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7 NOTATION SUMMARY

C: constraint set G: Gaussian width of set C

d: dimension n: sample size

€, 0: privacy parameters £: convex loss funtion

L: Lipschitz constant B: smoothness constant

A: regularization parameter «: optimization accurancy

¢4 Normed space corresponds to || - ||,,, where |||, = (ijl lz;[P)/P | £(6): population risk

L(0, D): empirical risk K: K-regular space

|| - ||c: Minkowski norm, || - ||c = min{r € RT : v € rC} I |lc+: dual norm of || - ||c

o the variance of Gaussian noise || - ||+: the smooth norm for (E, || - ||.)

Table 3: Notation summary of the paper.

8 OMITTED PROOFS IN SECTIONH4|

8.1 PROOF OF THEOREM(

Algorithm 5 Aqpp: Objective perturbation

1: Input: Dateset D, loss function /, regularization parameter \.

2: Sample G ~ N(0,0%1;) where 07 = w. Set A > 72 where 7 = min{d,2 - rank(V2£(0,z))} with
rank(V?2/(6, x)) being the maximal rank of the Hessian of ¢ for all § € C and x ~ P.

3: Let 7 (0, D) = £ + £S04 ||]13.

4: return 0; = arg min7 (0, D).
fec

Proof. Let 6, = argminJ (8, D), where 7 (6, D) = £(8,D) + ‘S0 4 \||6][3. Let 6, = O(J, ) where O is the
oeC

optimizer defined in the algorithm. Notice that one can compute 6 from tuple (61,62 — 61 + H) by simple post-processing.
Furthermore, the algorithm that outputs 6, is (¢, §)-DP by the following theorem.

Lemma 5 (Theorem 1 in [Iyengar et al!,2019]). Suppose Assumption[Ilholds and that the smoothness parameter satisfy
B < €22 the algorithm Aopjp (Algorithm[) that outputs 6; = argminJ (6, D) is (e, §)-DP.
ocC
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Next, we will bound the term || — 61|| to make (3 — 6, + H) differentially private, conditioned on 6;. As J (0, D) is
A-strongly convex, we have J (62, D) > J (61, D) + 3|02 — 61||3, which implies that

2 2c
|92—91|2<\/>\(7(92, D) —J(01,D)) < D )
Thus, conditioned on 61, f3 — 67 has the 5 sensitivity of STO‘. Therefore, (f2 — 61) + H is (¢/2, §.2)-DP. By the standard
composition inDwork et al! [2014], the tuple (61, 62 — 01 + H) satisfies (¢, §)-DP and hence @ satisfies (e, §)-DP. O

8.2 PROOF OF THEOREM[2

Proof. Let 6, be the exact minimizer of 7 (6, D). We split the objective E[£ ()] — £(6*) into two parts and bound them

separately. . .
E[L(0)] — L(6) =E[L(0) — L(01)] + E[L(01)] — L(67). 3)

In the following, we bound the term E[£(6) — £(6;)] and the term E[£(6;)] — £(*) separately. To bound the term
E[L(61)] — L(0*), we need the following two lemmas. The first lemma states the excess empirical risk of #; while the
second lemma states the stability property of regularized empirical risk minimization.

Lemma 6. (Excess empirical loss of 6; in Aoyp). Let D ~ P, under Assumption [ the excess empirical loss of 6;
satisfies

. L LGer/Tog(1/6
BI£(6,, D)] - mink (6, D) < O (Cf”) + A|C||3> , @

where the expectation is taken over the randomness induced by Gaussian noise.

Lemma 7. [[Shalev-Shwartz and Ben-David, 2014]] Let f : C x D — R be a convex, p-Lipschitz loss function where
D = {x1,---,x,} ~ P™. Let A be an algorithm that outputs § = arg mln{F(G D) + A||0]|?} with A > 0 where

F(0,D) = LS f(8,2;), then A is 2 -unlformly stable, i.e., for all nelghbormg datasets D ~ D’ we have

2

sup [E[f(A(D), 2) — F(A(D ot )H— )\n

The property of uniform stability is described by the following lemma.

Lemma 8 (Bousquet and Elisseeff [2002]). Let A : X — C be an a-uniformly stable algorithm w.r.t. loss £ : C x X — R.
Let D ~ P"™ where P is the distribution over X. Then,

E [L(AD)) - LIAD),D)] < a.

D~PLA -

Now we begin to bound the term £(6;) — £(6*) using the above three lemmas. Fix any realization of the noise vector G,
we define fg(6,2) = ¢(0,2) + <C;7;9> , then fg is (L + @)-Lipschitz.

Define Fig(0,D) = L " | fa(6,2;), and we have §; = argminFg (6, D) + X||0||3, so from Lemmal7] the algorithm

oec
2(L+HGH2)2
that outputs ¢; is —————-uniformly stable. Denote Fg(0) = Ep[ fa (8, x)], according to Lemmal8] we have
9 (L+ ||G||2)2
E —L£(0,D) = E [Fg(d) - Fa(9,D)] < —— 2.
JE, L)~ £0.D)] = E_ [Fa(6) - Fa(6.D)] < ——

Take the expectation w.r.t. G ~ N(0, w 4) as well, we get

L (1 + dl(:i(l/é))z 12
E[£(0) — £(0,D)] <O <0<>, (5)




where we assume n > O(@).

Thus
Ewwm—ﬁwﬂzEwwm—ggam
L(6,,D) — m1n£(9 D)] + E[£(61) — L(61, D)] ©
log V1og(1/4) , L2
( FAICI3+ )
where we use the fact that 5 IEPn [mln L£(6,D)] < m nD IEPn [£(0,D)] = Iglei(rjlll(@) and the last bound is directly from
Eq.@) and Eq.(@).

Now we bound the term E[£()] — £(61). Recall that 6, = O(J, o) and

E[L(0)] — L(61) = E[L(0)] — L(02) + L(02) — L(61).

Note the term £(62) — £(61) < L-||01 —62||2 < L-4/ 22 (From Eq.(2)), and the term E[L(0)] — L(02) < L-E[||6—05]|2).

Also note that § = Proj. (62 + H). Let ¢ be the line through 6, and 0, and let p be the projection of 3 = 65 + H onto q.
The key observation is that p lies on the ray from 6 to infinity otherwise p will be a point in C that is closer to 65 than 6.
Thus we have
E[[|0 = 65]13] = E[(0 — 02,0 — 62)]
(6 — 02,05 — 6]
[(H, 0 — 05)]
E[(H
maxE[(H, 6)]

IN

IA
N oE

IN

O(E[max |(H, 0)[])

_ alog(1/8) G
—0< ;\'f>>

where the last equation is from the definition of Gaussian width.

So we have

EL(0)) = £(61) < VE+LEH9 62

ol 0 )

In total, combining Eq.(8) and Eq.(Z), we can bound Eq. (3)) by

E[£(0)] — L(6*) = — L(6%)

+/alog(1/6) L-Ge- log(l/é) L2
< \/7/ / \f LAleR+ ).
2 and I - W Ge < LHcHQ Let

n2 GZlog(1/6)n

2 3
Since o < min{L|C3||2, < Llell, }, we have /L -[[C[|2y/na < &
2

_ L
A= Zaierr;» then
) L- log(1/0
BLC(0)] - £(07) < 0 Lo CeIosll8) LKl ).
f
Note that we need A\ = ﬁILIC\Iz > g, namely, n > Lzz\L\g\b_ -



Proof of Lemmal6l Let £(0, D) = £(6, D) + A||6||3 and § = argminZ(6, D). So 7 (6, D) = L(6, D) + ‘S Since
oeC
01 minimizes J (6, D), we have j(g, D) > J(01, D), namely,

2@, D)+ (&9

> £(60y, ) + (S 00.

n n

Recall that G ~ N (0, WH@, rearrange the inequality and take the expectation at both sides and we get
E[£(61, D) — £(9. D)] < E[

2. [(©9)

oeC
i

§2~]E{max
n

oeC

:O<L~GC 10g(1/5)>’

n

where the last bound is from the definition of Gaussian width.

Thus

E[L(61, D) — L(6", D)] = E[L(61, D) — L(8", D) + Al|6"|I3 — Al[61][3]
[£(0, ) L(6",D) + All6"|13)
L(

£(6, D)+ X6° |1}
a ”+A|C||§).

IN N
= &=
l\:\

IN

0

[£(0
<L Gc log

8.3 PROOF OF THEOREM 3

Proof. The proof is similar to the convex case. Note that 7 (6, D) is a ”3 -strongly convex function. O

8.4 PROOF OF THEOREM[4

. L][C]l2 r8
> >
Proof. By the assumptions we made about n, we have A > n and f\ e 2 en

Since the loss function is A-strongly convex with respect to || - ||c, which implies that the loss function is T CHZ -strongly

L
convex w.L.t. || - ||2 and thus NGIEIE

-strongly convex w.r.t. || -||2, where we use the fact that A > L\/CEHQ and ||v||¢ > Hclb

[CTl2
for any vector v € C.

rB
SmceA>\fHC|| zm,wehave)\ max{ AO}

The population loss can be disassembled as the following two parts, and we bound them separately.
E[L(9)] — £(67) = E[L(6) — L(61)] +E[L(61)] — L(67).

We first bound E[£(f) — £(6;)]. Note that
E[L(9) — £(61)] = E[L(0) — L(02)] + E[L(62) — L(61))-

For term E[L(02) — L(61)], since L is A-strongly convex w.r.t. || - ||c and thus W—stmngly convex w.r.t. || - ||2. So by
2
the definition of strong convexity of £, we have

A
2[C1f3

a > L(0:) — L(6)) > 165 — 6113,



where « is the optimization accuracy.

Thus,

/2a][C||3
_ Y il iP
162 — 04[]z < A
So using the definition of L-Lipschitz,
2a||C]|3
EIL(62) — £(6)] < L-E[|lg — 61[}o) < L/ 2201,

For term E[£ () — £(6,)], it is similar to the convex case, and we have

E[L(6) — £(02)] < O <L. JEORIETE \F)
B[L(0) — £01)) < O <L. TR (G 2a||Ac|g>.

Next we bound E[L£(61)] — £(0*). Note that
E[L(01)] — £(0") < E[L(61, D) — minl(6, D)] + E[L(6:) — L(61, D)),

Thus,

where we used the fact that E[gleigﬁ(& D) < ropeigIE[ﬁ(G, D)] = L(6*).

For term E[£(6,) — L£(61, D)], note that with A = 0, fg(8,z) = £(6,z) + > would be [cj strongly convex w.r.t.

||C\
|| - ||2. Using the same notation as in the convex case, where Fg (0, D) = LS fe(8, ;) and Fg(0) = _ 7D[fG(H, x)],
we have R R
E[L(61) — L(61, D)] = E[Fg(61) — Fa(01, D)]
2
(158 et
< (According to Lemmal[7))
nA
211C|I3 dlog(1/6
<0 (PR ineen = 0 (gm) )
nA €

Let §' = argminZ (6, D). In the following, we bound the term E[£(6;, D) —rgﬂg/ﬁ(@,D)} E[£(6,D) — L(0', D)].
gecC S

By the definition of strong convexity,

R G,0 G,0 . G,G/ G.0) A :
o £y, D)+ (G0 1>zc(e,D>+< R
n n n n 2
G,0 , G,0) A ,
& 70,0) - G0 5 g D) - G0 S gz,
n n 2
So,
, G,0 —0 A /
70,0) -, 0)+ S0 By gz
Since 7 (01, D) — J(0', D) < 0 (due to the optimality condition), we get
(G0 —0,) _ A -
A T s T _
- 2 Sl =0z,
) ®)
' 110761 1]
— <
:>H91 HHC— TLA ?
! <G70>
_ < 9. =
=l =0 lle <2 Iglgcx nA nA



Using J (61, D) — J (6, D) < 0 again, and take the expectation at both sizes,

, (G,0')

L) + K| (G.01)

| > L(61) + E| ].

Thus

< E[<G,9 —01>]

[ |
[ ] (according to Eq.(8))

E
-0 (G%LQ log(1/6)>.

L(6y) — L)

<
<E =16y — 9,|c} (Holder’s inequality)

IN

n
|
n
2||GJ[2-
2A

An2e?

Thus E[£(61, D) — minL(0, D)] < O (LEUGIE - SELoefl/9)). 5o

N . L?||c G2L?1og(1/6 JJalog(1/8)||ICl12 |Ge 2a|C|)3
B0 - 20" SO( 10, GRLMlon() ,falod ISR [Gc | [alCIE
When a < O (min{Llfglg, ASfjé\gﬁlﬁi/é)})’ we have L - /2a||CH2 < L HCIIZ and L. & elos( 1/5)||CH2

L2||cll3
nA

Thus,

E[ﬁ(é)} — L") <O (L2|C||2 GQL2 10g(1/6)> .

nA AnZe?

8.5 PROOF OF THEOREM[3

Proof. To show the proof, we first prove the following theorem on the lower bound of excess empirical risk and then use
reduction from Private ERM to Private SCO to get the lower bound for excess population risk.

Theorem 11. Let C be a symmetric body contained in the unit Euclidean ball B¢ in R and satisfies ||C||2 = 1. For any

n = O(M), e = O(1) and 27" < § < 1/n!*+1) | there exists a loss ¢ which is 1-Lipschitz w.r.t. || - ||
and C2, -strongly convex w.r.t. || - ||c, and a dataset D = {x1, -+ ,zn} C C such as for any (e, ¢)-differentially private

algorithm A, its output satisfies

E[£(A, D)] —min (0, D) = 2 (m> |

where the expectation is taken over the internal randomness of the algorithm A.

Theorem 12 (Reduction from private ERM to private SCO [Bassily et all, 2019]). For any v > 0, suppose there is a

( 4logE1 757 815;(;5/ 5))-DP algorithm A such that for any distribution on domain X, A yields expected population loss

EA[L£(A)] — min,, £(w) < 7. Then, there is a (¢, §)-DP algorithm B that given any dataset D € X™, it yields expected
excess empirical loss Eg[L(B, D)] — min,, £L(w, D) <

From Theorem [12] for any dataset D and any 1-Lipschitz, C2, -
excess population loss

- strongly convex loss 4, if there exists an algorithm with

2 O,



then there exists an algorithm 53 such that the excess empirical loss E[£(B, D)] — rdpiél/f(é’, D)=o (@%) , which
€

contradicts Theorem [T1]

Thus, Vn = O(ivdbf(l/é)), there exists a dataset D = {x1,--- ,x,} C C and a strongly convex loss function ¢ such that
for any output #7"*, the excess population loss E[L(6P"%)] — %neigﬁ(Q) = (&%).

As a result, we have

E[£(6""")] — minc(8) = © (max {(Gﬁlog(l/@ 1}) ’

oec log(2d))*e>n?’ n

where the first term is the lower bound on excess empirical loss and the second term is the lower bound on excess population
loss in the non-private setting.

O

Proof of Theorem [l Before starting our proof, we give some background on the mean point problem.

n
Let Z = + 3 x; be the mean of the database D, where D = {x1,--- , 2y} is a multiset of points in C. The sample

=1
complexity of the mean point problem to achieve an error o with respect to an algorithm A is defined as

SCpp(C, A, ) = min{n : sup (E||A(D) — #||3)*/? < a},
D

where the supremum is taken over the database D consisting of at most n points from C and the expectation is taken over
the randomness of the algorithm .A.

The sample complexity of solving the mean point problem with error v under (¢, §)-differential privacy over convex set C
is defined as the minimum number of samples among all the differentially private algorithm .A.

SCpp(C, ) = min{SC,,(C, A, @) : Ais (e, §)-differentially private}.

Previous work [Kattis and Nikolov [2016] shows that we can characterize sample complexity SCp,,(C, o) as a natural
property of convex set C.

Lemma 9. Kattis and Nikolov [2016] Let C be a symmetric convex body contained in the unit Euclidean ball B¢ in R

Let ¢ be an absolute constant, then for any € = O(1),2~ %" < § < 1/n!'*+21) and any o < C\fd(iﬁd)z,

)

SChp(C, ) = Q (Gclog(1/5)> 7

(log 2d)?cve

aZe ’ Qe

SCpp(C,a) = O (min { Ge/log(1/6) +/dlog(1/0) }> |

When G¢ = Q(+/d), then SC,,,(C,a) = © (M) forany o < 1/c.

[e3%

Now we start our proof with the help of the above lemma.

Let £(0;z) = 1|0 — x|3 be half of the squared /-distance between 6§ € C C B¢ and x; € C, which is 1-Lipschitz and
1-strongly convex w.r.t to || - ||2. Actually, based on the following lemma we can easily show it is C2; -strongly convex
wrt] - -

Lemma 10. For any z, we have ||z|2 > ||z||¢ - Ciin-

Proof. By the definition of ||z||c we can see it is sufficient to show that x € %C . Note that as C is symmetric and Cyiy,
is the minimal distance from the original point to the boundary of C, thus, CL contains the unit /2-norm ball, indicating

that z € 1lz¢, O



s

The strongly convex decomposable loss function is defined as £(8; D) = = > U(0;2;) = 5= 3 || — x| |3. Notice that
i=1 i=1

~ n
the minimizer of £(-; D) over B is §* = 1 3~ x; € C, and the excess empirical risk can be written as:
i=1

A iV A o* 1 iV * 1 v 1 =
E[L(67"; D)] — £(6%; D) = SE||o""™ — 0"||3 = SE[6"" — —> i3,
i=1
We prove the theorem by contradiction. Assume Theorem [I1] is false, then for any dataset D, there exists a (e, d)-
differentially private algorithm A, for some n = O(ivdlog(l/é)), it outputs 9" such that E[£(6P""; D)] — L(6*; D) =

%EHQpriv _ % ;sz% —0 ((G% log(1/9) )

log(2d))*e?n?
In Lemmal[0 )
SCpmp =min{n : sup(E||0”"" — Z|[3) < o}
D
Gey/log(1/6) .
=Q| —"—7"""3—+-—1](U Eq.
( (log 2d)% e (Using Eq.@)
. Ge/log(1/9)
o(n) ( By letting « o< (los(2d))2en ),
which leads to a contradiction. U

9 OMITTED PROOFS IN SECTION3|
9.1 PROOF OF THEOREM 6]

Proof. Note that for any neighboring dataset D and D', we have ||V L(w;, D) — VL(w, D')||. < 2L by the Lipschitz
assumption. Since for £%-space, || - || = || - ||z, the space (E,|| - ||.) is x-regular with x = min{ £y —1,2Ind} =
plj, 21nd}, so using the privacy guarantee provided by generalized Gaussian mechanism and the advanced compo-

sition theorem, the algorithm is (e, §)-DP. O

P
p—1
min{

9.2 PROOF OF THEOREM[]

Proof. Observe that ®(z) = 5||z||2, where 5 = min{-17,2Ind} and k; = f5 is 1-strongly convex w.rt. || - ||
p K

by the definition of || - ||+ and the duality between strongly convexity and smoothness. We recall the following lemma

showing that adding regularization may impair smoothness, but it also induces good properties such as relatively smooth

and strongly convex.

Lemma 11. (Lemma 14 in|Attia and Koren [2022]) Let f(x) be a convex and S-smooth function w.r.t. || - || and ®(z) be
1-strongly convex w.r.t. || - ||, then f¥(x) = f(x) + a - ®(z) for &« > 0is (o + ()-smooth relative to ®(x) as well as
a-strongly convex relative to ®(x).

Let w* = argminl(w, D) + a®(w), w* = argminl(w) and ©* = @*(D) = argminl(w, D), and Cp = ®2 (0*).
weE weEk weE
Based on the optimality of w}, for the regularized objective function ﬁ(w, D) + a®(w), along with the optimality of w*

for the objective £(w, D), we have

— D) > D(w?). (10)



Since w; = 0 = arg min®(w), from the first-order optimality of w;, we have (V®(wy), w1 — w}) < 0 and thus
weE

Da(wg, wr) = ®(wg) — @(w1) = (VO (w1 ), wg, — wr)
< D(wg) — ®(wr)
< (") — ®(w:)( From Eq.(ID)
< C} (Let Cf = d(a")).

Now we rewrite our objectives in Algorithm 3

(VL(wy, D) + go,w — wy) + B Do (w, wy) + ad(w)
=(VL(ws, D) 4 go,w — wy) + (B4 @) - Do (w, wy) + a®(z) — a - D (w, wy)
=(VL(wy, D) + go,w — wy) + (a4 B) - Do (w, w;) + a®(w) — a - (B(w) — ®(wy) — (VO(wy), w — wy))
=(VL(w¢, D) + aV®(wy) + g, w — wy) + (a + B) - Do (w, wy) + a®(wy)
(

=(VL® (wy, D) + g1, w — wy) + (o + B) - Do (w,wy) + a®(wy).

where £(%) (w, D) £ £(w, D)+a-®(w) and note that £(®) (w, D) is (a+ 3)-smooth relative to ®(z) as well as a-strongly
convex relative to ®(w) according to Lemma[l1l Next, we recall the following “three-point property":

Lemma 12. (Three point property) Tseng [2008]. Let ¢(x) be a convex function and D (-, -) be the Bregman divergence
for ®(-). For given z, let z* = argmin{¢(z) + Do (x, z)}, then for all z € E we have
zeE

¢(x) + Da(x,2) > ¢(27) + Da(27, 2) + Do (2, 27).

Let ¢p(w) = a—}rﬁ AV f(wy) + g¢, w — wy) where f(w) = L(w, D) + a - ®(w), set z = w; in Lemma[I2] we get

g (V) givw = ) + Do) = ——

AV f(we) + ge, w1 — wi) + Do (wip1, we) + Do (w, wig1),
which implies

(a+B) - Do(wiyr,we) < (Vf(we) + g, w — wegr) + (0 + B) - (Do (w, we) — Do (w, wiy1)).
Since f(w) is (o + )-smooth relative to ®(w), we have

f(wir) <f(we) +(Vf(wi), wepr — we) + (@ + B) - Do (wir1,wy)

< F(w0) + (), w — we) + (o B) - (Do, w,) — D wen) + {gorw —wepn).
Since f(w) is a-strongly convex relative to ®(w), from the definition, we have
f(w) + (Vf(we),w —wy) < f(w) — a- Do(w,wr).
So inequality ([T} becomes
flwegr) < f(w) —a- Do (w, wy) + (o + B) - (Do(w, wr) — Do (w, weq1)) + (ge, w — wes1) (12)

< f(w) + 8- Da(w,wi) = (a+ ) - Dop(w, wig1) + (ge, w — Wiy1)-

Note that for any constant a > 0

1
(gt,w — wig1) <a - ||ge] |2 + — - [Jw — wega ||
2a

1
<a-||g:l|? + % D (w, wii1),

where the last inequality is due to @ being 1-strongly convex w.r.t. || - ||. Now inequality (IZ)) can be written as

flwner) < fw) + 8- Dafw,w) = @+ 5 = 50) - Dafw,wisn) +a- g (13)



Let w in Eq. (I3) to be w}, = arg min f(w), leta = 1, we have

. s .
Do (we,, wit1) <a+ﬁ— I - Do (wy,, wi) + O ? lgel|
<ioa Dalwiw) +0 (==l
. whw — 2.
=17 % oWy, Wt af gt
Lettingt = 1,2, --- ,T, add these inequalities together, we have
) T
E[Dg(wg, wr41)] < = | - Da(wl,w)+0(— ¢
]. + ﬁ (0%
a\"T
=(14+ = .D .
( " 26) (e ) ( )
SZ_% D¢(wa,w1)+0< >
<27% . C%+O(~g2>,
< o?
where the expectation is taken over all gy, - - - , g7 and g? = E[||g¢||?]. The last inequality utilizes the fact that (1 + %)m >2

for all x > 1 and note that % > 1. Since @ is strongly convex, we also have

oT 1
Bl — wriilP] < EDs(ut wren)] < 2% G40 (5 -4°)).

Thus, we have

aT 1
Bllut —vrall <0 (2% 0ot 1),

Now we consider a neighboring data D’ of D where they differ by the i-th entry. Denote w* = £(w, D) 4+ a - ®(w) and
wq ; as the parameters of the algorithm on D’. Then, similar to the previous case we can get

’ ! o 1
Blluz ~wrall <0 (2% Cpt 1 og).

Next, we will bound the term ||w?, — w? || by the following lemma.

Lemma 13. Let fi, f> : E — R be convex and a-strongly convex (relatively). Let 3 = argminf;(x) and zo =
zeE
arg min f5(z), then
zcE

2
llez = zal] < ZIIV(f2 = f)(@1)l]
From the above lemma, let f; (w) = £(w, D) + a - ®(w) and fo(w) = L(w, D") 4+ a - ®(w), we can get

2||Ve(wk; ;) — Ve(w) x)|| 4L
no - na'

’
[|wg, —wi |l <

In total

Ellurs - urall <0 (2% o+ 2+ £)

L, L 10g(1/5)d/€T>.

ane



Similarly, we can also show that for any ¢ we have

/ _at L
Elluy —wial] <0 (278 ot 4 2)

[0%
at L+/log(1/6)dxT
=0 (2_4[3 .CD+L+Og(/)H>'
no ane

Now we go back to Eq. (I3),

f(wipr) = f(wg) <B- Do (wg, wi) — (45— %) Do (i, wie1) +a lgi|I2

1
<6 Da(ugu) = (54 5) - Dalutwien) +0 (1 ).

Since

t=1 2B

t
ol (5 )
t=1

T t T t+1
SB [Z (262;a> D@(w;awt)_z<26+a) 'D@(wsztﬂ)
J’_

26+« N 268+ « + . 4 260+« |
= 2ﬂ .D‘b<wa7w1)_( 2ﬁ ) 'D‘i(wouwT-‘rl) +O<;< 25 ) Egz
T t
325+0‘.D¢(wg7w1)+0<2 (25220‘) -i;ﬁ)
t=1
Let
t
. 2321(2%&) P Wil
w= 7
> (%552)

And we have



T (2
Zt:l( e ) F Wit

E[7() — f(w})] = E ~ fw})
|\ L)
. Zthl (2ﬁ+ 2) (wig1) )
s ()
BT (355) " (o) - fwn)
) S (25)
T (32) Bl ) - )
S (25)
(28 + @) - Do (w}, wy) 1
= 2.7 1(4;6+a) +O<Of )

oz.Dq)(waT,wl) L0 <192>
} «

:2“2@;“) 1

— D@(w , W1 +O( > (14)

I /\

1
SO(a Dg(w}, wy +a92>

where we used the fact that when 7" > %,

(2/3+a>T:(1+a)T22

in inequality (I4).

Denote &* = arg minZ(w, D), we have
weE

E[£(w, D) — L(w*, D)] = E[£®) (@, D) — £ (@*, D)] + o - ®(0*) — o - D()

Now we bound the sensitivity of w:

t !
N (35 Ellwe — wpall

Bl — [ < o
S (%) s
2 « —at
-0 )il 1( & ) 2 4ﬁ'CD+£+L log(1/8)dxT
- 2840\’ no ane
Yo (355



‘We bound the first term above:

S (3%5e) 2 (
ST (25 (%)

|
&R
Q
&)
Q
v
TR
S
o[@
+
Q
N[
~—
&k

o 0T
28+a 1\213 20+a 1\15
1 2o o (3)7 (1 - { e (3)" )
=Cp - = (16)
T 2B8+a 1\ a3
28+« 28+a 1— 1
% {1_(26)} 28 (2)
o T
ey 28+ 1\ a3
1\ % a [gﬁa'(i)w] -1
—Cp- = - -
2) ) (B 2 (zg;a) -
Consider function f(z) = (1 + z) - a®. Its derivative f'(z) =Ilna-a”+a” +Ilna-z-a* =a*(lna+ 1+ 1na- x), let
a= f’ then f’(x) > 0 for x € [0, 1]. Thus we have (1 + ) - (%)” > 1. Letz = 35, we have (1+35)-(3)% >1,
namely (28 + «) - (1 )is — 28 > 0.
In the following, we bound the term ——*———.
(2B+a)-(3)7F —28
« B o
(28+a)-(3) =28 (28+a) (()F ~1)+a
o
= m
(28+a) (—45) +a
1
=14 §4(Assume%§1),
2 7 33
where we use the fact that (1 )i —1> -2 (To prove this is to prove that 237 (1 — i) < 1. Let f(z) = a®(1 — x). The
derivative f'(z) =Ina-a® —lna -z - a” — a “-(na—=z-lna—-1) <0 when a < e.So f(x) decreases in [0, 1],
and thus f(z) < 1,Vz € [0,1]. Leta = 2 andx = 75> and we will get 275 . (1 — 1B <L)
26+ (1\415 T_l
Now we bound the term [ 27 (2>T ]
(355%) 1
o o7 o) © ar ar ar
@] -1 (35) 0¥ 0¥+ @7 -
T = T
28+« 20+«
(52) - S
N @ -1
= | = —+ T
2
28
aT
1\ %
<| = .
(=)
Thus, Eq. (T6) becomes
t at
Zt 1 (Qﬁ—m) 2715 -Cp 1 es
=o(eo-(3)

Bring this back to Eq.(I3) and we can get

oo | L N L 10g(1/6)dﬁT>_

no ane

Efl|d —@'[[] <O (CD



Since the loss is L-Lipschitz w.rt || - |, we can see the generalization error E[L(w) — L(w,D)] < L
0(Cp 25 4 4 /RN,

4
Take o = T—_’fllog2 B

A’D)] +E[ﬁ(ﬁ},D) - ﬁ(w*vD)]
|

C(
< L-E[|Jw — @'|]] + E[£(w, D) — L(w*, D)]
Ca(T41 2 2\/7 2
-0 <L~2 s 'E[C’D]+%+ L log(1/5)d“T+a,]E[Cl2)]+1.L10g(l/5)M>

ane o n2e?

A (TVE | T3 /dlog(1/6)k  T?dlog(1/6)r & o up n
=0 < - + e + g2 + T (By substituting o = Tl log, T)
_5 <T\/E T /dog(1/5)r n>
n ne T

- (T3 \/dlog(1/s

SO( 0g(/)m+;<;> (SinceT:O( nﬂ))
ne T

[ 1 [ /dlog(1/5)\® :

=0 | k? Vdlog(1/9) (By letting T = © L\/E ),
ne dlog(1/0)

where O hides a factor of E[C3)] with C3, = ||&* ||i+ and @* = argminL(w, D).
wek

(Note that since we assume n = O (W), the constraint 7' = O ( n\/E) comes for free when letting
%
T=0|( 2k _) ).
((g/dlog(l/(?)) >)
9.3 PROOF OF THEOREM[§

To be self-contained, we first review the Phased DP-SGD algorithm in|Feldman et al. [2020]. Since we are concerned about
the unconstrained case, we slightly modify the original Phased DP-SGD algorithm by eliminating the projection step.

Algorithm 6 Phased-DP-SGD algorithm |[Feldman et al. [2020Q]

1: Input: Dataset S = {x1, - ,x,}, convex loss /, step size 1 (will be specified later), privacy parameter € and (or) 4.
2: Set k = [log, n]. Partite the whole dataset S into k subsets {S1, - - - , Sk }. Denote n; as the number of samples in S;,
ie., |S;| = n;, where n; = |27n|. Moreover, set wy = 0.
fori=1,--- ,kdo

Letn; = 4”7], wll = w;_1.

fort=1,--- ,n;do

Update w!t! = w! — n;VL(wt, xt), where o is the ¢-th sample of the set .S;.
end for

1 n;+1
Setw; = =7 t; wy.

® DN AW

9: For (€, 9)-DP, w; = w; + &;, where & ~ N(0,021,) with o; = ALmiy/1og(1/9) Vl:g(l/é).
10: end for
11: return wy

Lemma 14. (Modification of Theorem 4.4 in [Feldman et al| [2020]) Let #(-, z) be 8-smooth, convex and L-Lipschitz

function over R? for each z. If we set n = + Inin{%7 ﬁ} and if n < % (i.e., n is sufficiently large), then
og



Algorithm [ will be (e, §)-DP for all € < 21log(1/6). The output satisfies

E[E(wk)] — 5(9*) <0 (LQ*H% <\/1H " (1105;(1/(5))) -

Proof. First, we have the following result, which can be found in the standard convergence bounds for SGD

Lemma 15. Consider the Gradient Descent method with initial parameter wy, fixed stepsize 7 and iteration number 7',
assume in the ¢-the iteration we have wy, then for any w we have

o lwo —wl3
where W = w”“‘}“ff Fwr
Now we focus on the i-th epoch, by Lemma[I3] we have for any w

E[||lw;—1 — wl|3

E[L ()] - L(w) < O(W +nL?). (1)

Now let’s be back to our proof. We have (denote 6* = arg min,,cga L(w) )

k

Llwy) = L(07) = L(wy) = L(wx) + > (L(0;) = L(@;-1)) + L(in) — L")
° ~—_——
A =2 C

For term A, by the Lipschitz property we have
E[L(wk)] = L(wk) < LE[||wy, — wrll2] < LE||Ck |2

For each term of B by (I8) and take w = w;_; we have

_ - Elllwi1 —wial3] | 5 E[l|¢i13] 2
E[L(w;)] — L(wi—1) < O( - +niL7) = O0(——=—= mn; 7 iL7) (19)
For term C, by (I8) and take w = 6* we have
9*
Bicton) - 07 < ol 1, 12) 20
Thus, combing (I8), (I9) and 20), we have
Bl )] - £0°) < OBl + 118 4 g2 5 EIGIEL g @
i=2 '

Now, we analyze the case of (e, §)-DP, it is almost the same for e-DP. Specifically, we have E[||¢;]|3] = O(w).

Thus, E
dlog(1/6
E[ll¢hlla) < Ly/E[IGilI3 = L2 - M
:O<M>

n2e

_ o/ os1f5) | 1

n2-S¢ n?



where the second inequality is due ton = 1 min{ﬁ, < }. And

\/dlog(1/3)

* |2 * (|2
1613 ) p2 — o108 ey
mni nn
1 /dlog(1/8) 1
_ |27 (2 A i
= Ol IBL( max{/n, =222+ —2))
1 dlog(1/6
| V/d1og(1/3)

< 0*|12L
< O(]|o*]3 (\/ﬁ e

);

where the second inequality is due to ) = 1 min{\%, \/ﬁ}.
n og

SEIIE 12y oy (@B 08) ey

2
in; i€
imp i i=2 Tt

k

271 L
-0 A
(; o \/ﬁ)

=00 (o + )

< O( 2k max{va, VEEO )

Thus, combining with the previous three bounds into 1)), we have our result.

))-

Next, we will prove Theorem [8] via Lemma[T4]l Specifically, we have the following result.

Theorem 13. For the Eg space with 1 < p < 2 and suppose Assumption 3 holds. Then Algorithm [] will be (e, §)-DP for
_ 1 . 4 € .
all € < 2log(1/6). If we set p = + min{ NG 72\/m}, the output satisfies

. _2 1 dlog(1/4)
E[L(w)] — £(0*) <O [ La' 7072 | —= + Y= ) ) 22
[£(w)] = L£(07) < ( 7|67l N R (22
Proof. We bound the || - ||o-diameter and Lipschitz constant for the /i-setting. First we have that [|6* ||, < dz» 9=l
Moreover, since ¢ is Lipschitz w.r.t. || - ||, we can see it is L-Lipschitz w.r.t || - ||2 as | Vl(w, z)|l2 < ||VE€(w, )|« < L.
Moreover since £ is 3-smooth w.r.t || - ||, we have | V{(w, z) — Ve(w', z)||2 < || V€(w,x) — VEl(w', z)]2]|« < Bllw—w']] <
Bllw — w’||2, indicating that it is 3-smooth w.r.t. || - ||2. Thus, we have
. _2 1 dlog(1/9)
E[L(@)] - £(6*) <O [ L' =5 (67|12 [ —= + Y—2L2 ) ). 23
()] - £(6°) < ( 07|+ e3)

9.4 PROOF OF THEOREM[9

Proof. We first recall the following lemma:



Lemma 16. [Feldman et all,2022] For a domain D, let R(*) : f x D — S for i € [n] be a sequence of algorithms such
that R (z1.5_1,-) is a (eg, 6o )-DP local randomizer for all values of auxiliary inputs z1.;_; € S0 x --- x SG=1 Let
As : D" — SW x ... x 8™ be the algorithm that given a dataset z1.,,cp», sample a uniformly random permutation
7, then sequentially computes z; = R (21,1, T(;y) for i € [n], and the outputs 21.,,. Then for any 0 € [0, 1] such that

€0 < log (m), As is (€, + O(e“dpn))-DP where e = O <(1 —e ). (M + enf)))

vn
Now let’s get back to the proof. Note that by the Generalized Gaussian mechanism, we can see R(z) = ¢, +
2 .
GG, (6%) with 0 = O (”(ﬂMJr’\)teog(l/‘S“)) will be a (eg,dp)-DP local minimizer. The output could be consid-
0

ered as the postprocessing of the shuffled output R(z). Thus, the algorithm will be (¢,0 + O(efdyn))-DP where

e=0 ((1 — o). (Ve lo(1/d) e€°§§“/5> + n))

Now, assume that ¢y < 1, then 3¢; > 0, s.t.,

65010g1(§ €o
eE<c(l—e™)- 7( /%) +

Vn n

+
n n

sa- ((1+60)—(1—620)>.\/@_,_(14‘2;0)—1

3 [log(1/6) 2

S e - (660/2 o 6760/2) . log(l/d) e —1

. (BM4N)A/Tog(1/
Set § = g, 8o = ¢o - =2 for some constant ¢, > 0 and replace ¢g = = R(BM+X):y/log(1/%0) .

en o1

R(BM 4 ) - og(1/30) (3, [los(1/0) |, 2
o1 2 n n

€§01~C3

R(BM + ) - \/log(1/60) log(1/5)

<0
- 0'1\/ﬁ
<0 K(BM + X) - \/log(1/5) log(efn/6)
- 0'1\/5 '
For any ¢ < 1, if we set 0 = O FBM+2)y/loe(1/9) log(n/é)), then we have ¢ < e. Furthermore, we need

¢ = O (”(ﬂMJ“\)JV 10g(1/6o)) < 1, which would be ensured if we set e = O (\/ mg(:/(s)) This implies that for

c=0 (%w)’ algorithm Ml satisfies (e, d)-DP as long as e = O ( bg(:/é)). O

9.5 PROOF OF THEOREM [10I

Proof. Denote 3, = ﬁ > wen, o> 2t = ﬁ > wep, Z4 and §; = y; + z. The optimality condition for w;, =

arg min {(ELGBJB“H”, w) + v - Do (w, wt_l)} has the form:
wel ¢

(G + 7 (VO (wy) — VO (wi—1)), 2 —wy) > 0,Vz € C.



Equivalently, we have
(G, we — 2) < 9 (VO(we) — VO(wi—1), 2 — we)
=% (Do(z,ws—1) — Do (2z,w) — Do (wi, wi—1)), Vz € C.

Let& =y — VL(wi—1) + 2¢ = §r — VL(wy—1), then we have

(VL(w—1),w — 2) < %(Do (2, wi—1) — Do (2, wt) — Do (wi, we—1)) — (&, we — 2).
On the other hand, we know that

Lwy) = L(2) = (L(wr) = L(wi—1)) + (L(wi—1) = L£(2))
—wi—1) + B+ Do (w, we—1) + (VL(we—1), w1 — 2) (24)
Jwp — 2) + %Dq)(wt,wtfl) (25)

< (D (2, w1) — D (2,10) = 5 D1 w1) = (6 01— 2),

where Eq. (24) uses the fact that Do (wy, wi—1) > %||wt — wy—1||? and £ is smooth as well as the convexity of £ while
Eq. 23) is because ; > 2.

Due to the strong convexity of Dg (-, w—1), we have

Yellwi—1 — welf3 n [1€:]2

(€t wp—1 —wy) <

4 Ve
2
— <§t,wt,1 — ’LUt> < %‘D@(whwtfl) + ||§t||*
Yt
e [1€2112
= (&2 —we) = 5 Da(wy, we—1) < (€2 —we—) + o
Thus, 2
L(w) — L(z) < (Do (z,wi-1) — Do (2,wr)) — (&, we—1 — 2) + ||£’;t|*
=>l(£(wt) — L(2)) < Do(z,w;—1) — Do (2, w;) — (€, wiq — 2) H§t||2.
Tt v ’Yt
Thus, summing overt = 1,--- , T,
3 S (g —wi) N6l
;(7;1) (L(w;) — £(2)) < Da(z,w0) — Do (2, wr) +; ( h - ) 7} >
T _ 2
Zv W> £6)) < DaGwo) = Dalwr) + 3 (fezzwmn) , JElE)
T
() - (60) — £(2)) < Doerun) + 3 (lezzwmn) , JolEY
t=1 t=1 Tt 71&

Take the expectation over the randomness of the noise, we get

(™) - (BL()] = £(2)) < Doz, wo) )+ 3 ez val] - BT
— t=1 t=1

To bound the term ZT M let z; = y, — VL(w;_1) and notice that

L E ty 2 — W1 ) E t—VE Wt—_1),2 — Wt_1
; (€ )] :; [(y ( - ) )]

[(z1, 2 — wi—1)]
Yt ’

-

o~
Il
_

We will bound Zthl (4,2 —wi—q) = Zthl 1. First, we recall the following lemma proposed by Nazin et all [2019].



Lemma 17. When SM < A\, we have

||« <26M + X <3\ = (x4, 2 — wi_1)| < 3AM,

oN2 0% 20° 202 M
E *<~M-(—) 9 <2 B, 2 — we1)]| < ,
el <8 M- (T) + % < 2= = Blm,= - wea)]l < 25
1/2 o 1/2
(E[||z|13]) / <o+ pM- X <20 = (E[({zt,2 — wi—1))?)) ? < 920M.
Next, we recall Bernstein’s inequality for martingales [Freedman [1975],
Lemma 18. Suppose X7, ---,X,, are a sequence of random variables such that 0 < X; < 1. Define the martingale
difference sequence {Y,, = E[X,,| X1, -+, X,,—1] — X, } and denote K, the sum of the conditional variances
Ky =Y Var(X,| Xy, -, Xno1).
t=1
Let S, = >, X;, then for all €, k > 0 we have
n 62
Pr[;E[Xn|X1, e Xy ] =Sy > e, K, <K< exp(—m). (26)
we have
T
2T M o? 9.7
Pr{zmz X +3.(20M)\/7’T}§exp _2_’_2.3%.(3,\1»1)
t=1 3 20MVT
<e 97
SCEXPYy — T &
2+ 2y
<e 7

forall T = O (";)—ZT)

Thus, forall 7 = O (”j—zT) w.p.1—e™7,

T 2
Z¢t<O(T]\§U +JM\/TT>.
=1

Next we bound the term of Zthl E[]|&]|?]. It is notable that
E[l[€e]12] = Elllze + 23] < 2llzell? + 2E[[|2¢]17] = 2ll2¢ |12 + 247,

with
1 log(%) - dr(BM + \)? ~log(1/5)) O(log(%) ~dTr(BM + \)?% - log(l/é))

= 5 .

9> =0(

| By | ne2 n2e
Thus, it is sufficient for us to bound ZiTzl |ze]|2 = ZiTzl ¢;. Similar to Lemma[I7] we have the following result

Lemma 19. [Nazin et al),2019] When M < A\, we have

Mo

)(2M + X) < 6Ao.



Thus, by Berstern’s inequality, we have if 7 = O (%T)

T
Pr> " [|z:|[2 > 40°T + 18\oV/T'7] < exp(— 9; =) < exp(=).
t=1 2+ oT

In total, let -, = 9, we have with probability at least 1 — 2 exp(—7)

e (Dal0*we) 7 Mo®  oMyT _o®  Moyi log(3)-dTk(BM + A - log(1/9)
E —L < . _
[£(w)] (0 )_O( T t—— T T + 5 + N + nZe2y
27
Let 7 = O((ﬂM+ALVAj:°g(1/6)), and since Dg (0, wg) = ®(0*) < ,{1;42 we have
~ [ Mo? M Mo? M 4+ N)Mr+/dlog(1/
E[ﬁ(w)]_L(o*)gc)( o oMyT  Mo®  (BM +A)Mry/dlog(l/ )>'
A VT 5 ne
Let A = %/% > max{S3,1} M, we have
Mor+y/dlog(1/6 M Mo?
E[L(d)] - £(0%) < 0 [ MoV dlos1/0) , oMy | Mo™)
Vne VT ol
- _ Mne :
Lety = /T, then VT = O((BMH\)\/dlog(l/é)), and it holds that
M max{c?, o} {/rk2dlog(1/5)\/log(1/4")
E[L(w)] — L") <O
2] - £(6°) < ( =
w.p. at least 1 — 5. O

10 ADDITIONAL THEOREMS AND PROOFS

Theorem 14. For the ﬁg space with 1 < p < 2, suppose Assumption [ holds and assume n is large enough such that
VneM 2 . . ) . o
O((iﬁ v dlog(l/é))S) > max{f3, 1} M. Forany 0 < ¢,6 < 1, Algorithm[Zlis (¢, §)-DP. Moreover, if we set {;} = v = V/T,
_ ne _ \/neM 2 . o1s / A . .
T = W] and A = O((in doa (T3] )3). Then for any failure probability ¢’, the output w satisfies the following
with probability at least 1 — ¢’
2 1
5(dlog(1/9))s+/log(1/d’
E[L(@)] — L(6%) < O (M ¥ (d1og(1/0))? Viog(l/ )> ,

(ne)?

where the expectation is taken over the randomness of noise, and the probability is w.r.t. the dataset D.

10.1 PROOF OF THEOREM 4]

We propose our method in Algorithm[7l Note that there are two key differences compared to Algorithm[4] First, since we
do not need the privacy amplification via shuffling, there is no shuffling step. Secondly, instead of adding noise to each
truncated gradient g,, here we add a generalized Gaussian noise to the averages of the gradients for each batch. In the
following we will prove our theoretical results in Theorem T4l

Proof. The proof of DP is just by the Generalizer Gaussian mechanism. For utility, the proof is almost the same as in the
proof for Theorem [IQ] while the only difference is the noise. Similar to (27]) we have the following result with probability
atleast 1 — 2exp(—7)

(28)

E(m)—ﬁ(@*)SO(HM27+MUQ oM+\/T 2+MUﬁ_}_dTQH(ﬁM—l—/\)Qlog(l/(S)).

a
r A VT 7 VT n2e?y



Algorithm 7 Truncated DP Batched Mirror Descent

1: Inmput: Dataset D, loss function /, initial point wy = 0, smooth parameter 3 and and .
2: Divide the permuted data into T batches { B;}_, where |B;| = % foralli=1,--- ,T
3: fort=1,---,Tdo

4: for each x € B; do

) Vl(wi—1, ) i || VEO(we—1, 2)|[« < BM + A

5: gz .

0 otherwise
6: end for

: Let -
gax 2

. o . M+X)2-log(1/8

8w =argmin {<E§; + 7 w) + ‘Dé(wth—l)} , where Z¢ ~ GG||.||, (0?) with 0% = O (%)
[| - ||+ is the smooth norm for (E, || - ||.). k = min{ﬁ,log d} and ®(z) = %||x|\i+ with K = 5.

9: end for

N T —1\— T —
10: return w = (thl Ve 1) L. thl Vi 1wt

Take ¥ = /T then we have

kM1 M?  dT%?k)\2% - log(1/6)
v) — L(0") < —_—+ .
cla) - £67) <0 (VT4 X )
Take T' = m we have
kM~ dlog(1/8)/T  M?
v) — L(0") < —— |-
L(w) — L( )O( NG + h\
Take A = O((—X=—=—— %)%) > max{f3,1} M we have w.p at least 1 — ¢’
K og

£() - £(67) < 0 <M‘é ! (dlog(1/0)! y/Tog(1/ ‘”) |

(ne)s
O

Theorem 15. For the Eg space with 2 < p < oo, suppose Assumption ] holds. Then the Algorithm 1 in Kamath et al.
[2022] is (e, 6)-DP for all 0 < €,6 < 1. Moreover, suppose the loss function is non-negative, there exists R = O(1) such
that [|[VL(w)|« < R for all w € C and 3) in Assumption[5holds. then the output satisfies

E[£(w)] — £(87) < O (dﬁ + %) . 29)

10.2 PROOF OF THEOREM 3|

Kamath et al. [2022] study DP-SCO with heavy-tailed data in Euclidean space and propose an (¢, §)-DP algorithm for any

0 < ¢,6 < 1 that achieves an expected excess population risk of O(M % %Z ), where M is the ¢5-norm diameter of
the constraint set C, under the following assumptions

Assumption 5. 1) The loss function ¢(w, ) is non-negative, differentiable and convex for all w € C. 2) The loss function
is 8-smooth. 3) The gradient of £(w) at the optimum is zero. 4) There is a constant ¢ such that for all j € [d] and w € C
we have E[(V{(w,z) — VL(w), e;)?] < o2, where e, is the j-th standard basis vector. 5) For any w € C, the distribution
of the gradient has bounded mean, i.e., |[VL(w)|]2 < R.

For (¢ space, we know that L-Lipschitz w.r.t ||-|| implies L-Lipschitz w.r.t ||-||2. Moreover, E[||[V{(w, ) —V L(w)|[2] < o2
implies E[||V/(w, z) — VL(w)||3] < o which indicates condition 4) in Assumption[3} For the diameter, it has the diameter

of d2 % M wurt ||l - |l2- Thus we have the following result.

O
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