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A APPENDIX

A.1 KALMAN FILTER

For neural networks, the model of interest
{
θt = θt−1 = w,
yt = h(θt, xt) + ηt, ηt ∼ N (0, Rt),

(1)

is formulated in stochastic language as an EKF problem targeting on θ̂t, where w is the vector of all
trainable parameters in the network h(·, ·), {(xt, yt)}t∈N are pairs of feature and label, {yt}t∈N can
also be seen as measurements of EKF, {ηt}t∈N are noise terms subject to normal distribution with
mean 0 and variances {Rt}t∈N correspondingly, and ∀t ∈ N, θ̂t|t−1 := E[θt|yt−1, yk−2, . . . , y1].
With fixed θt and bounded xt, h(θt, xt) will be approximated well by its linearization at θ̂t|t−1, just
omitting a term O((θt − θ̂t|t−1)

2).

yt ≈ h(θ̂t|t−1, xt) +HT
t (θt − θ̂t|t−1) + ηt (2)

Ht =
∂h(θ, xt)

∂θ

∣∣∣∣
θ=θ̂t|t−1

If set mt = yt − h(θ̂t|t−1, xt) +HT
t θ̂t|t−1 and rewrite equation 2 the following KF problem

{
θt = θt−1 = w, (3)
mt ≈ HT

t θt + ηt. (4)

At the beginning of training, the estimator θ̂t|t−1 is far away from w, so less attention should be
paid to those data fed to the network at an earlier stage of training than those at later stage. Through
timing a factor αt := Πt

i=1λ
−1/2
i and α0 := 1, where 0 < λi ≤ 1 and λi → 1, the last problem

enjoys the better variant as below
{

θt = λ−1/2
t θt−1, θ1 = w

m̃t = αtmt ≈ HT
t θt + αtηt = HT

t θt + η̃t,
(5)

where λt is called memory factor. The greater λt is, the more weight, or say attention, is paid to
previous data. According to basic KF theory Haykin & Haykin (2001) , we obtain

at = λ−1
t HT

tPt−1Ht + α2
tRt = E[ε̃2t ],

Kt = λ−1
t Pt−1H

T
t a

−1
t ,

Pt = (I−KtHt)λ
−1
t Pt−1,

θ̂t = θ̂t|t−1 +Ktε̃t,

ε̃t = m̃t −HT
t θ̂t|t−1 = αt(yt − h(α−1

t θ̂t|t−1, xt)).

Finally, we recover the estimator of w via that of θ divided by the factor αt, define ∀t ∈ N, ŵt|t−1 :=

α−1
t θ̂t|t−1,wt := α−1

t θ̂t, find ŵt|t−1 = wt−1, and then get our weights updating strategy

εt = yt − h(wt−1, xt),

wt = wt−1 +Ktεt.
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