A Computations

We start the proofs by collecting some preliminary results. In the following, we will consider the
SDE

dxy = f(z,t) dt + G(t) dwy @)
and the interpolation of the discretization of an approximation
dz = f(z_,t) dt + G(t) dw, ®)

whent > t_. Let P; and @); denote the law of z; and z;, respectively. We will take {_ = kh and

t € [kh,(k+ 1)h). We will assume that f, f, G are continuous and the functions f(-,t), f(, t) are
uniformly Lipschitz for each t € [kh, (k + 1)h].

In this section, we will make some computations that will be used in both Sections B] and @ First,
we derive how the density evolves in time.

Lemma A.1. Let Q; denote the law of the interpolated process (8). Then

9q:(2) GHGH)T
ot 2

_v. [—qt(z)E (Fer_ b))z = 2] + Va(2)| .

Proof. Let q,;_ denote the distribution of z; conditioned on z;_. Then the Fokker-Planck equation
gives

0qyye_ (z]z¢_ ~ GG T
MZ—V%L(ZM ) [Flze )] + MAQHL(Z’VL)
ot 2
Taking expectation with respect to z;_ we get
9] GHG@)T
Qt =V / —qe_ (2)f(y, )aqe_(y)dy + V - [()2()V/qt|t(2|y)qt_(y)dy]

=V-alo) | [ ot lan + COFT [l

Note that for fixed z, [ ¢;_|¢(y|z)dy = 1. Hence

ai(z) _ V- {—qt(z)E [A(Zt,,t)|zt = z} + G(t)G(t)TV(Jt(Z)} .

ot
O

We now use Lemma to compute how the y2-divergence between the approximate and exact
densities changes. The following generalizes the calculation of [EHZ21] in the case where z; is a
non-stationary stochastic process. For simplicity of notation, from now on, we wil consider the case
G(t) being a scalar.

Lemma A.2. Let P, and Q; be the laws of (@) and @) for G(t) = g(t)I14. Then

(ft *(qellpe) = —9(t)?6, (;i)—#ﬂEKf(zt,t)—f(zt,t),Vqt(zt)ﬂ,

Pt(zt)

Proof. The Fokker-Planck equation gives

Ope(x)

) 9 s o) + 2

2

th(x)} .

We have

d d [ q(z)? Oqi(x) qi(x)  Ope(x) qu(x)?
g () = dt/ ()dx:/ [2 o mlx) ot pt<z>2}d”
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For the first term, by Lemma[A7T]

WD 4o —3 [ V- [~ [Faa 0l = o] + L 00| - 200,
- Q/qt(x) <E [A(zo,t)\zt - a:} ,vZﬁEz; > dz — g(t)? / <Vqt(x), VZig; > dz.
)
For the second term, using integration by parts,
] B [ [ -] £
[ 2 (i )
ol
o [ (ownesye oo
Note that

[ {Fae 955~ M (T Vi) = [V Vo e =4, (2).

Combining (9) and (T0),
%XQ(%H]%) = —g(t)’6, (;Zi) + 2/%(@ <E [ t) = @Ol =] ’vaigg > o
B I

Finally, we will make good use of the following lemma to bound the second term in Lemma[A.2}

Lemma A.3 (cf. [EHZ21, Lemma 1]). Let ¢s(z) = Zigi) and (z) = ¢i(x)/Ep, ¢7. For any c

and any R%-valued random variable u, we have

e [(u 2D <8 [l [V < 0Byt B [lull vuta] + 1 (L)

Proof. Note that E¢);(2;) = 1 and the normalizing factor is E,, ¢? = x*(q:||p:) + 1. By Young’s

inequality,
2 [(uve)] - (/. [ulegoates)

< cm |1l 225] + 755 | [V
)

(
= ce | 2205 + e ()

|

B Analysis for LMC

Let p be the probability density we wish to sample from. Suppose that we have an estimate s of

the score V In p. Our main theorem says that if the L? error E,, |V Inp — $||2 is small enough, then
running LMC with s for an appropriate time results in a density that is close in TV distance to a
density that is close in x2-divergence to p. The following is a more precise version of Theorem
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Theorem B.1 (LMC with L2-accurate score estimate). Let p : R4 — R be a probability density
satisfying Assumption |I| with L > 1 and s : R? — RY be a score estimate satisfying Assump-
tion. Consider the accuracy requirement in TV and x%: 0 < ey < 1, 0 < ex < 1, and
suppose furthermore the starting distribution satisfies x*(po||p) < K2. Then if
3
. < , ETVEY 7
174080v/5dL2CPL° (Cr n(2K, /e2) V 2K

2

then running (LMC-SE)) with score estimate s and step size h = 27202% for any time T' €
[Tmins C7Tmin), where Tinin = 4CLs In (%) results in a distribution pp such that pr is epv-far
X

in TV distance from a distribution r, where Dy satisfies x*(Dr||p) < €2. In particular, taking
€y = €Tv, we have the error guarantee that TV (pr,p) = 2erv.

The main difficulty is that the stationary distribution of LMC using the score estimate may be arbi-
trarily far from p, even if the L? error of the score estimate is bounded. (See Section|D|) Thus, a
long-time convergence result does not hold, and an upper bound on T’ is required, as in the theorem
statement.

We instead proceed by showing that conditioned on not hitting a bad set, if we run LMC using s,
the x2-divergence to the stationary distribution will decrease. This means that the closeness of the
overall distribution (in TV distance, say) will decrease in the short term, despite it will increase in
the long term, as the probability of hitting the bad set increases. This does not contradict the fact
that the stationary distribution is different from p. By running for a moderate amount of time (just
enough for mixing), we can ensure that the probability of hitting the bad set is small, so that the
resulting distribution is close to p. Note that we state the theorem with a Cp parameter to allow a
range of times that we can run LMC for.

More precisely, we prove Theorem [B.1]in two steps.

LMC under L gradient error (Section [B.I, Theorem[d.2). First, consider a simpler problem:
proving a bound for x? divergence for LMC with score estimate s, when ||s — V In p|| is bounded
everywhere, not just on average. For this, we follow the argument in [[Che+21] for showing con-
vergence of LMC in Rényi divergence; this also gives a bound in y2-divergence. We define an
interpolation of the discrete process and derive a upper bound for the derivative of Rényi diver-
gence, 0y Rq(q:||p). using the log-Sobolev inequality for p. In the original proof, the error comes
from the discretization error; here we have an additional error term coming from an inaccurate gra-
dient, which is bounded by assumption. Note that a L? bound on V f — s is insufficient to give an
upper bound, as we need to bound E,,, [||V f — s||?] for a different measure g;1; that we do not
have good control over. An L> bound works regardless of the measure.

Defining a bad set and bounding the hitting time (Section [B.2). The idea is now to reduce
to the case of L error by defining the “bad set” B to be the set where ||s — V f|| > &1, where
€ < €1 < 1. This set has small measure by Chebyshev’s inequality. Away from the bad set,
Theorem [.2] applies; it then suffices to bound the probability of hitting B. Technically, we define
a coupling with a hypothetical process where the L°° error is always bounded, and note that the
processes disagree exactly when it hits B; this is the source of the TV error.

We consider the probability of being in B at times 0, k, 2h, . ... we note that Theorem [B.1] bounds
the x2-divergence of this hypothetical process X at time ¢ to p. If the distribution were actually
p, then the probability X, € B’ is exactly p(B’); we expect the probability to be small even if the
distribution is close to p. Indeed, by Cauchy-Schwarz, we can bound the probability X € B in terms
of P(B) and x?(g¢||p); this bound is given in Theorem [4.1} Note that the eventual bound depends
on x%(q¢||p), so we have to assume a warm start, that is, a reasonable bound on x2(qo||p).

B.1 LMC under L*° gradient error

The following gives a long-time convergence bound for LMC with inaccurate gradient, with error
bounded in L°°; this may be of independent interest.
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Theorem 4.2 (LMC under L bound on gradient error). Let p : R? — R be a probability density
satisfying Assumption IZl) and s : R?Y — R? be a score estimate s with error bounded in L>:

for some €1 < 48—105,

[Vinp —s| . = max IVInp(z) — s(z)||] < e1.

Let N € Ngand 0 < h < m, and assume L > 1. Let q,5, denote the nth iterate of LMC
with step size h score estimate s. Then

h
X (qer+1)nllp) < exp (—%> X*(arnllp) + 170dL*h* + Beih

and
Nh

Nh
x*(annllp) < exp ( > x2(qol|p) + 680dL?hCys + 20e3C1s < exp <4CLS

2

+1
1C1s ) X" (qollp)
Following [[Che+21]], convergence in Rényi divergence can also be derived; we only consider x2-
divergence because we will need a warm start in y2-divergence for our application. Note that by
letting N — oo and h — 0, we obtain the following.
Corollary B.2. Keep the assumptions in Theorem The stationary distribution q of Langevin
diffusion with score estimate s satisfies

x*(qllp) < 20CLse?.

Proof of Theoreml.2] We follow the proof of [Che+21] Theorem 4], except that we work with the
x? divergence directly, rather than the Rényi divergence, and have an extra term from the inaccurate
gradient (T7). Givent > 0,lett_ = h L%J Define the interpolated process by

dz :s(ztf)dt—&—\/ﬁdwt, (11)
and let ¢; denote the distribution of X, at time ¢, when Xy ~ qq.
By Lemma[A2]
9 5 qt Qt(zt)
— =-2&, | — 2FE -Vl . 12
Sl = =26, (L) 4 28 | (st21) ~ Thup(e) T (12)

By the proof of Theorem 4 in [Che+21]],
HVlnp(xt) - V]Ilp(a;,L)H2 < 9L2(t —t_)?||VInp(z,)||* + 6L? |B: — B:_ H2 .
Then
[s(z¢) = Vinp(z)||* < 2[Vinp(ze ) = Vinp(z)||” + 2 |s(z ) — Vinp(z )|
<A8LA(t—t )2 ||V Inp(z)|® + 1202 | B, — B, || +2e3. (13)

Let ¢; := q¢/p and ¢y := %. By Lemma

9F Ks(zt) - Vlnp(zt),vif(it)) >] <2E,¢?-E [Hs(zh) - Vlnp(zt)H2wt(zt)} n %gp (?)

1
<A+ Ay + Az + 5‘%(@) (14)

where Aj, Ay, A3 are obtained by substituting in the 3 terms in (I3)), and given in (I3), (I6), and
(T7). Let V(z) = — Inp(x). We consider each term in turn.

Ay = B6L3(t — t-)Ep? - E[IVV ()| Yu(z0)] (s)
< 36L2 2 2 4gp(¢t)
< (t—t_)Epo; - E, 00 +2dL by [Che+21], Lemma 16]
Yt
1
< 56p(00) + T2L(E = )2 (X (aullp) + 1)
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when h? <

< sgirs. By [Che+21] p. 15]

Ay =24L°E,¢? - E [HBt - B, |’ ¢t(zt)} (16)

< 24L°Ep7 - <14dL2(t —t_) +32hCis @@p((@)
Ep¢;

1
< 336dL%(t — ) (X (allp) + 1) + 56p(6n)
when h S W}/ZCLS Finally,

Az : = 4eiEp} = 4e1 (X% (allp) + 1) an
Combining (12)), (T4), (13)), (16), and gives

0 1
an(Qth) < —iéap(@) + (X2(Qt”10) + 1)(72dL3(t - t7)2 + 336dL2(t —t)+ 45%)
< 5 X (@llp) + O (arllp) + 1)(T2dLA(E = ¢)* + 336 L%d(t — ¢ ) + deT)
LS

1 .
< =X (@llp) + (72417 (¢ — ¢)? 4 336AL* (¢ — 1) + 4e})
LS

1/2 1/2
. 1 1
ith < (Wm) A 13336405 and €1 < (m) - Then for ¢ € [kh, (k +1)h),

9 ( 2 t—t- t—t- 3 2 2 2
— —_— = —t_ Lot —t_ 4
py (X (gt]|p) exp ( 100s )) exp ( 1C ) (T2dL°(t —t_)° + 336dL*(t — t_) + 4e7)

LS
< T3dL3(t —t_)% 4+ 337dL2(t — t_) 4 5e2.

Integrating over ¢ € [kh, (k + 1)h) gives

73

—dL3h® + 337
3

h
X (quesnllp) < exp [ ——— ) x*(arnllp) + ——dL*h* + 5eth
4Cys

h
< exp <_40Ls) X*(qrn||p) + 170dL*h* + 5eTh

using h < Unfolding the recurrence and summing the geometric series gives

12f L’
2 kh 2 2 2
X" (qrnllp) < exp ~10 ) X (qollp) + 680dL"hCys + 20e7CLs
L
kh 9

< - 1

< exp ( 4CLS> X~ (qollp) +
when h < 57— and 51 < 400 . We can check that the given condition on A and the fact that
LCis >1 (Lemma imply all the required inequalities on h. [

B.2 Proof of Theorem [B.1]

Proof of Theorem[B_1] We first define the bad set where the error in the score estimate is large,
B:={[VInp(z) - s(x)[| > &1}

for some £7 to be chosen.

Givent > 0,lett_ =h L%J Given a bad set B, define the interpolated process by

=b(z )dt—i—fdwt, (18)
2 ¢ B
where b(z { p(), €B"



In other words, run LMC using the score estimate as long as the point is in the good set at the previ-
ous discretization step, and otherwise use the actual gradient V Inp. Let g, denote the distribution
of z; when Zy ~ qp; note that g, is the distribution resulting from running LMC with estimate b
for n steps and step size h. Note that this auxiliary process is defined only for purposes of analysis;
it cannot be used for practical algorithm as we do not have access to V f.

We can couple this process with LMC using s so that as long as X; does not hit B, the processes
agree, thus satisfying condition [I|of Theorem 4.1

Then by Chebyshev’s inequality,

Let T'= Nh. Then by Theorem 4.2}

. kh kh
Y2 (@enllp) < exp | ——— ) x2(qo||p) + 680dL2hCrs + 20e2Crs < exp [ ——— | x2(qollp) + 1.
4CLS 4CLS

2 2 2
For this to be bounded by 5%, it suffices for the terms to be bounded by %", %", %"; this is implied

by

2K
T Z 4CLS In ( €2X> = Tmin

X
2
he—X
4392dL2Cr 5
€x
g1 = .
44/5C1s
(We choose h so that the condition in Theoremis satisfied; note €,, < 1.) By Theorem 4.1}
N-1
TV(gnn, Gnn) < (1 + x*(qenp)) /2 P(B)*/?
k=0

IN

IN
/N -~/

oo
=l
o ©

>
&
wn

In order for this to be < ev, it suffices for

1 h
< — N=—=— .
£ = ety <4N 32CLSKX)

Supposing that we run for time 7" where Ty, < T < CrTiin, We have that N =

T CTz;min )
Thus it suffices for

o=

h h
< A
&= semy (40TTmin 3QCLSKX)

2
Ex €y 1 1
4/50s TV 2720dL2Cs <1GC’TCLS (2K, /e2) " 32015 Ky
_ eTvey
174080V/5dL2CL L (Cr In(2K, /€2) V 2K,)
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B.3 Proof of Theorem2.2]

We restate the theorem for convenience.

Theorem 2.2 (Annealed LMC with L?-accurate score estimate). Let p : R¢ — R be a probability
density satisfying Assumption|l|for My = O(d), and let py2 := p * pg2. Suppose furthermore that
V Inp,2 is L-Lipschitz for every o > 0. Given omin > 0, there exists a sequence opmy, = 01 <

- <oy withM =0 (\/glog (ig“)) such that for each m, if

IV inpa) = 5025, ) = Boa ([ VInpos, (@) = s(a,07)|] <

~ ETV
with e .= O () 3)
BEBL2C2S

then V) is a sample from a distribution q such that TV(q,pU%) <erv.

Proof. We choose

1 dL?Cs
hy=-=hy =0 —nu-— hy=0
w= == () e (%)

TMl__T2_@(Clen<5J:;>) Tl_@<Clen<<€;/)>,

aIldT]\/[ = O, Nm = m/h

min

Choose the sequence 02, = 0% < --- < o3, to be geometric with ratio 1 + © ( 7) Note that

da

o'd 02 —d/2 oy 2\ T2
x2<N<o,aSId>|N<o,a%Id>>—U;dmaf—aﬁ)d/2—1—<g) <2_()> |

2 0y 01

For 03 = (1 +¢)o?, this equals (1 +¢)%2(1 —&)™%2 = (1 —£?)"%/2 — 1. Fore = 0 (ﬁ),
thisis d - O () = O(1). Hence, the x?-divergence between successive distributions Doz, is O(1).
Choosing 02, = Q(d(M; + Cis)) ensures we have a warm start for the highest noise level by

Lemma X2 (Pprior|[Po2,) = O(1). This uses O (\flog (dCLS)) noise levels.

min

Write p,,, = po2, for short. Let g, be the distribution of the final sample (™) We show by
downwards induction on m that there is g,,, such that

(M+1)—m
M+1

Xz(amem) < (4(]\?‘11)) .

For m = M, this follows from the assumption on ¢ and Theorem with K, = O(1) (given by
the warm start).

TV(QnLaqm) S ETvV

Fix m < M and suppose it holds for m+-1. We use the closeness between ¢, 1 and p,,,+1 combined
with X?(pm+t1|[pm) = O(1) to obtain compute how close ¢,,+1 and p,, are. Because the triangle
inequality does not hold for x2, we will incur an extra TV error.

Letq,, ., be the distribution of the final sample if x(()mH) ~

TV (gm, Q) < %gTV

G- We'have TV (g1, Gmmy1) <

By Markov’s inequality, when x2(py, 1||pm) < 1,

2
Ppm+1 Pm+1 > 8(M+ 1) < X (pm+1||pm) +1 < ETV )
8(M +1)/erv 4(M+1)

Pm ETV
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Let Trm+1,m = IL{ Pl s(Ez\ifr-\tn }qurl/f{ p,;:;l < S(i\i-\tl) } m+1- Note that (using

Pm —

TV(@n+17Pm+1) S vV X2(§m+1\|17m+1) S %)

Pmt1 _ 8(M +1) Pmt1 _ 8(M +1)
D41 < 2 < Ppm-u >

) + Tv(qurlvpm—i-l)

Pm €TV Pm €TV
TV eTv 1
< < =, 19
Si+n T+ 52 (19)
8O Qppy1,m < 2G4 and
X @1 mllpm) +1 <20 (@ lPm) + 1)
qm+1(‘r)2 Pmt1(2)
) - d
/{Pm+1 8(M+1)} pm+1(:1:)2 pm(x) p +1(.’L') x

8(M+1), 5 _ 16(M + 1)

= 7(X2(Qm+1‘|pm+1) + 1) < —
ETv ETV

(m)

Let Gy, 1, be the distribution of x"’ when a(m

~ Gyy41,m- Then by assumption on € (3) and

Theorem (with K, = 4 Afjvl, Ex = (M+1) and ey 2(;}11)) there is g,,, such that

TV (@ mt1:Gm) < 5055575 a0d X2 (@ [pm) < 3555 Tt remains to bound

Tv(qm7qm) S Tv(qM7Q;11,m+1) + Tv(q;n,erh qm)

_ ETV
< TV(gmsts . v
= (q +1 erL,77L+1) + 2(M+ 1)
< TV (@t t, o 1) + TV @1 Tt 1.m) + 57os
— y dm—+ m+1)4dm+1,m 2(M—|—1)
M+1)— 1 M+1
S( +1) — (m+ )ETV+P§ DPmt1 > 8(M +1) TV
M+1 O\ eTVv 2(M +1)
(M+1)—(m+1) £TV ETV (M+1)—
< f—
= M1 o+ 200 1 1) Myl TV

where we use (T9) in the last line. This finishes the induction step.
Finally, the theorem follows by taking m = 1 and noting
TV(qi,p1) < TV(q1,q1) + TV(Gq,p1)
Meyy £V

<TV(q1,q1) + VX3 (@llp1) < M1 + 1L +1) <ervy. O

C Analysis for SGM based on reverse SDE’s

In this section, we analyze score-based generative models based on reverse SDE’s. In Section
we prove convergence of the predictor algorithm under L°°-accurate score estimate (Theorem

restated as [C.I) using lemmas proved in Section Q [C4 [C3l and[C.6] In Section[C.7, we prove

convergence of the predictor algorithm under L“-accurate score estimate (Theorem [3.1} restated
as[C.16). In Section|[C.8] we prove convergence of the predictor-corrector algorithm (Theorem [3.2)).

C.1 Discretization and Score Estimation

With a change of variable in (d)), we define the sampling process z; on [0, 7] by
day = [~ f(x0, T — t) + g(T = t)*V Inpr i (2)) dt + g(T — t) dwy, w0 ~ pr-

Denoting the distribution of x; by p; and running the process from 0 to 7', we will exactly obtain
pr = Po, which is the data distribution. In practice, we need to discretize this process and replace
the score function V In pr_, with the estimated score s. With a general Euler-Maruyama method,
we would obtain {25 }_, defined by

2 tyn = 2k — I+ [f (zkn, T — kh) = g(T — kh)?s(zkn, T — kh)] + VI - g(T — kh)mi41, (20)
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where h = T/N is the step size and 7y, is a sequence of independent Gaussian random vectors. As
we run (20) from 0 to NV with /& small enough, we should expect that the distribution of zr is close
to that of 7. However, in both SMLD or DDPM models, for fixed zj, the integration

(k+1)h (k+1)h
/ F(oam T — ) dt and s(zn, T — kh) - / o(T — )2 dt
kh kh

can be exactly computed, as can the diffusion term. Therefore, we can consider the following process
z¢ as an “interpolation” of (20):
dze = [=f(zkn, T — 1) + g(T — t)?s(zpn, T — kh)] dt + g(T — t) dwy, t € [kh, (k + 1)h].
21
Note that by running this process instead, we can reduce the discretization error. Now if we denote

the distribution of z; by ¢;, with ¢y ~ pg, we can expect that g7 is close to pr. Here the estimated
score s satisfies for all =

||S($,T—k'h) _V1nﬁT—kh(x)” S@kha k:Oala'”aN' (22)

Observe that in either SMLD or DDPM, the function g(¢)? is Lipschitz on [0, T]. So in the following
sections, we will assume that g(¢)? is Ly-Lipschitz on [0, 7.

C.2 Predictor

In this section, we present the main result (Theorem on the one-step error of the predictor in x2-
divergence, which can be obtained by directly applying the Gronwall’s inequality to the differential
inequality derived in Lemma|[C.3] Note that Theorem [C.I]is a more precise version of Theorem 4.3}
see the remark following the theorem.

Theorem C.1. With the setting in Section[C.1} assume g is non-decreasing and let

1
0<h< min 5 =
kh<t<(k+1)h g(T — kh)?(28L% 4+ 10C; + E,, ||z||” + 64Cy 1 + 128Cy 1. + 360L2(R; + 2C Ry))

where Cy is the log-Sobolev constant of p;, bounded in Lemma [E7) Suppose that VInp, is L-

Lipschitz for all t € [kh, (k + 1)h], s(-, kh) is Ls-Lipschitz, L, Ly > 1, and ey}, is such that (22))
holds. Then

X (@1l [Pr1yn) <

(k+1)h . .
X2(Qkh”pkh) +/ Cy ki dt‘| e é’i“” (*g%vtanEﬁh)g(T—tfdt
kh

Here,
Cikn = [8e3n + E - (t — kh)g(T — kh)?] g(T — t)?
and
E=9(4L* +1)+8Cy

32L72 in SMLD,

Crr = (88C2 +400)L? in DDPM,

[ 76L%d in SMLD, 9
Car = { 6+ 94124 inppPM = 10017
Rt = Q(Ct + 1)
Rg = 300d + 12

are defined in (24), 27), 28), (30) and 1), respectively.

Proof. The theorem follows from applying Gronwall’s inequality to the result of Lemma[C.3] O

Remark. Note that in[DDPM| E = O(L? + L?d). Therefore, when g = 1, C ., = O(e% + (L2 +
L2d)h), where we denote the upper bound of ey, for all k& € {0, ..., N} by &1. Using the bound on
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the log-Sobolev constant (Lemma [E.7) and second moment (Lemma [E.8) for DDPM, we note that
the restriction on h for all steps is implied by

1
h=0 2
Epg [|2]]” + Crs(Crs + d)(L Vv Ly)?

with appropriate constants. Then we can conclude the first inequality in Theorem [#.3]by combining
Theorem [C.T]and Lemma [E.7)and the second inequality from unfolding the first one and evaluating
the geometric series. Likewise, we have the following analogue for[SMLD] for which we omit the
proof.

Theorem C.2 (Predictor steps under L> bound on score estimate, SMLD). Letp : R? — R be a

probability density satisfying Assumptionand 5(-,t) : R* — R? be a score estimate s with error

bounded in L™ for each t € [0,T)]:
[VInp —s(,t)]|

o0

= max [|VInp(z) — s(z,t)]] < e1.
z€R4

Consider|SMLD| Let Cr = Cis +T. Let g = 1, T > Crsd, and h = O (
Then

1
Epg umu2+ch<LvLs>2)'

— = t—+8e2)h
X+ 0)n[Pgt1yn) < X2(Qkh||pkh)€( sor e T8V O(e2h + (L2 + L?d)h?)

and lettingt =T — Nh, ife; < ﬁ’

Cis+t\7 Cis +T
2 < (ST 2 In | T2 ) (24 (L2 + L2d)h) ) .
X(QNh|PNh)_<CLS+T> X(QO|P0)+O(H(CLS+t)(51+( S+ L*d)n)

Moreover, for gy = Pprior, @0 = 1. X*(qo||po) < <.

Remark. We note that in a sense SMLD|and [DDPM] are equivalent, as we can get from one to the
other by rescaling in time and space. First we recall that, as discussed in Section [3] all the SMLD

models are equivalent under rescaling in time. Therefore we can assume g(t) = e'/? and consider
the forward SDE for SMLD

dry = et/det,

where w; is a standard Brownian Motion. Now let y; = e~t/2x,; then
1
dy; = —§ytdt + duwy,

which is exactly[DDPM]|with g(¢) = 1. Note that Theorem uses a different parameterization for
SMLD and the resulting complexity is slightly worse.

C.3 Differential Inequality

Now we prove a differential inequality involving x?(q;||p;). As in [Che+21], the key difficulty is to
bound the discretization error. We decompose it into two error terms and bound them in Lemma[C.4]
and Lemma|[C.3|separately.

In the following, we will let

t

Gt : :/ g(T — 5) ds. (23)
kh

Lemma C.3. Let (q:)o<i<r denote the law of the interpolation 21)). With the setting in Lemma

we have fort € [kh, (k + 1)h],

1

%X2(Qt||pt) <g(T -t |:<_80t

n 8) (@llpe) + [82 + B - (t — kh)g(T — kh)?]| .

where Cy is the LSI constant of py, €xp, is the L°°-score estimation error at time kh and E is defined

in @)
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Proof. By Lemmal[A2]with
f(zkh,t) < —f(Zk}“T — t) + g(T — )2 (Zk;h,T — kh)
fzt) & =f(2, T =) + g(T — 1)*VInpr_i(2),

we have

(Qt||pt) —g(T -
— (= f(z,

t
T )

=X )28, (;t> + 21E[< (= (2, T — £) + (T — t)25 (24, T — kh))
—t

T—1)+g(T —1)*VInjr—i(2)) , VL )]

Dt

sttt .53

= —g(T —)?&,, (qt) +A+B.
Pt
By Lemma|[C.4}
2 2 2 1 q
A< o7 = 0 [20%allo) + DB [l = sl ute0)] + 56 (2]
while by Lemma[C.5]
1
B < 5g(T 1), (Z) +89(T = L2 (@l Ipe) + VE [l120 = zanll” n(z0)]
+8 [ein + GrneCar] 9(T — )2 (P (@illpe) +1).
1 1 :
Therefore, for h < 29T R AL 1) (v, Fa) N Tosgr—rmyzC, L » Using Lemma ,
3 q
ladllp) < —59(T - 076, (p) + (T = (812 +2) (0 (aellpe) + VE [l12¢ = zenl* (1)
+8 [ein + GrneCa] 9(T — 1) (P (@illpe) +1)
3 qt
< ——g(T —1)28, <)
> 89( ) i2 e
+99(T — t)*(4L2 + 1)Grne |:Rt(g)pt (Zt) + Rt7kh<X2(Qtht> + 1)]
t
+8 [exn + GintCa,] 9(T — ) (> (@l lpe) + 1)

9 1
< —2g(T =126, (L) + g(T — )> —P(aillpe) + 89(T — 1)<, (alpe)
8 Pt 80

dt

+ g(T — t)2 [8&%}7, + SCd,LGk:h,t + 9(4L§ + 1)Gkh,th] .

Using the fact that p; satisfies a log-Sobolev inequality with constant Cy,

G llp) < ~5mg(T = 0P @) + 5 9(T — 0P ailp) +89(T = Pk al o)
+g(T — )2 [83), + 8Ca, 1 Grne + 9(4L2 + 1)Gyp i Ra)
< (~ae +8ekn ) o7 = 7 (all) 4 o(T ~ 07f8eky + Bl@ ~ R)o(T — k1)),
where
E=94L?+1)+8Cqr. (24)
O
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In order to bound the error terms A and B, we will use Lemma Let ¢y (z) = ;zgg and

Yi(z) = ¢r(2)/Ep, #?. Then Eq)y(2;) = 1 and in fact the normalizing factor E,,, ¢? = x2(q¢||ps)+1.
We first deal with error term A.

Lemma C4. In the setting of Lemma|[C.3} we have the following bound for term A:

28 [<f(2t’ T —t) = f(zgn, T — 1), VZZEZ; >}

< (T — 1) [2<x2<qt|pt> + DB [l20 = 2l ge(z)] + 56 (;Z )] |

Proof. In SMLD, f(z,t) = 0 and hence A = 0; while in DDPM, f(z,t) = —3g(t)?z. Therefore,
by Lemma[A73]

2 Kf(Zt,T —t) = f(zkn, T — t)’vgi((:; >}

= (T —1)’E Kzt = o, v 2e3) >]

pt(zt)

< o=t 25,60 B [l — sl vulan)] + 56 (2]

= g(T —1)? |:2(X2(qt|pt) +1)E [IIZt — 2’ wt(zt)} + éoﬁ”‘ (;Z)] ' .

Now we bound error term B.
Lemma C.5. In the setting of Lemmal[C.3} we have the following bound for term B:

1 q
B < 5g(T 1), (p) +89(T = L2 (@l Ipe) + VE [l120 = zanll® nz0)]
+8 [gin + GrneCar] 9(T = 1)*(x*(aelpe) + 1)
Proof. We first decompose the error:

E Ks(zm T — kh) — Vinpr_i(z1), VZEZ; >} —E Ks(zkh, T — kh) — s(z1, T — kh), inEZ% >]

8 (s~ 7 )
)

+E KVlnpkh(zt) - vlnpt(zt)’vgigz) >}

= B1 —|—B2—|—B3

Now we bound these error terms separately. For Bj, by the Lipschitz assumption, we have by
Lemma[AZ3] for a constant Cy > 0 to be chosen later,

‘V%(Zt) }

pe(2t)
1 q
S4L3Emﬁ-E“aaﬂf%@0}+uf%(é)

B <E [Ls |2k — 2| -

1
=4L2(x*(q|lpe) + DE [Hzt — 2z ? ¢t(zt)} + —&p, &
16 y4s

For Bs, recalling the assumption that ||s(x, T — kh) — VInpgp(2)|| < egp for all 2, we have by
Lemmal[AJ]

Ba < 4B [lste0. T~ ) = Vtupen G )] Bl + g5 (%)

1
<42, 03 (@llp) +1) + =&, (L), (25)
16 Pt
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Now for the last error term Bs, we have by Lemma[A.3]that
1
Ba < 4By, 62 B [V npun ) = Vol vele0)] + 65 (2)
t

1
< AR (O (@llp) + 1) + —&, (L) (26)
16 bt

Here K, i, is the bound for E {wt(zt) IV 1npgp(2:) — Vinp:(z:) HQ} obtained in Lemma|C.13

Cir (Zt> ]
K, =G —_— . & | = C
t,kh Kkh,t [XQ(qt”pt) 1o (pt + Ca,L

where C; 1, and Cy, 1, are constants defined in (27) and (28) respectively. Hence

1
Bs < 4G4 [Ct’LéDpt <qt> + Car.(x (el lpe) + 1)} + =6, (%) )
» 16 bt

Combining all these results, we finally obtain the bound for error term B in Lemma for h <
1
64C;,Lg(T—kh)2>

B =2g(T —t)*(B, + By + Bs)

3
< 29T -6, (;) +89(T = L2 (@llpe) + DE [[l20 = 21l ve(z0)|
+8Cy,1g(T — t)2Gkh}t(9@pt (j)
t
+ 8 [exn + GrntCa,L] 9(T — )2 (0P (qellpe) + 1)
1
< 39(T =176, (Z) +89(T = L2 (@l Ipe) + VE [[120 = zanll” n(z0)]
+8 [ern + GintCa,r] 9(T — )2 (0P (@ullpe) + 1) O

C.4 Change of Measure

As shown in Lemma [C.4] and Lemma [C.5] the key to the proof of Lemma [C.3] is bounding
the discretization error A and B. The difficulty is that these errors usually have the form of

Ey,q “\u(x) I?| for some function u : RY — R?, while it is usually easier to bound those expec-

tations over the original probability measure or our target distribution p;. Therefore, as discussed
in [[Che+21} Section 5.1], our task is to bound these error terms under a complicated change of
measure. We first state such a result with respect to the gradient of the potential.

Lemma C.6. [Che+21, Lemma 16] Assume that p(z) o< e~V %) is a density in R and VV (z) is
L-Lipschitz. Then for any probability density q, it holds that
’2

v f1@

1 2dL.
p(x)

E, {vanﬂ < 4E, +2dL = E,

HV%EZ

Proof. Define the Langevin diffusion w.r.t. p(z):

dr, = —=VV(2;) dt + V2 dwy,
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where B, is a standard Brownian Motion in R%. Let £ be the corresponding infinitesimal generator,
ie., Lf = (VV,Vf) — Af. Observe that LV = |[VV|* — AV and E,Lf = 0 for any f, so

E, [vanﬂ —E,LV + E,AV
< /EV <ZE§§ - 1) p(z)dr +dL = / <VV, Vzgg>p(x)dx +dL
2/ <\/gvv, V\/g> p(x)de + dL

2
1
< 3K, (IVVI?°] + 2E, Hv d@l g

p(x)

Rearrange this inequality to obtain the desired result. O

Now applying this Lemma to p = p; and ¢ = ;q;, we get immediately the following corollary.
Note that 1;¢; is a density function because [ (z)q:(z)dz = Z;Eg qt(z) dz/E,,¢7 = 1 and
Yy(x)qe(x) > 0 for any x € RZ.

Corollary C.7. In the setting of Lemma|C.3] it holds that

4 di
E vl 2 <-<5‘)t<>+2dL.
eIVl < G e

Proof. Applying LemmalC.6]to the density ¢, yields

Ge(2)ge(2) |2
pt(m)

4 qt
YUL=— & (> +2dL.
X2(qllpe) +1 77 \py

By, [IVI0p02)17] < B [va
O

Note that we cannot expect analogous results for a general u(z) as in Lemma In the general
case, we apply the Donsker-Varadhan variational principle, which states that for probability mea-
sures p and q,

2 2
By [[u(@)]” < KL(qllp) + InE, exp [Ju(z)[]".
Towards this end, we first need to analyze KL(t¢1q||p).

Lemma C.8. Let ¢y(x) = ngg and i (z) = ¢1(x) /By, d7. If py satisfies a LSI with constant Ct,
then

20, (Qt)
KL <——F——:6&,|— |-
W) = Szt py v 1

Proof. Since p; satisfies LSI with constant CY,

KLl < 5 [ '

:2@/ ’Vh‘ptm




With this in hand, we are ready to bound the second moment of ¢, ¢, as well as the variance of a
Gaussian random vector with respect to this measure:

Lemma C.9. With the setting of Lemma|C.3] we have

9 207 qt 1 2 1
P = = 5
E |:’(/}t(2t) ||ZtH i| S X2(qt”pf) 1 gpt D + 2Ept |:||$|| :l + ZCta

where C4 is the LSI constant of py, which is bounded in LemmaE-6| and the second moment of p; is
bounded in Lemma

Proof. Since p; has LSI constant C, by Donsker-Varadhan variational principle,

E [vue0) )] = ZEgna, [5 I0] < 2 [KLGeallp) + Iy, [e3171°]]

for any s > 0. By Lemma for any s € [0, C%), we have

s 2 ]. S
K, 5l E 2
Pt |:6 :| S /71 Ct s €xp |:2(1 _ Ct . S>( Pt HI’”) :|

Now choose s = %Cf,’ we have
a2 1
By, [e41°] < VEexp [ oL@ el
Hence
2 1 2 In2
E [g() 20)] < G- |[KL@aillpe) + 5By [lol’] + 21
2C% 2
Now with the bound of KL(¢/;¢;||p;) in Lemma|C.8] we obtain
2C2 q¢ 1 2 1
E[ z 22}§7t~ ,<)+Ef{x}+0. O
l/ft( t)” tH XQ(Qtht)‘i‘l Dt D 9 Pt || || ) t

Lemma C.10. With the setting of Lemma|[C.3)

2 t 8C, q
§2/ T—sts.[t.gt<t)+d+81n2],
] kh gl ) X(allpe) +1 77 \ e

where Cy is the LSI constant of py.

t
E / g(T — s)dws
k

h

Vi (2t)

Proof. Note that f;h g(T — s)dwy is a Gaussian random vector with variance f,:h g(T — 5)2ds - 1.
Using the Donsker-Varadhan variational principle, for any random variable X,

EX < KL(P||P) 4 InEexp X.

2
Applying this to X = c( Hf,:h g(T — s)dws ) for a constant ¢ > 0 to
be chosen later, we can bound

2

-E Hf;hg(T — 8)dws

T

t
E / g(T — s)dws
k

h

/}: 9(T — s)dws

h

]

2 ~ t t 2

+ - {KL(PHP’) +InEexp (C(‘ / g(T — s)dws IE‘ / g(T — s)dw, ) )] ,
c kh kh

where Z—E = )+(2¢). Now following [[Che+21| Theorem 4], we set ¢ = W, so that
2
(‘ fkthg(T — 8)dws|| — E ‘ f,:hg(T — 8)dws )
Eexp T <2
kahg(s)st
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Next, using the LSI for p;, we have

= o 1 %
KL(P||P) = Ey,q, Inthy = Ey,q, In —2t - = ~Ey,0, In
( || ) Yiq t Piq Epp¢t2 2 Peq (Ept¢t)
1 ¢2 Ve gy
= 5 Ewtlh]' m —1In Ept¢t:| - |:Ewt¢h In — _lnEpt(b? .
Noting that E,, ¢7 = x*(q:||p:) + 1 > 1, we have that
~ 1 Cy (%)
KL(P||P) < = KL <t e (%)
( || )— 2 (ththt) = Xz(Qtht)'i‘l Pt D
where the last inequality is due to Lemma|C.8] We have proved
2
E [ (2) ’/ T — s) dw, ]
! qt
§2d/gT ds+16/ g(T — { <§’,<>+1n2]
kh =y kh Qtht )+1 "\
t
§2/ g(Ts)zds-{SCt <q>+d+8lnz] O
kh (q:|lpe) + p

C.5 Perturbation Error

In the previous section, we bound errors in the form of E,,q, ||u(z)||* with a change of measure

technique, where ||u(z)|” is easy to bound with respect to the original measure or p;. However,
this is not always the case for the errors we are considering. In this section, we aim to bound

Ey,q {HV Inpgp(z) =V lnpt(x)||2}, where, as discussed in Lemma|C.13| pp, can be regarded as

a perturbed version of p; with some Gaussian noise. We first provide a point-wise bound for SMLD
(Lemma[C.T1)) and DDMP (Lemma [C.12), respectively and then use them to bound the expectation
with respect to ¥, q;.

Lemma C.11. Suppose that p(x) oc e~V (®) is a probability density on R?, where V (x) is L-smooth,
and let @2 () be the density function of N (0,0%14). Then for L < 5=,
p(x)

va b+ 202) (@)

‘ < 6Lod"? + 2Lo% |VV (z)| .

Proof. Note that

2
_ov V() —Lz=yl p
Vinp x pg2(x) = fRd (y)e c v _ —IEpmﬂ2 VV(y),

lz—yl?

fRd e V(¥e 252 dy

where p, 2 denotes the probability density

_ly—=)2

Pa,o2(y) < p(y)e” 202

<Ep, oLy — ]

so when V' is L-smooth,

p()

Vin ——~2
H P * Po2(T)

E,_.[VV(y) - VV (@)

‘We now write

E’Pz,az Hy - Z‘H < Ellw’ﬂ

where y* € argmax, p; ,2 (y) is a mode of the distribution p, ,2. We now bound each of these
terms.
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1. For the first term, note that p,, ,2 is (Z5 — L)-strongly convex, so satisfies a Poincaré in-
L —1
equality with constant (% — L) . Thus

Ep, . Iy —all SEp, oy —Ep, yllP]/?

(Be) ()

2. For the second term, by Lemma noting that V (y) + % is (2 + L)-smooth,

<(Gon) en(sen((Hon) (B +L>>>“?

1 —1/2 1+ Lo? 1/2
< - 1/2 -
- (02 L> d <5+ln 1 —LO’Q)

HEPmyazy - y*

1 —1/2
<V7 (2 - L) d'/?,
g

where the last inequality uses 02 < 5.

3. For the third term, we note that the mode satisfies

Yy -
2

VV(y*)+ = 0
T GV = (VW) - YV () + TV ()

o2

1, ., .
Sy =2l < [IVV(@)] + Lily" |

Iy =l < (25 -L) 19V

Putting these together and using (% — L) ~' < 2, we obtain

p(z)

Vin
H p*‘Pa?(m)

‘ <(VT+1)L (le —~ L) o d'? + L (012 - L)_l IVV ()]l

< 6Lod"? +2Lo? |[VV (2) . O

Lemma C.12. With the setting in Lemma and the notation p,(x) = ap(ax) for o > 1, we
have that for L < ﬁ

p(z)

— 1 <6a’Lod?+(a+20°Lo?)(a—1)L ||z]|+ (e —1+2a° Lo?) |[VV (2)]| .
b+ 2r2)®) | |

HVIn

Proof. Note p,(z) is also a probability density in R?. By the triangle inequality,

Nt B A B e

Without loss of generality, we can assume that p(z) = e~V (®); then p,(z) = ae~"(**), Hence

‘ Vin pi(g) H = |aVV (az) — VV(2)]|
< |laVV(ax) — aVV (2)| + |aVV (z) = VV ()|
<ala=1)L|zl|+ (a =1)[[VV(2)].
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Since aVV (ax) is a? L-Lipschitz, by Lemma|C.11}

Pa(z)
(P * po2) ()
By the Lipschitz assumption,

HVIn

’ < 6a’Lod"/? + 203 Lo? | VV (az)]|.

[VV(ax)|| < [VV(ax) = VV(2)| + [[VV(2)]| < (e = DL Jz]| + [VV (2)]-

The result follows from combining the three inequalities above.

Lemma C.13. In the setting of Lemma[C.3| we have for t € [kh, (k + 1)h],

E [1(2) [V 1npa(z0) = Vinps ()|

Cir Qt) }
R CI N T pum—" L i A o i
S Giat |:X2(Qt|pt)+1 kh,tOp <pt d,L

where
o 3217 in SMLD,
&L (88C? +400)L? in DDPM,
and
[ 76L%d in SMLD, 9
Car = { 6+94L2d inpDPM = 100174

27)

(28)

Proof. In both SMLD and DDPM models, we have the following relationship for ¢ € [kh, (k+1)h]:

Pkn = (pt)a * Qo2

where p, () = a?p(azx). In SMLD, a = 1 and o> = [}, g(T — 5) ds, while in DDPM, o =

e3 Jin 9(T=9)%ds and o2 = 1 — = Jin 9(T=5)*ds_Now for SMLD,

E [¢(z0) [V Inpin(ze) = VInps(0)]

< 72L%0%d 4 8L*0'E [wt(zt) IV Inpe(2e) ||2} by Lemma[C.T1]
32L%0% qt .

<720 LA+ ——" - 6, () +160%L3%d by Corollary

Pl +1 % il

<2 (32L2 T 16L3d> T Gy - T2L2d
= TR X2 (e [pe) + 1 it

< 3212
= T2 (gyIp) + 1

where in the last inequality we use the fact that g is increasing, so that for h <

+ Gt - T6L%d,

t
Gkh,tLZ/ g(T —s)*ds- L<h-g(T—kh)> L<
kh

=

Recall that to use Lemma , it suffices that L < 54—, and so it suffices that h <
in SMLD.

For DDPM, observe that for h < m,

t
a< 1+/ g(T — 5)%ds < 1+ (t — kh)g(T — kh)? g1+i
kh
t
62 = 1 — o Jino(T—s)ds / 9(T — 8)2ds < (t — kh)g(T — kh)? <
kh

-
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By Lemma|[C.12} using the assumption that L > 1, we obtain
E [4(=0) [V Inpra () = Vinps (=)
<720 L20%d 4 4(a + 203 Lo?)? (o — 1) L*E [¢(Zt) ||zt\|2}
a(a =1+ 20°Lo?)E [t (20) |V npy(2) ]
< 720 L20%d + 417G, B {w(zt) ||zt\|2}

+100L*G}), B [wt(zt) ||V1Hpt(zt)||2]
< 44L2dGyp

207 qt 1 5 1
S| e ( IECTRNCING oy s
{X2(Qt||pt)+1 Pe\ e 9 P =] o | Fkht

4 qt 2
+100L2 | ————— &, (2 ) +2dL| G
{XQ(qtlpt)Jrl & (pt) } Wt

88C2 + 400 > (qt)
G o T Ve (2
H <X2(qt|Pt) +1) " \pe

+44d + Gt (QQ(EPt HJL‘||2 +Cy) + QOOLd) ]

< L2Grny

88C? + 400
< Gipyt |:Gkh,t : (qt

(qllpe) +1°7

where we used Lemma [C.9] and Corollary Here, we use the assumption that h <
1
O

) +6—|—94L2d] ,

pe

4g(T—kh)2 (Ep, ||z[*+Ct)*

C.6 Auxiliary Lemmas

In this section, we continue with bounding errors in the form of Ey, 4, ||u(x)||>. However, we only

decompose them into errors which we have already bounded in the previous two sections. The
following two lemmas will be directly applied in the proof of Lemma|[C.4]and Lemma|C.5]

Lemma C.14. With the setting of Lemma|[C.3| we have the following bound of the second moment
of estimated score function with respect to V:qz:

4C; LGrhe + 8 . <Qt
(allpe) +1 "

where Cy 1, and Cy,1, are constants defined in Lemma|C.13)

E [vu(z0) lls(, T = k)] < )+4(s§h+cd,L +dL),

b

Proof. Note that by the triangle inequality,

(. T — kh)|| < l|s(z, T = kh) — ¥ Inpren(@)]
+ IV I pr—en(@) = VInpros(@)]| + |V Inpr—i (@)

and hence,
|s(z, T — kR)||* < 4||s(x, T — kh) — VIn pr—_pn(2)|*
+ 4|V Inpr_gn(x) — VInpr_i ()| + 2|V Inpr_(z)]* .

Recall that we need to bound this second moment of estimated score function with respect to ¢ qr.
For the first term, as ||s(z.T — kh) — V In pip, ()| is exp-bounded, we have trivial bound that

Ey,q, |5(x, T = kh) = VInpr_p(2)||” < e}
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By Lemma|[C.13] the second term is bounded by

Eyear IV pin(z0) = Vinpi(20)]]

Cir (Qt) }
<G |G pniby, | — | +C
= |:X2(Qt||pt)+1 e py L

for constant C; 1, and Cy, 1, defined in (27) and (28) respectively. The last term is bounded in Corol-
lary [C7] by

4 at
E vl 2 <é9t<>+2dL.
GOV mpClF] < ey

Combining these three inequalities, we obtain that for h < m,

E [a(z0) lls(z, T = k)]
4C, 1, + 8

at
< it Gy, (%) +alehy + Cus -+ D) -

Now we bound E {wt(zt) lz: — zkh||2}.
Lemma C.15. In the setting of Lemma|C.3| if

1
h< :
= g(T — kh)2(8L2 4 20L + 3L + 10C, 4+ E,, ||||*)

then
9 ét qt
E [u(z0) 20 — zal?] < 5G -é"t<)+R
Vi(2e) |2t — 2aal| 5 Gt [Xz(qt|pt)+1 P\ oy tkh

where R, and Ry are defined in (30) and (B1)) respectively.

)

Proof. Note that

1zt — zknll

1
< Gkhﬂf HS(Zkh,T — k‘h)” + 5

t t

Grns(zen, T —kh) — [ f(zkn, T — s)ds + / g(T — s)dws
kh kh

/I: 9(T — s)dws

h

t
zkh/ g(T — 5)%ds
k

h

"

1 t
< G [IsCaun T =0+ 3wl + | [ o7 = )aw,
kh

1 1 t
<@mId%f—MM+LJ%—%N+2WN+2Wrﬂm@+H/9@—@Mk
kh

)

1 1 K
= G [Istens T = k| + 3 ] + (L 3 )o@ =07 e =l + | [ a2 = sy
kh

where the next-to-last line is due to the fact that the estimated score function is L,-Lipschitz. We
also use the fact that g(t) is an increasin% function and hence g(7' — t) < g(T — kh) for any
t € [kh, (k+ 1)h]. Hence if h < then

3(Ls+1/2)g(T—kh)?>

/}: 9(T — s)dw,

3 1 3
2t = zrnll < 5Grne |l18(2e, T = ER)|| 4 5 |2l | + =
2 2 2 | kn

Therefore, by the fact that (a + b)? < 2a? + 2b? for any a, b > 0,

(29)

9 1 9
ot = 1l < GG |21t = I+ 5 ] + 5

¢
/ g(T — s)dws
2 {|Jk

h
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With the results of Lemma[C.14]and Lemma[C.9] we have

1
2E [1(20) lls(ze, T = k) || + SE [wez0) 120
8C:,.Grnt + CF +16

X2 (qellpe) + 1
Now plugging this and the result of Lemma[C.10]into (29), we get that

1 1
- Ep, (fj) + S(Eih +Car + dL) + ZE’” ||$||2 + th.
¢

9
E [v1(1) 12 = ] < 56  8(eRn + Ca +dL)

g 2 |:80t,LGkh,t —|—C752 + 16 ' (qt
2 Mt X2(qillpe) +1 P
8Cy qt
+9G . [é"t( +d+8In2|.
! X(allpe) +1 77 \ oy

Hence, using the assumption on h,

9 K
E [wt(zt) 2 — Zthﬂ < 5Grn [I)H - &, (gi) + K2:| ,

1 , 1
)+ 48 el + 561

pe

X3 (qellpe
where
K := 8Ct,LGih,t +(C} +16)Gne + 16C;
S8(880t2+4OOL2)W+(C}2+16)W+SC¥
<8+4C,+1+8C, =9(C,+1)
and

1
Ky: = [(]Ept lz]* + C4) + 8(chy + Caz + dL)] Gt +2d +161n2

— e

1
E,, ||lz||* + C; + 8L2

IN
e

[(]Ept |z]|> + C}) 4 8(e2,, + 256L%d + dL)} ( ) +2d+161n2

1
< 1 +300d 4+ 161n2 < 300d + 12.

Hence the lemma holds by setting

R, =9(C, + 1), (30)
Rg = 300d + 12. (3D
O

C.7 Proof of Theorem 3.1]

We state a more precise version of Theorem [3.I} The structure of the proof is similar to that of
Theorem 2.11

Theorem C.16 (Predictor with L2-accurate score estimate, DDPM). Lef pgy : RY — R be a
probability density satisfying Assumptionwith My = O(d), and let py be the distribution resulting
from evolving the forward SDE according to with g = 1. Suppose furthermore that V In p,
is L-Lipschitz for every t > 0, and that each s(-,t) satisfies Assumption Then if

Z-?T\/ff'<
e=0 573 . ,
(Crs +d)Cr§" (L V Lg)?(In(Crsd) V Crs In(1/e5w))
running (P) starting from pyio for time T = © (1n(CLSd) V Cisln (%)) and step size h =
62
© (CLS(CLs+d)(LVLs)2
distribution Gy, where Gp satisfies X*(Gr||Pdaa) < si. In particular, taking ¢, = ey, we have

TV(qr||Pgaa) < 267V

) results in a distribution qr such that qr is erv-far in TV distance from a
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Proof of Theorem|[C.16] We first define the bad sets where the error in the score estimate is large,
B :={||VInps(x) — s(z, T —t)|| > e1} (32)
for some ¢ to be chosen.
Givent > 0,lett_ =h Lﬂ . Given a bad set B, define the interpolated process by
dzy = — [f(z_, T —t) — g(T — t)°b(2kn, T — kh)] dt + g(T — t) duwy, (33)
s(z,1), z ¢ B
where b(z,t) = {V(lnzzt(z), . z BZ .

In other words, simulate the reverse SDE using the score estimate as long as the point is in the
good set (for the current p;) at the previous discretization step, and otherwise use the actual gradient
V In p,. Let g, denote the distribution of Z; when Zy ~ go; note that gy, is the distribution resulting
from running LMC with estimate b for n steps and step size h. Note that this process is defined only
for purposes of analysis, as we do not have access to V In p;.

We can couple this process with the predictor algorithm using s so that as long as z,,, € B, the
processes agree, thus satisfying condition I of Theorem 4.1}

P(B,) < (5)2 —: 4.

€1

Then by Chebyshev’s inequality,

Let T = Nh, and let K,, = x*(go|po). Then by Theorem 4.3}
kh
X (@l lpin) = exp () X2 (aollpo) + O (Cis(e2 + (L2 + L2d)h))
—exp | — L) 2 o(1).
ex (=301 ) ¥l +001)

2 2 2
For this to be bounded by Ei, it suffices for the terms to be bounded by %X, %‘, %"; this is implied
by

2K
T > 32C’LS In (2X> = 71min
6X

h=0 =
Crs(Crs +d)(L V Ly)?

5
g1 = O ( X ) .
VCLs
(We choose h so that the condition in Theorem [4.3]is satisfied; note €, < 1.) By Theorem .1}
n—1

TV(QTthqnh) < (1 + XQ(Qkh||p))1/2P(Bkh)1/2

IA
e TR

64C;
<= ( LS K +O(n)) .
In order for this to be < epv, it suffices for

e <ee O l/\ h
< eg1e7v n Ok, )
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?upposmg that we run for time 7' = ©(Tyyin ), we have that n = L = O (€2 Tmin ) Thus it suffices
or

h

Tnin 320LSK
22
£x

5515TV~O<

€ 1 1
=0 X_ ¢ ( A )
( %CLS TV - CLS(CLS + d) (L V L, ) Cis IH(ZKX/F;?() CLSKX )
3

ETvE
(CS/z(CLs +d)(LV Ls)?(In(2K, /e2) V Kx)) .

Finally, note that for T = Q(In(CLsd)), we have K, = O(1) by Lemma[E.9] Substituting K,, =
O(1) then gives the desired bound.

C.8 Proof of Theorem
We now prove the main theorem on the predictor-corrector algorithm with L2-accurate score esti-
mate.

Theorem 3.2 (Predictor-corrector with L2-accurate score estimate). Keep the setup of Theorem
Then for e, = O

1 .
((1+LS/L)2(1+CLs/d)(ln(CLsd)\/CL5) )’ l‘f

4
e=0 i , 5)
dL2CPL7 In(1/2)

then Algorithm 2| with appropriate choices of T = © (ln(CLsd) V Cis log <$)>, N,,, correc-
tor step sizes h., and predictor step size h, produces a sample from a distribution qr such that
TV(qr, Pdan) < €TV-

For simplicity, we consider the predictor-corrector algorithm in the case where all the corrector
steps are at the end (but see the discussion following the proof for the general case). The result will
follow from chaining together the guarantee on the predictor algorithm (Theorem [C.16) and LMC

(Theorem 2.T)).

Proof of Theorem[3.2] Let M = T/h. We take h = © (m), number of cor-
rector steps Ng = -+ = Npsp_1 = 0 and Ny = T./hyr, where T, = @(C’LS In (%))
X

2
and hyy = © (%XCLS) Let the distribution of 27 be gro. By Theorem |C.16, if T =
@(IH(CLsd) V Cis ln(l/ETv>), then

e=0 ( fTVv )
(L VvV L ) (CLS + d)CLS (IH(CLsd) V CLs ln(l/ETv)) ’

then there exists G o such that TV (¢r,0,Gr0) = erv/2 and x*(Grol|paa) = 1. Then using
Theorem-w1th erv < e7v/2 and K, = 1, plus the triangle inequality gives that if

eTves
E = O S/EV )
dLQCLS hl(l/ETv)

then there is g such that TV (qr,d7) = erv and X?(Gr||paan) = gi. Finally, setting ey, £, <
erv/2 gives TV(qr, Paan) < €TV

the second condition on ¢ is more

3 1
We note that for ey, = O ((1+L5/L)2(1+CLS/d)(1n(CLSd)VCLS))’
constraining, giving the theorem. O
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Remark. We can also analyze a setting where predictor and corrector steps are interleaved; for
instance, if N = 1, then interleaving the one-step inequalities in Theorem and gives a
recurrence

h,
X (aek+1)m,0l [Pt 1)n) < exp <— 1612’625) X (arnllprn) + O(dL?h? + 3h)

h,
XQ(Q(kJrl)h,l”p(kJrl)h)) < exp (—43:5) Xz(Q(kJrl)h,OHp(kJrl)h) + O(eth + (L? + L*d)h?);

we can then follow the proof of Theorem[3.1| While this does not improve the parameter dependence
under the assumptions of Theorem[3.2} it can potentially allow for larger step sizes (beyond what is
allowed by Theorem|3.1)), as error accrued in the predictor step can be exponentially damped by the
corrector step.

D Stationary distribution of LD with score estimate can be arbitrarily far
away

We show that the stationary distribution of Langevin dynamics with L2-accurate score estimate
can be arbitrarily far from the true distribution. We can construct a counterexample even in one

dimension, and take the true distribution as a standard Gaussian p(x) = \/#27@_”2/ 2. We will take

the score estimate to also be in the form V In g, so that the stationary distribution of LMC with the
score estimate is g. The main idea of the construction is to set g to disagree with p only in the tail of
p, where it has a large mode; this error will fail to be detected under L?(p).

Theorem D.1. Let p be the density function of N(0,1). There exists an absolute constant C' such
that given any € > 0, there exists a distribution q such that

1. Inq is C-smooth.
2. E)f|VInp—Ving|?] <e
3. TV(p,q) >1—e

Proof. Take a smooth non-negative function g supported on [—1, 1], with max|g”| < ¢ and ¢g(0) =
1. We consider a family of distributions for L > 0 with density

2 2
qr(x) oc e Ve @), and Vi(x):= % — L%g (L(.’L‘ - L)) .

Thus the score function for gy, is given by

Vi(z)=a— (2L)g'(%(az - L)).

We compute the L?(p) error between the score functions associated with p and qr..

g (%(m - L)) '267952/2 dx

B(Vi(a) -0 = = [ Ly

1

< E(ZL)Qe_Lz/s /_OO g’(%(m - L))‘Qda:

1 72 2
= TZL?’B L /8/ l9' ()| dy.

2 — oo

oo

L 3L
27

where in the first inequality we have used that g( % (z — L)) has support [£, 3], since g has support

[—1, 1]. Thus the L?(p)-error of the score function goes to 0 as L — oo.
Moreover, as
2
Vi (x)| = ’1 - 4g”(z(x - L))’ <1+ 4max|g”(y)| <1+ 4,
y
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the distribution gy, satisfies the required smoothness (Lipschitz score) assumption. Note that g, has
a large mode concentrated at x = L as

L? L?
V(L) = 5~ Ig(0) =~

while p has vanishing density there, which is in fact the reason that L?(p)-loss of the score estimate is
not able to detect the difference between the two distributions. As the height (and width) of the mode
becomes arbitrarily large compared to z = 0, we have g7, ([%, 3£]) — 1, whereas py, ([£, 2£]) — 0.
Hence TV (pr,qr) — 1.

E Useful facts
In this section, we collect some facts and technical lemmas used throughout the paper.

E.1 Facts about probability distributions

Given a probability measure P on R? with density p, we say that a Poincaré inequality (PI) holds
with constant Cp if for any probability measure g,

X’(qllp) < Cpé, (q) = Cp/
p R4

Alternatively, for any C' function f,

a() ||*

Var,(£) < Co [ | IV£1?pla)da.

We say that a log-Sobolev inequality (LSI) holds with constant Cyg if for any probability measure
q’

2

a(2) q(z)dz. (LST)

In —=
v p(x)
We call the Poincaré constant and log-Sobolev constant the smallest Cp, Crs for which the inequal-
ities hold for all q. If p satisfies a log-Sobolev inequality with constant, then p satisfies a Poincaré
inequality with the same constant; hence the Poincaré constant is at most the log-Sobolev constant,
Cp < Crs. If p x e Vis a-strongly log-concave, that is, V' > aly, then p satisfies a log-Sobolev
inequality with constant 1/cv.

o
KL(qllp) < —QLS /
R

We collect some properties of distributions satisfying LSI or PL

Lemma E.1 (Herbst, Sub-exponential and sub-gaussian concentration given log-Sobolev inequality,
[BGL13| Pr. 5.4.1]). Suppose that p satisfies a log-Sobolev inequality with constant Crs. Let f be
a I-Lipschitz function. Then

1. (Sub-exponential concentration) For any t € R,

O 2
Euetf Set]E“f+ Lgt .

2. (Sub-gaussian concentration) For any t € [O, C%s)

tf2 1 t
Eez < —0 - (E,f)?|.
ne —\/1—CLSteXp{2(1—CLSt)( ‘f)}

Lemma E.2 (Gaussian measure concentration for LSI, [BGL13| §5.4.2]). Suppose that u satisfies
a log-Sobolev inequality with constant Cg. Let f be a L-Lipschitz function. Then

p(lf —Euf] > 1) <2 202
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Lemma E.3 ([GLR18, Lemma G.10]). Let V : R? — R be a a-strongly convex and [3-
smooth function and let P be a probability measure with density function p(z) o e V@), Let
x* = argmin, V(z) and T = Epx. Then

lz* — | < \/E< In <5> +5> . 34)
! !

Theorem E.4 ( [BLO2, Theorem 5.1], [HarO4])). Suppose the d-dimensional gaussian N (0,3) has
density . Let p = h - v be a probability density.

1. If his log-concave, and g is convex, then
/ g(x —Epz)p(z) de < / g(x)y(x) de.
Rd Rd
2. Ifhis log-convex, and g(x) = (x,y)" for some y € R, a > 0, then
[ o~ EBuap@)de= [ gan s
Rd R4
Lemma E.5. Let P be a probability measure on R® with density function p such that Inp is C* and

L-smooth and P satisfies a Poincaré inequality with constant Cp. Then LCp > 1.

Proof. By the Poincaré inequality and Lemma 2), since p is equal to the density of N (0, %I d)
multiplied by a log-convex function,

Cp > Ep(x) — Epxp)? > EN(O,%Id)ﬁ = O

1
A
E.2 Lemmas on SMLD and DDPM

We give bounds on several quantities associated with the SMLD and DDPM processes at time ¢: the
log-Sobolev constants (LemmalE.7), the second moment (LemmalE.g)), and the warm start parameter
(Lemma E.9).

First, we note that for SMLD and DDPM, the conditional distribution of Z; given I is

SMLD: A (;«(0), /Otg(s)Q ds - Id)
DDPM: Fo|Fo ~ N (x(())e*% Jo9(e)?ds (1 o= f59<5>2d5)1d) .
Hence
VP =pox N (0, /0 tg(s)Q ds - Id) (39)
PP = My s an 00 N(0, (1= = Jo 970y ) (36)

where M, is multiplication by c.

Lemma E.6 ([ChaO4])). Let p,p’ be two probability densities on R®. If p and p' satisfy log-Sobolev
inequalities with constants Crs and C{ g, then p = ' satisfies a log-Sobolev inequality with constant

Cis + Cfs.

Lemma E.7 (Log-Sobolev constant for SMLD and DDPM). Let pyMP and pPPPM denote the dis-
tribution of the SMLD/DDPM processes at time t, when started at py. Let Cig be the log-Sobolev
constant of pg. Then

t
CLs(}A??MLD) < (Cis +/ 9(8)2 ds
0

CLs(]A)?DPM) < (CLS — 1)6_ fOt g(s)* ds +1< maX{CLS, 1}

'Note that the sign is flipped in the theorem statement in [BL02].
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Note that the analogous statement for the Poincaré constant Cp holds for Lemma[E.6and [E.7]

Proof. Note that if 1 has log-Sobolev constant C's and T is a smooth L-Lipschitz map, then T 1

has log-Sobolev constant < L2Cis. Applying Lemmal|E.6|to (33)) and (36)) then finishes the proof.
O

Lemma E.8 (Second moment for SMLD and DDPM). Suppose that pg has finite second moment,
then fort € [0,T):

Ep, |l2I*] = g, [le)] +d5(t) in SMLD,

Ep, [I2l?] = e POz, [Ilo)?] + d(1 - e72) < max {By, [|al?] .} in DDPM

where 3(t) fo s)2ds.

Proof. Recall that in SMLD, &; ~ N (Zo, 8(t) - I4). Let y ~ N(0, 5(t) - I4) be independent of Z.
Then

Ep, [I01?] = E [llz0 + ylI*] = E [130l*] +E [Iy1*] = E [l70]1*] +as(e).

In DDMP, &, ~ N(e 2" zq, (1 — e~ M) . I,). Choose yy ~ N (0, (1 — e~#®) . I) independent

of ¢, then
2 ~18(0; 2 ~18)5 || 2
Ep, [lal’] =E | e 2703 + || | = |[|e=# Do || +E 1yl

PR |7 |*] + d(1 - e=70), 0

Lemma E.9 (Warm start for SMLD and DDPM). Suppose that p has log-Sobolev constant at most
Crs and |Eypy|| < My. Let @42 denote the density of N(0,021,). Then for any o2,

d(2M, + SC’LS))

X2 (po2 D * 052) <4eXp< -

g

Hence, letting o2\ p = fo s)?ds and olppy =1 — €~ Jo ()% ds,

d(2My + 8CLS)>

2
USMLD

d(26 35 9(s)° d5M1+8€ Jo 9() dSCLs)

(o I < e

| ~DDPM )

X (@02, | < dexp

2
0bpPM

Proof. Let R, = (M7 + 2y/Cls) ||z||. For a fixed x, note that E,, (y,z) < [[E,wpy ||lz] <
M; ||z|| by assumption. Then by LemmalE.2]

(2\/Cisl=1)?
P((y,z) > Ry) < P(| (y,2) — Eynp (y,2) | > 2¢/Cus ||z]|) < 2e 2G0T < 272 <

w\»—*
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Hence

1 d/2 ety
(p*po2)(2) = { 5 € p(y) dy
R
d/2
1 [l]|2 (z.y)
> -2 -2 d
> <27T0_2> e 2 /Rde p(y) dy
d/2
1 ll]|2 (z.y)
= <2 2> 6727/ e = ply)dy
ma (4,2)<Ra
1\ (M |zl +2v/Tis ) /o
Z\5mg2) € e p(y) dy
To (y,z)<R
1 \Y? _jei? e _2MFd_jep® _scpe
> 92 e 202 ¢ 8024 2 802d -2 p(y)dy
mo (y,z)<R
2
To
1 7d(SCLS;—21v112) i 1 /2
=3¢ 7 To2d) P

Using the fact that x2(N (0, £2)[ [N (0,£1)) = B2 2251 — £71)|7 — 1, we have

1\~
1-— 2
d> [ (% e 2d> +1]
_ 1 _
) () (e (1 2)
d(8C g +2M7) B d(SCLS+21v11)
<2-e o2 1-—— §
2d

The corollary inequalities then follow from (33) and (36), where for DDPM, we use the fact that

M 1t 402 as 4 PO has mean e~ 3 Jo 9()*ds . E,x and log-Sobolev constant (72 J5 9(o)? 45)2Cys.
O

d
d(BCLS+2Ml) 2

Xz(@a2||p*@a)+1<2 e o2

4 4
2 2

d(SCLg+21\/12
=2-

de
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