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A APPENDIX

A.1 ROBUST MODELS

The experimental setup described in this paper (Sect. 3.1) utilizes pre-trained baseline and robust
models obtained from RobustBench Croce et al. (2021). The goal of RobustBench is to track the
progress in adversarial robustness for `1 and `2-norm attacks since these are the most studied settings
in the literature. We summarize in Table 2 the models we employed in our paper. Each entry in the
table includes the label reference from RobustBench, the short name we assigned to the model, and
the corresponding clean and robust accuracy under the specific threat model. The robustness of these
models is evaluated against an ensemble of white-box and black-box attacks, specifically AutoAttack.
Complementary, we also include models trained to be robust against `1 sparse attacks, i.e., (Croce
& Hein, 2021b) and (Jiang et al., 2023). Our experimental setup is designed to encompass a wide
range of model architectures and defensive techniques, ensuring a comprehensive and thorough
performance evaluation of the considered attacks.

Table 2: Summary of Robustbench Croce et al. (2021) models used in our experiments. For each
model, we report its reference label in Robustbench Croce et al. (2021), its threat model, and
corresponding clean and robust accuracy.
Dataset Reference med Threat model Clean accuracy % Robust accuracy %

CIFAR10

Standard C1 (Croce et al., 2021) - 94.78 0
Carmon2019Unlabeled C2 (Carmon et al., 2019) `1 89.69 59.53
Augustin2020Adversarial C3 (Augustin et al., 2020) `2 91.08 72.91
Engstrom2019Robustness C4 (Engstrom et al., 2019) `1- `2 87.03 - 90.83 49.25 - 69.24
Gowal2020Uncovering C5 (Gowal et al., 2021) `2 90.90 74.50
Chen2020Adversarial C6 (Chen et al., 2020) `1 86.04 51.56
Xu2023Exploring_WRN-28-10 C7 (Xu et al., 2023) `1 93.69 63.89
Addepalli2022Efficient_RN18 C8 (Addepalli et al., 2022) `1 85.71 52.48

Imagenet

Standard_R18 I1 (He et al., 2015) - 76.52 0
Engstrom2019Robustness I2 (Engstrom et al., 2019) `1 62.56 29.22
Wong2020Fast I3 (Wong et al., 2020) `1 55.62 26.24
Salman2020Do_R18 I4 (Salman et al., 2020) `1 64.02 34.96
Hendrycks2020Many I5 (Hendrycks et al., 2021) `1 76.86 52.90
Debenedetti2022Light_XCiT-S12 I6 (Debenedetti et al., 2023) `1 72.34 41.78

A.2 �-ZERO OBJECTIVE FUNCTION VISUALIZATION

In Figure 4, we depict the behavior of the loss terms of �-zero when applied to the Imagenet data
sample, specifically, the frog in Figure 1. When the sample is not adversarial, the attack algorithm
increases the `0 norm, highlighted by the bumps in the orange curve, to find a valid adversarial �.
Conversely, when an adversarial example is found, the loss term is cropped to zero, and the algorithm
focus solely on minimizing the `0 in �.
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Figure 4: �-zero loss terms during the optimization procedure.
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Figure 5: Ablation study on � (y-axis) and ⌧ (x-axis) for CIFAR10 C1, (top-row), CIFAR10 C8,
(bottom-row). For each combination, we report the attack success rate (leftmost matrix) and the `0
norm on the output adversarial perturbation (rightmost matrix).

A.3 ABLATION STUDY

To assess the strength and potential limitations of our proposed attack, we conducted an ablation
study on its key hyperparameters. Specifically, we investigated the impact of varying two critical
parameters, ⌧ and �. The parameter ⌧ governs the tolerance threshold in Algorithm 1, which induces
sparsity within the adversarial noise. Conversely, � defines the approximation quality of ˆ̀

0 in
Equation 4 compared to the actual `0 function. Our ablation study, depicted in Figure 5, involved
two distinct models: C1 (top row), C8 (bottom row). We executed the attack on 1000 randomly
selected samples from each dataset and recorded the Attack Success Rate (ASR) and the median
`0 norm of the resulting adversarial perturbations. Remarkably, we observe a significant robustness
of �-zero with respect to these two hyperparameters, except for the extreme case of � = 1. With
regard to the ⌧ parameter, it is observed that the choice of the initial value exerts negligible influence
on the ultimate outcome, given that the parameter dynamically adapts throughout the optimization
process. Concerning �, as also noted in Cinà et al. (2022), its selection is not particularly challenging,
especially when incorporating the sparsity projection operator. Overall, the ablation study revealed
consistent trends across the models. In all cases, we identified a broad parameter configuration
range where our attack maintained robustness, making hyperparameter optimization for the attacker a
swift task. This robustness is further evidenced by the results presented in Table 1, where our attack
consistently outperforms state-of-the-art attacks even with a shared hyperparameter configuration
across all models.

A.4 ATTACK COMPARISON WITH 100 STEPS

In our experimental setup, we also explore scenarios where the attacker’s access to queries is limited,
thus reducing the number of iterations for the attack. To simulate this perspective, we replicate our
experimental comparison involving �-zero and state-of-the-art sparse attacks while restricting the
number of steps to 100. The results are summarized in Table 3. Notably, compared to the results
presented in Table 1, most competitive attacks undergo a decrease in their ASR, while �-zero
consistently maintains a 100% success rate. In conclusion, �-zero remains a promising choice for
crafting minimum `0-norm attacks against DNNs, even when the attacker has limited query resources.
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Table 3: For each attack, we report the corresponding ASR, median k�k0, sample-level average
execution time and the number of queries, and the maximum VRAM consumed during the execution.
⇤ in VFGA indicates that the usage of a smaller batch size, to fit its execution in memory, may have
led to a slight overestimation of the execution time.

Performance Computational Effort Performance Computational Effort
Attack Model ASR(%) ASR(%)10 ASR(%)50 ||�||0 t(s) q (x1000) VRAM Model ASR(%) ASR(%)10 ASR(%)50 ||�||0 t(s) q (x1000) VRAM

MNIST

EAD

M1

100.0 1.11 46.65 52.0 0.09 1.14 0.05

M2

100.0 1.2 35.57 61.0 0.07 0.99 0.05
VFGA 95.71 9.57 82.56 27.0 0.04 0.74 0.21 92.32 1.81 39.28 57.0 0.04 1.3 0.21
PDPGD 100.0 0.98 0.98 359.0 0.02 0.2 0.04 95.02 0.52 0.52 254.0 0.02 0.2 0.04
BB 100.0 12.8 98.0 20.0 0.13 1.19 0.05 87.87 26.53 83.0 18.0 0.12 1.69 0.05
FMN 88.93 7.22 83.09 30.0 0.01 0.2 0.04 14.81 4.02 14.03 1 0.01 0.2 0.04
�-zero 100.0 12.46 98.55 21.0 0.03 0.2 0.05 100.0 38.3 99.88 13.0 0.03 0.2 0.05

CIFAR10

EAD

C1

100.0 6.82 19.09 146.0 0.26 0.77 1.47

C5

100.0 14.35 32.94 83.0 1.59 0.82 9.92
VFGA 98.99 49.14 93.46 11.0 0.16 0.38 11.96 87.75 27.64 67.1 29.0 3.6* 0.86 > 40
PDPGD 100.0 5.23 5.23 3057.0 0.06 0.2 1.31 99.75 11.26 11.26 2814.0 0.32 0.2 8.86
BB 100.0 53.48 97.55 10.0 0.59 0.95 1.47 17.92 13.18 16.88 1 2.67 1.95 9.93
FMN 98.86 62.85 97.72 8.0 0.05 0.2 1.31 72.34 27.16 61.49 33.0 0.31 0.2 8.86
�-zero 100.0 42.54 99.11 12.0 0.08 0.2 1.47 100.0 35.09 85.95 18.0 0.44 0.2 9.92
EAD

C2

100.0 12.74 28.74 100.0 0.27 0.8 1.47

C6

100.0 16.95 29.59 128.0 0.7 0.66 5.4
VFGA 93.69 28.99 75.38 24.0 0.22 0.72 11.71 97.08 34.27 82.07 20.0 4.24* 0.61 > 40
PDPGD 99.39 10.31 10.31 2421.0 0.06 0.2 1.32 54.16 13.96 13.96 3072.0 0.2 0.2 5.12
BB 14.97 11.58 14.29 1 0.44 1.95 1.47 84.46 35.89 78.14 17.0 1.68 1.67 5.39
FMN 80.68 28.06 69.36 27.0 0.05 0.2 1.31 87.1 32.98 76.59 22.0 0.19 0.2 5.12
�-zero 100.0 32.58 86.2 18.0 0.07 0.2 1.47 100.0 37.99 90.93 16.0 0.24 0.2 5.39
EAD

C3

100.0 9.14 10.67 451.0 0.31 0.71 1.89

C7

100.0 9.23 21.61 162.0 0.31 0.8 2.15
VFGA 91.64 21.7 66.55 33.0 0.34 0.87 16.53 75.79 22.76 56.58 39.0 1.34* 1.06 > 40
PDPGD 75.31 8.92 8.92 3052.0 0.09 0.2 1.8 96.2 6.31 6.31 2773.0 0.07 0.2 2.0
BB 57.05 19.46 53.53 40.0 0.59 1.9 1.89 100.0 35.43 90.74 16.0 0.64 1.07 2.16
FMN 71.3 20.37 62.41 36.0 0.09 0.2 1.8 68.88 23.21 59.69 35.0 0.06 0.2 2.0
�-zero 100.0 23.24 85.46 24.0 0.11 0.2 1.89 100.0 32.42 89.12 18.0 0.08 0.2 2.15
EAD

C4

100.0 9.38 10.56 434.0 0.4 0.9 1.89

C8

100.0 15.76 26.17 144.5 0.14 0.79 0.41
VFGA 99.16 30.44 90.13 19.0 0.27 0.52 16.53 94.16 29.57 74.22 26.0 0.13 0.73 3.07
PDPGD 99.9 9.17 9.17 2709.0 0.09 0.2 1.8 90.95 14.29 14.29 3057.0 0.04 0.2 0.36
BB 32.83 16.28 32.41 1 0.49 1.93 1.89 100.0 35.98 89.39 17.0 0.43 1.13 0.41
FMN 87.2 26.63 79.48 24.0 0.09 0.2 1.8 80.68 29.47 69.77 27.0 0.03 0.2 0.36
�-zero 100.0 29.45 92.77 19.0 0.11 0.2 1.89 100.0 32.49 85.19 19.0 0.04 0.2 0.41

Imagenet

EAD

I1

100.0 34.4 35.7 501.5 0.2 0.71 1.21

I4

100.0 56.1 60.7 0.0 0.2 0.77 1.21
VFGA 85.3 47.0 72.4 14.0 1.74* 0.7 > 40 83.9 61.9 75.4 1.0 1.49* 0.59 > 40
FMN 68.1 47.6 64.9 14.0 0.06 0.2 1.14 77.2 63.2 75.1 0.0 0.06 0.2 1.14
�-zero 100.0 42.9 70.4 20.0 0.08 0.2 1.21 100.0 69.4 88.0 0.0 0.07 0.2 1.2
EAD

I2

100.0 44.5 50.2 48.0 0.48 0.75 4.36

I5

100.0 26.6 27.4 1105.0 0.4 0.62 4.35
VFGA 72.9 49.2 63.3 12.0 4.34* 0.86 > 40 74.0 36.5 58.9 30.0 4.5* 0.96 > 40
FMN 62.4 50.4 60.0 10.0 0.13 0.2 4.25 53.0 36.0 50.3 46.0 0.13 0.2 4.25
�-zero 100.0 54.8 79.9 6.0 0.15 0.2 4.35 100.0 32.3 57.1 40.0 0.15 0.2 4.35
EAD

I3

100.0 54.8 60.5 0.0 0.47 0.74 4.35

I6

99.9 32.2 32.9 818.5 1.14 0.72 5.67
VFGA 83.0 62.2 76.0 1.0 3.47* 0.59 > 40 57.4 35.4 46.9 67.0 13.35* 1.2 > 40
FMN 74.2 63.3 71.8 0.0 0.13 0.2 4.25 47.5 35.7 45.2 1 0.34 0.2 5.54
�-zero 100.0 69.9 86.8 0.0 0.15 0.2 4.35 100.0 36.9 53.3 40.0 0.41 0.2 5.68

A.5 COMPARISON WITH MAXIMUM-CONFIDENCE ATTACKS

In our experimental comparisons presented in both Table 1 and Table 3, we include the Sparse-RS
and PGD-`0 attacks introduced by (Croce et al., 2022) and (Croce & Hein, 2019). These attacks have
been designed to generate sparse adversarial perturbations given a fixed budget k. Specifically, in
their threat model, the attacker imposes a maximum limit on the number of perturbed features, and
the attack then outputs the adversarial example that minimizes the model’s confidence in predicting
the true label of the sample. However, since the fixed-budget threat model differs from the minimum-
norm scenario we consider in this paper, as we do not assume a maximum budget, we have developed
a wrapper around Sparse-RS and PGD-`0 to ensure a fair comparison. Similarly to (Rony et al.,
2021b), we employ a sample-wise binary search strategy to determine the smallest budget, denoted
as k, that must be provided as input to them to achieve an Attack Success Rate (ASR) equal to 100%
on the data. At each iteration of the binary search, if the attack is successful, we halve the value of k,
asking Sparse-RS and PGD-`0 to perturb fewer features. Conversely, if the sample is not adversarial,
we double the value of k. Thus, we enable the attacker to find the value of k that results in the
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EAD ��0�: 57.0 VFGA ��0�: 74.0 SPARSEFOOL ��0�: 316.0 PDPGD ��0�: 57.0 BB ��0�: 37.0 BBadv ��0�: 65.0 PGD0 ��0�: 43.0 Sparse-RS ��0�: 75.0 FMN ��0�: 20.0 �-zero ��0�: 16.0

EAD ��0�: 26.0 VFGA ��0�: 40.0 SPARSEFOOL ��0�: 168.0 PDPGD ��0�: 30.0 BB ��0�: 12.0 BBadv ��0�: 125.0 PGD0 ��0�: 11.0 Sparse-RS ��0�: 18.0 FMN ��0�: 25.0 �-zero ��0�: 7.0

Figure 6: Randomly chosen adversarial examples from MNIST M2.

minimum `0 norm for each sample. Finally, the comparison tables showcase the best result with the
minimum norm perturbation in the median across the iterations.

EAD ��0�: 48.0 VFGA ��0�: 10.0 SPARSEFOOL ��0�: 6.0 PDPGD ��0�: 18.0 BB ��0�: 0.0 BBadv ��0�: 8.0 PGD0 ��0�: 15.0 Sparse-RS ��0�: 24.0 FMN ��0�: 7.0 �-zero ��0�: 5.0

EAD ��0�: 145.0 VFGA ��0�: 9.0 SPARSEFOOL ��0�: 13.0 PDPGD ��0�: 27.0 BB ��0�: 0.0 BBadv ��0�: 9.0 PGD0 ��0�: 21.0 Sparse-RS ��0�: 51.0 FMN ��0�: 13.0 �-zero ��0�: 4.0

Figure 7: Randomly chosen adversarial examples from CIFAR10 C2.

EAD ��0�: 50.0 VFGA ��0�: 22.0 FMN ��0�: 23.0 �-zero ��0�: 11.0

EAD ��0�: 3064.0 VFGA ��0�: 102.0 FMN ��0�: 119.0 �-zero ��0�: 52.0

Figure 8: Randomly chosen adversarial examples from Imagenet I1.
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