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ABSTRACT

Evaluating the adversarial robustness of deep networks to gradient-based at-
tacks is challenging. While most attacks focus ¢5-norm and /.,-norm con-
straints to craft input perturbations, only a few have investigated sparse /;-
norm and {p-norm attacks. In particular, {y-norm attacks remain the least
studied due to the inherent complexity of optimizing over a non-convex and
non-differentiable constraint. However, evaluating the robustness of these at-
tacks might unveil weaknesses otherwise left untested with conventional {5
and /., attacks. In this work, we propose a novel {p-norm attack, called
o-zero, which leverages an ad-hoc differentiable approximation of the £y norm
to facilitate gradient-based optimization. Extensive evaluations on MNIST, CI-
FAR10, and ImageNet datasets, involving robust and non-robust models, show that
o-zero can find adversarial-examples-with-minimal-{y-distortion;-outperforming
competing-methods-minimum {o-norm adversarial examples without requiring

any time-consuming hyperparameter tuning, and that it outperforms all competin
attacks in terms of success rate and scalability.

1 INTRODUCTION

Early research has unveiled that Deep Neural Networks (DNN5s) are fooled by adversarial examples,
i.e., slightly-perturbed inputs optimized to cause misclassifications (Biggio et al [2013} Szegedy
et al.| [2014a;|Goodfellow et al.} 2015)). In turn, this has demanded the need for more careful reliability
assessments of such models. Most of the gradient-based attacks proposed to evaluate adversarial
robustness of DNNs foeus-on-optimizing-optimize adversarial examples under different ¢,-norm
constraints. In particular, while convex ¢1, /5, and /., norms have been widely studied (Chen et al.,
2018} |Croce & Heinl 2021a), only a few ¢y-norm attacks have been considered so far. The main
reason may-be-is that ad-hoc heuristics need to be adopted to compute efficient projections on the
£y norm, overcoming issues related to its non-convexity and non-differentiability. Although this
task is challenging and computationally expensive, attacks based on the ¢y norm have the potential
to reveal uncovered issues in DNNs that may not be evident in other norm-based attacks (Carlini
& Wagner, 2017; |Croce & Heinl [2021a). For instance, these attacks, known for perturbing a
minimal fraction of input features, can be used to determine the most sensitive characteristics that
disprepertionately-influence the model’s decision-making process. Furthermore, they offer a different
and relevant threat model to inspectfor-benchmarking-benchmark existing defenses. Consequently;
develepmg@gygjgg@\&efﬁment algorithms for generating ¢, adversarial examples is thus a crucial
area of research that requires further exploration feﬁrmefeﬂeeﬂmﬁebﬂsﬁmﬂeﬁwme
current adversarial robustness evaluations.

HeweverUnfortunately, current implementations of £y attacks exhibit a largely suboptimal tradeoff
between their success rate and efficiency, i.e., they are either accurate but slow, or fast but inaccurate.
In particular, the accurate ones resort to the use of complex projections to find smaller input pertur-
bations but suffer from time or memory limitations, hindering their scalability to larger networks
or high-dimensional data (Brendel et al.,2019a; (Césaire et al.,[2021)). Other attacks execute faster,
but their output solution is typically inaccurate and largely suboptimal elgv@vewlevovgvhveygivsw

roaches and imprecise approximations to bypass the difficulties of optimizing the ¢onorm, lead-

mg to overestimating adversarial robustness (Matyasko & Chau, 2021} [Pintor et al., [2021). However,

all existing strategies are often slow to converge because they require a large number of queries
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Figure 1: The leftmost plot #ustrates-shows an instance of o—zero’s execution on a bi-dimensional

two-dimensional problem. Hererthe The red dot represents-and the green star respectively represent
the initial point x s—white—and t the sree green—star—indicates—the—corresponding adversarial example

x*that-deceives—the-model. %&demmmmpgﬁgciattack —powered-bygradient-deseent—seeks
to find this adversarial example while minimizing the number of perturbed features (i.e., the £

norm of the erturbatlon) Gray hnes surroundlng x demarcate regions where the ¢, distanee
; v ¢ a RtmMtMNOrM is minimized. Cemplementary;
fh&The rlghtmost plot Wshows the adversarlal e*amp}e%gawfa{eé%

and the corresponding perturbations (bottol (bottom row) found by o-zero during the three steps (top
rewyhighlighted in the leftmost lot along51de their predlctlon and ¢y norm.Fhe-bottomrow-offers-a

i.e., forward and backward passes), or they output suboptimal solutions. It thus remains an open
challenge to develop a scalable and compelhng method for assessing the robustness of DNNss against

sparse perturbation-attacks-perturbations with minimum ¢y norm.

To tackle these issues, in this work we propose a novel attack technique, namely o—zero, which
iteratively inereases-promotes the sparsity of the adversarial perturbations, minimizing their £, norm
(see Fig. [TJand Sect.2). The underlying idea is to leverage an-a differentiable approximation of the
actual ¢y norm, which is better suited to gradient-based optimizers. Specifically, we employ the
approximation method-initially introduced by [Osborne et al.| (2000b), and more recently adopted
by [Cina et al.|(2022) for staging energy-latency poisoning attacks. This method offers an unbiased,
QL&I@QQ@@IVQ estimation 0f the true Eo norm&ﬂéﬁessesse&fh&eﬂma%pfepeff}#ef—drffefeﬂﬁabﬂﬁy

0 t1m1ze it via gradient descent.

Our experiments (Sect. [3) provide compelling evidence of the remarkable performance of our
attack. We evaluate o—zero on several benchmark datasets, including MNIST, CIFAR10, and
ImagenetImageNet, considering baseline and robust models from Robustbench (Croce et al., 2021).

We compare its performance with state-of-the-art attacks, showing that c—zero achieves better or

comparableresults in terms of attack success rate and perturbation size, while requiring-significantly

less-eomputationalreseurecesbeing significantly faster and without requiring any sophisticated and
time-consuming hyperparameter tuning. Overall, our approach encompasses two fundamental char-

acteristics for a proficient adversarial attack, i.e., effectiveness and scalability, making it a catalyst for
significant advancements in developing novel models with improved robustness, as well as better
robustness evaluation tools.

2 0-zERO: MINIMUM {)-NORM ADVERSARIAL EXAMPLESWHFH
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M&WMO zero, our gradlent based approach thatexploits
to finding minimum fo-norm ¢ ¢ ¢ adversarial
examples. We start by describing the cons1dered threat model and a&aek—geal—w&then give a formal

overview of the proposed attack and its algorithmic implementation.

Threat Model. We assume that the attacker has complete access to the target model, including
its architecture and trained parameters, and exploits its gradient for staging white-box untargeted
attacks. This setting is useful for worst-case evaluation of the adversarial robustness of DNN models,
providing empirical upper bounds on the performance degradation that may incur when they are
attacked, and it is the usual setting adopted also in previous work related to gradient-based adversarial
robustness evaluations (Carlini & Wagner, 2017} [Croce et al.} 2021}, [Pintor et al.| 202T).

Problem Formulation. In this work, we seek untargeted minimum #y-norm adversarial perturbations
that steer the model’s decision towards misclassification. To this end, let x € X = [0,1] be a
d-dimensional input sample, y € Y = {1, ...,1} its associated true label, and f : X x © — ) the
target model, parameterized by 8 € ©. While f outputs the predicted label, we will also use f; to
denote the continuous-valued output (logit) for class £ € ). The goal of our attack is to find the
minimum £y-norm adversarial noise 6 such that the corresponding adversarial example x* = x + 6~
is misclassified by f. This is formalized as the following optimization problem:

¢" c argmin  [[6]lo, ¢))

s.L. f(x+6,0)#y, @)

x+6¢[0,1]7, (3)

where || - ||o denotes the ¢y norm, which counts the number of non-zero dimensions. The hard-

constraint in[Equation 2] ensures that the perturbation § induces the target model f to misclassify the
perturbed sample x*. Finally, |[Equation 3|represents a box constraint, ensuring that the adversarial
example x* lies in [0, 1]¢. Note that when the source point x is already misclassified by f, the trivial
solution to the above minimization problem is §* = 0.

Contrary to the ¢, {5, £, norms, when considering the ¢y norm the problem becomes intractable
with standard methods. The ¢y norm is indeed non-differentiable, thus unsuitable for gradient-
based optimization. To address this issue, we exploit the £y-norm approximation function proposed

by Osborne et al.| (2000b), and defined as:

2 .
X) = Z 21‘_:_ o’ g > 07 EO(X) S [Oa d] ’ (4)

‘ T
1=1

with ¢ being a hyperparameter controlling its approximation quality. When o tends to zero, the
approximation becomes more accurate. However, an increasingly accurate approximation could lead
to the same optimization limits of the ¢y norm.

Finally, similarly to previous work (Carlini & Wagner, 2017} Rony et al, 20214; [Szegedy et all,

[2014b), we transform the hard-constraint in[Equation 2)in a soft-constraint. The resulting optimization
problem therefore becomes:

5 cargmin  Lx+8,y.0)+ ééo(a) )
st. x+6¢[0,1]¢, (6)

where we substituted the |||, with the approximation /o(8) and normalize it with respect to the
number of features d to ensure that its value is within the interval [0, 1]. The loss £ is defined as:

£(x.y,6) = max (fy<x, 6) — max f(x.6), o) FI(f(x.0) = ). )
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Algorithm 1: 0-zero Attack Pseudocode.

Input: x € [0, 1], input sample; y, true class label; 8, target model; N, number of iterations;
o, {p-approximation parameter; 7, initial step size; 79, initial sparsity threshold.
Output: x*, minimum ¢y norm adversarial example.

00, 6«06 T+ 710, N1 > initialization.

foriinl,..., N do
Vg + Vs[L(x+9,y,0) + ééo(ﬁ, o)] > gradient computation.
Vg + Vg/|IVglleo > gradient normalization.
d«+clip(x—[0—n-Vg]) —x > & update.
4+ I1.(9) > zeroing § components below T.
7 = cosine_annealing(no,1) > n update.
IfL(x+d,y,0) <0 7+ =0.01-nelse r— =0.01-7p > 7 update.

end

IfL(x+8,y,0) <0 A |[8]lo<||6"|lo0 6"« & > 6* update.

return x* < x + 6~

The first term in £ represents the logit difference, which is positive when the sample is correctly
assigned to the true class y, and clipped to zero when it is misclassified (Carlini & Wagner, [2017).
The second term merely adds 1 to the loss if the sample is correctly classiﬁed This ensures that
the loss term £ is 0 only when an adversarial example is found, and higher than 1 otherwise. This
in turn implies that the loss term L is always higher than the {y-norm term in (as the
latter is bounded in [0, 1]), when no adversarial example is found. Accordingly, it is not difficult
to see that the feasible solutions of this problem only correspond to minimum-norm adversarial
examples. It is also worth remarking that, conversely to the objective function proposed by (Carlini
& Wagner|(2017), our objective does not require tuning the tradeoff between minimizing the loss
and reducing the perturbation size to find minimum-norm adversarial examples, thereby avoiding a
computationally-expensive line search for each input sample. In fact, the proposed objective function
inherently induces an alternate optimization process between the loss term and the /y-norm penalty,
as shown in the Appendix (see[Figure 4). In particular, when the sample is not adversarial, the attack
algorithm mostly aims to decrease the loss term to find an adversarial example, while increasing the
perturbation size. Conversely, when an adversarial example is found, the loss term is cropped to zero,
and the perturbation size is gradually reduced.

Solution Algorithm. Given that the approximation function ly in [Equation 4| is differen-
tiable, we derive a custom gradient-based algorithm for solving [Equation 5| and [Equation 6]

Our algerithm;—given—in—attack, detailed in Algorithm [[ is fast, not memory-demanding, and
easy to implement. The—algorithm-It starts by initializing the adversarial perturbation é—te

a—zero—veetor-0—+4 = 0 (line 1). Subsequently, w&eempuf&m the gradient of the
aﬂaek%ob]ectlve functlon in Eguatlon 5 w1th respect to & (line 3), and nermalize—it—te

Prator-etak; %%%mmwm

imize the affaekefs—ebjeem%e—e*pfessedﬂfe—’l:h& obj ectlve via radlent descent, while also
accounting for the box constraints in afewﬂse%akefﬂmeﬂeeeuﬁ%through the usage

of the c1ip operator —Importantly;—we-impose-(line 5). We enforce sparsity in § by clipping to 0
all the components lower than aﬂﬁxeekthgvcygr;c\gvs&avrgivtymthreshold T to-zere—(Line |§I) This step

is necessary since the N approximation is not exact, and might result in some values being closer
to zero but not precisely zero. We therefore encourage the attack to focus only on mere-the most
influential features, discarding less significant contributions. The-We then decrease the step size

7 by following a cosine-annealing schedule (Rony et all 2018; [Pintor et al.l 2021), and adjust the
sparsity threshold 7 dynamically. In particular, if the current sample is adversarial. we increase 7
to_promote sparser perturbations; otherwise, we decrease 7 to reduce £. The variations of 7 are
also iteratively reduced following the same cosine-annealing schedule of the step size. The above

"While a sigmoid approximation may be adopted to overcome the non-differentiability of the I term at
the decision boundary, we simply set its gradient to zero everywhere, without any impact on the experimental
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process is repeated for N iterations, and if during each iteration, we find a better solution that is
adversarial and has a lower £y norm, we update the optimal perturbation §* to the current minimum
(line 10). Finally, swe-retara-the best adversarial perturbation §* identified during the optimization
process is returned (line 11} In conclusion, the main contributions behind o—-zeroare: (i) the idea of

exploiting the numerically-stable approximation of the £onorm by|Osborne et al| (2000b) to design a
M%mmme
while minimizing the fonorm of the perturbation (i.e., a non-trivial task given the non-convexity
of this norm); and (ii) the introduction of the sparsity threshold 7 and its dynamic adjustment

olicy which, along with gradient normalization and step size annealing, help find very sparse
adversarial perturbations faster. The combination of our novel formulation with the aforementioned
optimization tricks yields a very fast and reliable ¢p-norm attack algorithm, which does not even
require specific hyperparameter tuning, as we will show in our experimental results.

3 EXPERIMENTS

We report the extensive evaluation of the proposed o—-zero attack to compare its performance and
efficiency with other state-of-the-art ¢ attacks, considering sixteen baseline and robust models and
three different datasets.

3.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on three popular datasets used for benchmarking adversarial ro-

bustness: MNIST (LeCun & Cortes| 2005)), CIFAR10 (Krizhevsky} [2009) and ImageNet (Krizhevsky
2012). We use a random subset of 1000 test samples from ImageNet to evaluate attacks

performance on it, while we consider the entire test set for MNIST and CIFAR10. For the MNIST
and CIFAR10 datasets we used a batch size of 32, while for ImageNet we opted for a batch size of 16.

Attacks. We compare 0-zero against the following state-
of- the artin- mlmmum norm attacks 1n thelr fo-norm thfeat—medelrs—Speelﬁc—aHyHV&evaktfate—the

m——thexagagtvsvt@g Voting Folded Gau551an Attack (VFGA) attack (ICesalre et al., 2021 the Prlmal-
Dual Proximal Gradient Descent (PDPGD) attack (Matyasko & Chaul [2021)), the Brend el & Bethge

(BB) attack (Brendel et al ] M 2019a) MIMWMMﬁh adversarial initialization (BBady)

and the Fast Minimum Norm (FMN) attack (P } 2021))-and-the-sparserandomseareh, We
also consider two state-of-the-art £1-norm attacks as ad ditiona baselines, i.e., the Elastic-Net (EAD
attack ( parseFool (Modas et all[2019), along with two further {y-norm

attacks, i.e., the . Zo -norm Projected Gradient Descent (PGD-£o) attack (Croce & Hein) 2019) and
the Sparse Random Search (Sparse-RS) attack (Croce et al. |, M[) Compared—to—the—remaining

Compared to minimum-norm attacks, PGD-{pand
Sparse- RS aim to maximize misclassification confidence within a given maximum number of

Iyg&@atﬂgv@mk%mﬂaegﬁwely’mﬂuﬂ%eﬁ%peffefmaﬂee—“m

Thus to ensure a falr comparison with minimum-norm attacks as

MROW et al.| (2021b), we tune their perturbation budget £ by performing a sample-wise

binary search to find minimum-norm adversarial examples. Further details are reported in the Ap-
pendix. Finally, we configure all attacks to manipulate input values separately, without constrainin

the manipulations to individual pixels; e.g., on CIFAR10, the number of modifiable inputs is thus
3532 % 32 = 3072

Models. We use a selection of both baseline and robust models to evaluate the attacks under different
conditions. Our goal is to compare o—zero on a vast set of models to ensure its broad effectiveness
and to expose vulnerabilities that may not be revealed by other attacks (Croce & Heinl[2021a)). For the
MNIST dataset, we consider two adversarially-trained convolutional neural network (CNN) models 5

by Rony et al (2021a)), i.e., CNN-DDN ~(Rony-etal}2021a)-and CNN-Trades (Rony-etall2021a)

. These models have been trained to be robust to both ¢, and ¢, adversarial attacks;-and-we-. We

2Sparse-RS is a gradient-free black-box) attack, which only requires query access to the target model. We

consider it as an additional baseline in our experiments, but it should not be considered a direct competitor of

radient-based attacks, as it works under much stricter assumptions (i.e., no access to input gradients).
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denote them respectively with M1 and M2. For the CIFAR10 and ImageNet datasets, we employ

state-of-the-art robust models from RobustBench @;roce et a! . Speetfieally;for-For CIFARI1O0,
we adopt eight models—The-firstmodel-denoted-as-, denoted with C1-C10, C1 (Croce et al|[2021)
sis-a-standard-is a non-robust WideResNet-28-10 model. 5 ¢ i s—denoted

as-C2 (Carmon et al., [2019) and C3 (Augustin et al., 2020) ;-respeetively;-combine training data

augmentatlon with adversarlal tra1n1ng to obfarrrmoee%s—that—are—robns&tho loo
tal-atte } (Engstrom et al., 2019) +is an adversarially
trained model that is robust to {3-norm attacks CPhe—ﬁﬁh—meéeerS qGowal et al., 2021) s-exploits
generative models to artificially augment the original tralnlng set and improve adversarial robustness
to generic £,,-norm attacks. Fhesixth-modet-C6 (Chen et al. is a robust ensemble modelfrom—
JEhe—seventh—modeP.N C7 ( 4 mb isa recent y propose adversarral training defense from

that-is-robust to /o -nerm ~attacks. C8 (Addepalli et al %
enforces d1vers1ty during data augmentatron and eembmecombrnes it w1th adversarial training

EEEERE Finally, we also include the £y robust models

! ‘2 21 and and C10 (Jiang et al. 02 . For ImageNet, we consider a pretrained
‘ enoted with IT (He et al. aﬁd—ﬁveﬁdversaﬂaﬂy-tmmedﬂeﬁode}ythzﬁ

WMm loo —attac s, namely-denoted with 12 (Engstrom et al.} 2019),
I3 (Wong et al., 2020), I4 (Salman et al.,[2020), I5 (Hendrycks et al., 2021)) s-and—We-with-denote
e ——and 16 (]Salman et al. |,|2020

Hyperparameters. We conduct our experiments using the default configurations of hyperparameters
used in the original implementation of the attacks from Adversarlalle 1Rony & Ben Ayed) and

Foolbox (Rauber et al, 2017). [f| we make-any-m
aﬁaeks—exeep&for&&We onl chan e the number of steps —W—l’ﬂeh—W@—SCPtO 1000—%th5

Th&on}fexeepﬂoﬂ—rﬁVFGA (Cesarre et a1|, 2021) ww@mw%t
terminates only once an adversarial example is obtained. We report additional results using 100 steps
in the Appendix; As gradient-based attacks perform one forward and one backward pass in each step,
we double the steps for Sparse-RS, which, being a gradient-free attack, only makes one forward pass
mmmww@wmmﬁw zero =6 =0-00%

W Sta S LN

set 1000 steps, =1,17 = 0 5 and o = 0. 1 We kee the same confl uratron for all models and
datasets, showing that no specific hyperparameter tuning is required for o —zero across-different
problems—Additional-analysis-. Additional analyses of the influence of the hyperparameters on the

performance of o—zero can be found in the Appendix. Fmaﬂy—thefnamnﬂfmmmbeﬁoﬁstepﬁs
coemsionesee LULL oo el sonee amnloe

Evaluation Metrics. For each attack, we report the Attack Success Rate (ASR), defined as the
ratio of successfully attacked samples, and the median ef-the-¢( normef-thesueeessful-adversarial
perturbations. Additionally, we report ASR¢, which indicates the ASR of attacks with a fixed budget
of €k perturbed features. We also compare the computational effort of each attack considering their
execution time, the average number of queries (i.e., the sum of #forwards and #backwards) needed

to perform each attack, and the VRAM-consumption—Video Random Access Memory (VRAM)
QQW@E We measure the execution time on a workstation with NVIDIA A100 Tensor Core

GPU (40GB memory) and two Intel® Xeo® Gold 6238R processors. For measuring the memory

consumption, we consider the maximum amount of VRAM used by each attack among all the batches,
which is a minimum requirement to run it without failure. By assessing the performance of each attack

across these various metrics, we can gain a more comprehensive understanding of their effectiveness

and scalability.
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Table 1: Attack results with 1000 steps. For each attack, we report the corresponding ASR;g, ASR5,
ASR, median [|6]|¢, sample-level average execution time and the number of queries q 1000, and the

maximum VRAM consumed during the execution. The symbol * in VFGA suggests a potential overestimation due to using a smaller batch size for memory constraints.

Performance | Computational effort | | Performance | Computational effort
Attack [Model [ASR(%)10 ASR(%)s0 ASR(%) [[6]lo| (s) q VRAM |Model|[ASR(%)10 ASR(%)s0 ASR(%) [[d]lo] t(s) g VRAM
MNIST
EAD 1.14 53.66 1000 49 | 047 628 0.05 1.2 5557 1000 48 | 0.5 6.73 0.5
VEGA 9.62 8242 9998 27 | 0.05 0.77 021 1.8 3933 9995 57 | 0.05 133 021
PDPGD 2.97 7408 1000 38 | 023 2.0 0.04 331 66.3 1000 42 | 023 20 004
BB 14.97 97.86 1000 18 | 0.90 2.99 0.05 25.95 91.62 1000 18 | 0.74 3.71 0.5
BBadv M 14.81 9123 1000 19 | 077 201 007 | . 14.42 4088  100.0 89 | 0.71 2.01 0.07
PGD-/, 1222 99.84 1000 19 | 1.15 199 0.07 5.04 90.17 1000 24 | 142 20 0.06
Sparse-RS 12.57 83.74 1000 25 | 345 3.05 0.07 60.04 98.48 1000 9.0 | 2.51 244 0.06
SPARSEFOOL 4.86 6.76 96.98 469 | 1.07 0.18 0.06 0.93 1.21 91.68 463 | 2.87 0.86 0.07
FMN 7.29 9374 1000 29 | 021 20 0.04 10.86 91.84 9941 24 | 022 20 004
o-zero | | 196 99.98 1000 16 | 031 2.0 004 | | 6157 1000 1000 9.0 | 031 20 0.04
CIFARI0
EAD 6.74 2133 1000 126 232 69 147 14.47 35.9 1000 74 [10.76 555 9.92
VEGA 48.58 9341 9999 11 | 0.17 032 11.96 27.71 6751  99.88 29 | 491" 1.02 >40
PDPGD 16.58 7897 1000 27 | 0.64 20 131 17.68 4089  100.0 69 | 3.96 2.0 8.86
BB 69.77 99.79 1000 7 | 581 276 147 13.46 17.14 1794 oo | 346 208 9.93
BBadv a1 69.58 9986 1000 7 | 457 201 163 | o - - - - - - -
PGD-{, 31.82 85.21 100 18 | 646 193 1.73 - - - - - - -
Sparse-RS 59.64 98.59 100 9 | 376 149 1.74 - - - - - - -
SPARSEFOOL 11.19 11.19 5656 3072| 142 037 1.57 - - - - - - -
EMN 67.52 99.97 1000 7 | 060 20 1.3 27.97 6838 1000 29 | 391 20 886
‘otzero || 80.84 1000 1000 571083 20 151 ] | 4472941410000 127|439 20 992
EAD 12.7 3038 1000 90 | 1.92 570 147 17.29 33.68 1000 105 [ 833 537 539
VFGA 28.98 7537 99.92 24 | 059 0.78 11.71 34.17 8179  99.89 20 |4.30* 0.62 >40
PDPGD 16.47 4250 1000 63 | 064 20 1.32 21.37 4896  99.82 51 | 215 20 512
BB 11.73 14.24 147 oo | 0.63 205 147 37.98 7876 83.58 16 | 1249 3.14 539
BBadv o 37.64 90.57 100 16 | 4.68 201 164 | o - - - - - - -
PGD-{, 21.4 56.85 100 39 | 579 1.92 175 - - - - - - -
Sparse-RS 31.02 6281 9078 27 | 66 189 1.71 - - - - - - -
SPARSEFOOL 18.31 1877 5639 3072|1131 14 1.62 - - - - - - -
FMN 28.43 74.7 100.0 26 | 0.59 2.0 131 333 79.7 1000 21 | 205 20 5.12
‘g-zero | % 4715 9538 1000 11082 20 153 | 4929 T 97.14° 10000 11| 271 200539
EAD 9.21 1142 1000 360 | 2.53 5.62 1.89 9.38 23.62 1000 148|223 58 215
VFGA 21.82 66.5 99.62 34 | 048 094 16.53 22.79 5672 99.81 39 |3.15% 1.84 >40
PDPGD 13.96 4515 1000 55 | 1.12 2.0 1.8 11.97 3841 1000 69 | 0.76 2.0 2.0
BB 21.32 5678 58.64 33 | 231 289 1.89 38.82 9324 1000 15 | 649 287 2.16
BBadv o 31.64 9631 1000 17 | 3.92 201 199 | - - - - - - -
PGD-(, 17.33 58.82 1000 39 |10.31 1.93 230 - - - - - - -
Sparse-RS 21.41 61.00 1000 36 | 554 226 220 - - - - - - -
SPARSEFOOL 14.3 2122 9874 3070| 3.62 046 1.90 - - - - - - -
FMN 20.61 71.7 1000 33 | .08 20 1.8 23.95 7024 1000 30 | 0.73 2.0 2.0
g-zero | | 36.61 97.55 1000 15 | 141 20 192 | | 4453 9677 1000 12 | 093 20 215
EAD 9.48 11.14  100.0 398 | 2.57 5.66 1.89 1575 2923 1000 118 | 1.01 532 041
VEGA 30.5 90.04  99.88 19 | 028 0.52 16.53 29.55 7415 99.54 25 | 0.17 0.77 3.07
PDPGD 15.5 49.19 1000 51 | 1.16 2.0 1.8 19.43 41.0 1000 66 | 044 20 036
BB 1632 31.03 3136 oo | 3.01 237 1.89 38.64 91.83 1000 15 |10.90 2.93 0.4l
BBadv c4 37.06 99.11 1000 14 | 451 201 199 | o 38.01 93.04 1000 16 | 46 201 054
PGD-{, 19.9 70.04 1000 33 | 897 193 230 24.20 59.98 100 36 | 41 19 056
Sparse-RS 22.82 62.18 100 36 | 132 226 220 31.51 67.82 9846 27 | 9.84 395 0.54
SPARSEFOOL 15.52 4086  93.82 3039 93 156 1.90 23.18 2654  51.80 3072] 0.58 033 051
EMN 26.85 85.6 1000 23 | .09 20 1.8 29.75 7371 1000 16 | 041 20 036
‘otzero || % 4296 99.15 100 12139 20 191 ] | 4429 9421 10000 137|063 20 051
EAD 12.96 1323 1000 800 | 0.94 4.89 0.65 23.94 2478 1000 768 | 1.04 499 0.65
VFGA 18.86 4998 9972 51 | 032 125 4.44 33.61 69.47  99.83 28 | 025 0.82 422
PDPGD 15.95 3513 1000 75 | 041 20 059 26.89 4238 100 66 | 04 20 0.60
BB 14.13 2291 2764 oo | 1.04 225 0.65 24.72 2798 2950 oo | 0.54 2.09 0.65
BBadv <o 19.93 7243 100 34 | 528 201 064 | . | 3567 82.46 100 22 | 3.03 201 065
PGD-{, 17.05 36.85 1000 72 | 445 192 072 28.2 4542 100.0 60 | 444 185 0.70
Sparse-RS 17.89 3456 9291 90 |13.62 242 0.69 30.61 48.57 9545 54 | 629 203 0.68
SPARSEFOOL 15.89 2436 5829 3072| 1.63 048 0.66 26.85 4307 9114 69 | 432 149 0.66
FMN 18.61 48.87 100 52| 024 20 0.60 32.63 62.96 1000 34 | 035 2.0 0.59
‘g-zero | | 2149 73.02°° 71000 32 1043 20 o7 || 3727 8292 10000 20 | 042 20 072
ImageNet
EAD 34.4 36.3 1000 460 | 1.69 6.06 1.21 56.2 61.4 1000 0 | 141 529 121
VEGA I 48.4 72.4 992 14 |3.03° 105 >40 | 61.6 76.6 993 1 [344* 121 >40
FMN 48.7 81.0 1000 12 | 0.62 20 1.14 63.8 78.7 1000 0 | 057 20 114
g-zero | | 620 959 1000 5 | 081 20 119 | | 755 28 1000 0 | 072 20 127
EAD 446 51.0 1000 42 | 3.64 567 436 26.5 28.4 1000 981 | 3.53 549 436
VEGA D 49.1 63.4 967 12 |15.17° 235 >40 | 36.6 59.5 97.9 31 [12.12* 1.98 >40
FMN 50.9 67.0 1000 9 | 121 2.0 425 38.1 67.7 1000 25 | 1.23 2.0 425
g-zero | | 631 874 1000 3 | 143 20 443 | | 466 869 1000 13 | 1.51 2.0 443
EAD 55.1 60.2 1000 0 | 353 55 436 323 335 1000 572 | 834 534 567
VEGA B 62.2 76.2 988 1 110127 143 >40 | 354 46.5 955 66 [5232*3.95 >40
FMN 64.1 79.5 1000 0 | 122 20 425 35.6 472 1000 58 | 3.15 20 554
‘o-zero | | 755 914 100 0 | 144 20 443 | | . 407 651 1000 23 [ 375 20 591
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Figure 2: Robustness evaluation curves, reporting ASR versus perturbation size, for M2 on MNIST
(Ieftmost plot) , C2 on CIFAR10 (middle plot), and I1 on ImageNet (rightmost plot).

3.2 EXPERIMENTAL RESULTS

Attack Performance. Table|I]reports, for all models and datasets, the median value of ||8||o and the
attack success rates. The values obtained confirm that our attack can find smaller perturbations in
all cases. Specifically, over all the dataset-model configurations, c—zero drastically improves the
state of the art of sparse attacks. For example, on CIFAR10 models, 0 -zero outperforms FMN by
reducing the median number of manipulated features from 52 to 32 in the best case (C9) and from
7 to 5 in the worst case (C1). On ImageNet models, the median ||d]| is reduced from 58 to 23 in
the best case (I6) and from 9 to 3 in the worse case (I12). Furthermore, we observe that the ASR of
BB, which is the closest attack in terms of performance to c—-zero, drops when used in settings
where the input dimensionality increases (e.g., CIFAR10), and it becomes unfeasible in extreme
cases (i.e., ImageNet). From Table (I} we can also notice that the median ||d]|p of BB sometimes
is oo, since its ASR is lower than 50%. BBadv does not suffer from the same issue but c—zero
continues to outperform that variant too. Lastly, we show in the Appendix that our attack always
reaches ASR=100% against all models, even when decreasing the number of iterations. For other
attacks, this is not ensured, particularly when reducing the number of iterations.

Computational Effort. We report the runtime comparison, the number of queries issued to the
model, and the VRAM used by each attack. The results show that our attack is up to 2 (16) times
faster than BB when considering MNIST (CIFAR10) models. Therefore, even if BB finds slightly
better {y-adversarial examples in one configuration, its computational effort is much higher than
o-zero. Furthermore, we observed that BB often stops unexpectedly before reaching the specified
number of steps because it fails to initialize the attack.

The speed advantage of o—zero is given because our attack is a simple gradient-based approach that
avoids costly inner projections, such as the ones used by BB. On the other hand, o—-zero is slightly
slower than FMN and VFGA; however, it compensates by finding better solutions. Notably, similarly
to them, o —zero requires fewer queries than remaining attacks. Furthermore, the speed-competing
method VFGA is memory-hungry, forcing us to reduce the batch size when testing its effectiveness
on larger models, e.g., C5, C6, and C7. Conversely, running our algorithm also requires reasonable
VRAM, as o-zero implements a lightweight search that includes only the cost of computing
gradients and norms for each step. Overall, the practical advantages of our attack make it a promising
direction for benchmarking large DNNS in an effective and time-efficient way.

ImageNet Results. For ImageNet, we restrict our analysis to EAD, FMN, and VFGA, as they
outperform competing attacks on MNIST and CIFARIO0 in terms of ASR, perturbation size, and
execution time. While all ImageNet models are deemed robust to ¢; and /,-norm attacks, they are
vulnerable to our {y-attack. Remarkably, 16 offers higher robustness against ¢y attacks, requiring
more effort to evade it. The results show that in most configurations, our attack finds adversarial
perturbations with a lower median {y-norm, while being at the same time faster and memory-
comparable. The results in the Appendix further confirm that even when decreasing the number of
iterations to 100, our attack finds lower £y-norm solutions and always achieves ASR=100%.

Robustness Evaluation Curves. Complementary to the performance results shown in TabldI] we
present the robustness evaluation curves in Fig. [2] for each attack on M2, C2, and I1. These curves
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Figure 3: Randomly chosen adversarial examples from MNIST M2 (top-row), CIFAR10 C2 (bottom
row) found by adversarial attacks we tested.

go beyond the only median statistic and ASRy, providing more evidence that c—zero achieves
higher ASR with smaller /y-norm perturbations compared to the other attacks. Moreover, the ASR of
our attack goes up to 100%, validating the correctness of our gradient-based approach even when
considering unbounded perturbations (Carlini & Wagner, |2017). These results reinforce our previous
findings that o-zero is an efficient and effective method for generating adversarial examples
with smaller £y norm. In the Appendix, we include similar curves for all the other experimental
configurations, for which results are consistent. In summary, our o—zero attack consistently
outperforms other state-of-the-art methods, suggesting that it can identify smaller and more effective
perturbations, making it a highly promising robustness evaluation method.

Visual Inspection of Adversarial Examples. In Fig.[3] we show adversarial examples generated
with competing {y-attacks, and our c-zero. First, we can see that /; adversarial perturbations are
always clearly visually distinguishable. Their goal, indeed, is not to be indistinguishable to the human
eye — a common misconception related to adversarial examples (Biggio & Roli, [2018} |Gilmer et al.,
2018) — but rather to show whether and to what extent models can be fooled by just changing a few
input values. For example, note how FMN and VFGA find similar perturbations, as they mostly target
overlapping regions of interest. Conversely, EAD finds sparse perturbations scattered throughout
the image but with a lower magnitude. This divergence is attributed to EAD’s reliance on an /4
regularizer, which promotes sparsity, thus diminishing perturbation magnitude without necessarily
reducing the number of perturbed features. Conversely, our attack does not focus on specific areas or
patterns within the images but identifies diverse critical features, whose manipulation is sufficient to
mislead the target models. Given the diversity of solutions that the attacks offer, we argue that their
combined usage may still improve adversarial robustness evaluation to sparse attacks.

4 RELATED WORK

Due to the inherent complexity of optimizing over non-convex and non-differentiable constraint,
classical gradient-based algorithms like Projected-GradientDeseentPGD (Madry et al., [2018)) cannot
be used for computing £y-norm attacks. We categorize the existing £y-norm attacks into two main
groups: (i) multiple-norm attacks extended to £y, and (ii) attacks specifically designed to optimize
£y perturbations. Furthermore, we discuss related work that leverages the approximation of ¢, for
different goals.

Multiple-norm attacks extended to ¢,. These attacks are developed to work with multiple £,
norms and include the extension of their algorithms to the ¢y norm. While they are able to find
sparse perturbations, they often require strong use of heuristics to work in this setting. [Brendel
et al.|(2019a) initializes the attack from an adversarial example far away from the clean sample and
optimizes the perturbation by walking with small steps on the decision boundary trying to get closest
to the original sample. In general, the algorithm can be used for any ¢, norm, including ¢, but the
individual optimization steps are very costly. [Pintor et al.[(2021)) propose the Fast Minimum-Norm
(FMN) attack that does not require an initialization step and converges efficiently with lightweight
gradient-descent steps. However, their approach was developed to generalize over ¢, norms, but it
does not make special adaptations to specifically minimize the ¢y norm. Matyasko & Chaul(2021)
use a two-player approach that optimizes the trade-off between perturbation size and loss of the attack
and uses relaxations of the £y norm (e.g., £1/2) to promote sparsity. This scheme however does not
strictly minimize the ¢y norm, as the relaxation does not set the lowest components exactly to zero.
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£y-specific attacks. [Croce et al.[(2022)) introduced SparseRS, a random search-based adversarial
attack that explores potential perturbation candidates to return the highest confidence solution. Unlike
mirtmtm-rorm-based-minimum-norm attacks, their approach is rooted in a maximum-confidence
attack framework with a predefined number of feature manipulations. |Césaire et al.| (2021) have
designed an attack specifically for the /o norm. This attack is modeled as a stochastic Markov
problem. It induces folded Gaussian noise to selected input components, iteratively finding the
set that achieves misclassification with minimal perturbation. However, their approach requires a
considerable amount of memory to explore the possible combinations and to find an optimal solution.
This makes it infeasible to use for larger problems. With o—zero, we show that the benefits from
both groups, efficiency and precision, can be combined to effectively generate sparse /g attacks. It
stands therefore as a promising solution for evaluating DNNs’ robustness within the ¢, threat model,
which remains relatively underexplored in existing benchmarks (Croce et al.| [2021])).

Appr0x1mat10n of the £o norm. leen the ‘nonconvex and discontinuous nature of the ¢y norm,

3 the adoption of surrogate approximation functions
havehas been extensively stud1ed (Bach et al.; [2012; [Weston et al., [2003;|Zhang, [2008). |Chen et al.
(2018) use elastic-net regularization to calculate sparse perturbations, however, their attack do not
necessarily find minimum ¢y-norm perturbations. In our work, we use the formulation proposed
by |Osborne et al.|(2000a), which provides an unbiased estimate of the actual ¢y. Furthermore, it
has been employed by Cina et al.| (2022) in the context of poisoning attacks -({Cina-etal12022)-to
decrease sparsity in the model’s activations, while we use it as a penalty term for crafting minimum
£y-norm adversarial examples.

5 CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

Despite numerous proposed attacks for assessing DNN robustness, evaluation methods tend to
overlook the significance of ¢y-norm attacks (Chen et al., 2018} |Croce & Hein, [2021a)). However,
these attacks can provide valuable insights into identifying the minimum manipulated input values
required for successful attacks and reveal crucial information about model limitations. We argue that
this literature gap is primarily due to the non-differentiable nature of the ¢, norm and its computational
complexity, which poses challenges for gradient-based optimization.

In this work, we present c—zero, a novel approach that leverages a smooth approximation of the ¢
norm. By making the objective differentiable, our method becomes amenable to optimization with
gradient descent. Through extensive experimentation we demonstrate the efficacy, precision, and
scalability of c—zero in diverse scenarios, spec1ﬁcally for identifying minimal ¢, perturbations. Our
approach consistently discovers smaller minimum-norm perturbations across different-all models and
datasets, while maintaining computational efficiency in execution time and VRAM cor consumption,
and without requiring any computationally-demanding hyperparameter tuning. By identifying the
smallest number of input values that can be modified to mislead the target model, our attack provides
valuable insights on the vulnerabilities of DNN models and what they learn as salient input character-
istics. Additionally, it may also provide meaningful insights on how to mitigate such vulnerabilities
to improve robustness.

Although our approach offers promising results for benchmarking DNNs robustness, it relies on the
white-box assumption. However, in the absence of such access, attackers may resort to techniques
like transferability or gradient estimation to exploit vulnerabilities (Carlini et al.| |2019; [Tramer et al.|
2020). We acknowledge the significance of this analysis and plan to investigate it further in future
research endeavors.

In conclusion, o—-zero emerges as a highly promising candidate for establishing a standardized
benchmark to evaluate robustness against sparse ¢y perturbations. By facilitating more reliable and
scalable assessments, it is poised to drive significant advancements in the development of novel
models with improved robustness guarantees against the specific threat model under consideration.

Ethics Statement. Based on our comprehensive analysis, we assert that there are no identifiable
ethical considerations or foreseeable negative societal consequences that warrant specific attention
within the confines of this study. Rather this study will help improve the understanding of adversarial
robustness properties of DNNs, and identify potential ways in which robustness can be improved.
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A APPENDIX

A1 ReBYsTBENEHROBUST MODELS

The experimental setup described in this paper (Sect. [3.T) utilizes pre-trained baseline and robust
models obtained from RobustBench Croce et al. (2021). The goal of RobustBench is to track the
progress in adversarial robustness for /., and /5-norm attacks since these are the most studied settings
in the literature. We summarize in Table 2] the models we employed in our paper. Each entry in the
table includes the label reference from RobustBench, the short name we assigned to the model, and
the corresponding clean and robust accuracy under the specific threat model. The robustness of these
models is evaluated against an ensemble of white-box and black-box attacks, specifically AutoAttack.
Complementary, we also include models trained to be robust against /;sparse attacks, i.e., (Croce
& Hein, [2021b)and (Jiang et al.} 2023). Our experimental setup is designed to encompass a wide
range of model architectures and defensive techniques, ensuring a comprehensive and thorough
performance evaluation of the considered attacks.

Table 2: Summary of Robustbench |Croce et al.|(2021) models used in our experiments. For each
model, we report its reference label in Robustbench [Croce et al.| (2021)), its threat model, and
corresponding clean and robust accuracy.

Dataset Reference med Threat model  Clean accuracy %  Robust accuracy %
Standard C1 (Croce et al. - 94.78 0
Carmon2019Unlabeled C2 (Carmon et al.][2019 loo 89.69 59.53
Augustin2020Adversarial C3 (Augustin et al.][2020) Ly 91.08 7291

CIFARI10 Engstrom2019Robustness C4 (Engstrom et al. loo-Uo 87.03 - 90.83 49.25 - 69.24
Gowal2020Uncovering C5 (Gowal et al.| 2! lo 90.90 74.50
Chen2020Adversarial c6 2020 loo 86.04 51.56
Xu2023Exploring WRN-28-10 Cc7 loo 93.69 63.89
Addepalli2022Efficient_RN18 Cc8 Loo 85.71 52.48
Standard_R18 11 - 76.52 0
Engstrom2019Robustness 12 oo 62.56 29.22

Imagenet Wong2020Fast 3 loo 55.62 26.24
Salman2020Do_R18 14 loo 64.02 34.96
Hendrycks2020Many 15 loo 76.86 52.90
Debenedetti2022Light XCiT-S12 16 loo 72.34 41.78

A.2 0-2ERO OBJECTIVE FUNCTION VISUALIZATION

In[Figure 4] we depict the behavior of the loss terms of c—zero when applied to the Imagenet data
sample, specifically, the frog in[Figure T} When the sample is not adversarial, the attack algorithm
increases the ¢y norm, highlighted by the bumps in the orange curve, to find a valid adversarial 4.
Conversely, when an adversarial example is found, the loss term is cropped to zero, and the algorithm
focus solely on minimizing the ¢ in §.

=

=n

of H 1

0 200 400 600 800 1000
Steps

Figure 4: o—-zero loss terms during the optimization procedure.
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ASR lI51lo
1.0 100.0 100.0 100.0 100.0 1.0 10 10 10 10
0.1 100.0 100.0 100.0 100.0 0.1
S} N
0.01 100.0 100.0 100.0 100.0 0.01
0.001 100.0 100.0 100.0 100.0 0.001
T T
ASR lI31lo
1.0 100.0 100.0 100.0 100.0 1.0
0.1 100.0 100.0 100.0 100.0 0.1
S S
0.01 100.0 100.0 100.0 100.0 0.01
0.001 100.0 100.0 100.0 100.0 0.001
T T

Figure 5: Ablation study on o (y-axis) and 7 (x-axis) for MPNEST-CIFAR10 C1 , (top-row), CIFAR10
C8, (middle-row)-and-Imagenet{bottom-row). For each combination, we report the attack success
rate (leftmost matrix) and the ¢y norm on the output adversarial perturbation (rightmost matrix).

A.3 ABLATION STUDY

To assess the strength and potential limitations of our proposed attack, we conducted an ablation study
on its key hyperparameters. Specifically, we investigated the impact of varying two critical parameters,
7 and 0. The parameter 7 governs the tolerance threshold in Algorithm [I] which induces sparsit
within the adversarial noise. Conversely, o defines the approximation quality of lo in Equationléx_ll
compared to the actual ¢, function. Our ablation study, depicted in Figure[5] involved three distinct
models: M1 for MNIST (top row), C8 for CIFAR10 (middle row), and I1 for Imagenet (bottom row).
We executed the attack on 1000 randomly selected samples from each dataset and recorded the Attack
Success Rate (ASR) and the median ¢y norm of the resulting adversarial perturbations. Remarkably,
we observe a significant robustness of o—zero with respect to these two hyperparameters. Except for
the extreme case of 7 = 0, where we exclude our sparsity-enforcement step in Algorithm [T] (Line 6)),
the adversarial noise perturbed more features. However, even with a small value of 7, the £y norm
decreased while maintaining an ASR close to or equal to 100%. This suggests that a substantial
portion of the adversarial noise & consists of minimal and negligible contributions, yet, remains
effective for a successful attack. Concerning o, as also noted in (2022), its selection is
not particularly challenging, especially when incorporating the sparsity projection operator. Overall,
the ablation study revealed consistent trends across various models. In all cases, we identified a
broad parameter configuration range where our attack maintained robustness, making hyperparameter
optimization for the attacker a swift task. This robustness is further evidenced by the results presented
in Table [T} where our attack consistently outperforms state-of-the-art attacks even with a shared
hyperparameter configuration across all models.
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A.4 ATTACK COMPARISON WITH 100 STEPS

In our experimental setup, we also explore scenarios where the attacker’s access to queries is limited,
thus reducing the number of iterations for the attack. To simulate this perspective, we replicate our
experimental comparison involving c—zero and state-of-the-art sparse attacks while restricting the
number of steps to 100. The results are summarized in Table 3] Notably, compared to the results
presented in Table [I| most competitive attacks undergo a decrease in their ASR, while o-zero
consistently maintains a 100% success rate. In conclusion, 0—zero remains a promising choice for
crafting minimum #y-norm attacks against DNNs, even when the attacker has limited query resources.

A.5 ROBUSTNESS EVALUATION-CURVESCOMPARISON WITH MAXIMUM-CONFIDENCE
ATTACKS

s—and PGD-{pattacks introduced b
gCroce etal. |, 2022 and 1Cr0ce & He1n|, 019) These attacks have been designed to generate sparse

adversarial perturbations given a fixed budget k. Specifically, in their threat model, the attacker
imposes a maximum limit on the number of perturbed features—Sparse-RS-, and the attack then
outputs the adversarlal example that minimizes the model s conﬁdence in pred1ct1ng the true label
of the sample. N Re W mparing
Spaﬂe-RS—agaﬂﬁ%dﬁfereﬁEstat&eﬁtheﬂrtatmekﬂfke—FNlNerWGAfHowever since the ﬁxed—
budget threat model differs from the minimum-norm scenario we consider in this paper, as we
do not assume a maximum budget, we have developed a wrapper around Sparse-RS and PGD- 60
to ensure a fair comparison. Ourprocess-employs-a-binary-Similarly to (Rony et al}, 2021B), we

employ a sample-wise binary search strategy to determine the smallest budget, denoted as k, that
must be provided as input to Sparse-RS-them to achieve an Attack Success Rate (ASR) equal to er
greater-than-p—During-100% on the data. At each iteration of the binary search, if the ASR-exeeeds
or-equals—pattack is successful, we halve the value of %, asking Sparse-RS and PGD-/; to perturb

fewer features Conversely, if the %Rﬂ%&w&rwm we double ﬁsvalw

uhysmmme value of k that results in the minimum ¢ now

sample. Finally, the com arlson tables showcase the best result with the minimum norm perturbation
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Table 3: For each attack, we report the corresponding ASR, median ||d]o, sample-level average
execution time and the number of queries, and the maximum VRAM consumed during the execution.
* in VFGA indicates that the usage of a smaller batch size, to fit its execution in memory, may have

led to a slight overestimation of the execution time.

Performance

‘ Computational Effort ‘

Performance

‘ Computational Effort

Attack [Model|ASR(%) ASR(%)10 ASR(%)s0 [[0][o | t(s) q w100 VRAM|Model[ASR(%) ASR(%)10 ASR(%)s0 [[d][o | 1(5) g i VRAM

MNIST
EAD 100.0 1.11 46.65 520 1009 1.14 0.05 100.0 1.2 35.57 61.0 | 0.07 099 0.05
VFGA 95.71 9.57 82.56 27.0 | 0.04 0.74 021 92.32 1.81 39.28 570 | 004 13 021
PDPGD Ml 100.0 0.98 0.98 359.010.02 02 0.04 M2 95.02 0.52 0.52 2540 002 02 0.04
BB 100.0 12.8 98.0 20.0 [ 0.13 1.19 0.05 87.87 26.53 83.0 180 | 0.12 1.69 0.05
FMN 88.93 722 83.09 30.0 | 0.01 02 0.04 14.81 4.02 14.03 co | 001 02 0.04
o-zero| | 1000 1246 9855 210 |[0.03 02 005 | | 1000 383 9988 13.0 | 003 02 005

CIFAR10
EAD 100.0 6.82 19.09  146.0 | 0.26 0.77 147 100.0 14.35 32.94 83.0 | 159 082 992
VFGA 98.99 49.14 93.46 11.0 | 0.16 0.38 11.96 87.75 27.64 67.1 29.0 | 3.6 086 >40
PDPGD cl 100.0 523 523 3057.0/0.06 0.2 1.31 cs 99.75 11.26 1126 2814.0] 032 02 8.86
BB 100.0 53.48 97.55 100 | 059 095 1.47 17.92 13.18 16.88 co | 267 195 993
FMN 98.86 62.85 97.72 8.0 (0.05 02 1.31 72.34 27.16 61.49 330 | 031 02 886
o-zero 100.0 42.54 99.11 120 | 0.08 0.2 1.47 100.0 35.09 85.95 18.0 | 044 02 992
EAD 100.0 12.74 28.74  100.0 | 027 0.8 1.47 100.0 16.95 2959 1280 0.7 066 54
VFGA 93.69 28.99 75.38 240 (022 072 11.71 97.08 34.27 82.07 20.0 | 4.24% 061 >40
PDPGD o 99.39 10.31 1031  2421.0/ 0.06 0.2 1.32 6 54.16 13.96 13.96  3072.0| 0.2 02 512
BB 14.97 11.58 14.29 co |044 195 147 84.46 35.89 78.14 17.0 | 1.68 1.67 539
FMN 80.68 28.06 69.36 27.0 005 0.2 1.31 87.1 32.98 76.59 220 | 0.19 02 512
o-zero| | 1000 3258 862 180 |007 02 147 | ] 1000 3799 9093 160 | 024 02 539
EAD 100.0 9.14 10.67 451.0|031 0.71 1.89 100.0 9.23 21.61 1620| 031 08 215
VFGA 91.64 21.7 66.55 33.0 034 0.87 1653 75.79 22.76 56.58 39.0 | 1.34% 1.06 >40
PDPGD 3 75.31 8.92 8.92  3052.0| 0.09 0.2 1.8 7 96.2 6.31 631  2773.0| 0.07 0.2 2.0
BB 57.05 19.46 53.53 40.0 | 059 1.9 1.89 100.0 35.43 90.74 16.0 | 0.64 1.07 2.16
FMN 713 20.37 62.41 36.0 | 0.09 0.2 1.8 68.88 23.21 59.69 350 | 0.06 0.2 2.0
o-zero| | 1000 2324 8546 240 |0.11 02 189 | ] 1000 3242  89.42 180 | 008 02 215
EAD 100.0 9.38 10.56  4340| 04 09 1.89 100.0 15.76 26.17 1445 0.14 079 041
VFGA 99.16 30.44 90.13 19.0 | 027 0.52 16.53 94.16 29.57 74.22 260 | 0.13 073 3.07
PDPGD c4 99.9 9.17 9.17  2709.0{ 0.09 0.2 1.8 cs 90.95 14.29 1429  3057.0| 0.04 02 036
BB 32.83 16.28 3241 co (049 193 1.89 100.0 35.98 89.39 17.0 | 043 1.13 041
FMN 87.2 26.63 79.48 240 1009 0.2 1.8 80.68 29.47 69.77 27.0 | 003 02 036
o-zero| | 1000 2945 9277 190 |0.11 02 189 | ] 1000 3249 8519 190 | 004 02 041

Imagenet
EAD 100.0 344 35.7 5015 02 071 1.21 100.0 56.1 60.7 0.0 02 077 121
VFGA I 85.3 47.0 72.4 14.0 |1.74% 0.7 >40 " 83.9 61.9 75.4 1.0 | 1.49%* 059 >40
FMN 68.1 47.6 64.9 140 | 0.06 0.2 1.14 712 63.2 75.1 0.0 | 006 0.2 1.14
o-zero| | 1000 429 704 200 |0.08 02 121 | ] 1000 694 880 00 [ 007 02 12
EAD 100.0 44.5 50.2 48.0 | 048 0.75 436 100.0 26.6 274  1105.0f 04 062 435
VFGA D 72.9 49.2 63.3 120 [4.34* 086 >40 15 74.0 36.5 58.9 30.0 | 45% 096 >40
FMN 62.4 50.4 60.0 100 | 0.13 02 425 53.0 36.0 50.3 460 | 0.13 02 425
‘g-zero| | 1000 548 799 60 | 015 02 435 | | 1000 323 571 400 | 015 02 435
EAD 100.0 54.8 60.5 0.0 [047 074 435 99.9 322 329 818.5| 1.14 0.72 5.67
VFGA 3 83.0 62.2 76.0 1.0 [3.47% 059 >40 16 574 354 46.9 67.0 |13.35% 12 >40
FMN 74.2 63.3 71.8 00 [0.13 02 425 475 35.7 452 co | 034 02 554
o-zero| | 1000 699 868 00 015 02 435 | | 1000 369 533 400 | 041 02 568

EAD []: 26.0

BB [|5o]: 37.0

BB [[50]: 12.0

PGDO [|do]l: 11.0 Sparse-RS |

FMN 5,

200

Figure 6: Randomly chosen adversarial examples from MNIST M2.
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EAD [[do]: 48.0 VFGA [[fl|: 100 SPARSEFOOL [§]: 6.0 ~ PDPGD [d: 18.0 BB [13]: 0.0 BBadv [o]]: 8.0 PGDO [5o]): 15.0 Sparse-RS [[8: 24.0 FMN 5]z 7.0 o-zero [5o]): 5.0

EAD [5o]): 145.0 VFGA 0] 9.0 SPARSEFOOL [} 130 PDPGD [}3: 27.0 BB [50]: 0.0 BBadv [[5l|: 9.0 PGDO [[3]: 21.0 Sparse-RS [|5o]: 51.0 EMN [6o: 130 o-zero [5o]): 4.0

Figure 7: Randomly chosen adversarial examples from CIFAR10 C2 .

EAD [[5o]): 50.0 VEGA [[5o]: 220 FMN [[5o]]: 23.0 a-zero [z 1.0

EAD ||&|: 3064.0 VEGA ||do]|: 102.0 a-zero ||&o|: 52.0

Figure 8: Randomly chosen adversarial examples from Imagenet I1 .
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