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7 NOTATION SUMMARY

C: constraint set GC : Gaussian width of set C
d: dimension n: sample size

ǫ, δ: privacy parameters ℓ: convex loss funtion

L: Lipschitz constant β: smoothness constant

λ: regularization parameter α: optimization accurancy

ℓdp: Normed space corresponds to ‖ · ‖p, where ‖x‖p = (
∑d

j=1 |xj |p)1/p L(θ): population risk

L̂(θ,D): empirical risk κ: κ-regular space

|| · ||C : Minkowski norm, ‖ · ‖C = min{r ∈ R
+ : v ∈ rC} ‖ · ‖C∗ : dual norm of ‖ · ‖C

σ: the variance of Gaussian noise ‖ · ‖+: the smooth norm for (E, ‖ · ‖∗)

Table 3: Notation summary of the paper.

8 OMITTED PROOFS IN SECTION 4

8.1 PROOF OF THEOREM 1

Algorithm 5 AObjP: Objective perturbation

1: Input: Dateset D, loss function ℓ, regularization parameter λ.

2: Sample G ∼ N (0, σ2
1Id) where σ2

1 = 32L2 log(1/δ)
ǫ2 . Set λ ≥ rβ

2ǫn , where r = min{d, 2 · rank(∇2ℓ(θ, x))} with

rank(∇2ℓ(θ, x)) being the maximal rank of the Hessian of ℓ for all θ ∈ C and x ∼ P .

3: Let J (θ,D) = L̂+ 〈G,θ〉
n + λ||θ||22.

4: return θ1 = argmin
θ∈C

J (θ,D).

Proof. Let θ1 = argmin
θ∈C

J (θ,D), where J (θ,D) = L̂(θ,D) + 〈G,w〉
n + λ||θ||22. Let θ2 = O(J , α) where O is the

optimizer defined in the algorithm. Notice that one can compute θ̂ from tuple (θ1, θ2 − θ1 +H) by simple post-processing.

Furthermore, the algorithm that outputs θ1 is (ǫ, δ)-DP by the following theorem.

Lemma 5 (Theorem 1 in [Iyengar et al., 2019]). Suppose Assumption 1 holds and that the smoothness parameter satisfy

β ≤ ǫnλ
r , the algorithm AObjP (Algorithm 5) that outputs θ1 = argmin

θ∈C
J (θ,D) is (ǫ, δ)-DP.
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Next, we will bound the term ||θ2 − θ1|| to make (θ2 − θ1 +H) differentially private, conditioned on θ1. As J (θ,D) is

λ-strongly convex, we have J (θ2, D) ≥ J (θ1, D) + λ
2 ||θ2 − θ1||22, which implies that

||θ2 − θ1||2 ≤
√

2

λ
(J (θ2, D)− J (θ1, D)) ≤

√

2α

λ
. (2)

Thus, conditioned on θ1, θ2 − θ1 has the l2 sensitivity of

√
8α
λ . Therefore, (θ2 − θ1) +H is (ǫ/2, δ.2)-DP. By the standard

composition in Dwork et al. [2014], the tuple (θ1, θ2 − θ1 +H) satisfies (ǫ, δ)-DP and hence θ̂ satisfies (ǫ, δ)-DP.

8.2 PROOF OF THEOREM 2

Proof. Let θ1 be the exact minimizer of J (θ,D). We split the objective E[L(θ̂)] − L(θ∗) into two parts and bound them

separately.

E[L(θ̂)]− L(θ∗) = E[L(θ̂)− L(θ1)] + E[L(θ1)]− L(θ∗). (3)

In the following, we bound the term E[L(θ̂) − L(θ1)] and the term E[L(θ1)] − L(θ∗) separately. To bound the term

E[L(θ1)] − L(θ∗), we need the following two lemmas. The first lemma states the excess empirical risk of θ1 while the

second lemma states the stability property of regularized empirical risk minimization.

Lemma 6. (Excess empirical loss of θ1 in AObjP). Let D ∼ Pn, under Assumption 1, the excess empirical loss of θ1
satisfies

E[L̂(θ1, D)]−min
θ∈C

L̂(θ,D) ≤ O

(

LGC
√

log(1/δ)

ǫn
+ λ||C||22

)

, (4)

where the expectation is taken over the randomness induced by Gaussian noise.

Lemma 7. [[Shalev-Shwartz and Ben-David, 2014]] Let f : C × D → R be a convex, ρ-Lipschitz loss function where

D = {x1, · · · , xn} ∼ Pn. Let A be an algorithm that outputs θ̃ = argmin
θ∈C

{F̂ (θ,D) + λ||θ||2} with λ > 0 where

F̂ (θ,D) = 1
n

∑n
i=1 f(θ, xi), then A is 2ρ2

λn -uniformly stable, i.e., for all neighboring datasets D ∼ D′ we have

sup
z

|E[f(A(D), z)− f(A(D′), z)]| ≤ 2ρ2

λn
.

The property of uniform stability is described by the following lemma.

Lemma 8 (Bousquet and Elisseeff [2002]). Let A : Xn → C be an α-uniformly stable algorithm w.r.t. loss ℓ : C×X → R.

Let D ∼ Pn where P is the distribution over X . Then,

E
D∼Pn,A

[L(A(D))− L̂(A(D), D)] ≤ α.

Now we begin to bound the term L(θ1) − L(θ∗) using the above three lemmas. Fix any realization of the noise vector G,

we define fG(θ, x) = ℓ(θ, x) + 〈G,θ〉
n , then fG is

(

L+ ||G||2
n

)

-Lipschitz.

Define F̂G(θ,D) = 1
n

∑n
i=1 fG(θ, xi), and we have θ1 = argmin

θ∈C
F̂G(θ,D) + λ||θ||22, so from Lemma 7, the algorithm

that outputs θ1 is
2
(

L+
||G||2

n

)2

λn -uniformly stable. Denote FG(θ) = E
x∼P

[fG(θ, x)], according to Lemma 8, we have

E
D∼Pn

[L(θ)− L̂(θ,D)] = E
D∼Pn

[FG(θ)− F̂G(θ,D)] ≤
2
(

L+ ||G||2
n

)2

λn
.

Take the expectation w.r.t. G ∼ N (0, 32L
2 log(1/δ)
ǫ2 Id) as well, we get

E[L(θ)− L̂(θ,D)] ≤ O








L2 ·
(

1 +

√
d log(1/δ)

ǫn

)2

λn








≤ O

(
L2

λn

)

, (5)



where we assume n ≥ O(

√
d log(1/δ)

ǫ ).

Thus

E[L(θ1)]− L(θ∗) = E[L(θ1)]−min
θ∈C

L(θ)

≤ E[L̂(θ1, D)−min
θ∈C

L̂(θ,D)] + E[L(θ1)− L̂(θ1, D)]

≤ O

(

L ·GC ·
√

log(1/δ)

ǫn
+ λ||C||22 +

L2

λn

)

,

(6)

where we use the fact that E
D∼Pn

[min L̂
θ∈C

(θ,D)] ≤ min
θ∈C

E
D∼Pn

[L̂(θ,D)] = min
θ∈C

L(θ) and the last bound is directly from

Eq.(4) and Eq.(5).

Now we bound the term E[L(θ̂)]− L(θ1). Recall that θ2 = O(J , α) and

E[L(θ̂)]− L(θ1) = E[L(θ̂)]− L(θ2) + L(θ2)− L(θ1).

Note the term L(θ2)−L(θ1) ≤ L · ||θ1−θ2||2 ≤ L ·
√

2α
λ (From Eq.(2)), and the term E[L(θ̂)]−L(θ2) ≤ L ·E[||θ̂−θ2||2].

Also note that θ̂ = ProjC(θ2 +H). Let q be the line through θ2 and θ̂, and let p be the projection of θ3 = θ2 +H onto q.

The key observation is that p lies on the ray from θ̂ to infinity otherwise p will be a point in C that is closer to θ3 than θ̂.

Thus we have

E[||θ̂ − θ2||22] = E[〈θ̂ − θ2, θ̂ − θ2〉]
≤ E[〈θ̂ − θ2, θ3 − θ2]

= E[〈H, θ̂ − θ2〉]
≤ 2 ·max

θ∈C
E[〈H, θ〉]

≤ O(E[max |〈H, θ〉|])

= O

(√

α log(1/δ)

λ
· GC
ǫ

)

,

where the last equation is from the definition of Gaussian width.

So we have

E[L(θ̂)]− L(θ1) ≤ L ·
√

2α

λ
+ L · E[||θ̂ − θ2||2]

≤ O

(

L · 4

√

α log(1/δ)

λ
·
√

GC
ǫ

+ L

√
α

λ

)

.

(7)

In total, combining Eq.(6) and Eq.(7), we can bound Eq. (3) by

E[L(θ̂)]− L(θ∗) = E[L(θ̂)− L(θ1)] + E[L(θ1)]− L(θ∗)

≤ O

(

L · 4

√

α log(1/δ)

λ
·
√

GC
ǫ

+ L

√
α

λ
+
L ·GC ·

√

log(1/δ)

ǫn
+ λ||C||22 +

L2

λn

)

.

Since α ≤ min

{

L||C||2
n

3
2
,

ǫ2L||C||32
G2

C log(1/δ)n
5
2

}

, we have
√

L · ||C||2
√
nα ≤ L·||C||2√

n
and L · 4

√
α log(1/δ)

λ ·
√

GC

ǫ ≤ L·||C||2√
n

. Let

λ = L√
n||C||2 , then

E[L(θ̂)]− L(θ∗) ≤ O

(

L ·GC ·
√

log(1/δ)

ǫn
+
L||C||2√

n

)

.

Note that we need λ = L√
n||C||2 ≥ rβ

ǫn , namely, n ≥ r2β2||C||22
ǫ2L2 .



Proof of Lemma 6. Let L̄(θ,D) = L̂(θ,D) + λ||θ||22 and θ̄ = argmin
θ∈C

L̄(θ,D). So J (θ,D) = L̄(θ,D) + 〈G,θ〉
n . Since

θ1 minimizes J (θ,D), we have J (θ̄, D) ≥ J (θ1, D), namely,

L̄(θ̄, D) +
〈G, θ̄〉
n

≥ L̄(θ1, D) +
〈G, θ1〉
n

.

Recall that G ∼ N (0, 128L
2 log(1/δ)
ǫ2 Id), rearrange the inequality and take the expectation at both sides and we get

E[L̄(θ1, D)− L̄(θ̄, D)] ≤ E[
〈G, θ̄ − θ1〉

n
]

≤ 2 ·max
θ∈C

E

[ 〈G, θ〉
n

]

≤ 2 · E
[

max
θ∈C

∣
∣
∣
∣

〈G, θ〉
n

∣
∣
∣
∣

]

= O

(

L ·GC
√

log(1/δ)

ǫn

)

,

where the last bound is from the definition of Gaussian width.

Thus
E[L̂(θ1, D)− L̂(θ∗, D)] = E[L̄(θ1, D)− L̄(θ∗, D) + λ||θ∗||22 − λ||θ1||22]

≤ E[L̄(θ1, D)− L̄(θ∗, D) + λ||θ∗||22]
≤ E[L̄(θ1, D)− L̄(θ̄, D) + λ||θ∗||22]

≤ O

(

L ·GC
√

log(1/δ)

ǫn
+ λ||C||22

)

.

8.3 PROOF OF THEOREM 3

Proof. The proof is similar to the convex case. Note that J (θ,D) is a rβ
ǫn -strongly convex function.

8.4 PROOF OF THEOREM 4

Proof. By the assumptions we made about n, we have ∆ ≥ L·||C||2√
n

and L√
n||C||2 ≥ rβ

ǫn .

Since the loss function is ∆-strongly convex with respect to || · ||C , which implies that the loss function is ∆
||C||22

-strongly

convex w.r.t. || · ||2 and thus L√
n||C||2 -strongly convex w.r.t. || · ||2, where we use the fact that ∆ ≥ L·||C||2√

n
and ||v||C ≥ ||v||2

||C||2
for any vector v ∈ C.

Since ∆ ≥ L√
n||C||2 ≥ rβ

ǫn , we have λ = max
{

rβ
ǫn −∆, 0

}

= 0.

The population loss can be disassembled as the following two parts, and we bound them separately.

E[L(θ̂)]− L(θ∗) = E[L(θ̂)− L(θ1)] + E[L(θ1)]− L(θ∗).

We first bound E[L(θ̂)− L(θ1)]. Note that

E[L(θ̂)− L(θ1)] = E[L(θ̂)− L(θ2)] + E[L(θ2)− L(θ1)].

For term E[L(θ2) − L(θ1)], since L is ∆-strongly convex w.r.t. || · ||C and thus ∆
||C||22

-strongly convex w.r.t. || · ||2. So by

the definition of strong convexity of L, we have

α ≥ L(θ2)− L(θ1) ≥
∆

2||C||22
||θ2 − θ1||22,



where α is the optimization accuracy.

Thus,

||θ2 − θ1||2 ≤
√

2α||C||22
∆

.

So using the definition of L-Lipschitz,

E[L(θ2)− L(θ1)] ≤ L · E[||θ2 − θ1||2] ≤ L ·
√

2α||C||22
∆

.

For term E[L(θ̂)− L(θ2)], it is similar to the convex case, and we have

E[L(θ̂)− L(θ2)] ≤ O

(

L · 4

√

α log(1/δ)||C||22
∆

·
√

GC
ǫ

)

.

Thus,

E[L(θ̂)− L(θ1)] ≤ O

(

L · 4

√

α log(1/δ)||C||22
∆

·
√

GC
ǫ

+ L ·
√

2α||C||22
∆

)

.

Next we bound E[L(θ1)]− L(θ∗). Note that

E[L(θ1)]− L(θ∗) ≤ E[L̂(θ1, D)−min
θ∈C

L̂(θ,D)] + E[L(θ1)− L̂(θ1, D)],

where we used the fact that E[min
θ∈C

L̂(θ,D)] ≤ min
θ∈C

E[L̂(θ,D)] = L(θ∗).

For term E[L(θ1) − L̂(θ1, D)], note that with λ = 0, fG(θ, x) = ℓ(θ, x) + 〈G,θ〉
n would be ∆

||C||22
strongly convex w.r.t.

|| · ||2. Using the same notation as in the convex case, where F̂G(θ,D) = 1
n

∑n
i=1 fG(θ, xi) and FG(θ) = E

x∼P
[fG(θ, x)],

we have
E[L(θ1)− L̂(θ1, D)] = E[FG(θ1)− F̂G(θ1, D)]

≤

(

L+ ||G||2
n

)2

||C||22
n∆

(According to Lemma 7)

≤ O

(
L2||C||22
n∆

)

(since n ≥ O

(√

d log(1/δ)

ǫ

)

).

Let θ
′

= argmin
θ∈C

L̂(θ,D). In the following, we bound the term E[L̂(θ1, D)−min
θ∈C

L̂(θ,D)] = E[L̂(θ1, D)− L̂(θ′

, D)].

By the definition of strong convexity,

L̂(θ1, D) ≥ L̂(θ′

, D) +
∆

2
||θ1 − θ

′ ||2C ,

⇔ L̂(θ1, D) +
〈G, θ1〉
n

− 〈G, θ1〉
n

≥ L̂(θ′

, D) +
〈G, θ′〉
n

− 〈G, θ′〉
n

+
∆

2
||θ1 − θ

′ ||2C ,

⇔ J (θ1, D)− 〈G, θ1〉
n

≥ J (θ
′

, D)− 〈G, θ′〉
n

+
∆

2
||θ1 − θ

′ ||2C .

So,

J (θ1, D)− J (θ
′

, D) +
〈G, θ′ − θ1〉

n
≥ ∆

2
||θ1 − θ

′ ||2C .

Since J (θ1, D)− J (θ
′

, D) ≤ 0 (due to the optimality condition), we get

〈G, θ′ − θ1〉
n

≥ ∆

2
||θ1 − θ

′ ||2C ,

⇒||θ1 − θ
′ ||C ≤

2 · 〈G, θ
′−θ1

||θ′−θ1||C
〉

n∆
,

⇒||θ1 − θ
′ ||C ≤ 2 ·max

θ∈C

〈G, θ〉
n∆

=
2||G||C∗

n∆
.

(8)



Using J (θ1, D)− J (θ
′

, D) ≤ 0 again, and take the expectation at both sizes,

L(θ′

) + E[
〈G, θ′〉
n

] ≥ L(θ1) + E[
〈G, θ1〉
n

].

Thus

L(θ1)− L(θ′

) ≤ E[
〈G, θ′ − θ1〉

n
]

≤ E

[ ||G||C∗

n
· ||θ1 − θ

′ ||C
]

(Holder’s inequality)

≤ E

[
2||G||2C∗

n2∆

]

(according to Eq.(8))

≤ O

(
G2

CL
2 log(1/δ)

∆n2ǫ2

)

.

Thus E[L̂(θ1, D)−min
θ∈C

L̂(θ,D)] ≤ O
(

L2||C||22
n∆ +

G2
CL

2 log(1/δ)
∆n2ǫ2

)

. So

E[L(θ̂)]− L(θ∗) ≤ O

(

L2||C||22
n∆

+
G2

CL
2 log(1/δ)

∆n2ǫ2
+ L · 4

√

α log(1/δ)||C||22
∆

·
√

GC
ǫ

+ L ·
√

2α||C||22
∆

)

.

When α ≤ O
(

min
{

L2||C||22
∆n2 ,

L4·||C||62ǫ2
∆3n4G2

C log(1/δ)

})

, we have L ·
√

2α||C||22
∆ ≤ L2||C||22

n∆ and L · 4

√
α log(1/δ)||C||22

∆ ·
√

GC

ǫ ≤
L2||C||22

n∆ .

Thus,

E[L(θ̂)]− L(θ∗) ≤ O

(
L2||C||22
n∆

+
G2

CL
2 log(1/δ)

∆n2ǫ2

)

.

8.5 PROOF OF THEOREM 5

Proof. To show the proof, we first prove the following theorem on the lower bound of excess empirical risk and then use

reduction from Private ERM to Private SCO to get the lower bound for excess population risk.

Theorem 11. Let C be a symmetric body contained in the unit Euclidean ball Bd
2 in R

d and satisfies ‖C‖2 = 1. For any

n = O(

√
d log(1/δ)

ǫ ), ǫ = O(1) and 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1), there exists a loss ℓ which is 1-Lipschitz w.r.t. ‖ · ‖2
and C2

min-strongly convex w.r.t. ‖ · ‖C , and a dataset D = {x1, · · · , xn} ⊆ C such as for any (ǫ, δ)-differentially private

algorithm A, its output satisfies

E[L̂(A, D)]−min
θ∈C

L̂(θ,D) = Ω

(
G2

C log(1/δ)

(log(2d))4ǫ2n2

)

,

where the expectation is taken over the internal randomness of the algorithm A.

Theorem 12 (Reduction from private ERM to private SCO [Bassily et al., 2019]). For any γ > 0, suppose there is a
(

ǫ
4 log(1/δ) ,

e−ǫδ
8 log(2/δ)

)

-DP algorithm A such that for any distribution on domain X , A yields expected population loss

EA[L(A)] − minw L(w) < γ. Then, there is a (ǫ, δ)-DP algorithm B that given any dataset D ∈ Xn, it yields expected

excess empirical loss EB[L̂(B, D)]−minw L̂(w,D) < γ.

From Theorem 12, for any dataset D and any 1-Lipschitz, C2
min- strongly convex loss ℓ, if there exists an algorithm with

excess population loss

E[L(θpriv)]−min
θ∈C

L(θ) = o

(
G2

C log(1/δ)

(log(2d))4ǫ2n2

)

,



then there exists an algorithm B such that the excess empirical loss E[L̂(B, D)]−min
θ∈C

L̂(θ,D) = o
(

G2
C log(1/δ)

(log(2d))4ǫ2n2

)

, which

contradicts Theorem 11.

Thus, ∀n = O(

√
d log(1/δ)

ǫ ), there exists a dataset D = {x1, · · · , xn} ⊆ C and a strongly convex loss function ℓ such that

for any output θpriv , the excess population loss E[L(θpriv)]−min
θ∈C

L(θ) = Ω
(

G2
C log(1/δ)

(log(2d))4ǫ2n2

)

.

As a result, we have

E[L(θpriv)]−min
θ∈C

L(θ) = Ω

(

max

{
G2

C log(1/δ)

(log(2d))4ǫ2n2
,
1

n

})

,

where the first term is the lower bound on excess empirical loss and the second term is the lower bound on excess population

loss in the non-private setting.

Proof of Theorem 11. Before starting our proof, we give some background on the mean point problem.

Let x̄ = 1
n

n∑

i=1

xi be the mean of the database D, where D = {x1, · · · , xn} is a multiset of points in C. The sample

complexity of the mean point problem to achieve an error α with respect to an algorithm A is defined as

SCmp(C,A, α) = min{n : sup
D

(E||A(D)− x̄||22)1/2 ≤ α},

where the supremum is taken over the database D consisting of at most n points from C and the expectation is taken over

the randomness of the algorithm A.

The sample complexity of solving the mean point problem with error α under (ǫ, δ)-differential privacy over convex set C
is defined as the minimum number of samples among all the differentially private algorithm A.

SCmp(C, α) = min{SCmp(C,A, α) : A is (ǫ, δ)-differentially private}.

Previous work Kattis and Nikolov [2016] shows that we can characterize sample complexity SCmp(C, α) as a natural

property of convex set C.

Lemma 9. Kattis and Nikolov [2016] Let C be a symmetric convex body contained in the unit Euclidean ball Bd
2 in R

d.

Let c be an absolute constant, then for any ǫ = O(1), 2−Ω(n) ≤ δ ≤ 1/n1+Ω(1) and any α ≤ GC

c
√
d(log 2d)2

,

SCmp(C, α) = Ω

(

GC
√

log(1/δ)

(log 2d)2αǫ

)

, (9)

SCmp(C, α) = O

(

min

{

GC
√

log(1/δ)

α2ǫ
,

√

d log(1/δ)

αǫ

})

.

When GC = Ω(
√
d), then SCmp(C, α) = Θ

(
σ(ǫ,δ)

√
d

α

)

for any α ≤ 1/c.

Now we start our proof with the help of the above lemma.

Let ℓ(θ;x) = 1
2 ||θ − x||22 be half of the squared ℓ2-distance between θ ∈ C ⊆ Bd

2 and xi ∈ C, which is 1-Lipschitz and

1-strongly convex w.r.t to ‖ · ‖2. Actually, based on the following lemma we can easily show it is C2
min-strongly convex

w.r.t ‖ · ‖C .

Lemma 10. For any x, we have ‖x‖2 ≥ ‖x‖C · Cmin.

Proof. By the definition of ‖x‖C we can see it is sufficient to show that x ∈ ‖x‖2

Cmin
C. Note that as C is symmetric and Cmin

is the minimal distance from the original point to the boundary of C, thus, C
Cmin

contains the unit ℓ2-norm ball, indicating

that x ∈ ‖x‖2

Cmin
C.



The strongly convex decomposable loss function is defined as L̂(θ;D) = 1
2n

n∑

i=1

ℓ(θ;xi) =
1
2n

n∑

i=1

||θ − xi||22. Notice that

the minimizer of L̂(·;D) over Bd
2 is θ∗ = 1

n

n∑

i=1

xi ∈ C, and the excess empirical risk can be written as:

E[L̂(θpriv;D)]− L̂(θ∗;D) =
1

2
E||θpriv − θ∗||22 =

1

2
E||θpriv − 1

n

n∑

i=1

xi||22.

We prove the theorem by contradiction. Assume Theorem 11 is false, then for any dataset D, there exists a (ǫ, δ)-

differentially private algorithm A, for some n = O(

√
d log(1/δ)

ǫ ), it outputs θpriv such that E[L̂(θpriv;D)] − L̂(θ∗;D) =

1
2E||θpriv − 1

n

n∑

i=1

xi||22 = o
(

G2
C log(1/δ)

(log(2d))4ǫ2n2

)

.

In Lemma 9,
SCmp =min{n : sup

D
(E||θpriv − x̄||22) ≤ α2}

=Ω

(

GC
√

log(1/δ)

(log 2d)2αǫ

)

(Using Eq.(9))

=o(n) ( By letting α = o

(

GC
√

log(1/δ)

(log(2d))2ǫn

)

),

which leads to a contradiction.

9 OMITTED PROOFS IN SECTION 5

9.1 PROOF OF THEOREM 6

Proof. Note that for any neighboring dataset D and D
′

, we have ||∇L̂(wt, D) − ∇L̂(wt, D
′

)||∗ ≤ 2L
n by the Lipschitz

assumption. Since for ℓdp-space, || · ||∗ = || · || p
p−1

, the space (E, || · ||∗) is κ-regular with κ = min{ p
p−1 − 1, 2 ln d} =

min{ 1
p−1 , 2 ln d}, so using the privacy guarantee provided by generalized Gaussian mechanism and the advanced compo-

sition theorem, the algorithm is (ǫ, δ)-DP.

9.2 PROOF OF THEOREM 7

Proof. Observe that Φ(x) = κ
2 ||x||2κ+

where κ = min{ 1
p−1 , 2 ln d} and κ+ = κ

κ−1 is 1-strongly convex w.r.t. || · ||
by the definition of || · ||κ+ and the duality between strongly convexity and smoothness. We recall the following lemma

showing that adding regularization may impair smoothness, but it also induces good properties such as relatively smooth

and strongly convex.

Lemma 11. (Lemma 14 in Attia and Koren [2022]) Let f(x) be a convex and β-smooth function w.r.t. || · || and Φ(x) be

1-strongly convex w.r.t. || · ||, then fα(x) = f(x) + α · Φ(x) for α > 0 is (α + β)-smooth relative to Φ(x) as well as

α-strongly convex relative to Φ(x).

Let w∗
α = argmin

w∈E

L̂(w,D) + αΦ(w), w∗ = argmin
w∈E

L(w) and w̃∗ = w̃∗(D) = argmin
w∈E

L̂(w,D), and CD = Φ
1
2 (w̃∗).

Based on the optimality of w∗
α for the regularized objective function L̂(w,D) + αΦ(w), along with the optimality of w̃∗

for the objective L̂(w,D), we have

L̂(w∗
α, D) + αΦ(w∗

α) ≤ L̂(w̃∗, D) + αΦ(w̃∗),

=⇒ Φ(w̃∗)− Φ(w∗
α) ≥

L̂(w∗
α, D)− L̂(w̃∗, D)

α
> 0,

=⇒ Φ(w̃∗) > Φ(w∗
α). (10)



Since w1 = 0 = argmin
w∈E

Φ(w), from the first-order optimality of w1, we have 〈∇Φ(w1), w1 − w∗
α〉 ≤ 0 and thus

DΦ(w
∗
α, w1) = Φ(w∗

α)− Φ(w1)− 〈∇Φ(w1), w
∗
α − w1〉

≤ Φ(w∗
α)− Φ(w1)

≤ Φ(w̃∗)− Φ(w1)( From Eq.( 10))

≤ C2
D (Let C2

D = Φ(w̃∗)).

Now we rewrite our objectives in Algorithm 3:

〈∇L̂(wt, D) + gt, w − wt〉+ β ·DΦ(w,wt) + αΦ(w)

=〈∇L̂(wt, D) + gt, w − wt〉+ (β + α) ·DΦ(w,wt) + αΦ(x)− α ·DΦ(w,wt)

=〈∇L̂(wt, D) + gt, w − wt〉+ (α+ β) ·DΦ(w,wt) + αΦ(w)− α · (Φ(w)− Φ(wt)− 〈∇Φ(wt), w − wt〉)
=〈∇L̂(wt, D) + α∇Φ(wt) + gt, w − wt〉+ (α+ β) ·DΦ(w,wt) + αΦ(wt)

=〈∇L̂(α)(wt, D) + gt, w − wt〉+ (α+ β) ·DΦ(w,wt) + αΦ(wt).

where L̂(α)(w,D) , L̂(w,D)+α·Φ(w) and note that L̂(α)(w,D) is (α+β)-smooth relative to Φ(x) as well as α-strongly

convex relative to Φ(w) according to Lemma 11. Next, we recall the following “three-point property":

Lemma 12. (Three point property) Tseng [2008]. Let φ(x) be a convex function andDΦ(·, ·) be the Bregman divergence

for Φ(·). For given z, let z∗ = argmin
x∈E

{φ(x) +DΦ(x, z)}, then for all x ∈ E we have

φ(x) +DΦ(x, z) ≥ φ(z∗) +DΦ(z
∗, z) +DΦ(x, z

∗).

Let φ(w) = 1
α+β · 〈∇f(wt) + gt, w − wt〉 where f(w) = L̂(w,D) + α · Φ(w), set z = wt in Lemma 12, we get

1

α+ β
· 〈∇f(wt) + gt, w − wt〉+DΦ(w,wt) ≥

1

α+ β
· 〈∇f(wt) + gt, wt+1 − wt〉+DΦ(wt+1, wt) +DΦ(w,wt+1),

which implies

(α+ β) ·DΦ(wt+1, wt) ≤ 〈∇f(wt) + gt, w − wt+1〉+ (α+ β) · (DΦ(w,wt)−DΦ(w,wt+1)).

Since f(w) is (α+ β)-smooth relative to Φ(w), we have

f(wt+1) ≤f(wt) + 〈∇f(wt), wt+1 − wt〉+ (α+ β) ·DΦ(wt+1, wt)

≤f(wt) + 〈∇f(wt), w − wt〉+ (α+ β) · (DΦ(w,wt)−DΦ(w,wt+1)) + 〈gt, w − wt+1〉.
(11)

Since f(w) is α-strongly convex relative to Φ(w), from the definition, we have

f(wt) + 〈∇f(wt), w − wt〉 ≤ f(w)− α ·DΦ(w,wt).

So inequality (11) becomes

f(wt+1) ≤ f(w)− α ·DΦ(w,wt) + (α+ β) · (DΦ(w,wt)−DΦ(w,wt+1)) + 〈gt, w − wt+1〉
≤ f(w) + β ·DΦ(w,wt)− (α+ β) ·DΦ(w,wt+1) + 〈gt, w − wt+1〉.

(12)

Note that for any constant a > 0

〈gt, w − wt+1〉 ≤a · ||gt||2∗ +
1

2a
· ||w − wt+1||2

≤a · ||gt||2∗ +
1

2a
·DΦ(w,wt+1),

where the last inequality is due to Φ being 1-strongly convex w.r.t. ‖ · ‖. Now inequality (12) can be written as

f(wt+1) ≤ f(w) + β ·DΦ(w,wt)− (α+ β − 1

2a
) ·DΦ(w,wt+1) + a · ||gt||2∗. (13)



Let w in Eq. (13) to be w∗
α = argmin f(w), let a = 1

α , we have

DΦ(w
∗
α, wt+1) ≤

β

α+ β − 1
2a

·DΦ(w
∗
α, wt) +O

(
a

α+ β − 1
2a

· ‖gt||2∗
)

≤ 1

1 + α
2β

·DΦ(w
∗
α, wt) +O

(
1

αβ
· ||gt||2∗

)

.

Letting t = 1, 2, · · · , T , add these inequalities together, we have

E[DΦ(w
∗
α, wT+1)] ≤

(

1

1 + α
2β

)T

·DΦ(w
∗
α, w1) +O

(
1

α2
· g2
)

=

(

1 +
α

2β

)−T

·DΦ(w
∗
α, w1) +O

(
1

α2
· g2
)

≤2−
αT
2β ·DΦ(w

∗
α, w1) +O

(
1

α2
· g2
)

≤2−
αT
2β · C2

D +O

(
1

α2
· g2
)

,

where the expectation is taken over all g1, · · · , gT and g2 = E[||gt||2∗]. The last inequality utilizes the fact that (1+ 1
x )

x ≥ 2

for all x ≥ 1 and note that 2β
α ≥ 1. Since Φ is strongly convex, we also have

1

2
E[||w∗

α − wT+1||2] ≤ E[DΦ(w
∗
α, wT+1)] ≤ 2−

αT
2β · C2

D +O

(
1

α2
· g2
)

.

Thus, we have

E[||w∗
α − wT+1||] ≤ O

(

2−
αT
4β · CD +

1

α
· g
)

.

Now we consider a neighboring data D′ of D where they differ by the i-th entry. Denote w∗′

α = L̂(w,D′) + α · Φ(w) and

w
′

T+1 as the parameters of the algorithm on D′. Then, similar to the previous case we can get

E[||w∗′

α − w
′

T+1||] ≤ O

(

2−
αT
4β · CD +

1

α
· g
)

.

Next, we will bound the term ||w∗
α − w∗′

α || by the following lemma.

Lemma 13. Let f1, f2 : E → R be convex and α-strongly convex (relatively). Let x1 = argmin
x∈E

f1(x) and x2 =

argmin
x∈E

f2(x), then

||x2 − x1|| ≤
2

α
||∇(f2 − f1)(x1)||∗.

From the above lemma, let f1(w) = L̂(w,D) + α · Φ(w) and f2(w) = L̂(w,D′

) + α · Φ(w), we can get

||w∗
α − w∗′

α || ≤ 2||∇ℓ(w∗
α;xi)−∇ℓ(w∗

α;x
′

i)||∗
nα

≤ 4L

nα
.

In total

E[||w′

T+1 − wT+1||] ≤O
(

2−
αT
4β · CD +

L

nα
+
g

α

)

=O

(

2−
αT
4β · CD +

L

nα
+
L
√

log(1/δ)dκT

αnǫ

)

.



Similarly, we can also show that for any t we have

E[||w′

t+1 − wt+1||] ≤O
(

2−
αt
4β · CD +

L

nα
+
g

α

)

=O

(

2−
αt
4β · CD +

L

nα
+
L
√

log(1/δ)dκT

αnǫ

)

.

Now we go back to Eq. (13),

f(wt+1)− f(w∗
α) ≤β ·DΦ(w

∗
α, wt)− (α+ β − 1

2a
) ·DΦ(w

∗
α, wt+1) + a · ||gt||2∗

≤β ·DΦ(w
∗
α, wt)− (β +

α

2
) ·DΦ(w

∗
α, wt+1) +O

(
1

α
· ||gt||2∗

)

.

Since

T∑

t=1

(
2β + α

2β

)t

· E[f(wt+1)− f(w∗
α)]

≤β
[

T∑

t=1

(
2β + α

2β

)t

·DΦ(w
∗
α, wt)−

T∑

t=1

(
2β + α

2β

)t+1

·DΦ(w
∗
α, wt+1)

]

+O

(
T∑

t=1

(
2β + α

2β

)t

· 1
α
g2

)

=β

[

2β + α

2β
·DΦ(w

∗
α, w1)−

(
2β + α

2β

)T+1

·DΦ(w
∗
α, wT+1)

]

+O

(
T∑

t=1

(
2β + α

2β

)t

· 1
α
g2

)

≤2β + α

2
·DΦ(w

∗
α, w1) +O

(
T∑

t=1

(
2β + α

2β

)t

· 1
α
g2

)

.

Let

ŵ =

∑T
t=1

(
2β+α
2β

)t

· wt+1

∑T
t=1

(
2β+α
2β

)t .

And we have



E[f(ŵ)− f(w∗
α)] = E




f






∑T
t=1

(
2β+α
2β

)t

· wt+1

∑T
t=1

(
2β+α
2β

)t




− f(w∗

α)






≤ E






∑T
t=1

(
2β+α
2β

)t

· f(wt+1)

∑T
t=1

(
2β+α
2β

)t − f(w∗
α)






=

E

[
∑T

t=1

(
2β+α
2β

)t

· (f(wt+1)− f(w∗
α))

]

∑T
t=1

(
2β+α
2β

)t

=

∑T
t=1

(
2β+α
2β

)t

· E[f(wt+1)− f(w∗
α)]

∑T
t=1

(
2β+α
2β

)t

≤ (2β + α) ·DΦ(w
∗
α, w1)

2 ·∑T
t=1

(
2β+α
2β

)t +O

(
1

α
g2
)

=
α ·DΦ(w

∗
α, w1)

2

[(
2β+α
2β

)T

− 1

] +O

(
1

α
g2
)

≤ α

2
·DΦ(w

∗
α, w1) +O

(
1

α
g2
)

(14)

≤ O

(

α ·DΦ(w
∗
α, w1) +

1

α
g2
)

,

where we used the fact that when T ≥ 2β
α ,

(
2β + α

2β

)T

= (1 +
α

2β
)T ≥ 2

in inequality (14).

Denote w̃∗ = argmin
w∈E

L̂(w,D), we have

E[L̂(ŵ,D)− L̂(w̃∗, D)] = E[L̂(α)(ŵ,D)− L̂(α)(w̃∗, D)] + α · Φ(w̃∗)− α · Φ(ŵ)
≤ E[L̂(α)(ŵ,D)− L̂(α)(w∗

α, D)] + α · Φ(w̃∗)− α · Φ(ŵ)

≤ O (α ·DΦ(w
∗
α, w1)) +O

(
1

α
g2
)

+ α · Φ(w̃∗)− α · Φ(ŵ)

≤ O (α ·DΦ(w̃
∗, w1)) +O

(
1

α
g2
)

+ α · C2
D

≤ O(α · C2
D +

1

α
g2).

Now we bound the sensitivity of ŵ:

E[||ŵ − ŵ
′ ||] ≤

∑T
t=1

(
2β+α
2β

)t

E[||wt+1 − w
′

t+1||]
∑T

t=1

(
2β+α
2β

)t

≤ O






∑T
t=1

(
2β+α
2β

)t

2−
αt
4β · CD

∑T
t=1

(
2β+α
2β

)t +
L

nα
+
L
√

log(1/δ)dκT

αnǫ




 .

(15)



We bound the first term above:

∑T
t=1

(
2β+α
2β

)t

2−
αt
4β · CD

∑T
t=1

(
2β+α
2β

)t =
CD ·∑T

t=1

[
2β+α
2β ·

(
1
2

) α
4β

]t

∑T
t=1

(
2β+α
2β

)t

=CD ·
1− 2β+α

2β

2β+α
2β ·

[

1−
(

2β+α
2β

)T
] ·

2β+α
2β ·

(
1
2

) α
4β ·

(

1−
[
2β+α
2β ·

(
1
2

) α
4β

]T
)

1− 2β+α
2β ·

(
1
2

) α
4β

=CD ·
(
1

2

) α
4β

· α

(2β + α) ·
(
1
2

) α
4β − 2β

·

[
2β+α
2β ·

(
1
2

) α
4β

]T

− 1
(

2β+α
2β

)T

− 1

.

(16)

Consider function f(x) = (1 + x) · ax. Its derivative f ′(x) = ln a · ax + ax + ln a · x · ax = ax(ln a + 1 + ln a · x), let

a = 1√
2

, then f ′(x) > 0 for x ∈ [0, 1]. Thus we have (1 + x) · ( 1√
2
)x > 1. Let x = α

2β , we have (1 + α
2β ) · ( 12 )

α
4β > 1,

namely (2β + α) · ( 12 )
α
4β − 2β > 0.

In the following, we bound the term α

(2β+α)·( 1
2 )

α
4β −2β

.

α

(2β + α) ·
(
1
2

) α
4β − 2β

=
α

(2β + α) ·
(

( 12 )
α
4β − 1

)

+ α

≤ α

(2β + α) · (− α
4β ) + α

=
1

1
2 − α

4β

≤ 4 (Assume
α

β
≤ 1),

where we use the fact that ( 12 )
α
4β − 1 ≥ − α

4β . (To prove this is to prove that 2
α
4β (1− α

4β ) ≤ 1. Let f(x) = ax(1− x). The

derivative f ′(x) = ln a · ax − ln a · x · ax − ax = ax · (ln a − x · ln a− 1) < 0 when a < e. So f(x) decreases in [0, 1],
and thus f(x) ≤ 1, ∀x ∈ [0, 1]. Let a = 2 and x = α

4β , and we will get 2
α
4β · (1− α

4β ) ≤ 1.)

Now we bound the term

[

2β+α
2β ·( 1

2 )
α
4β

]T
−1

( 2β+α
2β )

T−1
.

[
2β+α
2β ·

(
1
2

) α
4β

]T

− 1
(

2β+α
2β

)T

− 1

=

(
2β+α
2β

)T

· ( 12 )
αT
4β − ( 12 )

αT
4β + ( 12 )

αT
4β − 1

(
2β+α
2β

)T

− 1

=

(
1

2

)αT
4β

+
( 12 )

αT
4β − 1

(
2β+α
2β

)T

− 1

<

(
1

2

)αT
4β

.

Thus, Eq. (16) becomes
∑T

t=1

(
2β+α
2β

)t

2−
αt
4β · CD

∑T
t=1

(
2β+α
2β

)t = O



CD ·
(
1

2

)α(T+1)
4β



 .

Bring this back to Eq.(15) and we can get

E[||ŵ − ŵ′||] ≤ O

(

CD · 2
−α(T+1)

4β +
L

nα
+
L
√

log(1/δ)dκT

αnǫ

)

.



Since the loss is L-Lipschitz w.r.t ‖ · ‖, we can see the generalization error E[L(ŵ) − L̂(ŵ,D)] ≤ L ·
O

(

CD · 2
−α(T+1)

4β + L
nα +

L
√

log(1/δ)dκT

αnǫ

)

.

Take α = 4β
T+1 log2

n
T ,

E[L(ŵ)]− L(w∗) = E[L(ŵ)− L̂(ŵ,D)] + E[L̂(ŵ,D)− L̂(w∗, D)]

≤ L · E[||ŵ − ŵ′||] + E[L̂(ŵ,D)− L̂(w̃∗, D)]

= O

(

L · 2
−α(T+1)

4β · E[CD] +
L2

nα
+
L2
√

log(1/δ)dκT

αnǫ
+ α · E[C2

D] +
1

α
· L

2 log(1/δ)dκT

n2ǫ2

)

= Õ

(

T
√
κ

n
+
T

3
2

√

d log(1/δ)κ

nǫ
+
T 2d log(1/δ)κ

n2ǫ2
+
κ

T

)

(By substituting α =
4β

T + 1
log2

n

T
)

= Õ

(

T
√
κ

n
+
T

3
2

√

d log(1/δ)κ

nǫ
+
κ

T

)

≤ Õ

(

T
3
2

√

d log(1/δ)κ

nǫ
+
κ

T

)

(Since T = O

(√

n
√
κ

)

)

= Õ



κ
4
5

(√

d log(1/δ)

nǫ

) 2
5



 (By letting T = Θ





(

nǫ
√
k

√

d log(1/δ)

) 2
5



),

where Õ hides a factor of E[C̃2
D] with C̃2

D = ‖w̃∗‖2κ+
and w̃∗ = argmin

w∈E

L̂(w,D).

(Note that since we assume n = O
(

ǫ4

(d log(1/δ))2κ1/2

)

, the constraint T = O
(√

n
√
κ
)

comes for free when letting

T = Θ

((

nǫ
√
k√

d log(1/δ)

) 2
5

)

).

9.3 PROOF OF THEOREM 8

To be self-contained, we first review the Phased DP-SGD algorithm in Feldman et al. [2020]. Since we are concerned about

the unconstrained case, we slightly modify the original Phased DP-SGD algorithm by eliminating the projection step.

Algorithm 6 Phased-DP-SGD algorithm Feldman et al. [2020]

1: Input: Dataset S = {x1, · · · , xn}, convex loss ℓ, step size η (will be specified later), privacy parameter ǫ and (or) δ.

2: Set k = ⌈log2 n⌉. Partite the whole dataset S into k subsets {S1, · · · , Sk}. Denote ni as the number of samples in Si,

i.e., |Si| = ni, where ni = ⌊2−in⌋. Moreover, set w0 = 0.

3: for i = 1, · · · , k do

4: Let ηi = 4−iη, w1
i = wi−1.

5: for t = 1, · · · , ni do

6: Update wt+1
i = wt

i − ηi∇ℓ(wt
i , x

t
i), where xti is the t-th sample of the set Si.

7: end for

8: Set wi =
1

ni+1

ni+1∑

t=1
wt

i .

9: For (ǫ, δ)-DP, wi = wi + ξi, where ξi ∼ N (0, σ2
i Id) with σi =

4Lηi

√
log(1/δ)

ǫ .

10: end for

11: return wk

Lemma 14. (Modification of Theorem 4.4 in Feldman et al. [2020]) Let ℓ(·, x) be β-smooth, convex and L-Lipschitz

function over Rd for each x. If we set η = 1
L min{ 4√

n
, ǫ

2
√

d log(1/δ)
} and if η ≤ 1

β (i.e., n is sufficiently large), then



Algorithm 6 will be (ǫ, δ)-DP for all ǫ ≤ 2 log(1/δ). The output satisfies

E[L(wk)]− L(θ∗) ≤ O

(

L‖θ∗‖22

(

1√
n
+

√

d log(1/δ)

ǫn

))

.

Proof. First, we have the following result, which can be found in the standard convergence bounds for SGD

Lemma 15. Consider the Gradient Descent method with initial parameter w0, fixed stepsize η and iteration number T ,

assume in the t-the iteration we have wt, then for any w we have

L(w̄T , D)− L(w,D) ≤ O(
‖w0 − w‖22

ηT
+ ηL2), (17)

where w̄T = w0+w1+w2+···+wT

T+1 .

Now we focus on the i-th epoch, by Lemma 15 we have for any w

E[L(w̄i)]− L(w) ≤ O(
E[‖wi−1 − w‖22]

ηT
+ ηL2). (18)

Now let’s be back to our proof. We have (denote θ∗ = argminw∈Rd L(w) )

L(wk)− L(θ∗) = L(wk)− L(w̄k)
︸ ︷︷ ︸

A

+
k∑

i=2

(L(w̄i)− L(w̄i−1))

︸ ︷︷ ︸

B

+L(w̄1)− L(θ∗)
︸ ︷︷ ︸

C

For term A, by the Lipschitz property we have

E[L(wk)]− L(w̄k) ≤ LE[‖wk − w̄k‖2] ≤ LE‖ζk‖2.

For each term of B by (18) and take w = w̄i−1 we have

E[L(w̄i)]− L(w̄i−1) ≤ O(
E[‖wi−1 − w̄i−1‖22]

ηini
+ ηiL

2) = O(
E[‖ζi‖22]
ηini

+ ηiL
2) (19)

For term C, by (18) and take w = θ∗ we have

E[L(w̄1)]− L(θ∗) ≤ O(
‖θ∗‖22
η1n1

+ η1L
2). (20)

Thus, combing (18), (19) and (20), we have

E[L(wk)]− L(θ∗) ≤ O(LE[‖ζk‖2] +
‖θ∗‖22
η1n1

+ η1L
2 +

k∑

i=2

(
E[‖ζi‖22]
ηini

+ ηiL
2) (21)

Now, we analyze the case of (ǫ, δ)-DP, it is almost the same for ǫ-DP. Specifically, we have E[‖ζi‖22] = O(
dL2η2

i log(1/δ)
ǫ2 ).

Thus,

LE[‖ζk‖2] ≤ L
√

E‖ζk‖22 = L2 ·
√

d log(1/δ)ηk
ǫ

= O(

√

d log(1/δ)ηL2

n2ǫ
)

= O(L(

√

d log(1/δ)

n2.5ǫ
+

1

n2
)).



where the second inequality is due to η = 1
L min{ 1√

n
, ǫ√

d log(1/δ)
}. And

‖θ∗‖22
η1n1

+ η1L
2 = O(

‖θ∗‖22
ηn

+ ηL2)

= O(‖θ∗‖22L(
1

n
max{√n,

√

d log(1/δ)

ǫ
}+ 1√

n
))

≤ O(‖θ∗‖22L(
1√
n
+

√

d log(1/δ)

nǫ
)),

where the second inequality is due to η = 1
L min{ 1√

n
, ǫ√

d log(1/δ)
}.

k∑

i=2

(
E‖ζi‖22
ηini

+ ηiL
2) = O(

k∑

i=2

(
dL2η2i log(1/δ)

ηiniǫ2
+ ηiL

2)

= O(

k∑

i=2

2−i

nη
+ 4−i L√

n
)

= O(

k∑

i=2

(2−i(
1

nη
+

L√
n
))

≤ O(
∞∑

i=2

(2−iL(
1

n
max{√n,

√

d log(1/δ)

ǫ
}+ 1√

n
))

≤ O(L(
1√
n
+

√

d log(1/δ)

nǫ
)).

Thus, combining with the previous three bounds into (21), we have our result.

Next, we will prove Theorem 8 via Lemma 14. Specifically, we have the following result.

Theorem 13. For the ℓdp space with 1 < p < 2 and suppose Assumption 3 holds. Then Algorithm 6 will be (ǫ, δ)-DP for

all ǫ ≤ 2 log(1/δ). If we set η = 1
L min{ 4√

n
, ǫ

2
√

d log(1/δ)
}, the output satisfies

E[L(ŵ)]− L(θ∗) ≤ O

(

Ld1−
2
p ‖θ∗‖2

(

1√
n
+

√

d log(1/δ)

ǫn

))

. (22)

Proof. We bound the ‖ · ‖2-diameter and Lipschitz constant for the ℓdp-setting. First we have that ‖θ∗‖2 ≤ d
1
2− 1

p ‖θ∗‖.

Moreover, since ℓ is Lipschitz w.r.t. ‖ · ‖, we can see it is L-Lipschitz w.r.t ‖ · ‖2 as ‖∇ℓ(w, x)‖2 ≤ ‖∇ℓ(w, x)‖∗ ≤ L.

Moreover since ℓ is β-smooth w.r.t ‖·‖, we have ‖∇ℓ(w, x)−∇ℓ(w′, x)‖2 ≤ ‖∇ℓ(w, x)−∇ℓ(w′, x)‖2‖∗ ≤ β‖w−w′‖ ≤
β‖w − w′‖2, indicating that it is β-smooth w.r.t. ‖ · ‖2. Thus, we have

E[L(ŵ)]− L(θ∗) ≤ O

(

Ld1−
2
p ‖θ∗‖2

(

1√
n
+

√

d log(1/δ)

ǫn

))

. (23)

9.4 PROOF OF THEOREM 9

Proof. We first recall the following lemma:



Lemma 16. [Feldman et al., 2022] For a domain D, let R(i) : f ×D → S(i) for i ∈ [n] be a sequence of algorithms such

that R(i)(z1:i−1, ·) is a (ǫ0, δ0)-DP local randomizer for all values of auxiliary inputs z1:i−1 ∈ S(1) × · · · × S(i−1). Let

AS : Dn → S(1) × · · · × S(n) be the algorithm that given a dataset x1:n∈Dn , sample a uniformly random permutation

π, then sequentially computes zi = R(i)(z1:i−1, xπ(i)) for i ∈ [n], and the outputs z1:n. Then for any δ ∈ [0, 1] such that

ǫ0 ≤ log
(

n
16 log(2/δ)

)

, AS is (ǫ, δ +O(eǫδ0n))-DP where ǫ = O

(

(1− e−ǫ0) · (
√

eǫ0 log(1/δ)√
n

+ eǫ0

n )

)

.

Now let’s get back to the proof. Note that by the Generalized Gaussian mechanism, we can see R(x) = gx +

GG||·||+(σ
2) with σ2 = O

(
κ(βM+λ)2 log(1/δ0)

ǫ20

)

will be a (ǫ0, δ0)-DP local minimizer. The output could be consid-

ered as the postprocessing of the shuffled output R(x). Thus, the algorithm will be (ǫ̂, δ̂ + O(eǫ̂δ0n))-DP where

ǫ̂ = O

(

(1− e−ǫ0) · (
√

eǫ0 log(1/δ̂)√
n

+ eǫ0

n )

)

.

Now, assume that ǫ0 ≤ 1
2 , then ∃c1 > 0, s.t.,

ǫ̂ ≤ c1(1− e−ǫ0) ·





√

eǫ0 log(1/δ̂)
√
n

+
eǫ0

n





≤ c1 ·



(eǫ0/2 − e−ǫ0/2) ·

√

log(1/δ̂)

n
+
eǫ0 − 1

n





≤ c1 ·





(

(1 + ǫ0)− (1− ǫ0
2
)
)

·

√

log(1/δ̂)

n
+

(1 + 2ǫ0)− 1

n





= c1 · ǫ0 ·




3

2

√

log(1/δ̂)

n
+

2

n



 .

Set δ̂ = δ
2 , δ0 = c2 · δ

eǫ̂n
for some constant c2 > 0 and replace ǫ0 =

c3·κ(βM+λ)·
√

log(1/δ0)

σ1
:

ǫ̂ ≤ c1 · c3 ·
κ(βM + λ) ·

√

log(1/δ0)

σ1
·




3

2

√

log(1/δ̂)

n
+

2

n





≤ O




κ(βM + λ) ·

√

log(1/δ0) log(1/δ̂)

σ1
√
n





≤ O

(

κ(βM + λ) ·
√

log(1/δ) log(eǫ̂n/δ)

σ1
√
n

)

.

For any ǫ ≤ 1, if we set σ = O

(
κ(βM+λ)

√
log(1/δ) log(n/δ)

ǫ
√
n

)

, then we have ǫ̂ ≤ ǫ. Furthermore, we need

ǫ0 = O

(
κ(βM+λ)

√
log(1/δ0)

σ

)

≤ 1
2 , which would be ensured if we set ǫ = O

(√
log(n/δ)

n

)

. This implies that for

σ = O
(

κ(βM+λ)·log(n/δ)
ǫ
√
n

)

, algorithm 4 satisfies (ǫ, δ)-DP as long as ǫ = O

(√
log(n/δ)

n

)

.

9.5 PROOF OF THEOREM 10

Proof. Denote yt = 1
|Bt|

∑

x∈Bt
gx, zt = 1

|Bt|
∑

x∈Bt
Zt
x and ỹt = yt + zt. The optimality condition for wt =

argmin
w∈C

{

〈
∑

x∈Bt
gx+Zt

x

|Bt| , w〉+ γt ·DΦ(w,wt−1)

}

has the form:

〈ỹt + γt(∇Φ(wt)−∇Φ(wt−1)), z − wt〉 ≥ 0, ∀z ∈ C.



Equivalently, we have

〈ỹt, wt − z〉 ≤ γt〈∇Φ(wt)−∇Φ(wt−1), z − wt〉
= γt(DΦ(z, wt−1)−DΦ(z, wt)−DΦ(wt, wt−1)), ∀z ∈ C.

Let ξt = yt −∇L(wt−1) + zt = ỹt −∇L(wt−1), then we have

〈∇L(wt−1), wt − z〉 ≤ γt(DΦ(z, wt−1)−DΦ(z, wt)−DΦ(wt, wt−1))− 〈ξt, wt − z〉.
On the other hand, we know that

L(wt)− L(z) = (L(wt)− L(wt−1)) + (L(wt−1)− L(z))
= 〈∇L(wt−1), wt − wt−1〉+ β ·DΦ(wt, wt−1) + 〈∇L(wt−1), wt−1 − z〉 (24)

≤ 〈∇L(wt−1), wt − z〉+ γt
2
DΦ(wt, wt−1) (25)

≤ γt(DΦ(z, wt−1)−DΦ(z, wt)−
1

2
DΦ(wt, wt−1))− 〈ξt, wt − z〉,

where Eq. (24) uses the fact that DΦ(wt, wt−1) ≥ 1
2 ||wt − wt−1||2 and L is smooth as well as the convexity of L while

Eq. (25) is because γt ≥ 2β.

Due to the strong convexity of DΦ(·, wt−1), we have

〈ξt, wt−1 − wt〉 ≤
γt‖wt−1 − wt‖22

4
+

||ξt||2∗
γt

=⇒ 〈ξt, wt−1 − wt〉 ≤
γt
2
DΦ(wt, wt−1) +

||ξt||2∗
γt

=⇒ 〈ξt, z − wt〉 −
γt
2
DΦ(wt, wt−1) ≤ 〈ξt, z − wt−1〉+

||ξt||2∗
γt

.

Thus,

L(wt)− L(z) ≤ γt(DΦ(z, wt−1)−DΦ(z, wt))− 〈ξt, wt−1 − z〉+ ||ξt||2∗
γt

⇒ 1

γt
(L(wt)− L(z)) ≤ DΦ(z, wt−1)−DΦ(z, wt)−

〈ξt, wt−1 − z〉
γt

+
||ξt||2∗
γ2t

.

Thus, summing over t = 1, · · · , T ,

T∑

t=1

(γ−1
t ) · (L(wt)− L(z)) ≤ DΦ(z, w0)−DΦ(z, wT ) +

T∑

t=1

( 〈ξt, z − wt−1〉
γt

+
||ξt||2∗
γ2t

)

⇒(

T∑

t=1

γ−1
t ) · (L(

∑T
t=1 γ

−1
t wt

∑T
t=1 γ

−1
t

)− L(z)) ≤ DΦ(z, w0)−DΦ(z, wT ) +

T∑

t=1

( 〈ξt, z − wt−1〉
γt

+
||ξt||2∗
γ2t

)

⇒(

T∑

t=1

γ−1
t ) · (L(ŵ)− L(z)) ≤ DΦ(z, w0) +

T∑

t=1

( 〈ξt, z − wt−1〉
γt

+
||ξt||2∗
γ2t

)

.

Take the expectation over the randomness of the noise, we get

(

T∑

t=1

γ−1
t ) · (E[L(ŵ)]− L(z)) ≤ DΦ(z, w0) +

T∑

t=1

E[〈ξt, z − wt−1〉]
γt

+

T∑

t=1

E[||ξt||2∗]
γ2t

.

To bound the term
∑T

t=1
E[〈ξt,z−wt−1〉]

γt
, let xt = yt −∇L(wt−1) and notice that

T∑

t=1

E[〈ξt, z − wt−1〉]
γt

=

T∑

t=1

E[〈yt −∇L(wt−1), z − wt−1〉]
γt

=

T∑

t=1

[〈xt, z − wt−1〉]
γt

.

We will bound
∑T

t=1〈xt, z − wt−1〉 =
∑T

t=1 ψt. First, we recall the following lemma proposed by Nazin et al. [2019].



Lemma 17. When βM ≤ λ, we have

||xt||∗ ≤ 2βM + λ ≤ 3λ⇒ |〈xt, z − wt−1〉| ≤ 3λM,

||E[xt]||∗ ≤ β ·M ·
(σ

λ

)2

+
σ2

λ
≤ 2σ2

λ
⇒ |E[〈xt, z − wt−1〉]| ≤

2σ2M

λ
,

(
E[||xt||2∗]

)1/2 ≤ σ + βM · σ
λ
≤ 2σ ⇒

(
E[(〈xt, z − wt−1〉)2]

)1/2 ≤ 2σM.

Next, we recall Bernstein’s inequality for martingales Freedman [1975],

Lemma 18. Suppose X1, · · · , Xn are a sequence of random variables such that 0 ≤ Xi ≤ 1. Define the martingale

difference sequence {Yn = E[Xn|X1, · · · , Xn−1]−Xn} and denote Kn the sum of the conditional variances

Kn =

n∑

t=1

Var(Xn|X1, · · · , Xn−1).

Let Sn =
∑n

i=1Xi, then for all ǫ, k ≥ 0 we have

Pr[

n∑

i=1

E[Xn|X1, · · · , Xn−1]− Sn ≥ ǫ,Kn ≤ k] ≤ exp(− ǫ2

2k + 2ǫ/3
). (26)

we have

Pr

{
T∑

t=1

ψt ≥
2TMσ2

λ
+ 3 · (2σM)

√
τT

}

≤ exp






− 9 · τ
2 + 2

3 · 3
√
τ ·(3λM)

2σM
√
T







≤ exp






− 9τ

2 + 3λ
√
τ

σ
√
T







≤ e−τ

for all τ = O
(

σ2T
λ2

)

.

Thus, for all τ = O
(

σ2T
λ2

)

w. p. 1− e−τ ,

T∑

t=1

ψt ≤ O

(
TMσ2

λ
+ σM

√
Tτ

)

.

Next we bound the term of
∑T

t=1 E[||ξt||2∗]. It is notable that

E[||ξt||2∗] = E[‖xt + zt‖2∗] ≤ 2‖xt‖2∗ + 2E[‖zt‖2∗] = 2‖xt‖2∗ + 2g2,

with

g2 = O(
1

|Bt|
log(nδ ) · dκ(βM + λ)2 · log(1/δ)

nǫ2
) = O(

log(nδ ) · dTκ(βM + λ)2 · log(1/δ)
n2ǫ2

).

Thus, it is sufficient for us to bound
∑T

i=1 ‖xt‖2∗ =
∑T

i=1 φi. Similar to Lemma 17 we have the following result

Lemma 19. [Nazin et al., 2019] When M ≤ λ, we have

E[φi] ≤ (σ +
Mσ

λ
)2 ≤ 4σ2,

φi ≤ (2M + λ)2 ≤ 9λ2,

[E(φ2i )]
1
2 ≤ (σ +

Mσ

λ
)(2M + λ) ≤ 6λσ.



Thus, by Berstern’s inequality, we have if τ = O
(

σ2T
λ2

)

Pr[

T∑

t=1

||xt||2∗ ≥ 4σ2T + 18λσ
√
Tτ ] ≤ exp(− 9τ

2 + 3
√
τλ

σ
√
T

) ≤ exp(−τ).

In total, let γt = γ̄, we have with probability at least 1− 2 exp(−τ)

E[L(ŵ)]− L(θ∗) ≤ O

(
DΦ(θ

∗, w0) · γ̄
T

+
Mσ2

λ
+
σM

√
τ√

T
+
σ2

γ̄
+
Mσ

√
τ√

T γ̄
+

log(nδ ) · dTκ(βM + λ)2 · log(1/δ)
n2ǫ2γ̄

)

.

(27)

Let γ̄
T = O(

(βM+λ)
√

d log(1/δ)

nMǫ ), and since DΦ(θ
∗, w0) = Φ(θ∗) ≤ κM2

2 we have

E[L(ŵ)]− L(θ∗) ≤ Õ

(

Mσ2

λ
+
σM

√
τ√

T
+
Mσ2

γ̄
+

(βM + λ)Mκ
√

d log(1/δ)

nǫ

)

.

Let λ = σ
√
nǫ

4
√

κ2d log(1/δ)
≥ max{β, 1}M , we have

E[L(ŵ)]− L(θ∗) ≤ O

(

Mσκ 4
√

d log(1/δ)√
nǫ

+
σM

√
τ√

T
+
Mσ2

γ̄

)

.

Let γ̄ =
√
T , then

√
T = O( Mnǫ

(βM+λ)
√

d log(1/δ)
), and it holds that

E[L(ŵ)]− L(θ∗) ≤ O

(

M max{σ2, σ} 4
√

κ2d log(1/δ)
√

log(1/δ′)√
nǫ

)

w.p. at least 1− δ
′

.

10 ADDITIONAL THEOREMS AND PROOFS

Theorem 14. For the ℓdp space with 1 < p < 2, suppose Assumption 4 holds and assume n is large enough such that

O((
√
nǫM

κ 4
√

d log(1/δ)
)

2
3 ) ≥ max{β, 1}M . For any 0 < ǫ, δ < 1, Algorithm 7 is (ǫ, δ)-DP. Moreover, if we set {γt} = γ =

√
T ,

T = nǫ

Mλ
√

d log(1/δ)
and λ = O((

√
nǫM

κ 4
√

d log(1/δ)
)

2
3 ). Then for any failure probability δ′, the output ŵ satisfies the following

with probability at least 1− δ′

E[L(ŵ)]− L(θ∗) ≤ O

(

M
4
3
κ

2
3 (d log(1/δ))

1
6

√

log(1/δ′)

(nǫ)
1
3

)

,

where the expectation is taken over the randomness of noise, and the probability is w.r.t. the dataset D.

10.1 PROOF OF THEOREM 14

We propose our method in Algorithm 7. Note that there are two key differences compared to Algorithm 4. First, since we

do not need the privacy amplification via shuffling, there is no shuffling step. Secondly, instead of adding noise to each

truncated gradient gx, here we add a generalized Gaussian noise to the averages of the gradients for each batch. In the

following we will prove our theoretical results in Theorem 14.

Proof. The proof of DP is just by the Generalizer Gaussian mechanism. For utility, the proof is almost the same as in the

proof for Theorem 10, while the only difference is the noise. Similar to (27) we have the following result with probability

at least 1− 2 exp(−τ)

L(ŵ)− L(θ∗) ≤ O

(
κM2γ̄

T
+
Mσ2

λ
+
σM

√
τ√

T
+
σ2

γ̄
+
Mσ

√
τ√

T γ̄
+
dT 2κ(βM + λ)2 · log(1/δ)

n2ǫ2γ̄

)

. (28)



Algorithm 7 Truncated DP Batched Mirror Descent

1: Input: Dataset D, loss function ℓ, initial point w0 = 0, smooth parameter β and and λ.

2: Divide the permuted data into T batches {Bi}Ti=1 where |Bi| = n
T for all i = 1, · · · , T

3: for t = 1, · · · , T do

4: for each x ∈ Bt do

5: gx =

{

∇ℓ(wt−1, x) if ||∇ℓ(wt−1, x)||∗ ≤ βM + λ

0 otherwise

6: end for

7: Let

8: wt = argmin
w∈C

{

〈

∑

x∈Bt

gx

|Bt|
+ Zt, w〉+ γt ·DΦ(w,wt−1)

}

, where Zt ∼ GG||·||+(σ
2
1) with σ2

1 = O
(

κ(βM+λ)2·log(1/δ)
|Bt|2ǫ2

)

,

|| · ||+ is the smooth norm for (E, || · ||∗). κ = min{ 1
p−1 , log d} and Φ(x) = κ

2 ||x||2κ+
with κ+ = κ

κ−1 .

9: end for

10: return ŵ = (
∑T

t=1 γ
−1
t )−1 ·∑T

t=1 γ
−1
t wt

Take γ̄ =
√
T then we have

L(ŵ)− L(θ∗) ≤ O

(
κM2

√
τ√

T
+
M2

λ
+
dT 3/2κλ2 · log(1/δ)

n2ǫ2

)

.

Take T = nǫ

Mλ
√

d log(1/δ)
we have

L(ŵ)− L(θ∗) ≤ O

(

κM
√
λ 4
√

d log(1/δ)
√
τ√

nǫ
+
M2

λ

)

.

Take λ = O((
√
nǫM

κ 4
√

d log(1/δ)
)

2
3 ) ≥ max{β, 1}M we have w.p at least 1− δ′

L(ŵ)− L(θ∗) ≤ O

(

M
4
3
κ

2
3 (d log(1/δ))

1
6

√

log(1/δ′)

(nǫ)
1
3

)

.

Theorem 15. For the ℓdp space with 2 ≤ p ≤ ∞, suppose Assumption 4 holds. Then the Algorithm 1 in Kamath et al.

[2022] is (ǫ, δ)-DP for all 0 < ǫ, δ < 1. Moreover, suppose the loss function is non-negative, there exists R = O(1) such

that ‖∇L(w)‖∗ ≤ R for all w ∈ C and 3) in Assumption 5 holds. then the output satisfies

E[L(w)]− L(θ∗) ≤ O

(

d
3
2− 1

p

√
n

+
d

3
2− 1

2p

√
nǫ

)

. (29)

10.2 PROOF OF THEOREM 15

Kamath et al. [2022] study DP-SCO with heavy-tailed data in Euclidean space and propose an (ǫ, δ)-DP algorithm for any

0 < ǫ, δ < 1 that achieves an expected excess population risk of O(M d√
n
+

√
Md

5
4√

nǫ
), where M is the ℓ2-norm diameter of

the constraint set C, under the following assumptions

Assumption 5. 1) The loss function ℓ(w, x) is non-negative, differentiable and convex for all w ∈ C. 2) The loss function

is β-smooth. 3) The gradient of L(w) at the optimum is zero. 4) There is a constant σ such that for all j ∈ [d] and w ∈ C
we have E[〈∇ℓ(w, x)−∇L(w), ej〉2] ≤ σ2, where ej is the j-th standard basis vector. 5) For any w ∈ C, the distribution

of the gradient has bounded mean, i.e., ‖∇L(w)‖2 ≤ R.

For ℓdp space, we know that L-Lipschitz w.r.t ‖·‖ implies L-Lipschitz w.r.t ‖·‖2. Moreover, E[||∇ℓ(w, x)−∇L(w)||2∗] ≤ σ2

implies E[||∇ℓ(w, x)−∇L(w)||22] ≤ σ2 which indicates condition 4) in Assumption 5. For the diameter, it has the diameter

of d
1
2− 1

pM w.r.t ‖ · ‖2. Thus we have the following result.
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