A Memory usage compared to 16-bit precision

Table 3 compares the memory footprint of 16-bit inference and LLM.int8() for different open source
models. We can see, that LLM.int8() allows to run the largest open source models OPT-175B and
BLOOM-176B on a single node equipped with consumer-grade GPUs.

Table 3: Different hardware setups and which methods can be run in 16-bit vs. 8-bit precision. We
can see that our 8-bit method makes many models accessible that were not accessible before, in
particular, OPT-175B/BLOOM.

Largest Model that can be run

Class Hardware GPU Memory 8-bit 16-bit
Enterprise 8x A100 80 GB OPT-175B/ BLOOM OPT-175B / BLOOM
Enterprise 8x A100 40 GB OPT-175B / BLOOM OPT-66B
Academic server 8x RTX 3090 24 GB OPT-175B / BLOOM OPT-66B
Academic desktop 4x RTX 3090 24 GB OPT-66B OPT-30B

Paid Cloud Colab Pro 15 GB OPT-13B GPT-J-6B

Free Cloud Colab 12 GB T0/T5-11B GPT-2 1.3B

B Additional Related Work

Quantization of Transformers with fewer than 1B Parameters Quantization of transformers
has been focused on sub-billion parameter masked language model (MLMs), including BERT (De-
vlin et al., 2018) and RoBERTa (Liu et al., 2019). Versions of 8-bit BERT/RoBERTa include
Q8BERT (Zafrir et al., 2019), QBERT (Shen et al., 2020), product quantization with quantization
noise (Fan et al., 2020), TernaryBERT (Zhang et al., 2020), and BinaryBERT (Bai et al., 2021).
Work by Zhao et al. (2021) performs both quantization and pruning. All these models require either
quantization-aware finetuning or post-training quantization to make the model usable in low-precision.
In contrast with our methods, the model can be used directly without performance degradation.

If one views matrix multiplication as 1x1 convolution, vector-wise quantization is equivalent to
channel-wise quantization for convolution combined with row quantization (Khudia et al., 2021).
For matrix multiplication, this was used by Wu et al. (2020) for BERT-sized transformers (350M
parameters), while we are the first to study vector-wise quantization for autoregressive and large-scale
models. The only other work that we are aware of that quantizes transformers other than BERT is
Chen et al. (2020), which uses post-training quantization with zeropoint quantization in the forward
pass and zeropoint-row-wise quantization in the backward pass. However, this work is still for
sub-billion parameter transformers. We compare with both zeropoint and row-wise quantization in
our evaluations and do not require post-training quantization.

Low-bitwidth and Convolutional Network Quantization Work that uses less than 8-bits for data
types is usually for convolutional networks (CNNs) to reduce their memory footprint and increase
inference speed for mobile devices while minimizing model degradation. Methods for different
bit-widths have been studied: 1-bit methods (Courbariaux and Bengio, 2016; Rastegari et al., 2016;
Courbariaux et al., 2015), 2 to 3-bit (Zhu et al., 2017; Choi et al., 2019), 4-bits (Li et al., 2019),
more bits (Courbariaux et al., 2014), or a variable amount of bits (Gong et al., 2019). For additional
related work, please see the survey of Qin et al. (2020). While we believe that lower than 8-bit width
with some performance degradation is possible for billion-scale transformers, we focus on 8-bit
transformers that do not degrade performance and that can benefit from commonly used GPUs that
accelerates inference through Int8 tensor cores.

Another line of work that focuses on convolutional network quantization is to learn adjustments to the
quantization procedure to improve quantization errors. For example, using Hessian information (Dong
et al., 2019), step-size quantization (Esser et al., 2019), soft quantization (Gong et al., 2019), mixed-
precision via linear programming optimization (Yao et al., 2021), and other learned quantization
methods (Zhang et al., 2018; Gholami et al., 2021).

16

Table 4: Summary statistics of outliers with a magnitude of at least 6 that occur in at least 25% of
all layers and at least 6% of all sequence dimensions. We can see that the lower the C4 validation
perplexity, the more outliers are present. Outliers are usually one-sided, and their quartiles with
maximum range show that the outlier magnitude is 3-20x larger than the largest magnitude of other
feature dimensions, which usually have a range of [-3.5, 3.5]. With increasing scale, outliers become
more and more common in all layers of the transformer, and they occur in almost all sequence
dimensions. A phase transition occurs at 6.7B parameters when the same outlier occurs in all layers
in the same feature dimension for about 75% of all sequence dimensions (SDim). Despite only
making up about 0.1% of all features, the outliers are essential for large softmax probabilities. The
mean top-1 softmax probability shrinks by about 20% if outliers are removed. Because the outliers
have mostly asymmetric distributions across the sequence dimension s, these outlier dimensions
disrupt symmetric absmax quantization and favor asymmetric zeropoint quantization. This explains
the results in our validation perplexity analysis. These observations appear to be universal as they
occur for models trained in different software frameworks (fairseq, OpenAl, Tensorflow-mesh), and
they occur in different inference frameworks (fairseq, Hugging Face Transformers). These outliers
also appear robust to slight variations of the transformer architecture (rotary embeddings, embedding
norm, residual scaling, different initializations).

Outliers Frequency Top-1 softmax p
Model PPL| Params Count 1-sided Layers SDims Quartiles w/ Outlier No Outlier
GPT2 335 117M 1 1 25% 6% (-8, -7,-6) 45% 19%
GPT2 26.0 345M 2 1 29% 18% 6,7,8) 45% 19%
FSEQ 25.7 125M 2 2 25% 22% (40, -23,-11) 32% 24%
GPT2 22.6 762M 2 0 31% 16% (-9, -6,9) 41% 18%
GPT2 21.0 1.5B 2 1 41% 35% (-11,-9, -7) 41% 25%
FSEQ 159 1.3B 4 3 64% 47% (-33,-21,-11) 39% 15%
FSEQ 144 2.7B 5 5 52% 18% (-25,-16,-9) 45% 13%
GPT-J 13.8 6.0B 6 6 62% 28% (-21,-17,-14) 55% 10%
FSEQ 13.3 6.7B 6 6 100% 75% (-44, -40, -35) 35% 13%
FSEQ 12,5 13B 7 6 100% 73% (-63,-58, -45) 37% 16%

C Detailed Outlier Feature Data

Table 4 provides tabulated data from our outlier feature analysis. We provide the quartiles of the most
common outlier in each transformer and the number of outliers that are one-sided, that is, which have
asymmetric distributions which do not cross zero.

D Inference Speedups and Slowdowns

D.1 Matrix Multiplication benchmarks

While our work focuses on memory efficiency to make models accessible, Int8 methods are also often
used to accelerate inference. We find that the quantization and decomposition overhead is significant,
and Int8 matrix multiplication itself only yields an advantage if the entire GPU is well saturated,
which is only true for large matrix multiplication. This occurs only in LLMs with a model dimension
of 4096 or larger.

Detailed benchmarks of raw matrix multiplication and quantization overheads are seen in Table 5.
We see that raw Int8 matrix multiplication in cuBLASLt begins to be two times faster than cuBLAS
at a model size of 5140 (hidden size 20560). If inputs need to be quantized and outputs dequantized
— a strict requirement if not the entire transformer is done in Int8 — then the speedups compared to
16-bit is reduced to 1.6x at a model size of 5140. Models with model size 2560 or smaller are slowed
down. Adding mixed precision decomposition slows inference further so that only the 13B and 175B
models have speedups.

These numbers could be improved significantly with optimized CUDA kernels for the mixed precision
decomposition. However, we also see that existing custom CUDA kernels are much faster than when
we use default PyTorch and NVIDIA-provided kernels for quantization which slow down all matrix
multiplications except for a 175B model.

17

Table 5: Inference speedups compared to 16-bit matrix multiplication for the first hidden layer in
the feed-forward of differently sized GPT-3 transformers. The hidden dimension is 4x the model
dimension. The 8-bit without overhead speedups assumes that no quantization or dequantization is
performed. Numbers small than 1.0x represent slowdowns. Int8 matrix multiplication speeds up
inference only for models with large model and hidden dimensions.

GPT-3 Size Small Medium Large XL 27B 6.7B 13B 175B
Model dimension 768 1024 1536 2048 2560 4096 5140 12288
FP16-bit baseline 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x
Int8 without overhead 0.99x 1.08x 143x l.61x 1.63x 1.67x 2.13x 2.29x
Absmax PyTorch+NVIDIA 0.25x 0.24x 0.36x 0.45x 0.53x 0.70x 0.96x 1.50x
Vector-wise PyTorch+NVIDIA 0.21x 0.22x 0.33x 041x 0.50x 0.65x 091x 1.50x
Vector-wise 0.43x 0.49x 0.74x 091x 0.94x 1.18x 1.59x 2.00x

LLM.int8() (vector-wise+decomp) 0.14x 0.20x 0.36x 0.51x 0.64x 0.86x 1.22x 1.81x

D.2 End-to-end benchmarks

Besides matrix multiplication benchmarks, we also test the end-to-end inference speed of BLOOM-
176B in Hugging Face. Hugging Face uses an optimized implementation with cached attention values.
Since this type of inference is distributed and, as such, communication dependent, we expect the
overall speedup and slowdown due to Int8 inference to be smaller since a large part of the overall
inference runtime is the fixed communication overhead.

We benchmark vs. 16-bit and try settings that use a larger batch size or fewer GPUs in the case of Int8
inference, since we can fit the larger model on fewer devices. We can see results for our benchmark
in Table 6. Overall Int8 inference is slightly slower but close to the millisecond latency per token
compared to 16-bit inference.

Table 6: Ablation study on the number of GPUs used to run several types of inferences of BLOOM-
176B model. We compare the number of GPUs used by our quantized BLOOM-176B model together
with the native BLOOM-176B model. We also report the per-foken generation speed in milliseconds
for different batch sizes. We use our method integrated into transformers(Wolf et al., 2019) powered
by accelerate library from HuggingFace to deal with multi-GPU inference. Our method reaches a
similar performance to the native model by fitting into fewer GPUs than the native model.

Batch Size Hardware 1 8 32

bfloat16 baseline 8xA10080GB 239 32 9.94
LLM.int8() 8xA10080GB 253 34 10.44
LLM.int8() 4xA10080GB 246 33 9.40
LLM.int8() 3xA100 80GB 247 33 9.11

E Training Results

We test Int8 training on a variety of training settings and compare to 32-bit baselines. We test separate
settings for running the transformer with 8-bit feed-forward networks with and without 8-bit linear
projections in the attention layer, as well at the attention iteself in 8-bit and compare against 32-bit
performance. We test two tasks (1) language modeling on part of the ROBERTa corpus including
Books (Zhu et al., 2015), CC-News (Nagel, 2016), OpenWebText (Gokaslan and Cohen, 2019), and
CC-Stories (Trinh and Le, 2018); and (2) neural machine translation (NMT) (Ott et al., 2018) on
WMT14+WMT16 (Machécek and Bojar, 2014; Sennrich et al., 2016).

The results are shown in Table 7 and Table 8. We can see that for training, using the attention
linear projections with Int8 data types and vector-wise quantization leads to degradation for NMT
and for 1.1B language model but not for 209M language modeling. The results improve slightly
if mixed-precision decomposition is used but is not sufficient to recover full performance in most
cases. These suggests that training with §-bit FEN layers is straightforward while other layers require

18

additional techniques or different data types than Int8 to do 8-bit training at scale without performance
degradation.

Table 7: Initial results on small and large-scale language modeling. Doing attention in 8-bit severely
degrades performance and performance cannot fully recovered with mixed-precision decomposition.
While small-scale language models is close to baseline performance for both 8-bit FFN and 8-bit
linear projects in the attention layers performance degrades at the large scale.

Is 8-bit

Params FFN Linear Attention Decomp PPL
209M 0% 16.74
209M v 0% 16.77
209M v v 0% 16.83
209M v v 2% 16.78
209M v v 5% 16.77
209M v v 10% 16.80
209M v v v 2% 24.33
209M v v v 5% 20.00
209M v v v 10% 19.00
1.1B 0% 9.99
1.1B v 0% 9.93
1.1B v 0% 10.52
1.1B v v 1% 10.41

F Fine-tuning Results

We also test 8-bit finetuning on RoBERTa-large finetuned on GLUE. We run two different setups:
(1) we compare with other Int8 methods, and (2) we compare degradation of finetuning with 8-bit
FFN layers as well as 8-bit attention projection layers comparel to 32-bit. We finetune with 5 random
seeds and report median performance.

Table 9 compares with different previous 8-bit methods for finetuning and shows that vector-wise
quantization improves on other methods. Table 10 shows the performance of FFN and/or linear
attention projections in 8-bit as well as improvements if mixed-precision decomposition is used.
We find that 8-bit FFN layers lead to no degradation while 8-bit attention linear projections lead
to degradation if not combined with mixed-precision decomposition where at least the top 2%
magnitude dimensions are computed in 16-bit instead of 8-bit. These results highlight the critical
role of mixed-precision decomposition for finetuning if one wants to not degrade performance.

Table 8: Neural machine translation results for 8-bit FFN and linear attention layers for WMT14+16.
Decomp indicates the percentage that is computed in 16-bit instead of 8-bit. The BLEU score is the
median of three random seeds.

Is 8-bit

FFN Linear Decomp BLEU

0% 28.9

v 0% 28.8
v v 0% unstable

v v 2% 28.0

v v 5% 27.6

v v 10% 27.5

19

Table 9: GLUE finetuning results for quantization methods for the feedforward layer in 8-bit while the
rest is in 16-bit. No mixed-precision decomposition is used. We can see that vector-wise quantization
improve upon the baselines.

Method MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B Mean
32-bit Baseline 90.4 949 922 845 964 90.1 67.4 93.0 88.61
32-bit Replication 90.3 948 923 854 96.6 90.4 68.8 920 88.83

Q-BERT (Shen et al., 2020) 87.8 93.0 90.6 847 948 88.2 65.1 91.1 86.91
Q8BERT (Zafrir et al., 2019) 85.6 930 90.1 848 947 89.7 65.0 91.1 86.75
PSQ (Chen et al., 2020) 89.9 945 920 86.8 962 90.4 67.5 919 88.65

Vector-wise 90.2 947 923 854 964 91.0 68.6 919 88.81

Table 10: Breakdown for 8-bit feedforward network (FFN) and linear attention layers for GLUE.
Scores are median of 5 random seeds. Decomp indicates the percentage that is decomposed into
16-bit matrix multplication. Compared to inference, fine-tuning appears to need a higher decomp
percentage if the linear attention layers are also converted to 8-bit.

Is 8-bit
FFN Linear Decomp MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B MEAN

0% 90.4 949 922 845 964 90.1 67.4 93.0 88.6
0% 90.2 947 923 854 964 91.0 68.6 91.9 88.8
0% 90.2 944 922 841 96.2 89.7 63.6 91.6 87.7
1% 90.0 946 922 830 962 89.7 65.8 91.8 87.9
2% 90.0 945 922 859 96.7 90.4 68.0 91.9 88.7
3% 90.0 946 922 863 964 90.2 68.3 91.8 88.7

Laass
SENENEN

20

