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ABSTRACT

Evaluating the adversarial robustness of deep networks to gradient-based at-
tacks is challenging. While most attacks focus ℓ2-norm and ℓ∞-norm con-
straints to craft input perturbations, only a few have investigated sparse ℓ1-
norm and ℓ0-norm attacks. In particular, ℓ0-norm attacks remain the least
studied due to the inherent complexity of optimizing over a non-convex and
non-differentiable constraint. However, evaluating the robustness of these at-
tacks might unveil weaknesses otherwise left untested with conventional ℓ2
and ℓ∞ attacks. In this work, we propose a novel ℓ0-norm attack, called
σ-zero, which leverages an ad-hoc differentiable approximation of the ℓ0 norm
to facilitate gradient-based optimization. Extensive evaluations on MNIST, CI-
FAR10, and ImageNet datasets

:
,
::::::::
involving

:::::
robust

:::
and

:::::::::
non-robust

:::::::
models,

:
show that

σ-zero can find adversarial examples with minimal ℓ0 distortion, outperforming
competing methods

::::::::
minimum ℓ0:::::

-norm
::::::::::
adversarial

::::::::
examples

:::::::
without

::::::::
requiring

:::
any

:::::::::::::
time-consuming

:::::::::::::
hyperparameter

::::::
tuning,

::::
and

:::
that

::
it

::::::::::
outperforms

::
all

:::::::::
competing

::::::
attacks in terms of success rate and scalability.

1 INTRODUCTION

Early research has unveiled that Deep Neural Networks (DNNs) are fooled by adversarial examples,
i.e., slightly-perturbed inputs optimized to cause misclassifications (Biggio et al., 2013; Szegedy
et al., 2014a; Goodfellow et al., 2015). In turn, this has demanded the need for more careful reliability
assessments of such models. Most of the gradient-based attacks proposed to evaluate adversarial
robustness of DNNs focus on optimizing

:::::::
optimize

:
adversarial examples under different ℓp-norm

constraints. In particular, while convex ℓ1, ℓ2, and ℓ∞ norms have been widely studied (Chen et al.,
2018; Croce & Hein, 2021a), only a few ℓ0-norm attacks have been considered so far. The main
reason may be

::
is that ad-hoc heuristics need to be adopted to compute efficient projections on the

ℓ0 norm, overcoming issues related to its non-convexity and non-differentiability. Although this
task is challenging and computationally expensive, attacks based on the ℓ0 norm have the potential
to reveal uncovered issues in DNNs that may not be evident in other norm-based attacks (Carlini
& Wagner, 2017; Croce & Hein, 2021a). For instance, these attacks, known for perturbing a
minimal fraction of input features, can be used to determine the most sensitive characteristics that
disproportionately influence the model’s decision-making process. Furthermore, they offer a different
and relevant threat model to inspect for benchmarking

:::::::::
benchmark existing defenses. Consequently,

developing
::::::::::
Developing efficient algorithms for generating ℓ0 adversarial examples is

:::
thus

:
a crucial

area of research that requires further exploration for a more accurate robustness evaluation
:
to
:::::::
improve

::::::
current

:::::::::
adversarial

:::::::::
robustness

:::::::::
evaluations.

However
:::::::::::
Unfortunately, current implementations of ℓ0 attacks exhibit a largely suboptimal tradeoff

between their success rate and efficiency, i.e., they are either accurate but slow, or fast but inaccurate.
In particular, the accurate ones

:::::
resort

::
to

:::
the

:::
use

::
of

::::::::
complex

:::::::::
projections

::
to

:
find smaller input pertur-

bations but suffer from time or memory limitations, hindering their scalability to larger networks
or high-dimensional data (Brendel et al., 2019a; Césaire et al., 2021). Other attacks execute faster,
but their output solution is typically inaccurate and largely suboptimal

:
as

::::
they

::::
rely

:::
on

:::::::
heuristic

:::::::::
approaches

:::
and

:::::::::
imprecise

:::::::::::::
approximations

::
to

::::::
bypass

:::
the

:::::::::
difficulties

::
of

:::::::::
optimizing

:::
the

:
ℓ0:::::

norm, lead-
ing to overestimating adversarial robustness (Matyasko & Chau, 2021; Pintor et al., 2021).

::::::::
However,

::
all

:::::::
existing

::::::::
strategies

:::
are

:::::
often

:::::
slow

::
to

::::::::
converge

:::::::
because

::::
they

::::::
require

::
a
:::::
large

:::::::
number

::
of

::::::
queries
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Figure 1: The leftmost plot illustrates
:::::
shows an instance of σ-zero’s execution on a bi-dimensional

:::::::::::::
two-dimensional

:
problem. Here, the

:::
The

:
red dot represents

::
and

:
the

::::
green

::::
star

::::::::::
respectively

:::::::
represent

::
the

:
initial point x , while

:::
and

:
the green star indicates the

::::::::::::
corresponding

:
adversarial example

x⋆that deceives the model. The
:::
Our

:::::::::::::
gradient-based attack , powered by gradient descent, seeks

to find this adversarial example while minimizing the number of perturbed features (i.e.,
::
the

:
ℓ0

norm
::
of

:::
the

:::::::::::
perturbation). Gray lines surrounding x demarcate regions where the ℓ0 distance

between the adversarial example and x would be minimum
::::
norm

::
is
::::::::::

minimized. Complementary,
the

:::
The

:
rightmost plot showcases

:::::
shows

:
the adversarial examples generated

::::::
images

::::
(top

:::::
row)

:::
and

:::
the

::::::::::::
corresponding

:::::::::::
perturbations

:::::::
(bottom

:::::
row)

:::::
found

:
by σ-zero during the three steps (top

row)
:::::::::
highlighted

::
in

:::
the

:::::::
leftmost

:::
plot, alongside their prediction and ℓ0 norm.The bottom row offers a

look at the adversarial perturbations δ yielded by .

::::
(i.e.,

:::::::
forward

:::
and

::::::::
backward

:::::::
passes),

:::
or

::::
they

:::::
output

::::::::::
suboptimal

::::::::
solutions.

:
It thus remains an open

challenge to develop a scalable and compelling method for assessing the robustness of DNNs against
sparse perturbation attacks

::::::::::
perturbations

:
with minimum ℓ0 norm.

To tackle these issues, in this work we propose a novel attack technique, namely σ-zero, which
iteratively increases

::::::::
promotes the sparsity of the adversarial perturbations, minimizing their ℓ0 norm

(see Fig. 1 and Sect. 2). The underlying idea is to leverage an
:
a
:::::::::::
differentiable

:
approximation of the

actual ℓ0 norm, which is better suited to gradient-based optimizers. Specifically, we employ the
approximation method initially introduced by Osborne et al. (2000b), and more recently adopted
by Cinà et al. (2022) for staging energy-latency poisoning attacks. This method offers an unbiased

:
,

:::::::::::
differentiable estimation of the true ℓ0 normand possesses the crucial property of differentiability,
making it particularly well-suited for optimization techniques that rely on gradients

:
,
:::::::
allowing

::
us

::
to

:::::::
optimize

::
it

:::
via

:::::::
gradient

::::::
descent.

Our experiments (Sect. 3) provide compelling evidence of the remarkable performance of our
attack. We evaluate σ-zero on several benchmark datasets, including MNIST, CIFAR10, and
Imagenet

::::::::
ImageNet, considering baseline and robust models from Robustbench (Croce et al., 2021).

We compare its performance with state-of-the-art attacks, showing that σ-zero achieves better or
comparable results in terms of attack success rate and perturbation size, while requiring significantly
less computational resources

:::::
being

::::::::::
significantly

:::::
faster

::::
and

::::::
without

::::::::
requiring

::::
any

:::::::::::
sophisticated

:::
and

:::::::::::::
time-consuming

:::::::::::::
hyperparameter

::::::
tuning. Overall, our approach encompasses two fundamental char-

acteristics for a proficient adversarial attack, i.e., effectiveness and scalability, making it a catalyst for
significant advancements in developing novel models with improved robustness, as well as better
robustness evaluation tools.

2 σ-ZERO
:
:
:
MINIMUM ℓ0:::::::

-NORM
:
ADVERSARIAL EXAMPLESWITH

DIFFERENTIABLE APPROXIMATION

Most of the existing attacks rely on heuristic approaches to bypass the difficulties
of optimizing the norm. They either start with perturbing a small set of features
and then enlarging this set until they find an adversarial example or, given a
successful adversarial manipulation, try to cut the number of manipulated features

2
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progressively (Carlini & Wagner, 2017; Pintor et al., 2021). Alternatively, some approaches
resort to the use of imprecise approximations of the penalty loss function or complex projection
operators to run the attack (Chen et al., 2018; Matyasko & Chau, 2021; Brendel et al., 2019a).
However, these strategies are often time-consuming because they require a large number of queries
(i.e., forward and backward passes), or they output suboptimal solutions.

In the following, we present a
:::
We

::::::
present

::::
here

:
σ-zero,

::::
our gradient-based approach that exploits

::
to

::::::
finding

::::::::
minimum

:
ℓ0-norm approximations. Starting from a general description of the

::::::::
adversarial

::::::::
examples.

:::
We

::::
start

:::
by

::::::::
describing

:::
the

::::::::::
considered threat model and attack goal, we

::::
then give a formal

overview of the proposed attack and its algorithmic implementation.

Threat Model. We assume that the attacker has complete access to the target model, including
its architecture and trained parameters, and exploits its gradient for staging white-box untargeted
attacks. This setting is useful for worst-case evaluation of the adversarial robustness of DNN models,
providing empirical upper bounds on the performance degradation that may incur when they are
attacked, and it is the usual setting adopted also in previous work related to gradient-based adversarial
robustness evaluations (Carlini & Wagner, 2017; Croce et al., 2021; Pintor et al., 2021).

Problem Formulation. In this work, we seek untargeted minimum ℓ0-norm adversarial perturbations
that steer the model’s decision towards misclassification. To this end, let x ∈ X = [0, 1]d be a
d-dimensional input sample, y ∈ Y = {1, . . . , l} its associated true label, and f : X ×Θ 7→ Y the
target model, parameterized by θ ∈ Θ. While f outputs the predicted label, we will also use fk to
denote the continuous-valued output (logit) for class k ∈ Y . The goal of our attack is to find the
minimum ℓ0-norm adversarial noise δ⋆ such that the corresponding adversarial example x⋆ = x+δ⋆

is misclassified by f . This is formalized as the following optimization problem:

δ⋆ ∈ argmin
δ

∥δ∥0 , (1)

s.t. f(x+ δ,θ) ̸= y , (2)

x+ δ ∈ [0, 1]d , (3)

where ∥ · ∥0 denotes the ℓ0 norm, which counts the number of non-zero dimensions. The hard-
constraint in Equation 2 ensures that the perturbation δ induces the target model f to misclassify the
perturbed sample x⋆. Finally, Equation 3 represents a box constraint, ensuring that the adversarial
example x⋆ lies in [0, 1]d. Note that when the source point x is already misclassified by f , the trivial
solution to the above minimization problem is δ⋆ = 0.

Contrary to the ℓ1, ℓ2, ℓ∞ norms, when considering the ℓ0 norm the problem becomes intractable
with standard methods. The ℓ0 norm is indeed non-differentiable, thus unsuitable for gradient-
based optimization. To address this issue, we exploit the ℓ0-norm approximation function proposed
by Osborne et al. (2000b), and defined as:

ℓ̂0(x) =

d∑
i=1

x2
i

x2
i + σ

, σ > 0, ℓ̂0(x) ∈ [0, d] , (4)

with σ being a hyperparameter controlling its approximation quality. When σ tends to zero, the
approximation becomes more accurate. However, an increasingly accurate approximation could lead
to the same optimization limits of the ℓ0 norm.

Finally, similarly to previous work (Carlini & Wagner, 2017; Rony et al., 2021a; Szegedy et al.,
2014b), we transform the hard-constraint in Equation 2 in a soft-constraint. The resulting optimization
problem therefore becomes:

δ⋆ ∈ argmin
δ

L(x+ δ, y,θ) +
1

d
ℓ̂0(δ) (5)

s.t. x+ δ ∈ [0, 1]d , (6)

where we substituted the ||δ||0 with the approximation ℓ̂0(δ) and normalize it with respect to the
number of features d to ensure that its value is within the interval [0, 1]. The loss L is defined as:

L(x, y,θ) = max

(
fy(x,θ)−max

k ̸=y
fk(x,θ), 0

)
+ I(f(x,θ) = y) . (7)
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Algorithm 1: σ-zero Attack Pseudocode.

Input: x ∈ [0, 1]d, input sample; y, true class label; θ, target model; N, number of iterations;
σ, ℓ̂0-approximation parameter; η0, initial step size; τ0, initial sparsity threshold.

Output: x⋆, minimum ℓ0 norm adversarial example.
1 δ ← 0; δ⋆ ← δ; τ ← τ0; η ← η0 ▷ initialization.
2 for i in 1, . . . , N do
3 ∇g← ∇δ[L(x+ δ, y,θ) + 1

d ℓ̂0(δ, σ)] ▷ gradient computation.

4 ∇g← ∇g/∥∇g∥∞ ▷ gradient normalization.
5 δ ← clip(x− [δ − η · ∇g])− x ▷ δ update.
6 δ ← Πτ (δ) ▷ zeroing δ components below τ.
7 η = cosine_annealing(η0, i) ▷ η update.
8 If L(x+ δ, y,θ) ≤ 0 τ+ = 0.01 · η else τ− = 0.01 · η ▷ τ update.

9 end
10 If L(x+ δ, y,θ) ≤ 0 ∧ ∥δ∥0 < ∥δ⋆∥0 δ⋆ ← δ ▷ δ⋆ update.

11 return x⋆ ← x+ δ⋆

The first term in L represents the logit difference, which is positive when the sample is correctly
assigned to the true class y, and clipped to zero when it is misclassified (Carlini & Wagner, 2017).
The second term merely adds 1 to the loss if the sample is correctly classified.1 This ensures that
the loss term L is 0 only when an adversarial example is found, and higher than 1 otherwise. This
in turn implies that the loss term L is always higher than the ℓ0-norm term in Equation 5 (as the
latter is bounded in [0, 1]), when no adversarial example is found. Accordingly, it is not difficult
to see that the feasible solutions of this problem only correspond to minimum-norm adversarial
examples. It is also worth remarking that, conversely to the objective function proposed by Carlini
& Wagner (2017), our objective does not require tuning the tradeoff between minimizing the loss
and reducing the perturbation size to find minimum-norm adversarial examples, thereby avoiding a
computationally-expensive line search for each input sample. In fact, the proposed objective function
inherently induces an alternate optimization process between the loss term and the ℓ0-norm penalty,
as shown in the Appendix (see Figure 4). In particular, when the sample is not adversarial, the attack
algorithm mostly aims to decrease the loss term to find an adversarial example, while increasing the
perturbation size. Conversely, when an adversarial example is found, the loss term is cropped to zero,
and the perturbation size is gradually reduced.

Solution Algorithm. Given that the approximation function ℓ̂0 in Equation 4 is differen-
tiable, we derive a custom gradient-based algorithm for solving Equation 5 and Equation 6.
Our algorithm, given in

:::::
attack,

:::::::
detailed

:::
in

:::::::::
Algorithm

::
1, is fast, not memory-demanding, and

easy to implement. The algorithm
:
It
:

starts by initializing the adversarial perturbation δ to
a zero vector 0 (

:::::
δ = 0

:
(line 1). Subsequently, we compute

:
it

::::::::
computes

:
the gradient of the

attacker’s objective function in Equation 5 with respect to δ (line 3), and normalize it to
guarantee convergencein our optimization process (Pintor et al., 2021)

:::::::::
normalizes

::
it

::
to

::::::
speed

::
up

::::::::::
convergence

:::::::::::::::::::::::::::::::
(Rony et al., 2018; Pintor et al., 2021). We then use gradient descent

::::::
update

:
δ
:
to min-

imize the attacker’s objective , expressed in (). The
:::::::
objective

:::
via

::::::::
gradient

:::::::
descent,

:::::
while

::::
also

:::::::::
accounting

:::
for

:::
the

:
box constraints in Equation 6 are also taken into account through the usage

of the clip operator . Importantly, we impose
:
(line 5

:
).
::::

We
::::::
enforce

:
sparsity in δ by clipping to 0

all the components lower than a fixed
::
the

::::::
current

:::::::
sparsity

:
threshold τ to zero (Line 6). This step

is necessary since the ℓ̂0 approximation is not exact, and might result in some values being closer
to zero but not precisely zero. We therefore encourage the attack to focus only on more

::
the

::::
most

influential features, discarding less significant contributions. The
::
We

::::
then

::::::::
decrease

:::
the

::::
step

:::
size

:
η
:::
by

::::::::
following

::
a
::::::::::::::
cosine-annealing

::::::::
schedule

:::::::::::::::::::::::::::::::
(Rony et al., 2018; Pintor et al., 2021),

::::
and

:::::
adjust

:::
the

::::::
sparsity

::::::::
threshold

::
τ
:::::::::::
dynamically.

:::
In

::::::::
particular,

::
if
:::
the

::::::
current

:::::::
sample

::
is

::::::::::
adversarial,

:::
we

:::::::
increase

:
τ

::
to

:::::::
promote

::::::
sparser

::::::::::::
perturbations;

:::::::::
otherwise,

:::
we

::::::::
decrease

::
τ

::
to

::::::
reduce

::
L.

:::::
The

::::::::
variations

:::
of

:
τ
:::

are
:::
also

:::::::::
iteratively

:::::::
reduced

::::::::
following

:::
the

:::::
same

::::::::::::::
cosine-annealing

::::::::
schedule

::
of

:::
the

::::
step

::::
size.

::::
The

:
above

1
:::::
While

:
a
:::::::
sigmoid

:::::::::::
approximation

::::
may

::
be

::::::
adopted

::
to
::::::::

overcome
:::
the

:::::::::::::::
non-differentiability

::
of
:::

the
::
I
::::
term

:
at

::
the

:::::::
decision

:::::::
boundary,

:::
we

:::::
simply

:::
set

::
its

::::::
gradient

::
to
::::
zero

:::::::::
everywhere,

::::::
without

:::
any

::::::
impact

::
on

:::
the

:::::::::
experimental

:::::
results.

4



Under review as a conference paper at ICLR 2024

process is repeated for N iterations, and if during each iteration, we find a better solution that is
adversarial and has a lower ℓ0 norm, we update the optimal perturbation δ⋆ to the current minimum
(line 10). Finally, we return the best adversarial perturbation δ⋆ identified during the optimization
process

::
is

:::::::
returned (line 11.

::
In

::::::::::
conclusion,

::
the

:::::
main

:::::::::::
contributions

::::::
behind σ-zero

:::
are:

:::
(i)

:::
the

:::
idea

::
of

::::::::
exploiting

:::
the

:::::::::::::::
numerically-stable

::::::::::::
approximation

::
of

:::
the

:
ℓ0:::::

norm
::
by

:::::::::::::::::::
Osborne et al. (2000b)

::
to

:::::
design

:
a

::::
novel

::::
loss

:::::::
function

:
(Equation 5

:
),

:::::
which

::::::
enables

:::::::::::::
simultaneously

::::::::
searching

:::
for

::
an

:::::::::
adversarial

:::::::
example

::::
while

::::::::::
minimizing

::::
the ℓ0::::

norm
:::
of

:::
the

::::::::::
perturbation

:::::
(i.e.,

:
a
:::::::::
non-trivial

::::
task

:::::
given

:::
the

:::::::::::::
non-convexity

::
of

:::
this

:::::::
norm);

::::
and

:::
(ii)

:::
the

:::::::::::
introduction

::
of

:::
the

::::::::
sparsity

::::::::
threshold

::
τ

:::
and

:::
its

::::::::
dynamic

:::::::::
adjustment

:::::
policy

::::::
which,

::::::
along

::::
with

:::::::
gradient

::::::::::::
normalization

::::
and

::::
step

::::
size

:::::::::
annealing,

::::
help

::::
find

:::::
very

:::::
sparse

:::::::::
adversarial

:::::::::::
perturbations

:::::
faster.

::::
The

::::::::::
combination

::
of
::::
our

:::::
novel

:::::::::
formulation

:::::
with

::
the

:::::::::::::
aforementioned

::::::::::
optimization

:::::
tricks

::::::
yields

:
a
::::
very

::::
fast

::::
and

::::::
reliable

::::::::
ℓ0-norm

:::::
attack

:::::::::
algorithm,

::::::
which

::::
does

:::
not

::::
even

::::::
require

::::::
specific

:::::::::::::
hyperparameter

::::::
tuning,

:::
as

::
we

::::
will

:::::
show

::
in

:::
our

:::::::::::
experimental

::::::
results.

:

3 EXPERIMENTS

We report the extensive evaluation of the proposed σ-zero attack to compare its performance and
efficiency with other state-of-the-art ℓ0 attacks, considering sixteen baseline and robust models and
three different datasets.

3.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on three popular datasets used for benchmarking adversarial ro-
bustness: MNIST (LeCun & Cortes, 2005), CIFAR10 (Krizhevsky, 2009) and ImageNet (Krizhevsky
et al., 2012). We use a random subset of 1000 test samples from ImageNet to evaluate attacks
performance on it, while we consider the entire test set for MNIST and CIFAR10. For the MNIST
and CIFAR10 datasets we used a batch size of 32, while for ImageNet we opted for a batch size of 16.

Attacks. We compare σ-zero to several attacks that are considered to be
:::::
against

:::
the

::::::::
following

:
state-

of-the-artin ,
::::::::::::::
minimum-norm

::::::
attacks,

::
in

:::::
their ℓ0-norm threat models. Specifically, we evaluate the

-variant of: the Elastic-Net Attacks (EAD) attack (Chen et al., 2018) as a baseline for sparse attacks
in ; the

:::::::
variants:

:::
the Voting Folded Gaussian Attack (VFGA) attack (Césaire et al., 2021), the Primal-

Dual Proximal Gradient Descent (PDPGD) attack (Matyasko & Chau, 2021), the Brendel & Bethge
(BB) attack (Brendel et al., 2019a),

::::::::
including

::::
also

::
its

::::::
variant

::::
with

:::::::::
adversarial

:::::::::::
initialization

::::::::
(BBadv),

:::
and the Fast Minimum Norm (FMN) attack (Pintor et al., 2021), and the sparse random search (.

:::
We

:::
also

:::::::
consider

::::
two

::::::::::::
state-of-the-art

:
ℓ1:::::

-norm
::::::
attacks

::
as

:::::::::
additional

::::::::
baselines,

:::
i.e.,

:::
the

::::::::::
Elastic-Net

::::::
(EAD)

:::::
attack

::::::::::::::::
(Chen et al., 2018)

:::
and

::::::::::
SparseFool

:::::::::::::::::
(Modas et al., 2019)

:
,
:::::
along

:::::
with

::::
two

::::::
further

:
ℓ0 ::::

-norm
::::::
attacks,

::::
i.e.,

:::
the

:
ℓ0 ::::

-norm
:::::::::

Projected
::::::::
Gradient

:::::::
Descent

:
(PGD-ℓ0)

::::::
attack

:::::::::::::::::::
(Croce & Hein, 2019)

::
and

::
the

:::::::
Sparse

:::::::
Random

::::::
Search

::
(Sparse-RS) attack (Croce et al., 2022).Compared to the remaining

approaches, the latter fixes a bound on the 2
:::::::::
Compared

::
to

:::::::::::::
minimum-norm

:::::::
attacks,

:
PGD-ℓ0 ::

and
::::::::
Sparse-RS

::::
aim

:::
to

:::::::::
maximize

::::::::::::::
misclassification

:::::::::
confidence

::::::
within

::
a
::::::

given maximum number of
features that can be perturbed

::::::::
modifiable

:::::::
features

:
k. To not negatively influence its performance, we

perform a binary search over k to optimize the success rate and minimize the number of manipulated
features, reporting the best results

::::
Thus,

:::
to

:::::
ensure

::
a

:::
fair

::::::::::
comparison

::::
with

:::::::::::::
minimum-norm

::::::
attacks,

::
as

::::::::
suggested

::
by

::::::::::::::::
Rony et al. (2021b)

:
,
:::
we

::::
tune

::::
their

::::::::::
perturbation

::::::
budget

::
k

::
by

::::::::::
performing

:
a
::::::::::
sample-wise

:::::
binary

::::::
search

::
to

::::
find

:::::::::::::
minimum-norm

:::::::::
adversarial

::::::::
examples. Further details are reported in the Ap-

pendix.
::::::
Finally,

:::
we

::::::::
configure

:::
all

::::::
attacks

::
to

:::::::::
manipulate

:::::
input

::::::
values

:::::::::
separately,

::::::
without

::::::::::
constraining

::
the

::::::::::::
manipulations

:::
to

::::::::
individual

::::::
pixels;

::::
e.g.,

:::
on

:::::::::
CIFAR10,

:::
the

:::::::
number

::
of

:::::::::
modifiable

::::::
inputs

::
is

:::
thus

:::::::::::::::::
3× 32× 32 = 3072.

:

Models. We use a selection of both baseline and robust models to evaluate the attacks under different
conditions. Our goal is to compare σ-zero on a vast set of models to ensure its broad effectiveness
and to expose vulnerabilities that may not be revealed by other attacks (Croce & Hein, 2021a). For the
MNIST dataset, we consider two adversarially-trained convolutional neural network (CNN) models ,
::
by

::::::::::::::::
Rony et al. (2021a),

::::
i.e., CNN-DDN (Rony et al., 2021a) and CNN-Trades (Rony et al., 2021a)

. These models have been trained to be robust to both ℓ2 and ℓ∞ adversarial attacks, and we .
:::
We

2
::::::::
Sparse-RS

::
is

:
a
::::::::::
gradient-free

::::::::
(black-box)

::::::
attack,

::::
which

::::
only

::::::
requires

:::::
query

:::::
access

::
to

:::
the

::::
target

::::::
model.

::
We

::::::
consider

::
it

::
as

::
an

:::::::
additional

:::::::
baseline

::
in

:::
our

:::::::::
experiments,

:::
but

::
it

:::::
should

:::
not

::
be

::::::::
considered

::
a

::::
direct

::::::::
competitor

::
of

:::::::::::
gradient-based

:::::
attacks,

::
as
::
it
:::::
works

::::
under

:::::
much

:::::
stricter

::::::::::
assumptions

:::
(i.e.,

::
no

::::::
access

:
to
:::::
input

::::::::
gradients).
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denote them respectively with M1 and M2. For the CIFAR10 and ImageNet datasets, we employ
state-of-the-art robust models from RobustBench (Croce et al., 2021). Specifically, for

:::
For

:
CIFAR10,

we adopt eight models. The first model, denoted as ,
:::::::
denoted

::::
with C1

:
-C10.

:
C1

:
(Croce et al., 2021)

, is a standard
::
is

:
a
:::::::::
non-robust

:
WideResNet-28-10 model. The second and third models, denoted

as C2 (Carmon et al., 2019) and C3 (Augustin et al., 2020) , respectively, combine training data
augmentation with adversarial training to obtain models that are robust

::::::
improve

:::::::::
robustness

:
to ℓ∞

and ℓ2 adversarial attacks. The fourth model,
::::::
attacks.

:
C4

:
(Engstrom et al., 2019) , is an adversarially

trained model that is robust to ℓ2-norm attacks. The fifth model, C5 (Gowal et al., 2021) , exploits
generative models to artificially augment the original training set and improve adversarial robustness
to generic ℓp-norm attacks. The sixth model C6 (Chen et al., 2020) is a robust ensemble modelfrom .
The seventh model .

:
C7

:
(Xu et al., 2023) is a recently proposed adversarial training defense from

that is robust to ℓ2 -norm attacks. Finally, the eighth model,
::::::
attacks. C8 (Addepalli et al., 2022) ,

enforces diversity during data augmentation and combine
::::::::
combines

:
it with adversarial training. We

will refer to these models respectively with , , , , , , , and
:::::::
Finally,

::
we

::::
also

::::::
include

:::
the

:
ℓ1:::::

robust
::::::
models

C9
:
(Croce & Hein, 2021b)

:::
and

:
C10 (Jiang et al., 2023) . For ImageNet, we consider a pretrained

vulnerable ResNet-18
:::::::
denoted

::::
with I1

:
(He et al., 2015) and five adversarially-trained models that

are robust
:
,
:::
and

::::
five

:::::
robust

:::::::
models to ℓ∞-attacks, namely,

::::::
denoted

:::::
with I2 (Engstrom et al., 2019),

I3 (Wong et al., 2020), I4 (Salman et al., 2020), I5
:
(Hendrycks et al., 2021) , and . We will denote

these models with , , , , , and I6
:
(Salman et al., 2020) .

Hyperparameters. We conduct our experiments using the default configurations of
:::::::::::::
hyperparameters

::::
used

::
in

:::
the

:::::::
original

:::::::::::::
implementation

::
of

::::
the

::::::
attacks

::::
from

:
AdversarialLib (Rony & Ben Ayed) and

Foolbox (Rauber et al., 2017). 3 We do not make any modifications to the hyperparameters of the
attacks, except for the

:::
We

::::
only

::::::
change

:::
the

:
number of steps , which we set to 1000. We make this

modification to ensure a fair comparison among all attacks and to achieve better convergenceof them
:
,

::
to

:::::
ensure

::::
that

::
all

::::::
attacks

:::::
reach

:::::::::::
convergence (Pintor et al., 2022). In the Appendix we also provide a

comparison analysis of the attacks when considering a low-budget attacker, i.e., only 100 steps. By
using a consistent number of steps for all attacks, we can better assess their relative performance and
compare their performance in generating adversarial examples across different models and datasets.
The only exception is VFGA (Césaire et al., 2021) , which

:::::::::
constitutes

:::
the

::::
only

:::::::::
exception,

:::
as

:
it

terminates only once an adversarial example is obtained.
::
We

::::::
report

::::::::
additional

::::::
results

:::::
using

:::
100

::::
steps

::
in

::
the

:::::::::
Appendix.

:::
As

::::::::::::
gradient-based

::::::
attacks

:::::::
perform

:::
one

:::::::
forward

:::
and

::::
one

::::::::
backward

::::
pass

::
in

::::
each

::::
step,

::
we

::::::
double

:::
the

::::
steps

:::
for

::::::::::
Sparse-RS,

:::::
which,

:::::
being

::
a

::::::::::
gradient-free

::::::
attack,

::::
only

::::::
makes

:::
one

:::::::
forward

:::
pass

:::
per

:::::::
iteration.

::::
This

:::::::
ensures

:
a
::::
fair

::::::::::
comparison.

:
For σ-zero we impose τ = 0.3 and σ = 0.001, and

we held them constant across all models tested, providing evidence for the adaptability of ,
:::

we
::
set

:::::
1000

:::::
steps,

:::::::
η0 = 1,

:::::::
τ0 = 0.5

::::
and

:::::::
σ = 0.1.

::::
We

::::
keep

:::
the

:::::
same

:::::::::::
configuration

:::
for

:::
all

::::::
models

:::
and

:::::::
datasets,

:::::::
showing

::::
that

:::
no

::::::
specific

:::::::::::::
hyperparameter

::::::
tuning

::
is
::::::::
required

:::
for σ-zero across different

problems. Additional analysis .
:::::::::
Additional

::::::::
analyses of the influence of the hyperparameters

::
on

::
the

::::::::::
performance

::
of

:
σ-zero can be found in the Appendix. Finally, the maximum number of steps is

restricted to 1000, as for the other attacks.

Evaluation Metrics. For each attack, we report the Attack Success Rate (ASR), defined as the
ratio of successfully attacked samples, and the median of the ℓ0 normof the successful adversarial
perturbations. Additionally, we report ASRϵ:k

, which indicates the ASR of attacks with a fixed budget
of ϵ

::
k perturbed features. We also compare the computational effort of each attack considering their

execution time, the average number of queries (i.e., the sum of #forwards and #backwards) needed
to perform each attack, and the VRAM consumption.

:::::
Video

::::::::
Random

::::::
Access

::::::::
Memory

::::::::
(VRAM)

:::::::::::
consumption.3 We measure the execution time on a workstation with NVIDIA A100 Tensor Core
GPU (40GB memory) and two Intel® Xeo® Gold 6238R processors. For measuring the memory
consumption, we consider the maximum amount of VRAM used by each attack among all the batches,
which is a minimum requirement to run it without failure. By assessing the performance of each attack
across these various metrics, we can gain a more comprehensive understanding of their effectiveness
and scalability.

6
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Table 1: Attack results with 1000 steps. For each attack, we report the corresponding ASR10, ASR50,
ASR, median ∥δ∥0, sample-level average execution time and the number of queries q (x1000), and the
maximum VRAM consumed during the execution. The symbol ∗ in VFGA suggests a potential overestimation due to using a smaller batch size for memory constraints.

Performance Computational effort Performance Computational effort
Attack Model ASR(%)10 ASR(%)50 ASR(%) ||δ||0 t(s) q VRAM Model ASR(%)10 ASR(%)50 ASR(%) ||δ||0 t(s) q VRAM

MNIST
EAD

M1

1.14 53.66 100.0 49 0.47 6.28 0.05

M2

1.2 55.57 100.0 48 0.5 6.73 0.05
VFGA 9.62 82.42 99.98 27 0.05 0.77 0.21 1.8 39.33 99.95 57 0.05 1.33 0.21
PDPGD 2.97 74.08 100.0 38 0.23 2.0 0.04 3.31 66.3 100.0 42 0.23 2.0 0.04
BB 14.97 97.86 100.0 18 0.90 2.99 0.05 25.95 91.62 100.0 18 0.74 3.71 0.05
BBadv 14.81 91.23 100.0 19 0.77 2.01 0.07 14.42 40.88 100.0 89 0.71 2.01 0.07
PGD-ℓ0 12.22 99.84 100.0 19 1.15 1.99 0.07 5.04 90.17 100.0 24 1.42 2.0 0.06
Sparse-RS 12.57 83.74 100.0 25 3.45 3.05 0.07 60.04 98.48 100.0 9.0 2.51 2.44 0.06
SPARSEFOOL 4.86 6.76 96.98 469 1.07 0.18 0.06 0.93 1.21 91.68 463 2.87 0.86 0.07
FMN 7.29 93.74 100.0 29 0.21 2.0 0.04 10.86 91.84 99.41 24 0.22 2.0 0.04
σ-zero 19.6 99.98 100.0 16 0.31 2.0 0.04 61.57 100.0 100.0 9.0 0.31 2.0 0.04

CIFAR10
EAD

C1

6.74 21.33 100.0 126 2.32 6.9 1.47

C5

14.47 35.9 100.0 74 10.76 5.55 9.92
VFGA 48.58 93.41 99.99 11 0.17 0.32 11.96 27.71 67.51 99.88 29 4.91∗ 1.02 > 40
PDPGD 16.58 78.97 100.0 27 0.64 2.0 1.31 17.68 40.89 100.0 69 3.96 2.0 8.86
BB 69.77 99.79 100.0 7 5.81 2.76 1.47 13.46 17.14 17.94 ∞ 3.46 2.08 9.93
BBadv 69.58 99.86 100.0 7 4.57 2.01 1.63 – – – – – – –
PGD-ℓ0 31.82 85.21 100 18 6.46 1.93 1.73 – – – – – – –
Sparse-RS 59.64 98.59 100 9 3.76 1.49 1.74 – – – – – – –
SPARSEFOOL 11.19 11.19 56.56 3072 1.42 0.37 1.57 – – – – – – –
FMN 67.52 99.97 100.0 7 0.60 2.0 1.3 27.97 68.38 100.0 29 3.91 2.0 8.86
σ-zero 80.84 100.0 100.0 5 0.83 2.0 1.51 44.72 94.14 100.0 12 4.39 2.0 9.92
EAD

C2

12.7 30.38 100.0 90 1.92 5.70 1.47

C6

17.29 33.68 100.0 105 8.33 5.37 5.39
VFGA 28.98 75.37 99.92 24 0.59 0.78 11.71 34.17 81.79 99.89 20 4.30∗ 0.62 > 40
PDPGD 16.47 42.50 100.0 63 0.64 2.0 1.32 21.37 48.96 99.82 51 2.15 2.0 5.12
BB 11.73 14.24 14.7 ∞ 0.63 2.05 1.47 37.98 78.76 83.58 16 12.49 3.14 5.39
BBadv 37.64 90.57 100 16 4.68 2.01 1.64 – – – – – – –
PGD-ℓ0 21.4 56.85 100 39 5.79 1.92 1.75 – – – – – – –
Sparse-RS 31.02 62.81 90.78 27 6.6 1.89 1.71 – – – – – – –
SPARSEFOOL 18.31 18.77 56.39 3072 11.31 1.4 1.62 – – – – – – –
FMN 28.43 74.7 100.0 26 0.59 2.0 1.31 33.3 79.7 100.0 21 2.05 2.0 5.12
σ-zero 47.15 95.38 100.0 11 0.82 2.0 1.53 49.29 97.14 100.0 11 2.71 2.0 5.39
EAD

C3

9.21 11.42 100.0 360 2.53 5.62 1.89

C7

9.38 23.62 100.0 148 2.23 5.8 2.15
VFGA 21.82 66.5 99.62 34 0.48 0.94 16.53 22.79 56.72 99.81 39 3.15∗ 1.84 > 40
PDPGD 13.96 45.15 100.0 55 1.12 2.0 1.8 11.97 38.41 100.0 69 0.76 2.0 2.0
BB 21.32 56.78 58.64 33 2.31 2.89 1.89 38.82 93.24 100.0 15 6.49 2.87 2.16
BBadv 31.64 96.31 100.0 17 3.92 2.01 1.99 – – – – – – –
PGD-ℓ0 17.33 58.82 100.0 39 10.31 1.93 2.30 – – – – – – –
Sparse-RS 21.41 61.00 100.0 36 5.54 2.26 2.20 – – – – – – –
SPARSEFOOL 14.3 21.22 98.74 3070 3.62 0.46 1.90 – – – – – – –
FMN 20.61 71.7 100.0 33 1.08 2.0 1.8 23.95 70.24 100.0 30 0.73 2.0 2.0
σ-zero 36.61 97.55 100.0 15 1.41 2.0 1.92 44.53 96.77 100.0 12 0.93 2.0 2.15
EAD

C4

9.48 11.14 100.0 398 2.57 5.66 1.89

C8

15.75 29.23 100.0 118 1.01 5.32 0.41
VFGA 30.5 90.04 99.88 19 0.28 0.52 16.53 29.55 74.15 99.54 25 0.17 0.77 3.07
PDPGD 15.5 49.19 100.0 51 1.16 2.0 1.8 19.43 41.0 100.0 66 0.44 2.0 0.36
BB 16.32 31.03 31.36 ∞ 3.01 2.37 1.89 38.64 91.83 100.0 15 10.90 2.93 0.41
BBadv 37.06 99.11 100.0 14 4.51 2.01 1.99 38.01 93.04 100.0 16 4.6 2.01 0.54
PGD-ℓ0 19.9 70.04 100.0 33 8.97 1.93 2.30 24.20 59.98 100 36 4.1 1.9 0.56
Sparse-RS 22.82 62.18 100 36 13.2 2.26 2.20 31.51 67.82 98.46 27 9.84 3.95 0.54
SPARSEFOOL 15.52 40.86 93.82 3039 9.3 1.56 1.90 23.18 26.54 51.80 3072 0.58 0.33 0.51
FMN 26.85 85.6 100.0 23 1.09 2.0 1.8 29.75 73.71 100.0 16 0.41 2.0 0.36
σ-zero 42.96 99.15 100 12 1.39 2.0 1.91 44.29 94.21 100.0 13 0.63 2.0 0.51
EAD

C9

12.96 13.23 100.0 800 0.94 4.89 0.65

C10

23.94 24.78 100.0 768 1.04 4.99 0.65
VFGA 18.86 49.98 99.72 51 0.32 1.25 4.44 33.61 69.47 99.83 28 0.25 0.82 4.22
PDPGD 15.95 35.13 100.0 75 0.41 2.0 0.59 26.89 42.38 100 66 0.4 2.0 0.60
BB 14.13 22.91 27.64 ∞ 1.04 2.25 0.65 24.72 27.98 29.50 ∞ 0.54 2.09 0.65
BBadv 19.93 72.43 100 34 5.28 2.01 0.64 35.67 82.46 100 22 3.03 2.01 0.65
PGD-ℓ0 17.05 36.85 100.0 72 4.45 1.92 0.72 28.2 45.42 100.0 60 4.44 1.85 0.70
Sparse-RS 17.89 34.56 92.91 90 13.62 2.42 0.69 30.61 48.57 95.45 54 6.29 2.03 0.68
SPARSEFOOL 15.89 24.36 58.29 3072 1.63 0.48 0.66 26.85 43.07 91.14 69 4.32 1.49 0.66
FMN 18.61 48.87 100 52 0.24 2.0 0.60 32.63 62.96 100.0 34 0.35 2.0 0.59
σ-zero 21.49 73.02 100.0 32 0.43 2.0 0.71 37.27 82.92 100.0 20 0.42 2.0 0.72

ImageNet
EAD

I1

34.4 36.3 100.0 460 1.69 6.06 1.21

I4

56.2 61.4 100.0 0 1.41 5.29 1.21
VFGA 48.4 72.4 99.2 14 3.03∗ 1.05 > 40 61.6 76.6 99.3 1 3.44∗ 1.21 > 40
FMN 48.7 81.0 100.0 12 0.62 2.0 1.14 63.8 78.7 100.0 0 0.57 2.0 1.14
σ-zero 62.0 95.9 100.0 5 0.81 2.0 1.19 75.5 92.8 100.0 0 0.72 2.0 1.27
EAD

I2

44.6 51.0 100.0 42 3.64 5.67 4.36

I5

26.5 28.4 100.0 981 3.53 5.49 4.36
VFGA 49.1 63.4 96.7 12 15.17∗ 2.35 > 40 36.6 59.5 97.9 31 12.12∗ 1.98 > 40
FMN 50.9 67.0 100.0 9 1.21 2.0 4.25 38.1 67.7 100.0 25 1.23 2.0 4.25
σ-zero 63.1 87.4 100.0 3 1.43 2.0 4.43 46.6 86.9 100.0 13 1.51 2.0 4.43
EAD

I3

55.1 60.2 100.0 0 3.53 5.5 4.36

I6

32.3 33.5 100.0 572 8.34 5.34 5.67
VFGA 62.2 76.2 98.8 1 10.12∗ 1.43 > 40 35.4 46.5 95.5 66 52.32∗ 3.95 > 40
FMN 64.1 79.5 100.0 0 1.22 2.0 4.25 35.6 47.2 100.0 58 3.15 2.0 5.54
σ-zero 75.5 91.4 100 0 1.44 2.0 4.43 40.7 65.1 100.0 23 3.75 2.0 5.91
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Figure 2: Robustness evaluation curves, reporting ASR versus perturbation size, for M2 on MNIST
(leftmost plot) , C2 on CIFAR10 (middle plot), and I1 on ImageNet (rightmost plot).

3.2 EXPERIMENTAL RESULTS

Attack Performance. Table 1 reports, for all models and datasets, the median value of ||δ||0 and the
attack success rates. The values obtained confirm that our attack can find smaller perturbations in
all cases. Specifically, over all the dataset-model configurations, σ-zero drastically improves the
state of the art of sparse attacks. For example, on CIFAR10 models, σ-zero outperforms FMN by
reducing the median number of manipulated features from 52 to 32 in the best case (C9) and from
7 to 5 in the worst case (C1). On ImageNet models, the median ∥δ∥0 is reduced from 58 to 23 in
the best case (I6) and from 9 to 3 in the worse case (I2). Furthermore, we observe that the ASR of
BB, which is the closest attack in terms of performance to σ-zero, drops when used in settings
where the input dimensionality increases (e.g., CIFAR10), and it becomes unfeasible in extreme
cases (i.e., ImageNet). From Table 1, we can also notice that the median ∥δ∥0 of BB sometimes
is∞, since its ASR is lower than 50%. BBadv does not suffer from the same issue but σ-zero
continues to outperform that variant too. Lastly, we show in the Appendix that our attack always
reaches ASR=100% against all models, even when decreasing the number of iterations. For other
attacks, this is not ensured, particularly when reducing the number of iterations.

Computational Effort. We report the runtime comparison, the number of queries issued to the
model, and the VRAM used by each attack. The results show that our attack is up to 2 (16) times
faster than BB when considering MNIST (CIFAR10) models. Therefore, even if BB finds slightly
better ℓ0-adversarial examples in one configuration, its computational effort is much higher than
σ-zero. Furthermore, we observed that BB often stops unexpectedly before reaching the specified
number of steps because it fails to initialize the attack.
The speed advantage of σ-zero is given because our attack is a simple gradient-based approach that
avoids costly inner projections, such as the ones used by BB. On the other hand, σ-zero is slightly
slower than FMN and VFGA; however, it compensates by finding better solutions. Notably, similarly
to them, σ-zero requires fewer queries than remaining attacks. Furthermore, the speed-competing
method VFGA is memory-hungry, forcing us to reduce the batch size when testing its effectiveness
on larger models, e.g., C5, C6, and C7. Conversely, running our algorithm also requires reasonable
VRAM, as σ-zero implements a lightweight search that includes only the cost of computing
gradients and norms for each step. Overall, the practical advantages of our attack make it a promising
direction for benchmarking large DNNs in an effective and time-efficient way.

ImageNet Results. For ImageNet, we restrict our analysis to EAD, FMN, and VFGA, as they
outperform competing attacks on MNIST and CIFAR10 in terms of ASR, perturbation size, and
execution time. While all ImageNet models are deemed robust to ℓ1 and ℓ∞-norm attacks, they are
vulnerable to our ℓ0-attack. Remarkably, I6 offers higher robustness against ℓ0 attacks, requiring
more effort to evade it. The results show that in most configurations, our attack finds adversarial
perturbations with a lower median ℓ0-norm, while being at the same time faster and memory-
comparable. The results in the Appendix further confirm that even when decreasing the number of
iterations to 100, our attack finds lower ℓ0-norm solutions and always achieves ASR=100%.

Robustness Evaluation Curves. Complementary to the performance results shown in Table1, we
present the robustness evaluation curves in Fig. 2 for each attack on M2, C2, and I1. These curves

3The default configurations correspond the hyperparameters used in the original implementation of the
attacks.

3
::::::
VRAM

:
is
::
a

:::
type

::
of

::::::
memory

:::::::
designed

::::::::
explicitly

::
for

:::
use

::
in

:::::::
Graphics

::::::::
Processing

::::
Units

:::::::
(GPUs).
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EAD ‖δ0‖: 42.0 VFGA ‖δ0‖: 66.0 SPARSEFOOL ‖δ0‖: 275.0 PDPGD ‖δ0‖: 64.0 BB ‖δ0‖: 6.0 BBadv ‖δ0‖: 172.0 PGD0 ‖δ0‖: 19.0 Sparse-RS ‖δ0‖: 16.0 FMN ‖δ0‖: 36.0 σ-zero ‖δ0‖: 5.0

EAD ‖δ0‖: 107.0 VFGA ‖δ0‖: 13.0 SPARSEFOOL ‖δ0‖: 12.0 PDPGD ‖δ0‖: 39.0 BB ‖δ0‖: 0.0 BBadv ‖δ0‖: 11.0 PGD0 ‖δ0‖: 30.0 Sparse-RS ‖δ0‖: 96.0 FMN ‖δ0‖: 14.0 σ-zero ‖δ0‖: 9.0

Figure 3: Randomly chosen adversarial examples from MNIST M2 (top-row), CIFAR10 C2 (bottom
row) found by adversarial attacks we tested.

go beyond the only median statistic and ASRk, providing more evidence that σ-zero achieves
higher ASR with smaller ℓ0-norm perturbations compared to the other attacks. Moreover, the ASR of
our attack goes up to 100%, validating the correctness of our gradient-based approach even when
considering unbounded perturbations (Carlini & Wagner, 2017). These results reinforce our previous
findings that σ-zero is an efficient and effective method for generating adversarial examples
with smaller ℓ0 norm. In the Appendix, we include similar curves for all the other experimental
configurations, for which results are consistent. In summary, our σ-zero attack consistently
outperforms other state-of-the-art methods, suggesting that it can identify smaller and more effective
perturbations, making it a highly promising robustness evaluation method.

Visual Inspection of Adversarial Examples. In Fig. 3, we show adversarial examples generated
with competing ℓ0-attacks, and our σ-zero. First, we can see that ℓ0 adversarial perturbations are
always clearly visually distinguishable. Their goal, indeed, is not to be indistinguishable to the human
eye – a common misconception related to adversarial examples (Biggio & Roli, 2018; Gilmer et al.,
2018) – but rather to show whether and to what extent models can be fooled by just changing a few
input values. For example, note how FMN and VFGA find similar perturbations, as they mostly target
overlapping regions of interest. Conversely, EAD finds sparse perturbations scattered throughout
the image but with a lower magnitude. This divergence is attributed to EAD’s reliance on an ℓ1
regularizer, which promotes sparsity, thus diminishing perturbation magnitude without necessarily
reducing the number of perturbed features. Conversely, our attack does not focus on specific areas or
patterns within the images but identifies diverse critical features, whose manipulation is sufficient to
mislead the target models. Given the diversity of solutions that the attacks offer, we argue that their
combined usage may still improve adversarial robustness evaluation to sparse attacks.

4 RELATED WORK

Due to the inherent complexity of optimizing over non-convex and non-differentiable constraint,
classical gradient-based algorithms like Projected Gradient Descent

::::
PGD (Madry et al., 2018) cannot

be used for computing ℓ0-norm attacks. We categorize the existing ℓ0-norm attacks into two main
groups: (i) multiple-norm attacks extended to ℓ0, and (ii) attacks specifically designed to optimize
ℓ0 perturbations. Furthermore, we discuss related work that leverages the approximation of ℓ0 for
different goals.

Multiple-norm attacks extended to ℓ0. These attacks are developed to work with multiple ℓp
norms and include the extension of their algorithms to the ℓ0 norm. While they are able to find
sparse perturbations, they often require strong use of heuristics to work in this setting. Brendel
et al. (2019a) initializes the attack from an adversarial example far away from the clean sample and
optimizes the perturbation by walking with small steps on the decision boundary trying to get closest
to the original sample. In general, the algorithm can be used for any ℓp norm, including ℓ0, but the
individual optimization steps are very costly. Pintor et al. (2021) propose the Fast Minimum-Norm
(FMN) attack that does not require an initialization step and converges efficiently with lightweight
gradient-descent steps. However, their approach was developed to generalize over ℓp norms, but it
does not make special adaptations to specifically minimize the ℓ0 norm. Matyasko & Chau (2021)
use a two-player approach that optimizes the trade-off between perturbation size and loss of the attack
and uses relaxations of the ℓ0 norm (e.g., ℓ1/2) to promote sparsity. This scheme however does not
strictly minimize the ℓ0 norm, as the relaxation does not set the lowest components exactly to zero.

9
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ℓ0-specific attacks. Croce et al. (2022) introduced SparseRS, a random search-based adversarial
attack that explores potential perturbation candidates to return the highest confidence solution. Unlike
minimum norm-based

:::::::::::::
minimum-norm attacks, their approach is rooted in a maximum-confidence

attack framework with a predefined number of feature manipulations. Césaire et al. (2021) have
designed an attack specifically for the ℓ0 norm. This attack is modeled as a stochastic Markov
problem. It induces folded Gaussian noise to selected input components, iteratively finding the
set that achieves misclassification with minimal perturbation. However, their approach requires a
considerable amount of memory to explore the possible combinations and to find an optimal solution.
This makes it infeasible to use for larger problems. With σ-zero, we show that the benefits from
both groups, efficiency and precision, can be combined to effectively generate sparse ℓ0 attacks. It
stands therefore as a promising solution for evaluating DNNs’ robustness within the ℓ0 threat model,
which remains relatively underexplored in existing benchmarks (Croce et al., 2021).

Approximation of the ℓ0 norm. Given the nonconvex and discontinuous nature of the ℓ0 norm,
but also its practicability for sparse optimization, the adoption of surrogate approximation functions
have

:::
has been extensively studied (Bach et al., 2012; Weston et al., 2003; Zhang, 2008). Chen et al.

(2018) use elastic-net regularization to calculate sparse perturbations, however, their attack do not
necessarily find minimum ℓ0-norm perturbations. In our work, we use the formulation proposed
by Osborne et al. (2000a), which provides an unbiased estimate of the actual ℓ0. Furthermore, it
has been employed by Cinà et al. (2022) in the context of poisoning attacks (Cinà et al., 2022) to
decrease sparsity in the model’s activations, while we use it as a penalty term for crafting minimum
ℓ0-norm adversarial examples.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

Despite numerous proposed attacks for assessing DNN robustness, evaluation methods tend to
overlook the significance of ℓ0-norm attacks (Chen et al., 2018; Croce & Hein, 2021a). However,
these attacks can provide valuable insights into identifying the minimum manipulated input values
required for successful attacks and reveal crucial information about model limitations. We argue that
this literature gap is primarily due to the non-differentiable nature of the ℓ0 norm and its computational
complexity, which poses challenges for gradient-based optimization.

In this work, we present σ-zero, a novel approach that leverages a smooth approximation of the ℓ0
norm. By making the objective differentiable, our method becomes amenable to optimization with
gradient descent. Through extensive experimentation, we demonstrate the efficacy, precision, and
scalability of σ-zero in diverse scenarios, specifically for identifying minimal ℓ0 perturbations. Our
approach consistently discovers smaller minimum-norm perturbations across different

::
all

:
models and

datasets, while maintaining computational efficiency in execution time and VRAM consumption
:
,

:::
and

:::::::
without

::::::::
requiring

:::
any

:::::::::::::::::::::::
computationally-demanding

:::::::::::::
hyperparameter

::::::
tuning. By identifying the

smallest number of input values that can be modified to mislead the target model, our attack provides
valuable insights on the vulnerabilities of DNN models and what they learn as salient input character-
istics. Additionally, it may also provide meaningful insights on how to mitigate such vulnerabilities
to improve robustness.

Although our approach offers promising results for benchmarking DNNs robustness, it relies on the
white-box assumption. However, in the absence of such access, attackers may resort to techniques
like transferability or gradient estimation to exploit vulnerabilities (Carlini et al., 2019; Tramèr et al.,
2020). We acknowledge the significance of this analysis and plan to investigate it further in future
research endeavors.

In conclusion, σ-zero emerges as a highly promising candidate for establishing a standardized
benchmark to evaluate robustness against sparse ℓ0 perturbations. By facilitating more reliable and
scalable assessments, it is poised to drive significant advancements in the development of novel
models with improved robustness guarantees against the specific threat model under consideration.

Ethics Statement. Based on our comprehensive analysis, we assert that there are no identifiable
ethical considerations or foreseeable negative societal consequences that warrant specific attention
within the confines of this study. Rather this study will help improve the understanding of adversarial
robustness properties of DNNs, and identify potential ways in which robustness can be improved.

10



Under review as a conference paper at ICLR 2024

REFERENCES

Sravanti Addepalli, Samyak Jain, and Venkatesh Babu R. Efficient and effective augmentation
strategy for adversarial training. In NeurIPS, 2022.

Maximilian Augustin, Alexander Meinke, and Matthias Hein. Adversarial robustness on in- and
out-distribution improves explainability. In Computer Vision - ECCV 2020 - 16th European
Conference, volume 12371 of Lecture Notes in Computer Science, pp. 228–245. Springer, 2020.

Francis R. Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. Optimization with
sparsity-inducing penalties. Found. Trends Mach. Learn., 4(1):1–106, 2012.

Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine learning.
Pattern Recognition, 84:317–331, 2018.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Srndic, Pavel Laskov, Giorgio
Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Machine
Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD, volume
8190 of Lecture Notes in Computer Science, pp. 387–402. Springer, 2013.

Wieland Brendel, Jonas Rauber, Matthias Kümmerer, Ivan Ustyuzhaninov, and Matthias Bethge.
Accurate, reliable and fast robustness evaluation. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems, NeurIPS, 2019a.

Wieland Brendel, Jonas Rauber, Matthias Kümmerer, Ivan Ustyuzhaninov, and Matthias Bethge.
Accurate, reliable and fast robustness evaluation. In Conference on Neural Information Processing
Systems (NeurIPS)), 2019b.

Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks. In
2017 IEEE Symposium on Security and Privacy SP, pp. 39–57. IEEE Computer Society, 2017.

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras,
Ian J. Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial robustness.
CoRR, abs/1902.06705, 2019.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. Unlabeled
data improves adversarial robustness. In Conference on Neural Information Processing Systems
(NeurIPS)), 2019.

Manon Césaire, Lucas Schott, Hatem Hajri, Sylvain Lamprier, and Patrick Gallinari. Stochastic sparse
adversarial attacks. In 33rd IEEE International Conference on Tools with Artificial Intelligence,
ICTAI, pp. 1247–1254. IEEE, 2021.

Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. EAD: elastic-net attacks
to deep neural networks via adversarial examples. In Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intel-
ligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), pp. 10–17. AAAI Press, 2018.

Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang. Adversarial
robustness: From self-supervised pre-training to fine-tuning. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR, pp. 696–705. Computer Vision Foundation / IEEE,
2020.

Antonio Emanuele Cinà, Ambra Demontis, Battista Biggio, Fabio Roli, and Marcello Pelillo. Energy-
latency attacks via sponge poisoning. CoRR, abs/2203.08147, 2022.

Antonio Emanuele Cinà, Kathrin Grosse, Ambra Demontis, Sebastiano Vascon, Werner Zellinger,
Bernhard Alois Moser, Alina Oprea, Battista Biggio, Marcello Pelillo, and Fabio Roli. Wild
patterns reloaded: A survey of machine learning security against training data poisoning. ACM
Computing Surveys, 2022.

Francesco Croce and Matthias Hein. Sparse and imperceivable adversarial attacks. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 4723–4731, 2019.

11



Under review as a conference paper at ICLR 2024

Francesco Croce and Matthias Hein. Mind the box: l1-apgd for sparse adversarial attacks on
image classifiers. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, ICML, volume 139 of Proceedings of Machine Learning
Research, pp. 2201–2211. PMLR, 2021a.

Francesco Croce and Matthias Hein. Mind the box: l_1-apgd for sparse adversarial attacks on image
classifiers. In International Conference on Machine Learning (ICML), 2021b.

Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial
robustness benchmark. In Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks, 2021.

Francesco Croce, Maksym Andriushchenko, Naman D. Singh, Nicolas Flammarion, and Matthias
Hein. Sparse-rs: A versatile framework for query-efficient sparse black-box adversarial attacks. In
Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI, pp. 6437–6445. AAAI Press, 2022.

Edoardo Debenedetti, Vikash Sehwag, and Prateek Mittal. A light recipe to train robust vision
transformers. In First IEEE Conference on Secure and Trustworthy Machine Learning, 2023. URL
https://openreview.net/forum?id=IztT98ky0cKs.

Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani Santurkar, and Dimitris Tsipras. Robustness
(python library), 2019. URL https://github.com/MadryLab/robustness.

Justin Gilmer, Ryan P. Adams, Ian J. Goodfellow, David Andersen, and George E. Dahl. Motivating
the rules of the game for adversarial example research. CoRR, abs/1807.06732, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations (ICLR), 2015.

Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and
Timothy A. Mann. Improving robustness using generated data. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS, pp. 4218–4233, 2021.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer.
The many faces of robustness: A critical analysis of out-of-distribution generalization. In 2021
IEEE/CVF International Conference on Computer Vision, ICCV, pp. 8320–8329. IEEE, 2021.

Yulun Jiang, Chen Liu, Zhichao Huang, Mathieu Salzmann, and Sabine Süsstrunk. Towards stable and
efficient adversarial training against l1 bounded adversarial attacks. In International Conference
on Machine Learning, 2023.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep convolu-
tional neural networks. Communications of the ACM, 60:84 – 90, 2012.

Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. 2005.

A Madry, A Makelov, L Schmidt, D Tsipras, and A Vladu. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learning Representations (ICLR), 2018.

Alexander Matyasko and Lap-Pui Chau. PDPGD: primal-dual proximal gradient descent adversarial
attack. CoRR, abs/2106.01538, 2021. URL https://arxiv.org/abs/2106.01538.

Apostolos Modas, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Sparsefool: a few pixels
make a big difference. In Conference on computer vision and pattern recognition (CVPR), 2019.

Michael R. Osborne, Brett Presnell, and Berwin A. Turlach. On the lasso and its dual. Journal of
Computational and Graphical Statistics, 9:319 – 337, 2000a.

12

https://openreview.net/forum?id=IztT98ky0cKs
https://github.com/MadryLab/robustness
https://arxiv.org/abs/2106.01538


Under review as a conference paper at ICLR 2024

Michael R. Osborne, Brett Presnell, and Berwin A. Turlach. On the lasso and its dual. Journal of
Computational and Graphical Statistics, 9:319–337, 2000b.

Maura Pintor, Fabio Roli, Wieland Brendel, and Battista Biggio. Fast minimum-norm adversarial
attacks through adaptive norm constraints. In Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems, NeurIPS, pp. 20052–20062,
2021.

Maura Pintor, Luca Demetrio, Angelo Sotgiu, Ambra Demontis, Nicholas Carlini, Battista Biggio,
and Fabio Roli. Indicators of attack failure: Debugging and improving optimization of adversarial
examples. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems, volume 35, pp. 23063–23076. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/91ffdc5e2f12436d99914418e38d0a09-Paper-Conference.pdf.

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to benchmark the
robustness of machine learning models, 2017. URL https://github.com/bethgelab/
foolbox.

Jérôme Rony, Luiz G. Hafemann, Luiz Oliveira, Ismail Ben Ayed, Robert Sabourin, and Eric Granger.
Decoupling direction and norm for efficient gradient-based l2 adversarial attacks and defenses.
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4317–4325,
2018.

Jérôme Rony, Eric Granger, Marco Pedersoli, and Ismail Ben Ayed. Augmented lagrangian adversarial
attacks. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV, pp. 7718–7727.
IEEE, 2021a.

Jérôme Rony, Eric Granger, Marco Pedersoli, and Ismail Ben Ayed. Augmented lagrangian adversarial
attacks. In Conference on computer vision and pattern recognition (CVPR), 2021b.

Jérôme Rony and Ismail Ben Ayed. Adversarial Library. URL https://github.com/
jeromerony/adversarial-library.

Hadi Salman, Andrew Ilyas, Logan Engstrom, Ashish Kapoor, and Aleksander Madry. Do adver-
sarially robust imagenet models transfer better? In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS, 2020.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In International Conference on Learning
Representations (ICLR), 2014a.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Yann LeCun. Intriguing properties of neural networks. In 2nd International Conference on
Learning Representations, ICLR, 2014b.

Florian Tramèr, Nicholas Carlini, Wieland Brendel, and Aleksander Madry. On adaptive attacks to
adversarial example defenses. In Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS, 2020.

Jason Weston, André Elisseeff, Bernhard Schölkopf, and Michael E. Tipping. Use of the zero-norm
with linear models and kernel methods. J. Mach. Learn. Res., 3:1439–1461, 2003.

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training. In
8th International Conference on Learning Representations, ICLR. OpenReview.net, 2020.

Yuancheng Xu, Yanchao Sun, Micah Goldblum, Tom Goldstein, and Furong Huang. Exploring and
exploiting decision boundary dynamics for adversarial robustness. In International Conference on
Learning Representations (ICLR), 2023.

Tong Zhang. Multi-stage convex relaxation for learning with sparse regularization. In NIPS, 2008.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/91ffdc5e2f12436d99914418e38d0a09-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/91ffdc5e2f12436d99914418e38d0a09-Paper-Conference.pdf
https://github.com/bethgelab/foolbox
https://github.com/bethgelab/foolbox
https://github.com/jeromerony/adversarial-library
https://github.com/jeromerony/adversarial-library


Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 ROBUSTBENCH
:::::::
ROBUST MODELS

The experimental setup described in this paper (Sect. 3.1) utilizes pre-trained baseline and robust
models obtained from RobustBench Croce et al. (2021). The goal of RobustBench is to track the
progress in adversarial robustness for ℓ∞ and ℓ2-norm attacks since these are the most studied settings
in the literature. We summarize in Table 2 the models we employed in our paper. Each entry in the
table includes the label reference from RobustBench, the short name we assigned to the model, and
the corresponding clean and robust accuracy under the specific threat model. The robustness of these
models is evaluated against an ensemble of white-box and black-box attacks, specifically AutoAttack.
:::::::::::::
Complementary,

:::
we

::::
also

:::::::
include

::::::
models

::::::
trained

::
to

:::
be

:::::
robust

:::::::
against ℓ1:::::

sparse
:::::::
attacks,

:::
i.e.,

:
(Croce

& Hein, 2021b)
:::
and (Jiang et al., 2023).

:
Our experimental setup is designed to encompass a wide

range of model architectures and defensive techniques, ensuring a comprehensive and thorough
performance evaluation of the considered attacks.

Table 2: Summary of Robustbench Croce et al. (2021) models used in our experiments. For each
model, we report its reference label in Robustbench Croce et al. (2021), its threat model, and
corresponding clean and robust accuracy.
Dataset Reference med Threat model Clean accuracy % Robust accuracy %

CIFAR10

Standard C1 (Croce et al., 2021) - 94.78 0
Carmon2019Unlabeled C2 (Carmon et al., 2019) ℓ∞ 89.69 59.53
Augustin2020Adversarial C3 (Augustin et al., 2020) ℓ2 91.08 72.91
Engstrom2019Robustness C4 (Engstrom et al., 2019) ℓ∞- ℓ2 87.03 - 90.83 49.25 - 69.24
Gowal2020Uncovering C5 (Gowal et al., 2021) ℓ2 90.90 74.50
Chen2020Adversarial C6 (Chen et al., 2020) ℓ∞ 86.04 51.56
Xu2023Exploring_WRN-28-10 C7 (Xu et al., 2023) ℓ∞ 93.69 63.89
Addepalli2022Efficient_RN18 C8 (Addepalli et al., 2022) ℓ∞ 85.71 52.48

Imagenet

Standard_R18 I1 (He et al., 2015) - 76.52 0
Engstrom2019Robustness I2 (Engstrom et al., 2019) ℓ∞ 62.56 29.22
Wong2020Fast I3 (Wong et al., 2020) ℓ∞ 55.62 26.24
Salman2020Do_R18 I4 (Salman et al., 2020) ℓ∞ 64.02 34.96
Hendrycks2020Many I5 (Hendrycks et al., 2021) ℓ∞ 76.86 52.90
Debenedetti2022Light_XCiT-S12 I6 (Debenedetti et al., 2023) ℓ∞ 72.34 41.78

A.2 σ-ZERO OBJECTIVE FUNCTION VISUALIZATION

In Figure 4, we depict the behavior of the loss terms of σ-zero when applied to the Imagenet data
sample, specifically, the frog in Figure 1. When the sample is not adversarial, the attack algorithm
increases the ℓ0 norm, highlighted by the bumps in the orange curve, to find a valid adversarial δ.
Conversely, when an adversarial example is found, the loss term is cropped to zero, and the algorithm
focus solely on minimizing the ℓ0 in δ.
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Figure 4: σ-zero loss terms during the optimization procedure.
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Figure 5: Ablation study on σ (y-axis) and τ (x-axis) for MNIST
::::::::
CIFAR10

:
C1 , (top-row), CIFAR10

C8, (middle-row) and Imagenet (bottom-row). For each combination, we report the attack success
rate (leftmost matrix) and the ℓ0 norm on the output adversarial perturbation (rightmost matrix).

A.3 ABLATION STUDY

To assess the strength and potential limitations of our proposed attack, we conducted an ablation study
on its key hyperparameters. Specifically, we investigated the impact of varying two critical parameters,
τ and σ. The parameter τ governs the tolerance threshold in Algorithm 1, which induces sparsity
within the adversarial noise. Conversely, σ defines the approximation quality of ℓ̂0 in Equation 4
compared to the actual ℓ0 function. Our ablation study, depicted in Figure 5, involved three distinct
models: M1 for MNIST (top row), C8 for CIFAR10 (middle row), and I1 for Imagenet (bottom row).
We executed the attack on 1000 randomly selected samples from each dataset and recorded the Attack
Success Rate (ASR) and the median ℓ0 norm of the resulting adversarial perturbations. Remarkably,
we observe a significant robustness of σ-zero with respect to these two hyperparameters. Except for
the extreme case of τ = 0, where we exclude our sparsity-enforcement step in Algorithm 1 (Line 6),
the adversarial noise perturbed more features. However, even with a small value of τ , the ℓ0 norm
decreased while maintaining an ASR close to or equal to 100%. This suggests that a substantial
portion of the adversarial noise δ consists of minimal and negligible contributions, yet, remains
effective for a successful attack. Concerning σ, as also noted in Cinà et al. (2022), its selection is
not particularly challenging, especially when incorporating the sparsity projection operator. Overall,
the ablation study revealed consistent trends across various models. In all cases, we identified a
broad parameter configuration range where our attack maintained robustness, making hyperparameter
optimization for the attacker a swift task. This robustness is further evidenced by the results presented
in Table 1, where our attack consistently outperforms state-of-the-art attacks even with a shared
hyperparameter configuration across all models.

A.4 PRECISION AND QUERY COST ANALYSIS

In Fig. ??, we present a comprehensive comparison of different attacks based on the average number
of queries utilized for crafting the attack and the median norm of the resulting adversarial noise.
Our analysis demonstrates that while VFGA is fast, its precision in producing minimum-norm
adversarial examples may not be optimal. Compared to BB Brendel et al. (2019a), our findings
indicate that BB can be more accurate but at the cost of increased query complexity and
computational demands. Furthermore, when compared against PDPGD Matyasko & Chau (2021)
and FMN Pintor et al. (2021), our attack consistently offers the same number of queries on average.
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These findings collectively support the argument that provides a way for assessing the robustness of
DNNs against -norm attackers in an accurate and computationally feasible manner.

Precision vs. Query Cost for -norm attacks against CIFAR10 models (leftmost plot) and , , and in
Imagenet (rightmost plot).

A.4 ATTACK COMPARISON WITH 100 STEPS

In our experimental setup, we also explore scenarios where the attacker’s access to queries is limited,
thus reducing the number of iterations for the attack. To simulate this perspective, we replicate our
experimental comparison involving σ-zero and state-of-the-art sparse attacks while restricting the
number of steps to 100. The results are summarized in Table 3. Notably, compared to the results
presented in Table 1, most competitive attacks undergo a decrease in their ASR, while σ-zero
consistently maintains a 100% success rate. In conclusion, σ-zero remains a promising choice for
crafting minimum ℓ0-norm attacks against DNNs, even when the attacker has limited query resources.

A.5 ROBUSTNESS EVALUATION CURVES
:::::::::::
COMPARISON

::::::
WITH

:::::::::::::::::::::
MAXIMUM-CONFIDENCE

::::::::
ATTACKS

We present in Figs. ??-?? the robustness evaluation curves depicting the performance of -attacks
against all the models analyzed in our paper. These findings reinforce our experimental analysis,
explicitly demonstrating that the attack consistently achieves higher values of ASR while employing
smaller -norm perturbations compared to alternative attacks. While it is essential to acknowledge
that in a few instances, may exhibit slight inferiority or comparability to BB Brendel et al. (2019b)
, we emphasize that these cases are limited. Furthermore, as depicted in Fig. ??, the success rate of
BB drops for different models in CIFAR10 and its computational demands render it unfeasible for
application on larger datasets such as ImageNet.

A.6 COMPARISON WITH SPARSE-RS

In our experimental comparisons presented in both Table 1 and Table 3, we include the Sparse-
RS attack introduced by Croce et al. (2022). This attack is

:::
and

:
PGD-ℓ0 :::::

attacks
::::::::::

introduced
:::
by

::::::::::::::::
(Croce et al., 2022)

:::
and

::::::::::::::::::
(Croce & Hein, 2019).

::::::
These

::::::
attacks

::::
have

::::
been

:
designed to generate sparse

adversarial perturbations given a fixed budget
::
k. Specifically, in their threat model, the attacker

imposes a maximum limit on the number of perturbed features. Sparse-RS ,
::::
and

:::
the

:::::
attack

:
then

outputs the adversarial example that minimizes the model’s confidence in predicting the true label
of the sample. Notably, Croce et al. (2022) has demonstrated promising results when comparing
Sparse-RS against different state-of-the-art attacks like FMN or VFGA. However, since the fixed-
budget threat model differs from the minimum-norm scenario we consider in this paper, as we
do not assume a maximum budget, we have developed a wrapper around Sparse-RS

::
and

:
PGD-ℓ0

to ensure a fair comparison. Our process employs a binary
:::::::
Similarly

::
to

:::::::::::::::::
(Rony et al., 2021b),

:::
we

::::::
employ

:
a
:::::::::::

sample-wise
::::::
binary search strategy to determine the smallest budget, denoted as k, that

must be provided as input to Sparse-RS
::::
them

:
to achieve an Attack Success Rate (ASR) equal to or

greater than ρ. During
:::::
100%

::
on

:::
the

:::::
data.

::
At

:
each iteration of the binary search, if the ASR exceeds

or equals ρ
:::::
attack

::
is

::::::::
successful, we halve the value of k, asking Sparse-RS

:::
and PGD-ℓ0 to perturb

fewer features. Conversely, if the ASR falls below ρ
::::::
sample

::
is

:::
not

:::::::::
adversarial, we double its value .

The comparison tables showcase the best result with the minimum norm perturbation in the median
across the iterations. Thus, our binary search approach ensures that the attacker finds

::
the

:::::
value

::
of

::
k.

:::::
Thus,

:::
we

:::::
enable

:::
the

:::::::
attacker

::
to

::::
find the value of k that results in the minimum ℓ0 norm

::
for

::::
each

::::::
sample.

:::::::
Finally,

:::
the

:::::::::
comparison

:::::
tables

::::::::
showcase

:::
the

::::
best

:::::
result

::::
with

:::
the

::::::::
minimum

::::
norm

::::::::::
perturbation

in the median . In our comparison, we consider two different values for ρ, namely ρ = 85% and
ρ = 100%, denoted as Sparse-RS85 and Sparse-RS100, respectively.

:::::
across

:::
the

::::::::
iterations.

:

Robustness evaluation curves for and in MNIST (two leftmost plots) , and in CIFAR10 (two
rightmost plot). The dashed line represents the model prediction error on pristine samples. Ours
referees to . Robustness evaluation curves for and (two leftmost plots), and (two rightmost plots) in
CIFAR10. Ours referees to . Robustness evaluation curves for and (two leftmost plots) in CIFAR10,

16



Under review as a conference paper at ICLR 2024

Table 3: For each attack, we report the corresponding ASR, median ∥δ∥0, sample-level average
execution time and the number of queries, and the maximum VRAM consumed during the execution.
∗ in VFGA indicates that the usage of a smaller batch size, to fit its execution in memory, may have
led to a slight overestimation of the execution time.

Performance Computational Effort Performance Computational Effort
Attack Model ASR(%) ASR(%)10 ASR(%)50 ||δ||0 t(s) q (x1000) VRAM Model ASR(%) ASR(%)10 ASR(%)50 ||δ||0 t(s) q (x1000) VRAM

MNIST

EAD

M1

100.0 1.11 46.65 52.0 0.09 1.14 0.05

M2

100.0 1.2 35.57 61.0 0.07 0.99 0.05
VFGA 95.71 9.57 82.56 27.0 0.04 0.74 0.21 92.32 1.81 39.28 57.0 0.04 1.3 0.21
PDPGD 100.0 0.98 0.98 359.0 0.02 0.2 0.04 95.02 0.52 0.52 254.0 0.02 0.2 0.04
BB 100.0 12.8 98.0 20.0 0.13 1.19 0.05 87.87 26.53 83.0 18.0 0.12 1.69 0.05
FMN 88.93 7.22 83.09 30.0 0.01 0.2 0.04 14.81 4.02 14.03 ∞ 0.01 0.2 0.04
σ-zero 100.0 12.46 98.55 21.0 0.03 0.2 0.05 100.0 38.3 99.88 13.0 0.03 0.2 0.05

CIFAR10

EAD

C1

100.0 6.82 19.09 146.0 0.26 0.77 1.47

C5

100.0 14.35 32.94 83.0 1.59 0.82 9.92
VFGA 98.99 49.14 93.46 11.0 0.16 0.38 11.96 87.75 27.64 67.1 29.0 3.6* 0.86 > 40
PDPGD 100.0 5.23 5.23 3057.0 0.06 0.2 1.31 99.75 11.26 11.26 2814.0 0.32 0.2 8.86
BB 100.0 53.48 97.55 10.0 0.59 0.95 1.47 17.92 13.18 16.88 ∞ 2.67 1.95 9.93
FMN 98.86 62.85 97.72 8.0 0.05 0.2 1.31 72.34 27.16 61.49 33.0 0.31 0.2 8.86
σ-zero 100.0 42.54 99.11 12.0 0.08 0.2 1.47 100.0 35.09 85.95 18.0 0.44 0.2 9.92
EAD

C2

100.0 12.74 28.74 100.0 0.27 0.8 1.47

C6

100.0 16.95 29.59 128.0 0.7 0.66 5.4
VFGA 93.69 28.99 75.38 24.0 0.22 0.72 11.71 97.08 34.27 82.07 20.0 4.24* 0.61 > 40
PDPGD 99.39 10.31 10.31 2421.0 0.06 0.2 1.32 54.16 13.96 13.96 3072.0 0.2 0.2 5.12
BB 14.97 11.58 14.29 ∞ 0.44 1.95 1.47 84.46 35.89 78.14 17.0 1.68 1.67 5.39
FMN 80.68 28.06 69.36 27.0 0.05 0.2 1.31 87.1 32.98 76.59 22.0 0.19 0.2 5.12
σ-zero 100.0 32.58 86.2 18.0 0.07 0.2 1.47 100.0 37.99 90.93 16.0 0.24 0.2 5.39
EAD

C3

100.0 9.14 10.67 451.0 0.31 0.71 1.89

C7

100.0 9.23 21.61 162.0 0.31 0.8 2.15
VFGA 91.64 21.7 66.55 33.0 0.34 0.87 16.53 75.79 22.76 56.58 39.0 1.34* 1.06 > 40
PDPGD 75.31 8.92 8.92 3052.0 0.09 0.2 1.8 96.2 6.31 6.31 2773.0 0.07 0.2 2.0
BB 57.05 19.46 53.53 40.0 0.59 1.9 1.89 100.0 35.43 90.74 16.0 0.64 1.07 2.16
FMN 71.3 20.37 62.41 36.0 0.09 0.2 1.8 68.88 23.21 59.69 35.0 0.06 0.2 2.0
σ-zero 100.0 23.24 85.46 24.0 0.11 0.2 1.89 100.0 32.42 89.12 18.0 0.08 0.2 2.15
EAD

C4

100.0 9.38 10.56 434.0 0.4 0.9 1.89

C8

100.0 15.76 26.17 144.5 0.14 0.79 0.41
VFGA 99.16 30.44 90.13 19.0 0.27 0.52 16.53 94.16 29.57 74.22 26.0 0.13 0.73 3.07
PDPGD 99.9 9.17 9.17 2709.0 0.09 0.2 1.8 90.95 14.29 14.29 3057.0 0.04 0.2 0.36
BB 32.83 16.28 32.41 ∞ 0.49 1.93 1.89 100.0 35.98 89.39 17.0 0.43 1.13 0.41
FMN 87.2 26.63 79.48 24.0 0.09 0.2 1.8 80.68 29.47 69.77 27.0 0.03 0.2 0.36
σ-zero 100.0 29.45 92.77 19.0 0.11 0.2 1.89 100.0 32.49 85.19 19.0 0.04 0.2 0.41

Imagenet

EAD

I1

100.0 34.4 35.7 501.5 0.2 0.71 1.21

I4

100.0 56.1 60.7 0.0 0.2 0.77 1.21
VFGA 85.3 47.0 72.4 14.0 1.74* 0.7 > 40 83.9 61.9 75.4 1.0 1.49* 0.59 > 40
FMN 68.1 47.6 64.9 14.0 0.06 0.2 1.14 77.2 63.2 75.1 0.0 0.06 0.2 1.14
σ-zero 100.0 42.9 70.4 20.0 0.08 0.2 1.21 100.0 69.4 88.0 0.0 0.07 0.2 1.2
EAD

I2

100.0 44.5 50.2 48.0 0.48 0.75 4.36

I5

100.0 26.6 27.4 1105.0 0.4 0.62 4.35
VFGA 72.9 49.2 63.3 12.0 4.34* 0.86 > 40 74.0 36.5 58.9 30.0 4.5* 0.96 > 40
FMN 62.4 50.4 60.0 10.0 0.13 0.2 4.25 53.0 36.0 50.3 46.0 0.13 0.2 4.25
σ-zero 100.0 54.8 79.9 6.0 0.15 0.2 4.35 100.0 32.3 57.1 40.0 0.15 0.2 4.35
EAD

I3

100.0 54.8 60.5 0.0 0.47 0.74 4.35

I6

99.9 32.2 32.9 818.5 1.14 0.72 5.67
VFGA 83.0 62.2 76.0 1.0 3.47* 0.59 > 40 57.4 35.4 46.9 67.0 13.35* 1.2 > 40
FMN 74.2 63.3 71.8 0.0 0.13 0.2 4.25 47.5 35.7 45.2 ∞ 0.34 0.2 5.54
σ-zero 100.0 69.9 86.8 0.0 0.15 0.2 4.35 100.0 36.9 53.3 40.0 0.41 0.2 5.68

EAD ‖δ0‖: 57.0 VFGA ‖δ0‖: 74.0 SPARSEFOOL ‖δ0‖: 316.0 PDPGD ‖δ0‖: 57.0 BB ‖δ0‖: 37.0 BBadv ‖δ0‖: 65.0 PGD0 ‖δ0‖: 43.0 Sparse-RS ‖δ0‖: 75.0 FMN ‖δ0‖: 20.0 σ-zero ‖δ0‖: 16.0

EAD ‖δ0‖: 26.0 VFGA ‖δ0‖: 40.0 SPARSEFOOL ‖δ0‖: 168.0 PDPGD ‖δ0‖: 30.0 BB ‖δ0‖: 12.0 BBadv ‖δ0‖: 125.0 PGD0 ‖δ0‖: 11.0 Sparse-RS ‖δ0‖: 18.0 FMN ‖δ0‖: 25.0 σ-zero ‖δ0‖: 7.0

Figure 6: Randomly chosen adversarial examples from MNIST M2.

and (two rightmost plots) in Imagenet. Ours denotes . Robustness evaluation curves for and (two
leftmost plots), and (two rightmost plots) in Imagenet. Ours denotes .
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EAD ‖δ0‖: 48.0 VFGA ‖δ0‖: 10.0 SPARSEFOOL ‖δ0‖: 6.0 PDPGD ‖δ0‖: 18.0 BB ‖δ0‖: 0.0 BBadv ‖δ0‖: 8.0 PGD0 ‖δ0‖: 15.0 Sparse-RS ‖δ0‖: 24.0 FMN ‖δ0‖: 7.0 σ-zero ‖δ0‖: 5.0

EAD ‖δ0‖: 145.0 VFGA ‖δ0‖: 9.0 SPARSEFOOL ‖δ0‖: 13.0 PDPGD ‖δ0‖: 27.0 BB ‖δ0‖: 0.0 BBadv ‖δ0‖: 9.0 PGD0 ‖δ0‖: 21.0 Sparse-RS ‖δ0‖: 51.0 FMN ‖δ0‖: 13.0 σ-zero ‖δ0‖: 4.0

Figure 7: Randomly chosen adversarial examples from CIFAR10 C2 .

EAD ‖δ0‖: 50.0 VFGA ‖δ0‖: 22.0 FMN ‖δ0‖: 23.0 σ-zero ‖δ0‖: 11.0

EAD ‖δ0‖: 3064.0 VFGA ‖δ0‖: 102.0 FMN ‖δ0‖: 119.0 σ-zero ‖δ0‖: 52.0

Figure 8: Randomly chosen adversarial examples from Imagenet I1 .
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