(
1− 1

2d

)− d
2
(
1− 1

2d

)− d
2
(
2−

(
1− 1

2d

))− d
2

≤ 2 · e
d(8CLS+2M2

1 )

σ2

(
1− 1

2d

)−d

≤ 4e
d(8CLS+2M2

1 )

σ2

The corollary inequalities then follow from (35) and (36), where for DDPM, we use the fact that
M
e−

1
2

∫ t
0 g(s)2 ds#

p0 has mean e−
1
2

∫ t
0
g(s)2 ds · Epx and log-Sobolev constant (e−

1
2

∫ t
0
g(s)2 ds)2CLS.
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